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We investigate the renormalization group flow of the field-dependent Yukawa coupling in the framework
of the three flavor quark-meson model. In a conventional perturbative calculation, given that the field
rescaling is trivial, the Yukawa coupling does not get renormalized at the one-loop level if it is coupled to an
equal number of scalar and pseudoscalar fields. Its field-dependent version, however, does flow with
respect to the scale. Using the functional renormalization group technique, we show that it is highly
nontrivial how to extract the actual flow of the Yukawa coupling as there are several new chirally invariant
operators that get generated by quantum fluctuations in the effective action, which need to be distinguished
from that of the Yukawa interaction.
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I. INTRODUCTION

One of the merits of the functional renormalization group
(FRG) technique is that it allows for calculating the flows of
n-point functions nonperturbatively. Via the FRG one has
the freedom to evaluate the scale dependence of them in
nonzero background field configurations, which is thought
to be essential once spontaneous symmetry breaking occurs
[1–3]. For the sake of an example, in scalar ðϕÞ theories,
quantum corrections to the wave function renormalization
(Z) typically vanish at the one-loop level, but using the
FRG one gets a nonzero contribution once one generalizes
the corresponding kinetic term in the effective action as
∼ZðϕÞ∂μϕ∂μϕ and evaluates Z at a symmetry breaking
stationary point of the effective action. This procedure is
essential, e.g., in two-dimensional systems that undergo
topological phase transitions, as the wave function renorm-
alization is known to be diverging in the low temperature
phase, which cannot be described in terms of perturbation
theory [4]. Similarly, in four dimensions, it has recently been
shown that in the three flavor linear sigma model the
coefficient of ‘t Hooft’s determinant term also receives
substantial contributionswhen evaluated at nonzero field [5].
A similar treatment should be in order for Yukawa

interactions, whose renormalization group flow vanishes
at the one-loop level, if complex scalar fields are coupled to

the fermions and the field strength renormalization is trivial
[6]. In phenomenological investigations of the two and
three flavor quark-meson models, several papers have dealt
with the nonperturbative renormalization of the Yukawa
coupling. The essence of the corresponding calculations is
that one determines the RG flow of the fermion-fermion-
meson proper vertex, defined as δ3Γ=δLψ̄δRψδϕ in a given
background (Γ being the effective action), and then
associates it with the flow of the Yukawa coupling itself.
This obviously works for one flavor models [7,8], and even
for the two flavor case [9,10], in particular for models
restricted to the σ − π subsector, i.e., with Oð4Þ symmetry
in the meson part of the theory. The reason why the
approach has legitimacy in the latter case is that it turns out
that the only way fluctuations generate new Yukawa-like
operators in the quantum effective action is that the original
Yukawa term is multiplied by powers of the quadraticOð4Þ
invariant of the meson fields. That is to say, one is allowed
to choose, e.g., a vacuum expectation value for which all
pseudoscalar (π) fields vanish, but the scalar (s) one is
nonzero, and associate ∼s2 with the aforementioned quad-
ratic invariant leading to the appropriate determination of
the field dependence of the Yukawa coupling.
The situation is not that simple in case of three flavors,

i.e., chiral symmetry of ULð3Þ ×URð3Þ. Since the effective
action automatically respects linearly realized symmetries
of the Lagrangian, field dependence of any coupling must
mean all possible functional dependence on chirally invari-
ant operators. Because there are more invariants compared
to the two flavor case, if one chooses a specific background
for the evaluation of the RG flow of the fermion-fermion-
meson vertex, one may arrive at an “effective” Yukawa
interaction, but it will then mix in that specific background
the contribution of different chirally invariant operators.
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The reason is that for three flavors other operators than that
of the Yukawa term (multiplied by powers of the quadratic
invariant) can get generated, which are presumably not
even considered neither in the Lagrangian nor in the ansatz
of the effective action. The newly emerging operators in
principle cannot be distinguished from the Yukawa inter-
action if the background is too simple, and as it will be
shown, a naive calculation squeezes inappropriate terms
into the Yukawa flow, which should be separated via the
choice of a suitable background and projected out.
Investigations of the three flavor case including the

effects of the UAð1Þ anomaly were started by Mitter and
Schaefer. In a first paper, no RG evolution of the Yukawa
coupling was taken into account [11]. This approximation
was carried over in several directions, including inves-
tigations regarding magnetic [12] and topological [13]
susceptibilities, mass dependence of the chiral transition
[14], or quark stars [15].
A strategy for extracting the RG flow of the field-

dependent Yukawa coupling was presented by Pawlowski
and Rennecke, explicitly realized for the two flavor case
[10]. In this paper, interaction vertices arising from the
expansion of the field-dependent Yukawa coupling were
also analyzed and it was found that higher order mesonic
interactions to two quarks are gradually less important.
These results were further used in recent ambitious com-
putations of the meson spectra from effective models
directly matched to QCD [16,17]. The method of [10]
was then applied for extracting the flow of the Yukawa
coupling in the 2þ 1 flavor (realistic) quark-meson model
[18]. The prescription used in the latter calculation relies on
a symmetry breaking background, from which a field-
independent Yukawa coupling is extracted. A similar
approach has already been introduced in the seminal paper
of Jungnickel and Wetterich [19], where a diagonal
symmetry breaking background was employed in calculat-
ing the RG equation of the Yukawa coupling (for general
number of flavors). As a generalization, here we offer a
renormalization procedure of the field-dependent Yukawa
coupling realizable in any symmetry breaking background
through a chirally invariant set of operators.
More specifically, the aim of this paper is to show how to

separate the field-dependent Yukawa interaction from those
new fermion-fermion-multimeson couplings that unavoid-
ably arise as three flavor chiral symmetry allows for a much
larger set of operators in the infrared than considering only
a field-dependent Yukawa coupling. For this, the right-hand
side (rhs) of the evolution equation of the effective action
will be evaluated in such a background that allows for
expressing it in terms of explicitly invariant operators, as it
was demonstrated for purely mesonic theories some time
ago [20–23]. We also note that apart from the above
applications, recent studies on a lower Higgs mass bound
[24] and on quantum criticality [25] also deal with field-
dependent Yukawa interactions.

The paper is organized as follows. InSec. II,wepresent the
model emphasizing its symmetry properties. We explicitly
showwhat kind of new operators can be generated and set an
ansatz for the scale-dependent effective action accordingly.
Section III contains the explicit calculation of the flows
generated by the field-dependent Yukawa coupling, and
Sec. IVis devoted to an extended scenariowhere at the lowest
order the newly established operators are also taken into
account. In Sec. V, we present numerical evidence for the
relevance of the proposed procedure, while the reader finds
the summary in Sec. VI.

II. MODEL AND SYMMETRY PROPERTIES

We are working with theUAð1Þ anomaly free three flavor
quark-meson model, which is defined through the follow-
ing Euclidean Lagrangian:

L ¼ Trð∂iM†∂iMÞ þm2TrðM†MÞ
þ λ̄1ðTrðM†MÞÞ2 þ λ̄2TrðM†MM†MÞ
þ q̄ð=∂ þ gM5Þq; ð1Þ

where M stands for the meson fields, M ¼ ðsa þ iπaÞTa
(Ta ¼ λa=2 are generators of Uð3Þ with λa being the Gell-
Mann matrices, a ¼ 0…8), qT ¼ ðudsÞ are the quarks, and
M5 ¼ ðsa þ iπaγ5ÞTa. As usual, m2 is the mass parameter
and λ̄1, λ̄2 refer to independent quartic couplings. The fermion
part contains =∂ ≡ ∂iγi, γ5 ¼ iγ0γ1γ2γ3 with fγig being the
Dirac matrices and the Yukawa coupling is denoted by g.
Concerning the meson fields, ULð3Þ ×URð3Þ ≃

UVð3Þ × UAð3Þ chiral symmetry manifests itself as

M → VMV†; M → A†MA† ð2Þ

for vector and axialvector transformations, respectively,
V ¼ expðiθaVTaÞ, A ¼ expðiθaATaÞ. This also implies that

M5 → VM5V†; M5 → A†
5M5A

†
5; ð3Þ

where A5 ¼ expðiθaATaγ5Þ. As for the quarks, the trans-
formation properties are

q → Vq; q → A5q: ð4Þ

Note that, since fγi; γ5g ¼ 0,

q̄ → q̄V†; q̄ → q̄A5: ð5Þ
These transformation properties guarantee that all
terms in (1) are invariant under vector and axialvector
transformations.
The quantum effective action, Γ, built upon the theory

defined in (1) also has to respect chiral symmetry. That is to
say, only chirally invariant combinations of the fields can
emerge in Γ. For three flavors, there exist three independent
invariants made out of the M fields,
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ρ ≔ TrðM†MÞ;
τ ≔ TrðM†M − TrðM†MÞ=3Þ2;
ρ3 ≔ TrðM†M − TrðM†MÞ=3Þ3; ð6Þ

where the last one is absent in (1) due to perturbative
UV renormalizability, but nothing prevents its generation in
the infrared. In principle, the chiral effective potential, V,
defined via homogeneous field configurations, Γjhom ¼R
x V has to be of the form V ¼ Vðρ; τ; ρ3Þ. Obviously, the
generalized Yukawa term

gðρ; τ; ρ3Þ · q̄M5q ð7Þ
can (and does) also appear in Γ, but in this paper we restrict
ourselves to

gðρ; τ; ρ3Þ ≈ gðρÞ: ð8Þ
This is motivated from a symmetry breaking point of view,
i.e., without explicit symmetry breaking terms in (1), chiral
symmetry breaks asULð3Þ ×URð3Þ → UVð3Þ [26], and for
any background field respecting vector symmetries,
τ≡ 0≡ ρ3. We can think of gðρÞ as

gðρÞ ¼
X∞
n¼0

gnρn ¼ ðg0 þ g1 · ρþ…Þ; ð9Þ

which shows that it actually resums operators of the
form ∼½TrðM†MÞ�nq̄M5q.
Note that, however, as announced in the Introduction,

there are several other invariant combinations at a given
order that are allowed by chiral symmetry and contribute to
quark-meson interactions. Take the lowest nontrivial order,
i.e., dimension 6. We have two invariant combinations,

∼ρ · q̄M5q; ∼q̄M5M
†
5M5q: ð10Þ

Obviously the first one is to be incorporated into the
field-dependent Yukawa coupling, but not the second one.
Note that one may think of the fifth Dirac matrix as the
difference between left- and right-handed projectors,
γ5 ¼ PR − PL, and therefore, e.g., the first expression
is equivalent to q̄LMqR þ q̄RM†qL and the second to
q̄LMM†MqR þ q̄RM†MM†qL. Thus, one can trade the
M5 dependence to M dependence in the invariants via
working with left- and right-handed quarks separately.
Going to next-to-leading order, we see the emergence of
the following new terms [note that for general configura-
tions TrðM†

5M5Þ ¼ TrðM†MÞ]:
∼ρ2 · q̄M5q; ∼ρ · q̄M5M

†
5M5q; ∼q̄M5M

†
5M5M

†
5M5q;

ð11Þ
andwemight evenhave∼τ · q̄M5q, thoughwe intend to drop
such contributions; see approximation (8). Ifwe are to extract

the renormalization group flow of gðρÞ, then we need a
strategy to distinguish each operator at a given order, in order
to be able to resum only the Yukawa interactions, and not the
aforementioned new quark-quark-multimeson operators.
Obviously, this procedure cannot be done through a one
component background field, e.g., the vectorlike condensate
M ∼ s0 · 1, as it mixes up the corresponding operators, and
one loses the chance to recombine the field dependence into
actual invariant tensors.
The flow of the effective action is described by the

Wetterich equation [27,28]

∂kΓk ¼
1

2

Z
Tr½ðΓð2Þ

k þRkÞ−1∂kRk�; ð12Þ

where Γð2Þ
k is the second functional derivative matrix

of Γk and Rk is the regulator function. One typically
chooses it to be diagonal in momentum space, and set Rk

as Rkðp; qÞ ¼ ð2πÞ4RkðqÞδðqþ pÞ. Evaluating (12) in
Fourier space leads to

∂kΓk ¼
1

2

Z
p
Tr½ðΓð2Þ

k þRkÞ−1ðp;−pÞ∂kRkðpÞ�: ð13Þ

In this paper, the equation will be evaluated only in
spacetime-independent background fields; therefore, one

assumes that Γð2Þ
k is also diagonal in momentum space,

Γð2Þ
k ðp; qÞ ¼ ð2πÞ4Γð2Þ

k ðqÞδðqþ pÞ. In such backgrounds,
it is sufficient to work with the effective potential, Vk, via
Γkjhom ¼ Rx Vk, and (13) leads to

∂kVk ¼
1

2

Z
p
TrfðΓð2Þ

k ðpRÞÞ−1∂kRkðpÞg; ð14Þ

where we have assumed that the regulator matrix Rk is
meant to replace everywhere p with pR, where pR is
the regulated momentum through the Rk function, i.e.,
p2
R ¼ p2 þ RkðpÞ, pRi ¼ pRp̂i.
The ansatz we choose for Γk is called the local potential

approximation, which consists of the usual kinetic terms
and a local potential (in this case, specifically, a mesonic
potential plus the Yukawa term),

Γk ¼
Z
x
½Trð∂iM†∂iMÞ þ q̄=∂q

þ Vch;kðρ; τ; ρ3Þ þ gkðρÞq̄M5q�: ð15Þ
Using the earlier notation, Vk ¼ Vch;k þ gkðρÞq̄M5q. Note
that the chiral potential will not be considered in its full
generality, but rather as Vch;k ¼ UkðρÞ þ CkðρÞτ. Flows of
Uk and Ck can be found in [23]. Note that this construction
could be easily extended with ‘t Hooft’s determinant term
describing the UAð1Þ anomaly, ∼ðdetM þ detM†Þ, and the
corresponding coefficient function. Investigations in this
direction are beyond the scope of this paper.
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III. FLOW OF THE FIELD-DEPENDENT
YUKAWA COUPLING

In this section, we evaluate (13) in homogeneous back-
ground fields to obtain the flow of gkðρÞ, defined in (15).

Calculating Γð2Þ
k using the ansatz (15), one gets the following

hypermatrix in the fsa; πa; q̄T; qg multicomponent space:0
BBBBB@

p2þm2
s;k m2

sπ;k −gkðT⃗qÞT gkq̄ T⃗

m2
πs;k p2þm2

π;k −igkðγ5T⃗qÞT igkq̄ T⃗ γ5

gkT⃗q igkγ5T⃗q 0 i=pþ gkM5

−gkðq̄T⃗ÞT −igkðq̄T⃗ÞTγ5 −i=p− gkM5 0

1
CCCCCA;

ð16Þ

where the mass matrices are defined through the following
relations:

ðm2
s;kÞij ¼ ∂2Vk=∂si∂sj; ðm2

π;kÞij ¼ ∂2Vk=∂πi∂πj;
ðm2

sπ;kÞij ¼ ∂2Vk=∂si∂πj: ð17Þ

For practical purposes, it is worth to separate Γð2Þ
k into three

parts [29,30], Γð2Þ
k ¼ Γð2Þ

k;B þ Γð2Þ
k;F þ Γð2Þ

k;mix, where the respec-
tive terms are defined as

Γð2Þ
k;B ¼

0
BBB@

p2 þm2
s;k m2

sπ;k 0 0

m2
πs;k p2 þm2

π;k 0 0

0 0 0 0

0 0 0 0

1
CCCA; Γð2Þ

k;F ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 i=pþ gkM5

0 0 −i=p − gkM5 0

1
CCCA;

Γð2Þ
k;mix ≡

 
0 Γð2Þ

k;FB

Γð2Þ
k;BF 0

!
¼

0
BBBBB@

0 0 −gkðT⃗qÞT gkq̄ T⃗

0 0 −igkðγ5T⃗qÞT igkq̄ T⃗ γ5

gkT⃗q igkγ5T⃗q 0 0

−gkðq̄ T⃗ÞT −igkðq̄ T⃗ÞTγ5 0 0

1
CCCCCA: ð18Þ

Using these notations, and by introducing the differential
operator ∂̃k, which, by definition acts only on the regulator
function, Rk, (14) can be conveniently reformulated.
We may use the matrix identity 
Γð2Þ
k;B Γð2Þ

k;BF

Γð2Þ
k;FB Γð2Þ

k;F

!

¼
 

Γð2Þ
k;B 0

Γð2Þ
k;FB 1

! 
1 ðΓð2Þ

k;BÞ−1Γð2Þ
k;BF

0 Γð2Þ
k;F − Γð2Þ

k;FBðΓð2Þ
k;BÞ−1Γð2Þ

k;BF

!
ð19Þ

and arrive at

∂kVk ¼
1

2

Z
p
∂̃kTr logΓ

ð2Þ
k ðpRÞ

¼ 1

2

Z
p
∂̃kTr logΓ

ð2Þ
k;BðpRÞþ

1

2

Z
p
∂̃kTr logΓ

ð2Þ
k;FðpRÞ

þ 1

2

Z
p
∂̃kTr log½1−Gk;FðpRÞΓð2Þ

k;FBGk;BðpRÞΓð2Þ
k;BF�;

ð20Þ

where Gk;B ¼ ðΓð2Þ
k;BÞ−1, Gk;F ¼ ðΓð2Þ

k;FÞ−1 and the negative
sign of the pure fermionic term is understood. We are

interested in the flow of the Yukawa coupling; thus,
we need to identify in the rhs of (20) the operator
∼q̄M5q. Diagrammatically, the commonly known term
that contributes is seen in Fig. 1, which is generated
from the leading term of the last contribution of the rhs
of (20),

−
1

2

Z
p
∂̃kTr½Gk;FðpRÞΓð2Þ

k;FBGk;BðpRÞΓð2Þ
k;BF�: ð21Þ

More specifically, it reads

FIG. 1. One-loop triangle diagram that is responsible for
flowing quark-meson interactions. The solid lines correspond
to quarks, while the dashed ones represent mesons.
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ð22Þ

where SkðpÞ ¼ ðipþ gkM5Þ−1 is the fermion propagator
without doubling, while Gk;s, Gk;π , and Gk;sπ are the
respective 9 × 9 submatrices of Gk;B in a purely bosonic
background (see Appendix B). In principle, the evaluation
of (22) goes as follows. First, one evaluates Γk;B, then
inverts it to obtainGk;s,Gk;π, andGk;sπ . Second, one inverts
the fermion propagator, and finally performs all matrix
multiplications to get the operator that is sandwiched by q̄
and q. Note that the procedure turns out to be too
complicated to be carried out in a general background,
but as we explain in the next subsections, fortunately we
will not need to evaluate (22) in its full generality.
On top of the above, via a field-dependent Yukawa

coupling there is also contribution from the first term of
(20), as meson masses get modified by a fermionic back-
ground (see Appendix B) leading to the possibility of
generating a ∼q̄M5q term in the effective action; see Fig. 2.
Generically, this contributes to the rhs of (20) as

ð23Þ

A. Flows in the symmetric phase

As a first step, we are interested in the RG flows in the
symmetric phase, i.e., where they are obtained at zero field.
Note that, however, this still necessitates the evaluation of
the rhs of the flow equation (22) in a nonzero background,
but if we are interested in the flowing couplings of
dimension 6 operators, it is sufficient to perform all
computations at the cubic order in the meson fields.
That is to say, when all propagators are expanded around
M ¼ 0 (see Appendix B for the general formulas), one is
allowed to work with them at the following accuracy:

Gab
k;sðpÞ ¼

1

p2 þU0
k

δab −
1

ðp2 þ U0
kÞ2

×

�
sasbU00

k þ
∂2τ

∂sa∂sb Ck

�
; ð24aÞ

Gab
k;πðpÞ ¼

1

p2 þ U0
k

δab −
1

ðp2 þU0
kÞ2

×

�
πaπbU00

k þ
∂2τ

∂πa∂πb Ck

�
; ð24bÞ

Gab
k;sπðpÞ ¼ −

1

ðp2 þ U0
kÞ2
�
saπbU00

k þ
∂2τ

∂sa∂πb Ck

�
; ð24cÞ

SkðpÞ ¼ −
ip
p2

þ gkM
†
5

p2
; ð24dÞ

where the coefficient functions (i.e., U0
k, U00

k , Ck) are
evaluated at zero field. Note that in this subsection all
computations are performed without specifying any back-
ground field and keeping its most general form. Terms that
contain higher derivatives of Ck are left out since their
coefficients would lead to subleading (higher than cubic
power) contributions in the background fields in (22)
and (23).
Note that the scalar and pseudoscalar meson propagators

do not mix in the symmetric phase and are degenerate;
therefore, there is a relative (−1) factor between their
contributions in (22), which exactly cancels the term linear
in the mesonic fields. In the piece of the integrand that is
quadratic in them, the quark momentum is odd; therefore,
upon integration, it also vanishes. The leading contribution
of (22) is determined by the mass terms,

FIG. 2. One-loop tadpole diagram arising from the field-
dependent Yukawa interaction, which allows the generation of
new quark-meson vertices in the RG flow. The solid lines
correspond to quarks, while the dashed ones represent mesons.
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ð25Þ
Exploiting various identities of the Uð3Þ algebra (see
Appendix A), one can perform the algebraic evaluation
of the integrands to arrive at

ð26Þ

Equation (26) clearly shows the appearance of a new
dimension 6 operator (∼q̄M5M

†
5M5q), which was absent

in the ansatz of the effective action. Before discussing this
result, let us turn to the contribution of (23). Using, again,
expressions (24), a straightforward calculation leads to

ð27Þ

where the coefficient functions (i.e., U0
k; gk; g

0
k; g

00
k; Ck) are,

once again, evaluated at zero field. The flow of the effective
potential is the sum of (26) and (27).
At this point, it is clear that the flow equation does not

close in the sense that the ansatz (15) does not contain the
operator ∼q̄M5M

†
5M5q; therefore, for consistency reasons,

it has to be dropped also in the rhs of (20). Instead of doing
so, one may choose to project out the ∼q̄ðM5M

†
5 −

ρ=3ÞM5q term, because in the symmetry breaking pattern
ULð3Þ ×URð3Þ → UVð3Þ that is the actual combination,
which vanishes. This choice should lead to the appropriate
definition of the field-dependent flowing Yukawa coupling
if no explicit symmetry breaking terms are present. Note,
however, that, once finite quark masses and the corre-
sponding explicit breaking terms are introduced, in the
minimum point of the effective potentialM5M

†
5 ≠ ρ=3, and

the aforementioned projection can be regarded as some-
what arbitrary. A more appropriate treatment is to include
∼q̄M5M

†
5M5q in the ansatz of the effective action in the

first place (see Sec. IV).

We close this subsection by listing the coupled flow
equations for the Yukawa coupling and its deri-
vative evaluated at zero field, i.e., in the symmetric phase,
when ∼q̄ðM5M

†
5 − ρ=3ÞM5q is projected out. Dropping g00k

in order to close the system of equations, and by using the
definitions of (9), (26), and (27), we are led to

∂kg0;k ¼ 10g1;k

Z
p
∂̃k

1

p2
R þ U0

k

; ð28aÞ

∂kg1;k ¼
�
1

3
g30;kU

00
k þ

16

9
g30;kCk

�Z
p
∂̃k

1

p2
Rðp2

R þU0
kÞ2

−
�
16

3
g1;kCk þ 3g1;kU00

k

�Z
p
∂̃k

1

ðp2
R þ U0

kÞ2
:

ð28bÞ

B. Flows in the broken phase

Now, we explore how the flowing couplings depend on
the fields, more specifically, as described in (8), their ρ
dependence will be determined.
At this point, we specify a background in which we will

evaluate the flow equation, as in case of general fM; q̄; qg
configurations, there is no hope that the broken symmetry
phase calculations can be done explicitly. The nice thing,
however, is that it is sufficient to work in a restricted
background. We, again, definitely need to assume nonzero
q̄, q, and then we specify the M ¼ s0T0 þ s8T8 (physical)
condensate. This is one of theminimal choices, which allows
for a unique restoration of the ∼q̄M5M

†
5M5q and ∼q̄M5q

operators in the rhs of the flow equation (a one component
condensate would definitely not allow to do so). We have
checked explicitly with other backgrounds the uniqueness of
the results, and as expected, found agreement.
As outlined above, the first step is to evaluate the

two-point functions Γð2Þ
k;s , Γð2Þ

k;π (note that in the current
background there is no s − π mixing), see details in
Appendix B, in particular (B10) and (B11). Then one
inverts these matrices to obtain Gk;s and Gk;π . They are
diagonal except for the 0–8 sectors. Similarly, for the
fermion propagator, one has S−1k ðpÞ ¼ ðipþ gkðρÞM5Þ,
which leads to the inverse

SkðpÞ ¼
−ipþ gkM

†
5

p2 þ gkM5M
†
5

: ð29Þ

Since in the background in question ½Sk;M5� ¼ 0, Eq. (22)
becomes

ð30Þ
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Similarly, exploiting the choice of the simplified back-
ground, (23) becomes

ð31Þ

It is important to mention that one does not need to work
with general s0, s8 background values, but can safely
assume that s8 ≪ s0, and thus expand both (30) and (31) in
terms of s8 and work in the leading order. This simplifi-
cation still uniquely allows for identifying the flow of the
∼q̄M5q and ∼q̄ðM5M

†
5 − ρ=3ÞM5q operators. The latter, as

expected, pops up again [it is inherently of Oðs8Þ]; thus, a
two component background is indeed necessary to obtain
each flow. The sum of (30) and (31) leads to

Z
p
∂̃k

3

2
g0kðρÞ

�
3

p2
R þU0

kðρÞ
þ 8

3p2
R þ 4CkðρÞρþ 3U0

kðρÞ
þ 1

p2
R þ U0

kðρÞ þ 2ρU00
kðρÞ

�
q̄M5q;

þ
Z
p
∂̃k

�
g3kðρÞð3p2

R − g2kðρÞρÞð16CkðρÞðp2
R þU0

kðρÞÞ þ 3ðp2
R þ 12CkðρÞρþU0

kðρÞÞU00
kðρÞÞ

ð3p2
R þ g2kðρÞρÞ2ðp2

R þU0
kðρÞÞð3p2

R þ 4CkðρÞρþ 3U0
kðρÞÞðp2

R þU0
kðρÞ þ 2ρU00

kðρÞÞ

þ g00kðρÞ
p2
R þ U0

kðρÞ þ 2ρU00
kðρÞ

�
ρq̄M5q;

þ
Z
p
∂̃k

�
2g3kðρÞð3p2

R − g2kðρÞρÞðA0 þ A1ðp2
R þ U0

kðρÞÞ þ A2ðp2
R þ U0

kðρÞÞ2Þ
ð6p2

R þ 2g2kðρÞρÞ3ðp2
R þ U0

kðρÞÞ2ð3p2
R þ 4CkðρÞρþ 3U0

kðρÞÞ2ðp2
R þ U0

kðρÞ þ 2ρU00
kðρÞÞ

−
6g0kðρÞð3CkðρÞ þ 2C0

kðρÞρÞ
ð3p2

R þ 4CkðρÞρþ 3U0
kðρÞÞðp2

R þ U0
kðρÞ þ 2ρU00

kðρÞÞ
�
q̄ðM5M

†
5 − ρ=3ÞM5q; ð32Þ

where

A0 ¼ −288C3
kðρÞρ2ð3p2

R þ g2kðρÞρÞðk2 þ U0
kðρÞ þ 2ρU00

kðρÞÞ þ 36ðp2
R þ U0

kðρÞÞ3ð4CkðρÞρð3p2
R þ g2kðρÞρÞ þ 9p2

RU
00
kðρÞÞ;

A1 ¼ −144C2
kðρÞρðð14p2

R þ 4g2kðρÞρÞðp2
R þ U0

kðρÞÞ þ 12ρU00
kð3p2

R þ g2kðρÞρÞÞ;
A2 ¼ −12CkðρÞð18p4

R þ 6p2
Rð3U0

kðρÞ þ 12ρU00
kðρÞ − 8C0

kðρÞρ2Þ þ 4g2kðρÞρ2ð9U00
kðρÞ − 4CkðρÞρÞÞ:

As in the previous subsection, we may drop the last
term in (32) due to consistency and thus the first two
terms provide the result for the fully nonperturbative flow
of the Yukawa coupling. One also notes that if the term in
question is not projected out and considered in, e.g., a
ðs0; s8Þ (physical) background, then it cannot even be
interpreted as a standard Yukawa term, as in such back-
grounds ðM5M

†
5 − ρ=3Þ ∼ T8. The presence of such con-

tribution would force us to introduce in addition a different
Yukawa coupling and treat it similarly to as it was an
explicit symmetry breaking term.
The expression obtained for the flow of the Yukawa

coupling gkðρÞ is thought to be a resummation of operators
as described below (9). As such, one is able to determine
how strong the interaction is between quarks and mesons
as, e.g., the chiral condensate evaporates at high temper-
ature. In principle, gkðρÞ also depends explicitly on the
temperature, but one expects that the decrease in ρ is more
important [5]. For phenomenology, one needs to evaluate
gkðρÞ and its derivatives at the minimum point of the

effective potential, ρ ¼ ρ0;k. In this case, one can also
consider the broken phase expansion

gkðρÞ ¼ g0;k þ g1;k · ðρ − ρ0;kÞ þ � � � ; ð33Þ

which, via (32) defines the broken phase flows of the g0;k
and g1;k couplings. They can be found in Appendix C.

IV. EFFECT OF THE M5M
†
5M5 OPERATOR

Motivated by the nonuniqueness of the definition of the
field-dependent Yukawa coupling in the earlier setting, now
we investigate the case when the term

R
x g53;kq̄M5M

†
5M5q

is added to the ansatz (15) of the effective action (without
subtracting ρq̄M5q=3 from it). Here g53;k is a new running
coupling constant, and we will not be considering its field
dependence. Also, we restrict ourselves to calculations in
the symmetric phase; therefore, a similar treatment as of in
Sec. III A is in order. All calculations presented there are
still valid, but there is one more term contributing to rhs of
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the flow equation of the effective action, coming from the
tadpole diagram of Fig. 2 [see the mass matrices in (B9)],

q̄
g53
2

Z
p
∂̃k½Gij

k;sðpRÞðfM5;fTi;Tjggþ TiM
†
5Tj þ TjM

†
5TiÞ

þGij
k;πðpRÞðfM5;fTi;Tjgg− TiM

†
5Tj − TjM

†
5TiÞ

þGij
k;sπðpRÞiγ5ð½M5; ½Ti;Tj�� þ TiM

†
5Tj þ TjM

†
5TiÞ

þGij
k;πsðpRÞiγ5ð½M5; ½Tj;Ti�� þ TiM

†
5Tj þ TjM

†
5TiÞ�q:

ð34Þ

Substituting the propagators from Eqs. (24), without
specifying an actual background field, straightforward
calculations lead to

6g53;kq̄M5q
Z
p
∂̃k

1

p2
RþU0

k

− ½2g53;kCkρq̄M5q

þð3g53;kU00
k þ 10g53;kCkÞq̄M5M

†
5M5q�

Z
p
∂̃k

1

ðp2
RþU0

kÞ2
:

ð35Þ
Note that all couplings (i.e., U0

k, U
00
k , Ck) are evaluated at

zero field as we have worked in the symmetric phase. One
observes that even though the original (field independent)
Yukawa coupling does not flow in the symmetric phase,
once one includes the g53 coupling, it does run with respect
to the scale. Using (28a), (28b), and (35), we arrive at the
following system of equations for g0;k, g1;k, and g53;k:

∂kg0;k ¼ ð10g1;k þ 6g53;kÞ
Z
p
∂̃k

1

p2
R þ U0

k

; ð36Þ

∂kg1;k ¼−
�
10

3
g1;kCkþ 3g1;kU00

k þ 2g53;kCk

�

×
Z
p
∂̃k

1

ðp2
RþU0

kÞ2
þ 2g30;kCk

Z
p
∂̃k

1

p2
Rðp2

RþU0
kÞ2

;

ð37Þ

∂kg53;k ¼ −ð6g1;kCk þ 10g53;kCk þ 3g53;kU00
kÞ

×
Z
p
∂̃k

1

ðp2
R þ U0

kÞ2
þ
�
g30;kU

00
k −

2

3
g30;kCk

�

×
Z
p
∂̃k

1

p2
Rðp2

R þ U0
kÞ2

: ð38Þ

We wish to note that based on Sec. III B, a broken phase
calculation can also be done. This, however, leads to such
complicated formulas that we do not go into the details.

V. NUMERICS

Though a complete solution of the flow equation for the
effective action is beyond the scope of the paper, in this

section, we wish to provide at least a convincing evidence
of how important it is to consider the field-dependent
version of the Yukawa interaction. We will be investigating
the approximation scheme described in Sec. III C and
solve the flow equation for the Yukawa coupling when
expanded around the minimum point of the potential. That
is, we are dealing with (C1) and (C2) numerically. In
this section, we employ Litim’s optimal regulator,
RkðpÞ ¼ ðk2 − p2ÞΘðk2 − p2Þ; thus, p2

R ¼ k2, if p < k.
Let us imagine that we add the following symmetry

breaking terms to the Lagrangian, Lh ¼ −ðh0s0 þ h8s8Þ,
where the hi (i ¼ 0, 8) are external fields without scale
dependence. Note that adding these terms do not change
any of the RG flows. By introducing the nonstrange-strange
basis as hns ¼ h0

ffiffiffiffiffiffiffiffi
2=3

p þ h8=
ffiffiffi
3

p
, hs ¼ h0=

ffiffiffi
3

p
− h8

ffiffiffiffiffiffiffiffi
2=3

p
,

the partially conserved axialvector current relations yield

m2
πfπ ¼ hns; m2

KfK ¼ hns
2

þ hsffiffiffi
2

p ; ð39Þ

where mπ and mK are the pion and kaon masses, respec-
tively. Their experimental values are mπ ≈ 140 MeV and
mK ≈ 494 MeV, while the corresponding decay constants
read fπ ≈ 93 MeV, fK ≈ 113 MeV. These considerations
lead to

hns ¼ m2
πfπ; hs ¼

1ffiffiffi
2

p ð2m2
KfK −m2

πfπÞ; ð40Þ

i.e.,

h0 ¼
ffiffiffi
2

3

r
ðm2

πfπ=2þm2
KfKÞ;

h8 ¼
2ffiffiffi
3

p ðm2
πfπ −m2

KfKÞ: ð41Þ

Now, we can make use of the chiral Ward identities,

∂Vch;k¼0

∂sns ¼ m2
πsns − hns; ð42aÞ

∂Vch;k¼0

∂ss ¼ m2
K −m2

πffiffiffi
2

p sns þm2
Kss − hs; ð42bÞ

where the sns and ss condensates are defined analogously to
their respective external fields. If we combine (42) with
(40), we arrive at the conclusion that irrespectively of the
remaining model parameters (in particular, on including the
axial anomaly), in the minimum point of the effective
action

sns;min ¼ fπ; ss;min ¼
ffiffiffi
2

p
ðfK − fπ=2Þ: ð43Þ

That is to say, in the minimum point, the ρ invariant
is ρ0 ≡ ρmin ¼ ðs2ns;min þ s2s;minÞ=2 ≈ ð93.5 MeVÞ2.
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Since we are interested in a rough estimate, (C1) and
(C2) will be solved such that the scale dependence of the
chiral potential is neglected, and we are only after g0;k (and
g1;k) at k ¼ 0. The expansion of the chiral potential around
the minimum reads

VchðρÞ ¼ U0ðρ0Þðρ − ρ0Þ þ U00ðρ0Þðρ − ρ0Þ2=2þ Cðρ0Þτ:
ð44Þ

The pion and kaon masses in the minimum are

m2
π ¼ U0 þ C

6
ðs2ns;min − 2s2s;minÞ; ð45aÞ

m2
K ¼ U0 þ C

6
ðs2ns;min − 3

ffiffiffi
2

p
sns;minss;min þ 4s2s;minÞ; ð45bÞ

which using physical masses lead to U0 ≈ 0.147 GeV2 and
C ≈ 84.37. We still need U00, which is determined via the
light scalar (σ) mass. Its expression reads

m2
σ ¼ U0 þ 1

2
U00ðs2ns min þ s2s;minÞ

þ C
12

ðs2ns; min þ 10s2s;minÞ −
1

12

ffiffiffiffi
D

p
;

D ¼ ð5Cþ 6U00Þ2s4ns; min þ 4ð7Cþ 3U00Þ2s4s;min

þ 4ð19C2 þ 105CU00 − 18U002Þs2s;mins
2
ns;min: ð46Þ

Setting 10≲ U00 ≲ 20 yields 469 MeV≲mσ ≲ 594 MeV,
which is a suitable interval for the physical value of mσ.
For several different parameters, we show in Table I how

the fluctuation corrected Yukawa coupling, g0;k¼0 differs
from its UV value, g0;k¼Λ. Note that without field depend-
ence, g0;k would not flow with respect to the scale at all and
stayed at its initial value. Therefore, comparing the initial

value with the one obtained at k ¼ 0 shows the importance
of considering a field-dependent Yukawa coupling.

VI. SUMMARY

In this paper, we raised the question of determining the
field dependence of the Yukawa coupling in the three flavor
quark-meson model. Our main motivation was to clarify the
problem of consistency between chiral symmetry and the
Yukawa term. As opposed to two flavors, in case of three
flavors, the existence of non-Yukawa-like interactions and
their generation in the infrared scales of the quantum
effective action prevents a straightforward generalization
of the two flavor approach [10]. That is to say, one cannot
consistently work with, e.g., a scalar chiral condensate and
associate the complete field dependence of the quark-
quark-meson vertex with that of the Yukawa coupling
itself. One needs great care to project out those operators
that are not included in the ansatz of the effective action,
which, by construction, needs to respect chiral symmetry.
We believe that such a consistent approach was missing in
the literature so far.
We have explicitly calculated the renormalization group

flow of the field-dependent Yukawa coupling separately in
the symmetric and broken phases. We have showed that at
the order of dimension 6 operators new type of terms arise
and gave prescription for how to project them out as
required by consistency. Motivated by the very definition of
the flow of the field-dependent Yukawa coupling, for the
sake of a complete treatment of dimension 6 operators, we
have determined the symmetric phase flows when these
new (nonrenormalizable) interactions are also included in
the ansatz of the quantum effective action (Γk).
Numerics showed that the field dependence of the

Yukawa interaction is indeed important for physical para-
metrizations of the model; therefore, it would be very
important to see what effects the current approach has from
a phenomenological point of view. One is typically
interested in mapping the details of the chiral phase
transition at finite temperature and/or density, such as
the transition point, mass spectrum, interaction strengths,
etc. To do so one also needs to include t’ Hooft’s
determinant term into the system describing the UAð1Þ
breaking, and it would be of particular interest to check the
interplay between the anomaly coupling and that of the
Yukawa interaction. These directions represent future
studies to be reported elsewhere.
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APPENDIX A: U(3) ALGEBRA IDENTITIES

TheUð3Þ algebra is spanned by the 3 × 3 Ti ði ¼ 0;…8Þ
generators, which satisfy TrðTiTjÞ ¼ δij=2, and a product
of two generators lie in the Lie algebra,

TiTj ¼
1

2
ðdijk þ ifijkÞTk: ðA1Þ

Associativity of matrix multiplication leads to the following
identities:

0 ¼ filmfmjk þ fjlmfimk þ fklmfijm; ðA2aÞ

0 ¼ filmdmjk þ fjlmdimk þ fklmdijm; ðA2bÞ

0 ¼ fijmfklm − dikmdjlm þ djlmdilm; ðA2cÞ

the first one known as the Jacobi identity. Using that TiTi is
a Casimir operator, working in the adjoint representation,
one easily shows that fijkfljk ¼ 3δilð1 − δi0δl0Þ. Using this
identity as a starting point, one derives the following two-
and threefold sums using (A2):

dijmdkjm ¼ 3δik þ 3δi0δk0; ðA3aÞ

flnifikmfmjl ¼ −
3

2
fnkj; ðA3bÞ

dmikdknjfjlm ¼ 3

2
finl; ðA3cÞ

finlfljmdmki ¼
ffiffiffi
3

2

r
ðδn0δjk þ δj0δnk − δk0δnjÞ;

−
3

2
dnjk ðA3dÞ

dikldlnmdmji ¼
ffiffiffi
3

2

r
ðδn0δjk þ δj0δnk þ δk0δnjÞ

þ 3

2
dnjk: ðA3eÞ

Furthermore, the following identities for fourfold sums
are useful for present calculations:

diajdjbkdkcldldi

¼ 3

4
ðdabmdmcd þ dadmdmcbÞ −

3

4
dacmdmbd

þ 1

2
ðδabδcd þ δacδbd þ δadδbcÞ

þ 1

2

ffiffiffi
3

2

r
ðδa0dbcd þ δb0dacd þ δc0dabd þ δd0dabcÞ;

ðA4aÞ
fiajdjbkdkcldldi þ fiajdjbkdkdldlci ¼ fabjdijkdkcldldi;

ðA4bÞ
fiajdjckdkdldlbi þ fiajdjdkdkcldlbi ¼ fabjdijkdkcldldi

þ 2fbdjflakfkjmdmcl þ 2fbcjfljkfkamdmdl: ðA4cÞ

APPENDIX B: INVARIANT TENSORS AND
TWO-POINT FUNCTIONS

First, we recall that

ρ ¼ TrðM†MÞ; ðB1aÞ

τ ¼ TrðM†M − TrðM†MÞ=3Þ2; ðB1bÞ

where M ¼ ðsi þ iπiÞTi. In terms of si and πi, they read

ρ ¼ 1

2
ðsisi þ πiπiÞ; ðB2aÞ

τ ¼ 1

24
ðsisjsksl þ πiπjπkπlÞDijkl

þ sisjπkπlðD̃ij;kl −Dijkl=4Þ

−
1

12
ðsisi þ πiπiÞ2; ðB2bÞ

where Dijkl ¼ dijmdklm þ dikmdjlm þ dilmdjkm and
D̃ij;kl ¼ dijmdklm. The relevant derivatives of ρ and τ are

∂ρ
∂si ¼ si;

∂ρ
∂πi ¼ πi; ðB3aÞ

∂2ρ

∂sisj ¼ δij;
∂2ρ

∂πiπj ¼ δij; ðB3bÞ

∂τ
∂si ¼ −

2

3
ρsi þ

1

6
sasbscDabci

þ 1

2
saπcπdð4D̃ai;cd −DaicdÞ; ðB4aÞ

∂τ
∂πi ¼ −

2

3
ρπi þ

1

6
πaπbπcDabci

þ 1

2
πascsdð4D̃ai;cd −DaicdÞ; ðB4bÞ
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∂2τ

∂si∂sj ¼ −
2

3
ρδij −

2

3
sisj þ

1

2
sasbDabij

þ 1

2
πcπdð4D̃ij;cd −DijcdÞ; ðB4cÞ

∂2τ

∂πi∂πj ¼ −
2

3
ρδij −

2

3
πiπj þ

1

2
πaπbDabij

þ 1

2
scsdð4D̃ij;cd −DijcdÞ; ðB4dÞ

∂2τ

∂πi∂sj ¼ −
2

3
πisj þ saπcð4D̃aj;ci −DajciÞ: ðB4eÞ

In case of the broken phase calculation, we are working
in a background field M ¼ s0T0 þ s8T8; thus, the follow-
ing formulas need to be used. First, we list the invariants,

ρjs0;s8 ¼
1

2
ðs20 þ s28Þ; ðB5aÞ

τjs0;s8 ¼
1

24
s28ð8s20 − 4

ffiffiffi
2

p
s0s8 þ s28Þ: ðB5bÞ

Then, the nonzero first derivatives are

∂ρ
∂s0
����
s0;s8

¼ s0;
∂ρ
∂s8
����
s0;s8

¼ s8; ðB6aÞ

∂τ
∂s0
����
s0;s8

¼ s28

�
2s0
3

−
s8
3
ffiffiffi
2

p
�
; ðB6bÞ

∂τ
∂s8
����
s0;s8

¼ s8

�
2s20
3

−
s0s8ffiffiffi
2

p þ s28
6

�
: ðB6cÞ

As shown above, the second derivatives of ρ are equal to
the unit matrix, while that of τ are the following:

∂2τ

∂sisj
����
s0;s8

¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

2
3
s28; if i ¼ j ¼ 0

− s2
8ffiffi
2

p þ 4
3
s0s8; if i ¼ 0; j ¼ 8 or i ¼ 8; j ¼ 0

2
3
s20 þ s2

8

2
−

ffiffiffi
2

p
s0s8; if i ¼ j ¼ 8

2
3
s20 þ s2

8

6
þ ffiffiffi

2
p

s0s8; if i ¼ j ¼ 1; 2; 3

2
3
s20 þ s2

8

6
− 1ffiffi

2
p s0s8; if i ¼ j ¼ 4; 5; 6; 7

0; else

ðB7aÞ

∂2τ

∂πiπj
����
s0;s8

¼

8>>>>>>>>>>><
>>>>>>>>>>>:

0; if i ¼ j ¼ 0

− s2
8

3
ffiffi
2

p þ 2
3
s0s8; if i ¼ 0; j ¼ 8 or i ¼ 8; j ¼ 0

s2
8

6
−
ffiffi
2

p
3
s0s8; if i ¼ j ¼ 8

− s2
8

6
þ

ffiffi
2

p
3
s0s8; if i ¼ j ¼ 1; 2; 3

5
6
s28 − 1

3
ffiffi
2

p s0s8 if i ¼ j ¼ 4; 5; 6; 7

0; else

: ðB7bÞ

The masses of the scalar and pseudoscalar mesons of the ansatz (15) in a purely bosonic background read

ðm2
s;kÞij ¼

∂2Vk

∂si∂sj ¼ δijðU0
kðρÞ þ τC0

kðρÞÞ þ
∂2τ

∂si∂sj CkðρÞ

þ ∂ρ
∂si

∂ρ
∂sj ðU

00
kðρÞ þ τC00

kðρÞÞ þ
�∂ρ
∂si

∂τ
∂sj þ

∂ρ
∂sj

∂τ
∂si
�
C0
kðρÞ; ðB8aÞ

ðm2
π;kÞij ¼

∂2Vk

∂πi∂πj ¼ δijðU0
kðρÞ þ τC0

kðρÞÞ þ
∂2τ

∂πi∂πj CkðρÞ

þ ∂ρ
∂πi

∂ρ
∂πj ðU

00
kðρÞ þ τC00

kðρÞÞ þ
� ∂ρ
∂πi

∂τ
∂πj þ

∂ρ
∂πj

∂τ
∂πi
�
C0
kðρÞ; ðB8bÞ
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ðm2
sπ;kÞij ¼

∂2Vk

∂si∂πj ¼
∂2τ

∂si∂sj CkðρÞ þ
∂ρ
∂si

∂ρ
∂πj ðU

00
kðρÞ þ τC00

kðρÞÞ þ
�∂ρ
∂si

∂τ
∂πj þ

∂ρ
∂πj

∂τ
∂si
�
C0
kðρÞ: ðB8cÞ

If the fermions also have nonzero expectation values, then these masses get corrected by

Δðm2
s;kÞij ¼ q̄

�
g0kðρÞ

�∂ρ
∂si

∂M5

∂sj þ ∂ρ
∂sj

∂M5

∂si
�
þ g0kðρÞδijM5 þ g00kðρÞ

∂ρ
∂si

∂ρ
∂sj M5

�
q

þ g53q̄ðffTi; Tjg;M5g þ TiM
†
5Tj þ TjM

†
5TiÞq; ðB9aÞ

Δðm2
π;kÞij ¼ q̄

�
g0kðρÞ

� ∂ρ
∂πi

∂M5

∂πj þ ∂ρ
∂πj

∂M5

∂πi
�
þ g0kðρÞδijM5 þ g00kðρÞ

∂ρ
∂πi

∂ρ
∂πj M5

�
q

þ g53q̄ðfM5; fTi; Tjgg − TiM
†
5Tj − TjM

†
5TiÞq; ðB9bÞ

Δðm2
sπ;kÞij ¼ q̄

�
g0kðρÞ

�∂ρ
∂si

∂M5

∂πj þ ∂ρ
∂πj

∂M5

∂si
�
þ g00kðρÞ

∂ρ
∂si

∂ρ
∂πj M5

�
q

þ ig53q̄γ5ð½M5; ½Ti; Tj�� þ TiM
†
5Tj þ TjM

†
5TiÞq; ðB9cÞ

where we also included the effect of the∼q̄M5M
†
5M5q operator with the coupling constant g53. Using the formulas above, in

a purely bosonic background, which is defined by M ¼ s0T0 þ s8T8, the two-point functions of the ansatz (15) read

Γð2Þ00
k;s ðpÞ ¼ p2 þU0

k þ
1

24
ð8ð2Ck þ 5C0

ks
2
0 þ C00

ks
4
0Þs28 − 4

ffiffiffi
2

p
s0ð3C0

k þ C00
ks

2
0Þs38 þ ðC0

k þ C00
ks

2
0Þs48 þ 24s20U

00
kÞ; ðB10aÞ

Γð2Þ08
k;s ðpÞ ¼ 1

24
s8ð−12

ffiffiffi
2

p
ðCk þ C0

ks
2
0Þs8 þ 4s0ð5C0

k þ 2C00
ks

2
0Þs28 − 4

ffiffiffi
2

p
ðC0

k þ C00
ks

2
0Þs38 þ C00

ks0s
4
8

þ 8s0ð4Ck þ 2C0
ks

2
0 þ 3U00

kÞÞ; ðB10bÞ

Γð2Þ88
k;s ðpÞ ¼ p2 þU0

k þ
1

24
ð8s20ð2Ck þ 5C0

ks
2
8 þ C00

ks
4
8Þ − 4

ffiffiffi
2

p
s0s8ð6Ck þ 7C0

ks
2
8 þ C00

ks
4
8Þ

þ s28ð12Ck þ 9C0
ks

2
8 þ C00

ks
4
8 þ 24U00

kÞÞ; ðB10cÞ

Γð2Þ00
k;π ðpÞ ¼ p2 þU0

k þ
1

24
C0
ks

2
8ð8s20 − 4

ffiffiffi
2

p
s0s8 þ s28Þ; ðB10dÞ

Γð2Þ08
k;π ðpÞ ¼ −

1

6
Cks8ð−4s0 þ

ffiffiffi
2

p
s8Þ; ðB10eÞ

Γð2Þ88
k;π ðpÞ ¼ p2 þU0

k þ
1

24
s8ð4Ckð−2

ffiffiffi
2

p
s0 þ s8Þ þ C0

ks8ð8s20 − 4
ffiffiffi
2

p
s0s8 þ s28ÞÞ; ðB10fÞ

and furthermore,

Γð2Þ11
k;s ðpÞ ¼ p2 þU0

k þ
1

24
ð4Cks28 þ C0

ks
4
8 þ 8s20ð2Ck þ C0

ks
2
8Þ − 2

ffiffiffi
2

p
s0s8ð−12Ck þ 2C0

ks
2
8ÞÞ; ðB11aÞ

Γð2Þ44
k;s ðpÞ ¼ p2 þU0

k þ
1

24
ð4Cks28 þ C0

ks
4
8 þ 8s20ð2Ck þ C0

ks
2
8Þ − 2

ffiffiffi
2

p
s0s8ð6Ck þ 2C0

ks
2
8ÞÞ; ðB11bÞ

Γð2Þ11
k;π ðpÞ ¼ p2 þ U0

k þ
1

24
s8ð4Ckð2

ffiffiffi
2

p
s0 − s8Þ þ C0

ks8ð8s20 − 4
ffiffiffi
2

p
s0s8 þ s28ÞÞ; ðB11cÞ

Γð2Þ44
k;π ðpÞ ¼ p2 þU0

k þ
1

24
s8ð4Ckð−

ffiffiffi
2

p
s0 þ 5s8Þ þ C0

ks8ð8s20 − 4
ffiffiffi
2

p
s0s8 þ s28ÞÞ; ðB11dÞ
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where Γð2Þ11
k;s=πðpÞ ¼ Γð2Þ22

k;s=πðpÞ ¼ Γð2Þ33
k;s=πðpÞ, and Γð2Þ44

k;s=πðpÞ ¼ Γð2Þ55
k;s=πðpÞ ¼ Γð2Þ66

k;s=πðpÞ ¼ Γð2Þ77
k;s=πðpÞ.

APPENDIX C: BROKEN PHASE FLOWS OF g0 AND g1

Using the expansion (33) and the flow equation (32), we get

∂kg0;k ¼
Z
p
∂̃k

�
3

2
g1;k

�
3

p2
R þU0

k

þ 8

3p2
R þ 4Ckρ0 þ 3U0

k

þ 1

p2
R þ U0

k þ 2ρ0U00
k

�

þ g30;kð3p2
R − g20;kρ0Þð16Ckðp2

R þU0
kÞ þ 3U00

kðp2
R þ 12Ckρ0 þU0

kÞÞρ0
ð3p2

R þ g20;kρ0Þ2ðp2
R þ U0

kÞð3p2
R þ 4Ckρ0 þ 3U0

kÞðp2
R þ U0

k þ 2ρ0U00
kÞ
�
; ðC1Þ

∂kg1;k ¼
Z
p
∂̃k

�
g30;kð3p2

R − g20;kρ0Þð16Ckðp2
R þ U0

kÞ þ 3U00
kðp2

R þ 12Ckρ0 þ U0
kÞÞ

ð3p2
R þ g20;kρ0Þ2ðp2

R þ U0
kÞð3p2

R þ 4Ckρ0 þ 3U0
kÞðp2

R þ U0
k þ 2ρ0U00

kÞ

þ 3

2
g1;k

∂
∂ρ
�

3

p2
R þ U0

kðρÞ
þ 8

3p2
R þ 4CkðρÞρþ 3U0

kðρÞ
þ 1

p2
R þ U0

kðρÞ þ 2ρU00
kðρÞ

�����
ρ0

þ ρ0
∂
∂ρ

g3kðρÞð3p2
R − g2kðρÞρÞð16CkðρÞðp2

R þ U0
kðρÞÞ þ 3U00

kðρÞðp2
R þ 12CkðρÞρþ U0

kðρÞÞÞ
ð3p2

R þ g2kðρÞρÞ2ðp2
R þU0

kðρÞÞð3p2
R þ 4CkðρÞρþ 3U0

kðρÞÞðp2
R þU0

kðρÞ þ 2ρU00
kðρÞÞ

����
ρ0

�
; ðC2Þ

where gkðρÞ ¼ g0;k þ g1;kðρ − ρ0Þ, and it is understood that unless indicated otherwise, all couplings are taken at the
minimum point, ρ0.
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