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Field dependence of the Yukawa coupling
in the three flavor quark-meson model

E

G. Fej6s

“and A. Patkés®’

Institute of Physics, Eotvos University, 1117 Budapest, Hungary

® (Received 16 November 2020; accepted 23 February 2021; published 22 March 2021)

We investigate the renormalization group flow of the field-dependent Yukawa coupling in the framework
of the three flavor quark-meson model. In a conventional perturbative calculation, given that the field
rescaling is trivial, the Yukawa coupling does not get renormalized at the one-loop level if it is coupled to an
equal number of scalar and pseudoscalar fields. Its field-dependent version, however, does flow with
respect to the scale. Using the functional renormalization group technique, we show that it is highly
nontrivial how to extract the actual flow of the Yukawa coupling as there are several new chirally invariant
operators that get generated by quantum fluctuations in the effective action, which need to be distinguished

from that of the Yukawa interaction.
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I. INTRODUCTION

One of the merits of the functional renormalization group
(FRG) technique is that it allows for calculating the flows of
n-point functions nonperturbatively. Via the FRG one has
the freedom to evaluate the scale dependence of them in
nonzero background field configurations, which is thought
to be essential once spontaneous symmetry breaking occurs
[1-3]. For the sake of an example, in scalar (¢) theories,
quantum corrections to the wave function renormalization
(Z) typically vanish at the one-loop level, but using the
FRG one gets a nonzero contribution once one generalizes
the corresponding kinetic term in the effective action as
~Z(¢)0,0"¢ and evaluates Z at a symmetry breaking
stationary point of the effective action. This procedure is
essential, e.g., in two-dimensional systems that undergo
topological phase transitions, as the wave function renorm-
alization is known to be diverging in the low temperature
phase, which cannot be described in terms of perturbation
theory [4]. Similarly, in four dimensions, it has recently been
shown that in the three flavor linear sigma model the
coefficient of ‘t Hooft’s determinant term also receives
substantial contributions when evaluated at nonzero field [5].

A similar treatment should be in order for Yukawa
interactions, whose renormalization group flow vanishes
at the one-loop level, if complex scalar fields are coupled to
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the fermions and the field strength renormalization is trivial
[6]. In phenomenological investigations of the two and
three flavor quark-meson models, several papers have dealt
with the nonperturbative renormalization of the Yukawa
coupling. The essence of the corresponding calculations is
that one determines the RG flow of the fermion-fermion-
meson proper vertex, defined as 6°I"/8, rdgyd¢ in a given
background (I being the effective action), and then
associates it with the flow of the Yukawa coupling itself.
This obviously works for one flavor models [7,8], and even
for the two flavor case [9,10], in particular for models
restricted to the ¢ — 7 subsector, i.e., with O(4) symmetry
in the meson part of the theory. The reason why the
approach has legitimacy in the latter case is that it turns out
that the only way fluctuations generate new Yukawa-like
operators in the quantum effective action is that the original
Yukawa term is multiplied by powers of the quadratic O(4)
invariant of the meson fields. That is to say, one is allowed
to choose, e.g., a vacuum expectation value for which all
pseudoscalar () fields vanish, but the scalar (s) one is
nonzero, and associate ~s> with the aforementioned quad-
ratic invariant leading to the appropriate determination of
the field dependence of the Yukawa coupling.

The situation is not that simple in case of three flavors,
i.e., chiral symmetry of U, (3) x Ug(3). Since the effective
action automatically respects linearly realized symmetries
of the Lagrangian, field dependence of any coupling must
mean all possible functional dependence on chirally invari-
ant operators. Because there are more invariants compared
to the two flavor case, if one chooses a specific background
for the evaluation of the RG flow of the fermion-fermion-
meson vertex, one may arrive at an “effective” Yukawa
interaction, but it will then mix in that specific background
the contribution of different chirally invariant operators.

Published by the American Physical Society
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The reason is that for three flavors other operators than that
of the Yukawa term (multiplied by powers of the quadratic
invariant) can get generated, which are presumably not
even considered neither in the Lagrangian nor in the ansatz
of the effective action. The newly emerging operators in
principle cannot be distinguished from the Yukawa inter-
action if the background is too simple, and as it will be
shown, a naive calculation squeezes inappropriate terms
into the Yukawa flow, which should be separated via the
choice of a suitable background and projected out.

Investigations of the three flavor case including the
effects of the U, (1) anomaly were started by Mitter and
Schaefer. In a first paper, no RG evolution of the Yukawa
coupling was taken into account [11]. This approximation
was carried over in several directions, including inves-
tigations regarding magnetic [12] and topological [13]
susceptibilities, mass dependence of the chiral transition
[14], or quark stars [15].

A strategy for extracting the RG flow of the field-
dependent Yukawa coupling was presented by Pawlowski
and Rennecke, explicitly realized for the two flavor case
[10]. In this paper, interaction vertices arising from the
expansion of the field-dependent Yukawa coupling were
also analyzed and it was found that higher order mesonic
interactions to two quarks are gradually less important.
These results were further used in recent ambitious com-
putations of the meson spectra from effective models
directly matched to QCD [16,17]. The method of [10]
was then applied for extracting the flow of the Yukawa
coupling in the 2 4 1 flavor (realistic) quark-meson model
[18]. The prescription used in the latter calculation relies on
a symmetry breaking background, from which a field-
independent Yukawa coupling is extracted. A similar
approach has already been introduced in the seminal paper
of Jungnickel and Wetterich [19], where a diagonal
symmetry breaking background was employed in calculat-
ing the RG equation of the Yukawa coupling (for general
number of flavors). As a generalization, here we offer a
renormalization procedure of the field-dependent Yukawa
coupling realizable in any symmetry breaking background
through a chirally invariant set of operators.

More specifically, the aim of this paper is to show how to
separate the field-dependent Yukawa interaction from those
new fermion-fermion-multimeson couplings that unavoid-
ably arise as three flavor chiral symmetry allows for a much
larger set of operators in the infrared than considering only
a field-dependent Yukawa coupling. For this, the right-hand
side (rhs) of the evolution equation of the effective action
will be evaluated in such a background that allows for
expressing it in terms of explicitly invariant operators, as it
was demonstrated for purely mesonic theories some time
ago [20-23]. We also note that apart from the above
applications, recent studies on a lower Higgs mass bound
[24] and on quantum criticality [25] also deal with field-
dependent Yukawa interactions.

The paper is organized as follows. In Sec. II, we present the
model emphasizing its symmetry properties. We explicitly
show what kind of new operators can be generated and set an
ansatz for the scale-dependent effective action accordingly.
Section III contains the explicit calculation of the flows
generated by the field-dependent Yukawa coupling, and
Sec. IVisdevoted to an extended scenario where at the lowest
order the newly established operators are also taken into
account. In Sec. V, we present numerical evidence for the
relevance of the proposed procedure, while the reader finds
the summary in Sec. VL.

II. MODEL AND SYMMETRY PROPERTIES

We are working with the U 4 (1) anomaly free three flavor
quark-meson model, which is defined through the follow-
ing Euclidean Lagrangian:

L =Tr(0;M" ;M) + m*Tr(M'M)
+ A(Tr(MTM))? + 2, Te(MTMM'M)
+ (P + gMs)q. (1)

where M stands for the meson fields, M = (s, + iz,)T,
(T, = 4,/2 are generators of U(3) with 1, being the Gell-
Mann matrices, a = 0...8), g7 = (uds) are the quarks, and
Ms = (s, + in,ys)T,. As usual, m? is the mass parameter
and 1,, A, refer to independent quartic couplings. The fermion
part contains @ = 0,y;, ys = iyoy172y3 With {y;} being the
Dirac matrices and the Yukawa coupling is denoted by g.
Concerning the meson fields, U;(3)x Ug(3) =~
Uy (3) x U,(3) chiral symmetry manifests itself as
M — VMV?, M — ATMAT (2)
for vector and axialvector transformations, respectively,
V =exp(i0§T,), A = exp(i04T,). This also implies that
Ms — VMV, Ms— AlM AL (3)
where As = exp(i04T,ys). As for the quarks, the trans-
formation properties are

q-Vq. q — Asq. (4)
Note that, since {y;, 75} =0,
g—gvV'.  g-gAs. (5)

These transformation properties guarantee that all
terms in (1) are invariant under vector and axialvector
transformations.

The quantum effective action, I', built upon the theory
defined in (1) also has to respect chiral symmetry. That is to
say, only chirally invariant combinations of the fields can
emerge in [". For three flavors, there exist three independent
invariants made out of the M fields,
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p=Tr(M'M),
t:=Tr(M'M - Tr(M'M)/3)?,
p3=Tr(M'M - Tr(M™M)/3)3, (6)

where the last one is absent in (1) due to perturbative
UV renormalizability, but nothing prevents its generation in
the infrared. In principle, the chiral effective potential, V,
defined via homogeneous field configurations, I'|;,,, =
/.. V has to be of the form V = V(p, 7, p3). Obviously, the
generalized Yukawa term

9(p.7.p3) - GMsq (7)

can (and does) also appear in I, but in this paper we restrict
ourselves to

glp..p3) = g(p). (8)

This is motivated from a symmetry breaking point of view,
i.e., without explicit symmetry breaking terms in (1), chiral
symmetry breaks as U; (3) x Ug(3) — Uy(3) [26], and for
any background field respecting vector symmetries,
7= 0= p;. We can think of g(p) as

0

90)=> 0" = (g0 +g1-p+...), )
n=0

which shows that it actually resums operators of the
form ~[Tr(MTM)]"gMsq.

Note that, however, as announced in the Introduction,
there are several other invariant combinations at a given
order that are allowed by chiral symmetry and contribute to
quark-meson interactions. Take the lowest nontrivial order,
i.e., dimension 6. We have two invariant combinations,

~p - qMsq, ~qgMsMsMsq. (10)
Obviously the first one is to be incorporated into the
field-dependent Yukawa coupling, but not the second one.
Note that one may think of the fifth Dirac matrix as the
difference between left- and right-handed projectors,
ys = Pr — Py, and therefore, e.g., the first expression
is equivalent to g; Mqg + GgMTq, and the second to
GLMM Mgy + ggM MM g, . Thus, one can trade the
M5 dependence to M dependence in the invariants via
working with left- and right-handed quarks separately.
Going to next-to-leading order, we see the emergence of
the following new terms [note that for general configura-
tions Tr(MIMs) = Tr(M™M)]:
~p-GMsMiMsq.  ~gMsMiMsMMsq.

(11)

and we might even have ~7 - gM ¢, though we intend to drop
such contributions; see approximation (8). If we are to extract

~p*-gMsq,

the renormalization group flow of g(p), then we need a
strategy to distinguish each operator at a given order, in order
to be able to resum only the Yukawa interactions, and not the
aforementioned new quark-quark-multimeson operators.
Obviously, this procedure cannot be done through a one
component background field, e.g., the vectorlike condensate
M ~ s - T, as it mixes up the corresponding operators, and
one loses the chance to recombine the field dependence into
actual invariant tensors.

The flow of the effective action is described by the
Wetterich equation [27,28]

1
o= [T +R)TORL. (12)

where F,(f) is the second functional derivative matrix

of I'y and R, is the regulator function. One typically
chooses it to be diagonal in momentum space, and set R
as Ri(p,q) = 27)*Ri(q)5(q + p). Evaluating (12) in
Fourier space leads to

ory = [ T + RY N -pOR(p). (13

In this paper, the equation will be evaluated only in
spacetime-independent background fields; therefore, one

assumes that I“,(f) is also diagonal in momentum space,

% (p.q) = 27)*T (9)5(g + p). In such backgrounds,
it is sufficient to work with the effective potential, V, via
Cilhom = [. Vi and (13) leads to

oV =5 [ TP o) ORp). (14

p

where we have assumed that the regulator matrix R; is
meant to replace everywhere p with pp, where pp is
the regulated momentum through the R; function, i.e.,
Pk = P* + Ri(P), Pri = Prbi-

The ansatz we choose for I'; is called the local potential
approximation, which consists of the usual kinetic terms
and a local potential (in this case, specifically, a mesonic
potential plus the Yukawa term),

= /[Tr(aiMTaiM) +qPq

+ Veni(p. 7. p3) + 9i(p)qMsq]. (15)

Using the earlier notation, V, = V., + gi(p)gMsq. Note
that the chiral potential will not be considered in its full
generality, but rather as V., = U (p) + Ci(p)7. Flows of
U, and C;, can be found in [23]. Note that this construction
could be easily extended with ‘t Hooft’s determinant term
describing the U, (1) anomaly, ~(det M + det M), and the
corresponding coefficient function. Investigations in this
direction are beyond the scope of this paper.
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III. FLOW OF THE FIELD-DEPENDENT
YUKAWA COUPLING

In this section, we evaluate (13) in homogeneous back-
ground fields to obtain the flow of g;(p), defined in (15).

Calculating F,(f) using the ansatz (15), one gets the following

hypermatrix in the {s“, 7%, g’, ¢} multicomponent space:

where the mass matrices are defined through the following
relations:

(mg.k)ij = azvk/asiasjv (m,zz.k)l-j = 82Vk/67r,-87zj,

(mgﬂ’k)ij = 82Vk/8s,-aﬂ'j. (17)
p*+m, Moy g —ge(Tq)" aqT
My pPm —igrs Tq)" igqTys
gqu i9cYs fq 0 iy+ giMs ’ For practical purposes, it is worth to separate F,(f) into three
~ae@D)" —igi(qT)Tys —ip—giMs 0 parts [29,30], I 22) = F@z + Ff} + Fl(ci?nix’ where the respec-
tive terms are defined as
(16)
|
pr4+m2,  m2, 0 0 0 0 0 0
o _ | mae pPAmy 000 e |00 0 0
B 0 0 0 0 KFT oo 0 i+ gMs
0 0 00 0 0 —ip—gMs 0
0 0 ~gi(Tq)" aqT
(2) . = -
r®. — ( 0 Fk.FB) _ 0 0 —igi(rsTq)" iggTys (8)
k,mix = - fd . —
Fl(fz)af 0 9Tq igirsTq 0 0
-9 (@T)" —ige(@T)"ys 0 0

Using these notations, and by introducing the differential
operator 0y, which, by definition acts only on the regulator
function, Ry, (14) can be conveniently reformulated.

We may use the matrix identity

s s

<F§3}B Fi?}>

(T (e )
Fl(j})vB 1 0 Fl(czz)v - FE{?I)VB (F,(C?;)“F,(C%F

and arrive at

1 /-
ﬁkazz/akTr logF,(cz)(pR)
14
5 T 10er® L[ e
=5 1T OngVB(pR)-i-E Ok TrlogT' w(pr)
p p

1 [z 2 2
+§/8ka log[1 —Gk,F(PR)Fk}BGk.B(PR)F/(c.z)sF],
P
(20)
where G 5 = (F,%)‘l, Gir= (Ff})‘l and the negative
sign of the pure fermionic term is understood. We are

|
interested in the flow of the Yukawa coupling; thus,
we need to identify in the rhs of (20) the operator
~gMsq. Diagrammatically, the commonly known term
that contributes is seen in Fig. 1, which is generated
from the leading term of the last contribution of the rhs
of (20),

1/ -
=5 [ OGP Grnpn)T e (21)
P

More specifically, it reads

FIG. 1. One-loop triangle diagram that is responsible for
flowing quark-meson interactions. The solid lines correspond
to quarks, while the dashed ones represent mesons.
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FIG. 2. One-loop tadpole diagram arising from the field-
dependent Yukawa interaction, which allows the generation of
new quark-meson vertices in the RG flow. The solid lines
correspond to quarks, while the dashed ones represent mesons.

"</=qg§(p)/5k TaSk(PR)MSSk(pR)

where Si(p) = (ip + giMs)~! is the fermion propagator
without doubling, while Gy, Gi,, and Gy, are the
respective 9 x 9 submatrices of G, p in a purely bosonic
background (see Appendix B). In principle, the evaluation
of (22) goes as follows. First, one evaluates I’y , then
inverts it to obtain G, ;, Gy, and Gy ;. Second, one inverts
the fermion propagator, and finally performs all matrix
multiplications to get the operator that is sandwiched by g
and ¢g. Note that the procedure turns out to be too
complicated to be carried out in a general background,
but as we explain in the next subsections, fortunately we
will not need to evaluate (22) in its full generality.

On top of the above, via a field-dependent Yukawa
coupling there is also contribution from the first term of

N . o
< (G ab (20), as meson masses get modified by a fermionic back-
< k, (om) -~ Gi ~(Pr) ground (see Appendix B) leading to the possibility of
+ s [Gk7s,r(pR) + GZf’m(pR)])Tb}q, generating a ~gM g term in the effective action; see Fig. 2.
(22) Generically, this contributes to the rhs of (20) as
|
P AL / < { b Op OM5 _ dp OM; ab dp OMs | Op OMs
7< — a7y pak{Gk (p )(35(1 sy t s Dsp 0Sq + 9asMs ) + Gk’ﬂ(pR)(awa omy, | Omp, 0T, 6abM")’
(’)p 8M5 8p aMs 8p (’)M5 8,0 6M5
ab o . ab . _
+ Gk’S”(pR)(aﬂ'b 0sq  0sq Omp ) + Gk”TS(pR)<87ra sy, + dsy O, )}
_95(p) / 5.{ qab dp Op dp Op dp 9p dp Op
G G%P G G — Msgq.
+a5 | 0GR on) 5 50 + Gl om) g 50+ Gile o) 5+ Gl ) 5 5 P M
(23)
A. Flows in the symmetric phase 1 o?
: ' : P : G (P) = =735 | Samp U} ). (24c)
As a first step, we are interested in the RG flows in the (p*+Up) ds,0m),
symmetric phase, i.e., where they are obtained at zero field.

Note that, however, this still necessitates the evaluation of iy M

. . _ 5
the rhs of the flow equation (22) in a nonzero background, Si(p) = - ? + 2 (24d)

but if we are interested in the flowing couplings of
dimension 6 operators, it is sufficient to perform all
computations at the cubic order in the meson fields.
That is to say, when all propagators are expanded around
M = 0 (see Appendix B for the general formulas), one is
allowed to work with them at the following accuracy:

1 1
Gab' = 5(1 -
k,s (p) p2 + U;( b (p2 + U;{)Z
0t
U/ +——C ), 24
X (Sasb k + asaasb k) ( a)
1 1
G¢ (p) = Sab —
k,ﬂ(p) p2 + U;{ b (p2 4 U;()Z
0t
Uy C, |, 24b
< (rm+ 520

where the coefficient functions (ie., U, U}, C;) are
evaluated at zero field. Note that in this subsection all
computations are performed without specifying any back-
ground field and keeping its most general form. Terms that
contain higher derivatives of C; are left out since their
coefficients would lead to subleading (higher than cubic
power) contributions in the background fields in (22)
and (23).

Note that the scalar and pseudoscalar meson propagators
do not mix in the symmetric phase and are degenerate;
therefore, there is a relative (—1) factor between their
contributions in (22), which exactly cancels the term linear
in the mesonic fields. In the piece of the integrand that is
quadratic in them, the quark momentum is odd; therefore,
upon integration, it also vanishes. The leading contribution
of (22) is determined by the mass terms,
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<—qgk/ )TJMJr

s s YUl + o LT ¢,
asb ™ MaTlb)Vk 8sa35b B Om,0m
. . 0*r 02
15(samy + sp7ma) Uy + 195 (83 oy N on ;sb)}qu'

(25)

Exploiting various identities of the U(3) algebra (see
Appendix A), one can perform the algebraic evaluation
of the integrands to arrive at

v f/(g 1
L, Rk UL)?

< [(abur ~ 2gtc) a(Ms M — p/3) Mg (29)

1
+<§gi’U k
Equation (26) clearly shows the appearance of a new
dimension 6 operator (~E]M5M§M5q), which was absent
in the ansatz of the effective action. Before discussing this

result, let us turn to the contribution of (23). Using, again,
expressions (24), a straightforward calculation leads to

|
A = | B [10910Msq + g7 paMisd]
< /p’“p%+U,g 9kGMsq + gk paMsq

~ 1 16
i /pa’“ (% + U;)? K*?

— 693, Crq(MsMj

+ ggka) p@qu]~

9.Cr. = 39,UY) paMsq

!~ p/3)Msq).
(27)

where the coefficient functions (i.e., U}, gx. g;. d;. Cy) are,
once again, evaluated at zero field. The flow of the effective
potential is the sum of (26) and (27).

At this point, it is clear that the flow equation does not
close in the sense that the ansatz (15) does not contain the
operator ~gMsM ;M 5q; therefore, for consistency reasons,
it has to be dropped also in the rhs of (20). Instead of doing

so, one may choose to project out the NZI(M5M§ -
p/3)Msq term, because in the symmetry breaking pattern
U;(3) x Ug(3) = Uy(3) that is the actual combination,
which vanishes. This choice should lead to the appropriate
definition of the field-dependent flowing Yukawa coupling
if no explicit symmetry breaking terms are present. Note,
however, that, once finite quark masses and the corre-
sponding explicit breaking terms are introduced, in the
minimum point of the effective potential MsM ; # p/3, and
the aforementioned projection can be regarded as some-
what arbitrary. A more appropriate treatment is to include
~Z]M5M§M5q in the ansatz of the effective action in the
first place (see Sec. IV).

We close this subsection by listing the coupled flow
equations for the Yukawa coupling and its deri-
vative evaluated at zero field, i.e., in the symmetric phase
when ~g(MsM: — p/3)Msq is projected out. Dropping ¢
in order to close the system of equations, and by using the
definitions of (9), (26), and (27), we are led to

1
h——
p PR

1 ~
Ogri = <3gg,kUZ 5 %. ka) / O (PR + U})?
P

16
C.+3 U”)/
<3glkk 91k ) pR—I—U’

(28b)

hgox = 10g; & (28a)

B. Flows in the broken phase

Now, we explore how the flowing couplings depend on
the fields, more specifically, as described in (8), their p
dependence will be determined.

At this point, we specify a background in which we will
evaluate the flow equation, as in case of general {M, g, ¢}
configurations, there is no hope that the broken symmetry
phase calculations can be done explicitly. The nice thing,
however, is that it is sufficient to work in a restricted
background. We, again, definitely need to assume nonzero
g, g, and then we specify the M = syTy + sgTs (physical)
condensate. This is one of the minimal choices, which allows
for a unique restoration of the ~gM 5M;M sq and ~gMsq
operators in the rhs of the flow equation (a one component
condensate would definitely not allow to do so). We have
checked explicitly with other backgrounds the uniqueness of
the results, and as expected, found agreement.

As outlined above, the first step is to evaluate the
two-point functions F,(CZS) , F,({zi)r (note that in the current
background there is no s—z mixing), see details in
Appendix B, in particular (B10) and (B11). Then one
inverts these matrices to obtain G, and Gy ;. They are
diagonal except for the 0-8 sectors. Similarly, for the

fermion propagator, one has S;'(p) = (ip + gi(p)Ms),
which leads to the inverse
—ip + M.
Si(p) = ° (29)

P2+9kM5M§'

Since in the background in question [S;, Ms| = 0, Eq. (22)
becomes

< = 4gi(p)

< [ 0{TuSHpm) M5 (G (o) — Gy o) T fa.

(30)
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Similarly, exploiting the choice of the simplified back-
ground, (23) becomes

’
|

\ ' 79
k /8 G, (PR)Sasq

I

gk /3k Gk s(R) (5T + spT%)

+ (G (pr) + G (pr))Ms ) .
(31)

It is important to mention that one does not need to work
with general s,, sg background values, but can safely
assume that sg < s, and thus expand both (30) and (31) in
terms of sg and work in the leading order. This simplifi-
cation still uniquely allows for identifying the flow of the
~gMsq and ~g(MsM. — p/3)Msq operators. The latter, as
expected, pops up agam [it is inherently of O(sg)]; thus, a
two component background is indeed necessary to obtain
each flow. The sum of (30) and (31) leads to

1

/9 —d(ﬂ)( & + i +
p 2T\ p2 4 U(p) T 3pk +4Ck(p)p + 3UL(p)

GMsq,
Pk + Uilp) + 2pU§é(ﬂ)) ;

+/5 ( 91 () 3pk — 9i(p)p) (16C(p) (pk + Ui (p)) + 3(px + 12Ci(p)p + UL (p)) Uy (p))
(Bpk + 9:(p)p)*(Pk + Ui(p))Bpk +4Ck(p)p 4+ 3UL(p)) (P + Ui(p) + 20U (p))

(p)
) +2pU} ﬂ))p

P+ Uilp

9 ()p)(Ag + A1 (pk + Ui(p)) + Ar(pk + Ui(p))?)

N / 5, ( 26:(p) 3 pk
(6p% +2g;(p )/J)3(pR + U’ 1(2))*(3pk +4Ck(p)p + 3U5(p))* (PR + Uilp) + 20U} (p))

69, (p) 3Ck(p) +2Ci(p)p)
)

~ (3p% +4C(p)p +3U1(p)) (P} + ULlp) + 20U (p))

where

)q(M5M§ - p/3)Msgq,

Ay = =288CL(p)P* (3pk + gi(P)p) (K + Ui(p) + 2pU}(p)) + 36(pk + Ui (p))*(4Ci(p)p(3pk + gi(P)p) + 9P U (p)),
Ay = —144C3(p)p((14pk +44; (p)p) (PR + Ui(p)) + 12pU{(3pk + g2 (p)p)),

Ay = —12C(p)(18p + 6pR(3U,(p) + 12pU] (p)

As in the previous subsection, we may drop the last
term in (32) due to consistency and thus the first two
terms provide the result for the fully nonperturbative flow
of the Yukawa coupling. One also notes that if the term in
question is not projected out and considered in, e.g., a
(50, 53) (physical) background, then it cannot even be
interpreted as a standard Yukawa term, as in such back-
grounds (MsM: — p/3) ~ Tg. The presence of such con-
tribution would force us to introduce in addition a different
Yukawa coupling and treat it similarly to as it was an
explicit symmetry breaking term.

The expression obtained for the flow of the Yukawa
coupling g, (p) is thought to be a resummation of operators
as described below (9). As such, one is able to determine
how strong the interaction is between quarks and mesons
as, e.g., the chiral condensate evaporates at high temper-
ature. In principle, g;(p) also depends explicitly on the
temperature, but one expects that the decrease in p is more
important [5]. For phenomenology, one needs to evaluate
gi(p) and its derivatives at the minimum point of the

= 8CL(p)P?

) +4g;(p)p* (U} (p) — 4Ci(p)p))-

|
effective potential, p = pg,. In this case, one can also
consider the broken phase expansion

9c(P) = Gox + g1 (P = pos) + . (33)

which, via (32) defines the broken phase flows of the g
and g; ; couplings. They can be found in Appendix C.

IV. EFFECT OF THE M5M§M5 OPERATOR

Motivated by the nonuniqueness of the definition of the
field-dependent Yukawa coupling in the earlier setting, now
we investigate the case when the term [, gs3 . gMsMiMsq
is added to the ansatz (15) of the effective action (without
subtracting pgMsq/3 from it). Here gs; is a new running
coupling constant, and we will not be considering its field
dependence. Also, we restrict ourselves to calculations in
the symmetric phase; therefore, a similar treatment as of in
Sec. IIT A is in order. All calculations presented there are
still valid, but there is one more term contributing to rhs of
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the flow equation of the effective action, coming from the
tadpole diagram of Fig. 2 [see the mass matrices in (B9)],

_9
g ,f/ak[ (P ((Ms, (T, Ty 1) + TMIT, + T,M3T,)
p
Ce(pR)({Ms AT, T}y = TiMST; = T;MLT)
+ Gk,m(pR)WS([M57 (T3 T))] + T;MT; + T;MST;)
+ G (pR)ivs(Ms, [T, T\ + T,MIT; + T;MIT))]q.
(34)

Substituting the propagators from Egs. (24), without

specifying an actual background field, straightforward
calculations lead to

_ 1 _
6953k qMsq ak 2 , [2953,kaP61M561

1
(PR+U)*
(35)

+(3953.kUZ+10953,kck)51M5M§qu]/5k
p

Note that all couplings (i.e., U, U}, Cy) are evaluated at
zero field as we have worked in the symmetric phase. One
observes that even though the original (field independent)
Yukawa coupling does not flow in the symmetric phase,
once one includes the gs; coupling, it does run with respect
to the scale. Using (28a), (28b), and (35), we arrive at the
following system of equations for g, g1 4, and gs3 :

1

0 = (10 6 o , 36
90k = (10g1 & + 6953 ) g | ST 1 U, (36)
10 "
WGk =— ?gl,kck + 3914 U + 2953 Cr
/ 5 +26.C / R
¢ +U/)2 gOk ¢ kPR PRJFU/)T
(37)

—(691 4 Ci + 10gs3 1 Ci + 3953 £ UY)
- 1 2
R G ]

~ 1
0 ———. 38
/ AT UL? (38)

We wish to note that based on Sec. III B, a broken phase
calculation can also be done. This, however, leads to such
complicated formulas that we do not go into the details.

ak953,k =

V. NUMERICS

Though a complete solution of the flow equation for the
effective action is beyond the scope of the paper, in this

section, we wish to provide at least a convincing evidence
of how important it is to consider the field-dependent
version of the Yukawa interaction. We will be investigating
the approximation scheme described in Sec. IIIC and
solve the flow equation for the Yukawa coupling when
expanded around the minimum point of the potential. That
is, we are dealing with (C1) and (C2) numerically. In
this section, we employ Litim’s optimal regulator,
Ri(p) = (K* = p?)O(k* — p?); thus, p% = k2, if p < k.
Let us imagine that we add the following symmetry
breaking terms to the Lagrangian, £, = —(hgsg + hgsg),
where the h; (i =0, 8) are external fields without scale
dependence. Note that adding these terms do not change
any of the RG flows. By introducing the nonstrange-strange
basis as hyg = hor/2/3 + hg/\/3, hy = ho//3 — hg\/2/3,

the partially conserved axialvector current relations yield

h h,
mzzzfn = hnsv m%{fK = %—'__S’ (39)

V2

where m, and my are the pion and kaon masses, respec-
tively. Their experimental values are m, ~ 140 MeV and
mg ~ 494 MeV, while the corresponding decay constants
read f, %93 MeV, fx =~ 113 MeV. These considerations
lead to

1
hos = m;%f;z’ hy = ﬁ (2m%(fK - m’zrf”)’ (40)

1.€.,

2
hy = \@(mifn/Z +mifx).

2
hg :%(m%fﬂ_m%{fK>' (41)
Now, we can make use of the chiral Ward identities,
OV e i
acsr;S 9 — m72; ns hns’ (423)

2 2

aVch,k:O my — my 2

= S +mes, — hg,

a ns K®°s K
Sy V2

where the s, and s, condensates are defined analogously to
their respective external fields. If we combine (42) with
(40), we arrive at the conclusion that irrespectively of the
remaining model parameters (in particular, on including the
axial anomaly), in the minimum point of the effective
action

(42b)

Ss,min = \/E(fK - fﬂ/2) (43)

Shs,min — fm

That is to say, in the minimum point, the p invariant
iS P0 = Prin = (52 min + 52min)/2 & (93.5 MeV)2.
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TABLE I. Comparison between Yukawa couplings with and
without field dependence. Note that, in the former scenario,
the coupling does not flow and is equal to its UV value. The
flow equations were solved with a UV cutoff A =1 GeV and

Ag = (Jox=0 = Jox=A)/ Yo k=A-

u” 90.k=A 90,k=0 Ag
10 5 5.26 5.1%
10 10 8.96 —10.4%
10 15 11.48 —23.4%
10 20 13.92 —30.4%
v" 90.k=A 90,k=0 Ag
20 5 5.24 4.7%
20 10 8.97 —10.3%
20 15 11.58 —22.8%
20 20 14.10 —29.5%

Since we are interested in a rough estimate, (C1) and
(C2) will be solved such that the scale dependence of the
chiral potential is neglected, and we are only after g, ; (and
g1.) at k = 0. The expansion of the chiral potential around
the minimum reads

Van(p) = U'(po)(p = po) + U"(po) (p = p0)*/2 + Clpo)r.

(44)
The pion and kaon masses in the minimum are
c
mlzf =U'+ g (sis,min - zsg,min)’ (4521)
C
m%( = U/ + g (Sﬁs,min - 3\/Esns,minss,min + 4S?,min)’ (45b)

which using physical masses lead to U’ = 0.147 GeV? and
C ~ 84.37. We still need U”, which is determined via the
light scalar (o) mass. Its expression reads

1
m¢27 =U +5 U”(Sﬁs min T s )

2 s, min
C 1
+ E (S%s, min + 1Osz,min) - E \/B’
D = (SC + 6U”)2sﬁs, min

+4(19C2 4+ 105CU" — 18U")s2 . 52 (46)

s,min* ns,min "

+4(7C +3U")*s?

s,min

Setting 10 < U” < 20 yields 469 MeV < m,, < 594 MeV,
which is a suitable interval for the physical value of m,.

For several different parameters, we show in Table I how
the fluctuation corrected Yukawa coupling, gg—o differs
from its UV value, go,—,. Note that without field depend-
ence, go; would not flow with respect to the scale at all and
stayed at its initial value. Therefore, comparing the initial

value with the one obtained at k = 0 shows the importance
of considering a field-dependent Yukawa coupling.

VI. SUMMARY

In this paper, we raised the question of determining the
field dependence of the Yukawa coupling in the three flavor
quark-meson model. Our main motivation was to clarify the
problem of consistency between chiral symmetry and the
Yukawa term. As opposed to two flavors, in case of three
flavors, the existence of non-Yukawa-like interactions and
their generation in the infrared scales of the quantum
effective action prevents a straightforward generalization
of the two flavor approach [10]. That is to say, one cannot
consistently work with, e.g., a scalar chiral condensate and
associate the complete field dependence of the quark-
quark-meson vertex with that of the Yukawa coupling
itself. One needs great care to project out those operators
that are not included in the ansatz of the effective action,
which, by construction, needs to respect chiral symmetry.
We believe that such a consistent approach was missing in
the literature so far.

We have explicitly calculated the renormalization group
flow of the field-dependent Yukawa coupling separately in
the symmetric and broken phases. We have showed that at
the order of dimension 6 operators new type of terms arise
and gave prescription for how to project them out as
required by consistency. Motivated by the very definition of
the flow of the field-dependent Yukawa coupling, for the
sake of a complete treatment of dimension 6 operators, we
have determined the symmetric phase flows when these
new (nonrenormalizable) interactions are also included in
the ansatz of the quantum effective action (I';).

Numerics showed that the field dependence of the
Yukawa interaction is indeed important for physical para-
metrizations of the model; therefore, it would be very
important to see what effects the current approach has from
a phenomenological point of view. One is typically
interested in mapping the details of the chiral phase
transition at finite temperature and/or density, such as
the transition point, mass spectrum, interaction strengths,
etc. To do so one also needs to include t° Hooft’s
determinant term into the system describing the U,(1)
breaking, and it would be of particular interest to check the
interplay between the anomaly coupling and that of the
Yukawa interaction. These directions represent future
studies to be reported elsewhere.
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APPENDIX A: U3) ALGEBRA IDENTITIES

The U(3) algebrais spanned by the 3 x 3 7; (i = 0, ...8)
generators, which satisfy Tr(7,T;) = &;;/2, and a product
of two generators lie in the Lie algebra,

T (diji 4 if ijk) Ty (A1)

j:

N =

Associativity of matrix multiplication leads to the following
identities:

0= fimFmjx + f jimS imk + FramS ijm» (A2a)
0= fimdmjx + [ jim@imk + [ kimijm> (A2b)
0= fijmfklm - dikmdjlm + djlmdilm’ (A2C)

the first one known as the Jacobi identity. Using that 7';T’; is
a Casimir operator, working in the adjoint representation,
one easily shows that f f;x = 36;(1 — 8;05)). Using this
identity as a starting point, one derives the following two-
and threefold sums using (A2):

dijmdijm = 36ik + 36,0640, (A3a)
3
flnifikmfmjl = _Efnkﬁ (A3b)
3
ik Qi f jim = Efinl» (A3c)
3
Sintf tim@mki = E(anoéjk + 800k = Ok00n;)
3
~5 dnjk (A3d)
3
digdipmdyyji = 5(5n05jk + 800,k + 6x00,;)
3
+ Ed”jk. (A3e)

Furthermore, the following identities for fourfold sums
are useful for present calculations:

diajdjbkdkcldldi
3 3
= Z (dahmdmcd + dadmdmcb) - Z ducmdmbd
1

+5 (5ab50d + 5(1C6bd + 5ad5bc)

[\

3
+ \/;(%odbcd + 8p0dyca + Ocodapa + Saodape)-

(Ada)
Siajdipkdreidiai + fiajdjprdrardici = fabidijedicidiais

(A4b)
fiajdjekdraidipi + fiajdjardicidii = fabjdijedicidiai
+ 2f baif1ac kjm@met + 2f bejf 1jxf kam@mar-

N[ =

(Adc)

APPENDIX B: INVARIANT TENSORS AND
TWO-POINT FUNCTIONS

First, we recall that
p=Tr(M™M), (Bla)
7 =Tr(M'M - Tr(M*M)/3)?, (B1b)

where M = (s; + in;)T;. In terms of s; and z;, they read

P :%(Sisi + 7im;), (B2a)
1
=5 (8:8 858 + mmj7pm;) Dy
+ Sisj”kﬂl([)ij.kl —Diju/4)
- % (s:8; + mim;)?, (B2b)

Vyhere Djjxi = dijmdiim + digm@jim + ditmd jm and

Djjx1 = dijmdim- The relevant derivatives of p and 7 are

Op op
. _— B3
8Si Si aﬂ'l‘ d ( a)
&p &p
_s.. — 5 B3b
asl‘Sj Y (97{,-71']- Y ( )
or 2 1
a5, - 3" t5 SaSpScDabei
1 -
+ 5 SaltcTtyg (4Dui.cd - Duicd)’ (B4a)
or 2 1
aﬂi = _gpﬂi + gﬂaﬂbﬂCDabci
1 -
+ 7”ascsd(4Dai.cd - Duicd)’ (B4b)

2
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1
Ot 2 2 1 7|, . == s2(852 — 425055 + 52) (B5b)
= =" ——g§:8: +— D ... 5058 8 0 0°8 8/
asiasj 3p ij 3slsj +2Sash abij 24
+ 1 7omy(4 Dij,cd _ Dijcd)’ (B4c) Then, the nonzero first derivatives are
9%t 2 2 1 ) )
e S S I o e
87:,~37rj 3/0 ij 37[/7] + 2”{1”1) abij aso 50, 8S8 S3, (B6a)
80,58 50,58
1 -
+ 5 5¢54(4Djj ca = Dijea) (B4d) 5 )
T 2 S0 Sg
foats 2 ~ P =53 (— - —) , (B6D)
m N _§”isj + sa”c(4Daj,ci - Dajci)' (B4C) 050 50-53 3 3\/§
In case of the broken phase calculation, we are working or 253 sosy . 53
in a background field M = syT + sgTs; thus, the follow- Dsa =53 <T % g) (Béc)
ing formulas need to be used. First, we list the invariants, 81s0.55
1, 5 As shown above, the second derivatives of p are equal to
= — 5 B5 . . ,~ 3
p|s°‘58 2 (55 + 55) (B5a) the unit matrix, while that of 7 are the following:
|
253, ifi=j=0
~ 5% 44505, ifi=0j=8 or i=8,j=0
Sz . . .
8821 _ %s% —l—;j— V2s0sg, ifi=j=8 (B7a)
Si8 150,55 %sg %s+ V2sosg, ifi=j=1,273
20— Lsesy. (fi=j=4567
0, else
0, ifi=j=0
— s+ 2sesy. ifi=0j=8 or i=8j=0
Pr| Bl ifi=j=8 (B7b)
Omif s S s, ifi=j=1,2,3
%Sé—ﬁiSOSS ifi=j=4,567
0, else
The masses of the scalar and pseudoscalar mesons of the ansatz (15) in a purely bosonic background read
vV 0’
2 k / '
= =6..(U C C
(ms,k)l] 8s,-8sj l]( k(p) +7 k(p)> + 0s,-8sj k(p>
Op Op Op Or  Op Ot
syt g4 c A C . BS
oo wile)+ <o) + (g + a0 )G (Ba)
o 0t
2 k / '
= =6..(U C C
(mn'.k)l] aﬂiaﬂj l,/( k(p) +7 k(p)) + 871,»875 k(p)
dp Op dp Ot  Op Ot
— (U} o —+ == Cl(p), B8b
e st Wil + <o) + (e S5 ) (BSb)
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o*V 0*t op 0 Op Ot Op Ot
2 _ ko _ op op 7 P P
()i = Gamie = e o) + e (UR(p) + oY) + (G L TN i) (B
If the fermions also have nonzero expectation values, then these masses get corrected by
_ Op OMs  Op OM 5 dp (9,0
2y i / y !
INGR q[g (G52 5o 52 + b1 + o) 5w
+9535q({{T:. T;}. Ms} + T:MIT; + T;MT})q. (B9a)
_ Op OMs  Op OMs Op Op
2y or N () =2 28
A(mz )i = 3|9 ( )<87r o, +87r~ or, + g (p)6;;Ms + g} (p) or, 87;st q
+953Q({M5 {T:.T;}} - TMTT TMTT)‘I (BOb)
_ Op OM oM Op OM dp Op
A 2 o " M
)y =]kt )<as On, "o, 0s, ) T ) 55 o, M5 |4
+ lgssqys([Ms [T, T;]] + TngTj + TngTi)q’ (B9c)

where we also included the effect of the ~gM M ; M 5q operator with the coupling constant gs3. Using the formulas above, in
a purely bosonic background, which is defined by M = 54T + sgTg, the two-point functions of the ansatz (15) read

1
% — (8(2C; + 5C},s2 + C)'st)s? — 4V/25(3C}, + Clls3)s3 + (C, + Cls3)st +2452UY),  (B10a)

— p2 U/

1
F,fs)og(p) ﬁsg( 12\/§(Ck + Cls3)sg + 4s0(5C, + 2C)s3)s3 4\/_(C' + CYls3)s3 + Clsosg

+ 850(4Cy + 2C,s% +3U7)). (B10b)
1
Fﬁggg(p) =p’+ U, + 24(8s0(2Ck + SC,(s8 C;(’s ) — 4\/§sosg(6Ck + 7Cks8 Clsé)
+ 53(12C, + 9C).53 + C}sg + 24U7)), (B10c)
F,(f])zoo(p) p*+ U, +24Cks8(8s0 4fs0s8 —l—sg) (B10d)
1
ro(p) = ~¢ Crss(=4s0 + V2s3), (B10e)
1
% (p) = 2+ U, + ﬁs8(4ck(—2\/§so + 55) + Clsg (853 — 425055 + 2)). (B10f)
and furthermore
r(p) =2+ U+ 5 L (40,82 + Clst + 83(2C, + Clsd) — 2v/ 25055 (—12C, + 2C43)), (Blla)
FO% ) — 2 gt b 4Cs? 1 st 4 852(2C, + C 2V/25055(6C; + 2C Bllb
s (P)=Dp"+ k+24( 153 + Cpsg + 855(2C; + Cs3) — 5053(6C; +2C53)), ( )
1
Fl(fz)r“ (p)=p*+ U+ 2’ 55(4C(2V2s0 — 53) + C 155 (8sF — 4v/ 25055 + 53))- (Bllc)
1
2% (p) = p2 + U} + + 55 38(4Ck (= V250 + 555) + Clisg (852 — 4/ 2sys5 + 52)). (B11d)
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2)11 2)22 2)33 2)44 2)55 2)66 277
where T (p) = T2 (p) = Tha(p), and T (p) = T0(p) = Tie(p) = T (p).

APPENDIX C: BROKEN PHASE FLOWS OF g, AND g;
Using the expansion (33) and the flow equation (32), we get
o= (32 et o)
k904 = » k 291,1( pr+ U, 3p%+4Cipo+3U,  px+ U, +2pyU}

Gox 3Pk = G5.400) (16C (g + UY) 4 3U} (pk + 12Ckpo + Up))po }
(3p% + G 1r0)*(Pk + U)(3pk + 4Cupo + 3U,) (pk + Ul + 2poUy) |

A / 5 [ 043Pk = %.400) 16Ck (P} + U}) + 3U{ (pi + 12Cipo + U)))
T ), LG + Rapo)2(ph + Up) (3pg +4Cipo + 3U}) (p3 + U+ 2poUY)

3009 3 8 1
+2a. —( + + )
27" 9p \ph + Uilp) ' 3p% +4C(p)p +3U}(p)  p + Uilp) +2pU7 ()] |,

ol 9 (p) 3Pk = 1)) 16Ci(p) (P& + Ui (p)) + 3UL(p)(pk + 12Ci(p)p + Ui (p)))
0p 3p% + 51 (p)p)*(Pk + Ui(p)) (3pk +ACi(p)p + 3UL(p)) (P2 + Ul(p) + 20U} (p))

] ()

where g;(p) = gox + 91.4(p — po), and it is understood that unless indicated otherwise, all couplings are taken at the

minimum point, p.
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