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We perform a comprehensive analysis of the homogeneous finite modular group Γ0
4 ≡ S04, which is the

double covering of S4 group. The weight 1 modular forms of level 4 are constructed in terms of the

Dedekind eta function, and they transform as a triplet 3̂0 of S04. The integral weight modular forms until
weight 6 are built from the tensor products of weight 1 modular forms. We perform a systematical
classification of S04 modular models for lepton masses and mixing with and without generalized CP, where
the left-handed leptons are assigned to a triplet of S04 and right-handed charged leptons transform as singlets
under S04, and we consider both scenarios where the neutrino masses arise from a Weinberg operator or
type-I seesaw mechanism. The phenomenological implications of the minimal models for lepton masses,
mixing angles, CP violation phases, and neutrinoless double decay are discussed. The S04 modular
symmetry is extended to the quark sector, and we present several predictive models which use nine or ten
free parameters including real and imaginary parts of τ to describe quark masses and the Cabibbo-
Kobayashi-Maskawa mixing matrix. We give a quark-lepton unified model which can explain the flavor
structure of quarks and leptons simultaneously for a common value of τ.
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I. INTRODUCTION

The origin of fermion masses and the mixing matrices is
one of the greatest challenges for modern particle physics.
Neutrino oscillation provides new clues for the under-
standing of the flavor problem. It is known that neutrino
mixing angles show a pattern which is completely different
than that of quark mixing: All quark mixing angles are
small, while for the lepton sector two mixing angles θ12 and
θ23 are large, the third one θ13 is small, and it is comparable
to the size of the quark Cabibbo mixing angle [1]. Evidence
of CP violation in neutrino oscillation was reported
recently [2]. Given the successful use of symmetries in
various fields of physics, it was conceived that the flavor
structure of quarks and leptons is dictated by certain flavor
symmetry, and different kinds of flavor symmetry groups
(Abelian, non-Abelian, continuous, discrete, global, local,

linearly, or nonlinearly realized) have been considered so
far. In particular, it turns that the discrete non-Abelian
flavor symmetry is quite suitable to reproduce the large
lepton mixing angles—a huge number of models have been
constructed—see [3] for a recent review. If discrete flavor
symmetry is combined with generalized CP symmetry
[4,5], one can predict a leptonic CP violation phase. It is
notable that a unified description of the observed structure
of the quark and lepton mixing can be achieved if the flavor
and CP symmetries are broken down to Z2 × CP in
neutrino, charged lepton, up quark, and down quark
sectors, and the minimal flavor group is the dihedral group
D14 [6–9].
In any realistic model based on discrete flavor symmetry,

the flavor symmetry is spontaneously broken by the
vacuum expectation values (VEVs) of a set of scalar fields
called flavons which are standard model singlet albeit
transforming nontrivially under the flavor symmetry group.
The VEVs of a flavon are typically aligned along certain
directions in flavor space, and the vacuum alignment
determines the flavor structure of quarks and leptons.
One has to intelligently design the flavon energy density
to achieve the required vacuum alignment as the global
minimum of the scalar potential. In most models, discrete
flavor symmetry is accompanied by additional symmetries,
either discrete like ZN or continuous like Uð1Þ, to ensure
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the needed vacuum alignment and to reproduce the
observed mass hierarchies. Hence, the flavor symmetry-
breaking sector introduces many independent parameters
and makes the flavor model rather complicated. Moreover,
high-dimensional operators compatible with symmetry
in the model can lead to corrections to leading-order
results such that predictability of the model is spoiled in
some sense.
Recently, modular invariance as flavor symmetry has

been suggested to understand the neutrino masses and
lepton flavor mixing [10]. Modular symmetry naturally
appears in torus and orbifold compactifications of string
theory. In this approach, flavon fields are not an absolute
requirement; the flavor symmetry can be uniquely broken
by the VEVof the modulus τ. Hence, the vacuum alignment
problem is simplified considerably, although a moduli
stabilization mechanism is needed. In modular invariant
models, the Yukawa couplings transform nontrivially under
the modular symmetry, and they are just modular forms
which are holomorphic functions of τ. In the limit of exact
supersymmetry, the superpotential is completely fixed
by modular symmetry. Furthermore, modular invariant
models can be quite predictive; typical minimal modular
models describe the neutrino masses, mixing angles, and
CP-violating phases in terms of five free real parameters
including the real and imaginary parts of τ.
The finite modular group ΓN ¼ SLð2; ZÞ=ΓðNÞ arising

from the quotient of the SLð2; ZÞ modular group by
congruence subgroups ΓðNÞ has been utilized for the flavor
symmetry of quarks and leptons. Some models for lepton
masses and flavor mixing have been constructed at level
N ¼ 2 [11–14], level N ¼ 3 [10–12,15–35], level N ¼ 4
[29,36–42], level N ¼ 5 [41,43,44], and level N ¼ 7 [45].
The quark masses and mixing parameters can also be
addressed by using modular symmetry [18,21,33,35], and
the fermion mass hierarchies can naturally arise as a result
of a weighton, which is a standard model singlet field with
nonzero modular weight [34]. Modular symmetry has been
discussed in the context of SUð5Þ grand unification theory
[13,17]. It is notable that the dynamics of modular
symmetry could be tested at present and future neutrino
oscillation experiments [46]. The modular symmetry has
been extended to consistently include generalized CP
symmetry under which the complex modulus τ transforms
as τ → −τ� [47–51]. The interplay between flavor sym-
metry, CP symmetry, and modular invariance was recently
analyzed in string theory [48,52]. An extension to the direct
product of multiple modular symmetry has been proposed
[38,40]. We have generalized the modular invariance
approach to include the odd weight modular forms which
can be organized into irreducible representations of the
homogeneous finite modular group Γ0

N [23]. Γ0
N is generally

the double covering of the inhomogeneous finite modular
group ΓN . Texture zeros of fermion mass matrices can be
naturally obtained from Γ0

N , and the masses and mixing of

quarks and leptons can be addressed in Γ0
3 ≅ T 0 [33]. There

are many papers on modular symmetry Γ3 ≅ A4, Γ4 ≅ S4,
and Γ5 ≅ A5; nevertheless, the double covering modular
groups Γ0

N are less well studied except a few papers on
Γ0
3 ≅ T 0 [23,33], although Γ0

N can naturally appear in top-
down string constructions [48,52]. The modular symmetry
Γ0
N provides a new ingredient for the modular invariance

approach; it could help us to further understand the possible
role of modular symmetry in addressing the standard model
flavor puzzle. In the present work, we shall consider
the next-to-minimal homogeneous finite modular group
Γ0
4 ≡ S04 which is of the order of 48.
We emphasize that there are good motivations to study

the S04 modular symmetry. It is known that interesting
lepton mixing patterns can arise from the modular groups
ΓN with N ¼ 3, 4, 5, 7. However, light neutrino masses are
usually predicted to quasidegenerate such that the sum of
neutrino masses is rather close to or beyond the upper limit
of the Planck Collaboration. The S04 modular group opens
up new model building possibilities; it is notable that light
neutrino masses can be very tiny and all the experimental
bounds from neutrino oscillations and cosmology can be
satisfied, as shown below. So far, most papers in the
literature use modular symmetry to understand the neutrino
masses and mixing. In order to incorporate the quarks and
obtain a complete flavor theory, the lesson learned from
conventional flavor symmetry tells us that it is highly
advantageous to extend the group to its double covering
group which allows for spinorial representations. The most
prominent example is the tetrahedral A4 group; successful
Uð2Þ quark textures can be obtained together with suc-
cessful A4 predictions for lepton sector by considering its
double cover T 0 [53–56]. Similar features are observed to
hold true in the modular T 0 group [23,33]. The modular
group Γ4 ≅ S4 has been considered as a family symmetry
group for leptons [29,36–42]. In this paper, we investigate
the extension of S4 to its double covering S04

1 and apply S04
to explain the masses and mixing patterns of both leptons
and quarks.
We intend to perform a systematical analysis of

lepton and quark models based on S04 modular symmetry
with and without generalized CP. For normal ordering
neutrino masses, we find that 15 viable models which can
describe the neutrino masses, mixing angles, and CP-
violation phases in terms of five real parameters jg2=g1j,
arg ðg2=g1Þ, ReðτÞ, ImðτÞ, and g21v

2
u=Λ. After imposing the

generalized CP symmetry, the phase arg ðg2=g1Þ is con-
strained to be 0 or π; seven out of the 15 models can

1As discussed in Sec. II, S04 is the double covering of S4 in the
sense of S4 ≅ S04=f1; Rg. S4 is the symmetry group of the regular
octahedron; consequently, it is a subgroup of SOð3Þ. However, S04
is not a subgroup of SUð2Þ, and, thus, it is not the inverse image
of S4 under the homomorphism from SUð2Þ to SOð3Þ, see
footnote 2 for details. Note that the SUð2Þ analog of S4 is the
binary octahedral group with GAP ID [48,28].
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produce a good fit to the data. The neutrino mass spectrum
tends to be quasidegenerate in previous models based on
inhomogeneous finite modular group ΓN ; nevertheless, the
neutrino masses are much lighter in these S04 models.
Moreover, we extend the S04 modular symmetry to the
quark sector. The rich structure of the integral weight
modular forms at level 4 allows many possibilities to
accommodate the experimental on quark masses and the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. The modu-
lar models at level 3 use ten [33] or more free parameters
[18,21,35] including τ to describe quark masses and
mixing. The first five benchmark models constructed in
this work involve only nine parameters and can be regarded
as minimal. Aiming at a minimal and predictive model for
quarks and leptons, we impose both S04 modular symmetry
and the generalized CP symmetry which are spontaneously
broken by the VEV of the modulus field τ. After compre-
hensively scanning the possible weight and representation
assignments for the quark and lepton fields, we find a
model which can describe the flavor structure of quarks and
leptons simultaneously for a common value of τ. This
model has 15 real parameters to explain the 22 observables:
six quark masses, three quark mixing angles, one quark
CP-violation phases, three charged lepton masses, three
neutrino masses, three lepton mixing angles, and three
leptonic CP-violation phases. It is the most predictive
modular model for quarks and leptons so far.
The remainder of the paper is organized as follows. In

Sec. II, we briefly review the basic aspects of modular
symmetry; we show that the inhomogeneous finite modular
group ΓN is isomorphic to the quotient of the homogeneous
finite modular group Γ0

N over the center f1; Rg, i.e.,
ΓN ≅ Γ0

N=f1; Rg, where R is related to −I ∈ SLð2;ZÞ.
The integral weight modular forms at level 4 are con-
structed up to weight 6 in Sec. III, and they are arranged
into different irreducible representations of S04. The gener-
alized CP symmetry compatible with S04 modular sym-
metry is discussed in Sec. IV. We find that the generalized
CP symmetry requires all the coupling constants real in our
working basis. In Sec. V, we perform a systematical
classification of S04 modular models for lepton masses
and mixing, where the left-handed leptons are assigned to a
triplet of S04 and right-handed charged leptons transform as
singlets under S04, and the neutrino masses are described by
the Weinberg operator or through the type-I seesaw
mechanism. The S04 modular symmetry is utilized to
address the flavor problem of quark mass hierarchies
and the CKM mixing matrix, and several models with a
small number of free parameters are presented in Sec. VI.
We give a quark-lepton unification model in Sec. VII,
which can explain the masses and mixing patterns of quark
and lepton for a common value of τ. Section VIII concludes
the paper. Appendix A gives the necessary group theory of
S04 as well as the Clebsch-Gordan (CG) coefficients. We
present the explicit forms of the modular forms for higher

weight in Appendix B. The models based on another two
possible assignments of right-handed charged leptons are
discussed in Appendix C.

II. MODULAR SYMMETRY AND FINITE
MODULAR GROUP

The modular group Γ̄ is isomorphic to the projective
special linear group PSLð2;ZÞ of 2 × 2 matrices with
integer coefficients and unit determinant:

Γ̄≅PSLð2;ZÞ¼
�
�
�
a b

c d

�����a;b;c;d∈Z;ad−bc¼ 1

�
;

ð1Þ
where the pairs of matrices A and −A are identified. Hence,
PSLð2;ZÞ is the quotient of the two-dimensional special
linear group Γ≡ SLð2;ZÞ over the integers by its center
fI;−Ig, i.e., Γ̄ ¼ PSLð2;ZÞ ≅ SLð2;ZÞ=fI;−Ig, where I
is a two-dimensional unit matrix. The modular group acts
on the upper-half complex plane H ¼ fτ ∈ CjImðτÞ > 0g
by fractional linear transformations:

τ ↦ γτ ¼ γðτÞ ¼ aτ þ b
cτ þ d

; ImðτÞ > 0; ð2Þ

which implies

IðτÞ ¼ τ;

ImðγðτÞÞ ¼ Imτ

jcτ þ dj2 > 0;

ðγγ0ÞðτÞ ¼ γðγ0ðτÞÞ; ∀ γ; γ0 ∈ Γ̄: ð3Þ

Hence, every fractional linear transformation corresponds
to a modular group element ðac b

dÞ, and ðac b
dÞ and −ðac b

dÞ
represent the same fractional linear transformation. The
modular group Γ̄ has infinity group elements which can be
obtained as a combination of the two fundamental trans-
formations

SðτÞ ¼ −
1

τ
; TðτÞ ¼ τ þ 1; ð4Þ

with the corresponding matrices

S ¼
�

0 1

−1 0

�
; T ¼

�
1 1

0 1

�
: ð5Þ

We check immediately that in Γ̄ we have the relations

S2 ¼ ðSTÞ3 ¼ I ð6Þ
and also ðTSÞ3 ¼ I, which is equivalent to ðSTÞ3 ¼ I if
S2 ¼ I. The corresponding relations in Γ are S2 ¼ −I and
ðST3Þ ¼ I so that S4 ¼ ðSTÞ3 ¼ I. The Γ̄ orbit of every
τ ∈ H has a unique representative in the standard funda-
mental domain D:
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D ¼
�
τjImðτÞ > 0; jReðτÞj < 1

2
; jτj > 1

�
; ð7Þ

which is bounded by the vertical lines ReðτÞ ¼ − 1
2
and

ReðτÞ ¼ 1
2
and the circle jτj ¼ 1 in the upper half plane H.

The transformations S and T can map any point in H into
the fundamental domain D, and no two points inside D
differ by a linear fraction transformation. The transforma-
tion T pairs the two vertical lines ReðτÞ ¼ � 1

2
, and the

transformation Smaps the arc of jτj ¼ 1 from i to eπi=3 into
the arc from i to e2πi=3. The principal congruence subgroup
of level N is defined as

ΓðNÞ ¼
��

a b

c d

�
∈ Γ;

�
a b

c d

�
¼
�
1 0

0 1

�
ðmod NÞ

�
;

Γ̄ðNÞ ¼
��

a b

c d

�
∈ Γ̄;

�
a b

c d

�
¼�

�
1 0

0 1

�
ðmod NÞ

�
;

ð8Þ

which are normal subgroups of Γ and Γ̄, respectively.
Obviously, we have TN ∈ ΓðNÞ, Γ ¼ Γð1Þ, Γ̄ ¼ Γ̄ð1Þ,
Γ̄ ¼ Γ=fI;−Ig, and Γ̄ð2Þ ¼ Γð2Þ=fI;−Ig. For N > 2,
we have −I ≠ Ið mod NÞ and, thus, I ∉ ΓðNÞ; conse-
quently, ΓðNÞ ¼ Γ̄ðNÞ. The finite modular group is the
quotient of a modular group over its principal congruence
subgroup [23,57]:

inhomogeneous finitemodular group∶ ΓN ≡ Γ̄=Γ̄ðNÞ;
homogeneous finitemodular group∶ Γ0

N ≡ Γ=ΓðNÞ: ð9Þ

We see Γ2 ≅ Γ0
2, and ΓN for N > 2 is isomorphic to the

quotient of Γ0
N over its center fI;−Ig, i.e., ΓN ≅

Γ0
N=fI;−Ig in matrix form. Hence, Γ0

N has double the
number of group elements as ΓN with jΓ0

N j ¼ 2jΓN j. We
broadly call Γ0

N the double covering2 of ΓN in the present
work. The homogeneous finite modular group Γ0

N can be

obtained from ΓN by including another generator R which
commutes with all elements of the SLð2;ZÞ group. For
N ≤ 5, the multiplication rules of the finite modular groups
are3 [23]

ΓN∶ S2 ¼ðSTÞ3¼TN ¼ 1;

Γ0
N∶ S2 ¼R; ðSTÞ3¼TN ¼R2¼ 1; RT¼TR; ð10Þ

where R is related to −I ∈ SLð2;ZÞ. Obviously, f1; Rg is
the center of Γ0

N , and ΓN is isomorphic to the quotient
group of Γ0

N over this center group, i.e., ΓN ≅ Γ0
N=f1; Rg.

It is remarkable that ΓN and Γ0
N for N ≤ 5 are isomorphic

to permutation groups and their double coverings, e.g.,
Γ2 ¼ Γ0

2 ≅ S3, Γ3 ≅ A4, Γ0
3 ≅ T 0, Γ4 ≅ S4, Γ4 ≅ S04,

Γ5 ≅ A5, and Γ0
5 ≅ A0

5. For N > 5, additional relations
besides those in Eq. (10) are needed to render the groups
ΓN and Γ0

N finite [45,57].
The modular form fðτÞ of level N and weight k is a

holomorphic function on H and at all cusps, and it is
required to satisfy the following modular transformation
property:

fðγτÞ¼ ðcτþdÞkfðτÞ for all γ¼
�
a b

c d

�
∈ΓðNÞ: ð11Þ

The modular forms of level N and weight k span a linear
space denoted by MkðΓðNÞÞ, and the dimension formula is
[58,59]

dimMkðΓðNÞÞ ¼ ðk − 1ÞN þ 6

24
N2
Y
pjN

�
1 −

1

p2

�
; ð12Þ

forN > 2, where the product is over the prime divisors p of
N. For level N ¼ 4, we have dimMkðΓðNÞÞ ¼ 2kþ 1. As
has been proven in Ref. [23], one can always find a basis of
MkðΓðNÞÞ such that the weight k modular forms of level N
can be decomposed into different irreducible representa-
tions of Γ0

N up to the automorphy factor ðcτ þ dÞk. To be
more specific, the transformation of the weight k modular

form multiplet YðkÞ
r ðτÞ ¼ ðf1ðτÞ; f2ðτÞ;…ÞT at level N can

be described by an irreducible representation ρr of Γ0
N :

YðkÞ
r ðγτÞ ¼ ðcτ þ dÞkρrðγÞYðkÞ

r ðτÞ; ð13Þ

where γ ¼ ðac b
dÞ is a representative element of Γ0

N . In a given

representation basis of Γ0
N , the modular multiplet YðkÞ

r can
be fixed up to an overall irrelevant constant by applying
Eq. (13) for the generators S and T.

2It is known that SUð2Þ is the double covering of SOð3Þ. There
are group homomorphisms thatmap twodistinct elements ofSUð2Þ
into the same set of Euler angles of SOð3Þ. For every real vector
ðx1; x2; x3ÞT ∈ R3, we identify a Hermitian matrix X ¼P3

i xiσ
i,

where σi are the Pauli matrices. If U is an element of SUð2Þ,
the transformation X → UXU† ¼P3

i x
0
iσ

i induces an SOð3Þ
transformation ðx1; x2; x3ÞT → ðx01; x02; x03Þ ¼ Rðx1; x2; x3ÞT with
R ∈ SOð3Þ. In this way, each elementSOð3Þ elementR ismapped
into two different elements U and −U of SUð2Þ. More precisely,
SOð3Þ is the isomorphic to SUð2Þ=fI;−Ig, where fI;−Ig is the
center of SUð2Þ. Quite similarly,ΓN is isomorphic toΓ0

N=f1; Rg; in
this sense, we callΓ0

N the double covering ofΓN . AlthoughΓ0
3 ¼ T 0

and Γ0
5 ¼ A0

5 can be regarded as the inverse images of the group
Γ3 ¼ A4 and Γ5 ¼ A5, respectively, under the map from SUð2Þ to
SOð3Þ, Γ0

4 ¼ S04 is not the double cover of Γ4 ¼ S4 in SUð2Þ. In
particular, the inhomogeneous finitemodular groupΓN forN > 5 is
not a subgroup of SOð3Þ; thus, the usual concepts of double
covering learned from SUð2Þ and SOð3Þ groups do not hold true.

3The multiplication rules of Γ0
N can also be written as

S4 ¼ ðSTÞ3 ¼ TN ¼ 1; S2T ¼ TS2.

LIU, YAO, and DING PHYS. REV. D 103, 056013 (2021)

056013-4



III. MODULAR FORMS OF LEVEL N = 4

Applying the general dimension formula in Eq. (12) for
N ¼ 4, we find the modular spaceMkðΓð4ÞÞ has dimension
2kþ 1. The modular spaceMkðΓð4ÞÞ has been constructed
explicitly by making use of a Dedekind eta function [59]:

MkðΓð4ÞÞ ¼ ⨁
aþb¼2k;a;b≥0

C
η2b−2að4τÞη5a−bð2τÞ

η2aðτÞ ; ð14Þ

where ηðτÞ is the famous Dedekind eta function defined by

ηðτÞ ¼ q1=24
Y∞
n¼1

ð1 − qnÞ; q ¼ ei2πτ: ð15Þ

The Dedekind eta function is a crucial example of a half-
integral weight modular form, having weight 1=2 and level
1. The eta function satisfies the well-known transformation
formulas [58,60,61]

ηðτÞ↦S ηð−1=τÞ ¼
ffiffiffiffiffiffiffi
−iτ

p
ηðτÞ;

ηðτÞ↦T ηðτ þ 1Þ ¼ eiπ=12ηðτÞ: ð16Þ

As shown in Eq. (14), we can choose the three linearly
independent basis vectors of the weight 1 modular space of
level 4 as

e1ðτÞ¼
η4ð4τÞ
η2ð2τÞ ; e2ðτÞ¼

η10ð2τÞ
η4ð4τÞη4ðτÞ ; e3ðτÞ¼

η4ð2τÞ
η2ð2τÞ :

ð17Þ

The q expansion of e1ðτÞ, e2ðτÞ, and e3ðτÞ reads

e1ðτÞ ¼
ffiffiffi
q

p ð1þ 2q2 þ q4 þ 2q6 þ 2q8 þ 3q12 þ 2q14

þ 2q18 þ 2q20 þ � � �Þ;
e2ðτÞ ¼ 1þ 4qþ 4q2 þ 4q4 þ 8q5 þ 4q8 þ 4q9 þ 8q10

þ 8q13 þ 4q16 þ � � � ;
e3ðτÞ ¼ q1=4ð1þ 2qþ q2 þ 2q3 þ 2q4 þ 3q6 þ 2q7

þ 2q9 þ 2q10 þ � � �Þ: ð18Þ

From the identities of the eta function in Eq. (16), we know
that e1;2;3ðτÞ transform under the actions of S and T as
follows:

e1ðτÞ↦
T
− e1ðτÞ; e2ðτÞ↦

T
e2; e3ðτÞ↦

T
ie3:

e1ðτÞ↦
S 1

8
ð−iτÞð4e1 þ e2 − 4e3Þ;

e2ðτÞ↦S
1

8
ð−iτÞð16e1 þ 4e2 þ 16e3Þ;

e3ðτÞ↦S
1

8
ð−iτÞð−8e1 þ 2e2Þ: ð19Þ

As shown in Eq. (13), it is always possible to choose a set
of basis in MkðΓð4ÞÞ such that the basis vectors can be
arranged into several modular multiplets which transform
in irreducible representations of Γ0

4 ≡ S04. Thus, for the
weight 1 modular forms of level 4, solving the condition
of Eq. (13), we find the original basis e1;2;3ðτÞ can be

arranged into triplet modular form Yð1Þ
3̂0

transforming as a

triplet 3̂0 of S04:

Yð1Þ
3̂0
ðτÞ≡

0
B@

Y1ðτÞ
Y2ðτÞ
Y3ðτÞ

1
CA; ð20Þ

where Y1;2;3ðτÞ are linear combinations of e1;2;3ðτÞ as
follows:

Y1ðτÞ ¼ 4
ffiffiffi
2

p
e1ðτÞ þ

ffiffiffi
2

p
ie2ðτÞ þ 2

ffiffiffi
2

p
ð1 − iÞe3ðτÞ;

Y2ðτÞ ¼ −2
ffiffiffi
2

p
ð1þ

ffiffiffi
3

p
Þω2e1ðτÞ −

1 −
ffiffiffi
3

pffiffiffi
2

p iω2e2ðτÞ

þ 2
ffiffiffi
2

p
ð1 − iÞω2e3ðτÞ;

Y3ðτÞ ¼ 2
ffiffiffi
2

p
ð
ffiffiffi
3

p
− 1Þωe1ðτÞ −

1þ ffiffiffi
3

pffiffiffi
2

p iωe2ðτÞ

þ 2
ffiffiffi
2

p
ð1 − iÞωe3ðτÞ: ð21Þ

It is straightforward to check that Yð1Þ
3̂0
ðτÞ transforms under

S and T as

Yð1Þ
3̂0
ð−1=τÞ¼−τρ0

3̂
ðSÞYð1Þ

3̂0
ðτÞ; Yð1Þ

3̂0
ðτþ1Þ¼ρ0

3̂
ðTÞYð1Þ

3̂0
ðτÞ;
ð22Þ

where the representation matrices ρ0
3̂
ðSÞ and ρ0

3̂
ðTÞ in our

working basis are summarized in Table VII.
The modular forms Y1;2;3 satisfy the following con-

straint:

ðYð1Þ
3̂0
Yð1Þ
3̂0
Þ
10
¼ Y2

1 þ 2Y2Y3 ¼ 0: ð23Þ

The higher weight modular forms can be constructed from
the tensor products of lower weight modular forms with the
help of the CG coefficients of S04 in Appendix A, and
they are homogeneous polynomials of Y1;2;3. Using the
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contraction rules for 3̂0 ⊗ 3̂0 → 10 ⊕ 2 ⊕ 3 ⊕ 30, we find
that the weight 2 modular forms of level 4 decompose
2 ⊕ 3 under S04:

Yð2Þ
2 ¼ ðYð1Þ

3̂0
Yð1Þ
3̂0
Þ
2
¼
�−Y2

2 − 2Y1Y3

Y2
3 þ 2Y1Y2

�
;

Yð2Þ
3 ¼ ðYð1Þ

3̂0
Yð1Þ
3̂0
Þ
3
¼

0
BB@

2Y2
1 − 2Y2Y3

2Y2
3 − 2Y1Y2

2Y2
2 − 2Y1Y3

1
CCA: ð24Þ

Note ðYð1Þ
3̂0
Yð1Þ
3̂0
Þ
30
¼ ð0; 0; 0ÞT which arises from the anti-

symmetric CG coefficients. Likewise, the weight 3 modular

forms can be obtained from the tensor products of Yð1Þ
3̂0

with

Yð2Þ
2 and Yð2Þ

3 , and they are arranged into a singlet 1̂0 and two
triplets 3̂ and 3̂0 under S04:

Yð3Þ
1̂0

¼ ðYð2Þ
3 Yð1Þ

3̂0
Þ
1̂0
¼ 2ðY3

1 þ Y3
2 þ Y3

3 − 3Y1Y2Y3Þ;

Yð3Þ
3̂

¼ ðYð2Þ
3 Yð1Þ

3̂0
Þ
3̂
¼

0
B@

2ð2Y3
1 − Y3

2 − Y3
3Þ

6Y3ðY2
2 − Y1Y3Þ

6Y2ðY2
3 − Y1Y2Þ

1
CA;

Yð3Þ
3̂0

¼ ðYð2Þ
3 Yð1Þ

3̂0
Þ
3̂0
¼

0
B@

2ðY3
2 − Y3

3Þ
2ð−2Y2

1Y2 þ Y2
2Y3 þ Y1Y2

3Þ
2ð2Y2

1Y3 − Y1Y2
2 − Y2Y2

3Þ

1
CA:

ð25Þ

We have three additional contractions between weight 1
and 2 modular forms; nevertheless, they are not indepen-

dent from Yð3Þ
1̂0
, Yð3Þ

3̂
, and Yð3Þ

3̂0
:

ðYð2Þ
3 Yð1Þ

3̂0
Þ
2̂
¼
�
0

0

�
; ð26aÞ

ðYð2Þ
2 Yð1Þ

3̂0
Þ
3̂0
¼

0
B@

−Y3
2 þ Y3

3

2Y2
1Y2 − Y2

2Y3 − Y1Y2
3Þ

−2Y2
1Y3 þ Y1Y2

2 þ Y2Y2
3

1
CA

¼ −
1

2
Yð3Þ
3̂0
; ð26bÞ

ðYð2Þ
2 Yð1Þ

3̂0
Þ
3̂
¼

0
B@

Y3
2 þ Y3

3 þ 4Y1Y2Y3

2Y2
1Y2 þ Y2

2Y3 þ 3Y1Y2
3

3Y1Y2
2 þ 2Y2

1Y3 þ Y2Y2
3

1
CA

¼ −
1

2
Yð3Þ
3̂
: ð26cÞ

The last relation follows from the constraint in Eq. (23). In a
similar manner, we can find out the linearly independent
modular forms of higher weights and corresponding con-
straints. The expressions of the higher weight modular
multiplets with k ¼ 4, 5, 6 are given in Appendix B. We
summarize the modular forms of level 4 up to weight 6 in
Table I. We notice that all the odd weight modular forms are
in hatted irreducible representations of S04, while the even
weight modular forms are in unhatted irreducible repre-
sentations of S04. Note that generator R is represented by a
unit matrix and the S04 group cannot be distinguished from
S4 in unhatted irreducible representations. For notation
simplicity of model construction in the following, we
denote the components of modular multiplets as follows:

Yð2Þ
2 ≡

�
Yð2Þ
1

Yð2Þ
2

�
; Yð2Þ

3 ≡
0
B@

Yð2Þ
3

Yð2Þ
4

Yð2Þ
5

1
CA; Yð3Þ

1̂0
≡ Yð3Þ

1 ;

Yð3Þ
3̂

≡
0
B@

Yð3Þ
2

Yð3Þ
3

Yð3Þ
4

1
CA; Yð3Þ

3̂0
≡
0
B@

Yð3Þ
5

Yð3Þ
6

Yð3Þ
7

1
CA;

Yð4Þ
1 ≡ Yð4Þ

1 ; Yð4Þ
2 ≡

�
Yð4Þ
2

Yð4Þ
3

�
;

Yð4Þ
3 ≡

0
B@

Yð4Þ
4

Yð4Þ
5

Yð4Þ
6

1
CA; Yð4Þ

30 ≡
0
B@

Yð4Þ
7

Yð4Þ
8

Yð4Þ
9

1
CA;

Yð5Þ
2̂

≡
�
Yð5Þ
1

Yð4Þ
2

�
; Yð5Þ

3̂
≡
0
B@

Yð5Þ
3

Yð5Þ
4

Yð5Þ
5

1
CA;

Yð5Þ
3̂0;I

≡
0
B@

Yð5Þ
6

Yð5Þ
7

Yð5Þ
8

1
CA; Yð5Þ

3̂0;II
≡
0
B@

Yð5Þ
9

Yð5Þ
10

Yð5Þ
11

1
CA;

Yð6Þ
10 ≡ Yð6Þ

1 ; Yð6Þ
1 ≡ Yð6Þ

2 ; Yð6Þ
2 ≡

�
Yð6Þ
3

Yð6Þ
4

�
;

Yð6Þ
3;I ≡

0
B@

Yð6Þ
5

Yð6Þ
6

Yð6Þ
7

1
CA; Yð6Þ

3;II ≡
0
B@

Yð6Þ
8

Yð6Þ
9

Yð6Þ
10

1
CA;

Yð6Þ
30 ≡

0
B@

Yð6Þ
11

Yð6Þ
12

Yð6Þ
13

1
CA: ð27Þ
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IV. GENERALIZED CP CONSISTENT
WITH S04 MODULAR SYMMETRY

In order to consistently implement CP symmetry in the
context of modular symmetry, the complex modulus τ
should transform under the action CP as [47–51]

τ↦
CP

− τ�; ð28Þ

up to modular transformations. A generic chiral superfield
ΦðxÞ assigned to an irreducible representation r of the finite
modular group Γ0

N transforms under the action of Γ0
N as

ΦðxÞ↦γ ðcτþdÞ−kρrðγÞΦðxÞ; γ¼
�
a b

c d

�
∈Γ; ð29Þ

where −k is the modular weight of Φ. We impose CP
symmetry on the modular invariant theory. A generalized
CP transformation acts on the chiral superfield ΦðxÞ as

ΦðxÞ↦CP XrΦ̄ðPxÞ; ð30Þ

where Px ¼ ðt;−x⃗Þ and a bar denotes the Hermitian
conjugate superfield, Xr is not necessarily diagonal, and
it, in general, acts in a nontrivial way on the flavor space.
As has been shown in Ref. [47], constraints on the choice of
Xr arise from the requirement that the subsequent appli-
cation of the CP transformation, the modular symmetry,
and the inverseCP transformation should be represented by
another element of the modular symmetry group, i.e.,

Xrρ
�
rðγÞX−1

r ¼ ρrðuðγÞÞ; ð31Þ

where uðγÞ is an outer automorphism of the modular group:

γ ¼
�
a b

c d

�
↦ uðγÞ ¼

�
a −b
−c d

�
: ð32Þ

Equation (31) is the so-called consistency condition which
CP and modular symmetries have to obey in order to give a

consistent definition of generalized CP transformations in
setting with modular symmetry. It is notable that the
consistency condition Eq. (31) should be satisfied for all
irreducible representations of the finite modular group Γ0

N .
We see that the CP transformation Xr maps the modular
group element γ onto another element uðγÞ and the group
structure of the modular symmetry is preserved, i.e.,
uðγ1γ2Þ ¼ uðγ1Þuðγ2Þ. Hence, it is sufficient to impose
Eq. (31) on the generators S and T:

Xrρ
�
rðSÞX−1

r ¼ ρ†rðSÞ; Xrρ
�
rðTÞX−1

r ¼ ρ†rðTÞ; ð33Þ

where the identities uðSÞ ¼ S−1 and uðTÞ ¼ T−1 are
used. The consistency condition in Eq. (31) determines
the CP transformation Xr up to an overall phase for
a given irreducible representation r. As regards the double
covering group S04 with the basis given in Table VII, solving
the consistency conditions of Eq. (33), we find that the
generalized CP transformation Xr coincides with the
representation matrix of S:

Xr ¼ ρrðSÞ; ð34Þ

which is a combination of the modular symmetry trans-
formation S and the canonical CP transformation.
Furthermore, we have checked that the modular forms

YðkÞ
r ðτÞ in Sec. III transform in the same way as ΦðxÞ

under CP:

YðkÞ
r ðτÞ↦CPYðkÞ

r ð−τ�Þ ¼ Xr½YðkÞ
r ðτÞ��; with Xr ¼ ρrðSÞ:

ð35Þ

Hence, the above CP transformation Xr ¼ ρrðSÞ imposed
on a modular invariant supersymmetric theory amounts to
the canonicalCP transformation. As shown in Appendix A,
all the CG coefficients in our working basis are real;
therefore, the generalized CP symmetry would constrain all
the couplings in the Lagrangian to be real.

V. LEPTON MODELS BASED ON
S04 MODULAR SYMMETRY

We work in the framework of the modular invariant
supersymmetric theory [10,62,63]. In the setting of
N ¼ 1 global supersymmetry, the action can be generally
written as

S ¼
Z

d4xd2θd2θ̄KðΦI; Φ̄I; τ; τ̄Þ

þ
�Z

d4xd2θWðΦI; τÞ þ H:c:

	
; ð36Þ

where KðΦI; Φ̄I; τ; τ̄Þ is the Kähler potential; it is the real
gauge invariant function of the chiral superfields Φ and

TABLE I. Summary of modular forms of level N ¼ 4 up to
weight 6; the subscript r denotes the transformation property
under homogeneous finite modular group S04.

Modular weight k Modular forms YðkÞ
r

k ¼ 1 Yð1Þ
3̂0

k ¼ 2 Yð2Þ
2 ; Yð2Þ

3
k ¼ 3 Yð3Þ

1̂0
; Yð3Þ

3̂
; Yð3Þ

3̂0

k ¼ 4 Yð4Þ
1 ; Yð4Þ

2 ; Yð4Þ
3 ; Yð4Þ

30

k ¼ 5 Yð5Þ
2̂
; Yð5Þ

3̂
; Yð5Þ

3̂0;I
; Yð5Þ

3̂0;II
k ¼ 6 Yð6Þ

10 ; Y
ð6Þ
1 ; Yð6Þ

2 ; Yð6Þ
3;I ; Y

ð6Þ
3;II ; Y

ð6Þ
30
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their Hermitian conjugates Φ̄. WðΦI; τÞ refers to the
superpotential, and it is a holomorphic gauge invariant
function of the chiral superfields Φ. The whole action S
should be modular invariant. The transformation properties
of ΦI are specified by its modular weight −kI and the
representation rI under Γ0

N :

τ → γτ ¼ aτ þ b
cτ þ d

; ΦI → ðcτ þ dÞ−kIρrIðγÞΦI: ð37Þ

Following Ref. [10], we take the Kähler potential to be the
minimal form

KðΦI; Φ̄I; τ; τ̄Þ ¼ −hΛ2 logð−iτ þ iτ̄Þ
þ
X
I

ð−iτ þ iτ̄Þ−kI jΦIj2; ð38Þ

where h is a positive constant. After the modulus τ gets a
vacuum expectation, this Kähler potential gives the kinetic
terms for the scalar components of the supermultiplet ΦI
and the modulus field τ. The Kähler potential is strongly
constrained in some models based on string theory [64–66],
and the above minimal Kähler potential as the leading-
order contribution could possibly be achieved. The super-
potential W can be expanded into power series of
supermultiplets ΦI:

WðΦI; τÞ ¼
X
n

YI1…InðτÞΦI1…ΦIn : ð39Þ

Modular invariance requires the function YI1…InðτÞ should
be a modular form of weight kY of level N and in the
representation rY of Γ0

N :

YðτÞ → YðγτÞ ¼ ðcτ þ dÞkYρrY ðγÞYðτÞ; ð40Þ

where kY and rY should satisfy the conditions

kY ¼ k1 þ � � � þ kn; ρrY ⊗ ρrI1 ⊗ � � � ⊗ ρrIn ∋ 1: ð41Þ

In the present work, we shall study the modular symmetry
group of level N ¼ 4, and a comprehensive analysis of
lepton models with S04 modular symmetry is performed in
the following. In the bottom-up approach of modular
invariance [10], the representations and the weights of
the matter fields are not subject to any constraint at all, and
the number of modular invariant operators generally
increases with the weights of the involved modular forms.
The models are built aiming at minimizing the number of
free parameters; consequently, we will consider the weight
1, weight 2, and weight 3 modular forms for illustration in
the following, and the cases with higher weight modular
forms can be discussed in the same fashion.

A. Charged lepton sector

The left-handed lepton doublet fields are assigned to
transform as triplet 3, 30, 3̂, 3̂0 of S04. There are multiple
options for the assignments of the right-handed charged
leptons. They can be assigned to three independent singlets,
a triplet, or the direct sum of a doublet and a singlet. In this
section, wewill focus on the first case; i.e., the right-handed
charged leptons transform as singlets 1, 10, 1̂, or 1̂0. The
other two cases and the corresponding charged lepton
models are discussed in Appendix C. We follow the
original paper [10] and assume that the Higgs fields
Hu;d are invariant under S04; otherwise, the modular forms
would be involved in the Higgs potential and the dynamics
of the electroweak symmetry breaking would be greatly
complexified by the complex modulus τ. The modular
weights of Hu;d can always be taken to zero through
redefinition of the modular weights of matter fields. Thus,
the most general superpotential for the charged lepton
masses can be written as

We ¼ αðEc
1LfE1

ðYÞÞ1Hd þ βðEc
2LfE2

ðYÞÞ1Hd

þ γðEc
3LfE3

ðYÞÞ1Hd: ð42Þ

The modular forms fE1
ðYÞ, fE2

ðYÞ, and fE3
ðYÞ should

transform as three-dimensional irreducible representations
under S04, and their explicit forms depend on the weight and
representation assignments for L and Ec

1;2;3. In order to
charge a lepton mass matrix with rank less than three
(otherwise, at least one charged lepton would be massless),
fE1

ðYÞ, fE2
ðYÞ, and fE3

ðYÞ must be different modular
multiplets. For illustration, we consider modular forms of
weight less than four; consequently, fE1

ðYÞ, fE2
ðYÞ, and

fE3
ðYÞ can be only Yð1Þ

3̂0
, Yð2Þ

3 , Yð3Þ
3̂
, and Yð3Þ

3̂0
. It is

remarkable that the CG coefficients for the contraction
triplet ⊗ triplet → singlet are all the same in our basis. As a
consequence, there are only four different structures of
charged lepton mass matrix if the weights of the relevant
modular forms are less than four.

(i) fE1
ðYÞ ¼ Yð1Þ

3̂0
, fE2

ðYÞ ¼ Yð2Þ
3 , and fE3

ðYÞ ¼ Yð3Þ
3̂
.—

In this case, there are four different representation
assignments which give rise to the same charged
lepton mass matrix:

ρL ¼ 3; ρEc
1
¼ 1̂; ρEc

2
¼ 1; ρEc

3
¼ 1̂0;

ρL ¼ 30; ρEc
1
¼ 1̂0; ρEc

2
¼ 10; ρEc

3
¼ 1̂;

ρL ¼ 3̂; ρEc
1
¼ 1; ρEc

2
¼ 1̂0; ρEc

3
¼ 10;

ρL ¼ 3̂0; ρEc
1
¼ 10; ρEc

2
¼ 1̂; ρEc

3
¼ 1: ð43Þ

The superpotentials for the charged lepton masses are
given by
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We ¼ αðEc
1LY

ð1Þ
3̂0
Þ1Hd þ βðEc

2LY
ð2Þ
3 Þ1Hd

þ γðEc
3LY

ð3Þ
3̂
Þ1Hd

¼ αEc
1ðL1Y1 þ L3Y2 þ L2Y3ÞHd

þ βEc
2ðL1Y

ð2Þ
3 þ L3Y

ð2Þ
4 þ L2Y

ð2Þ
5 ÞHd

þ γEc
3ðL1Y

ð3Þ
2 þ L3Y

ð3Þ
3 þ L2Y

ð3Þ
4 ÞHd: ð44Þ

The condition of modular weight cancellation
requires

kE1
¼ kE2

− 1 ¼ kE3
− 2 ¼ 1 − kL: ð45Þ

(ii) fE1
ðYÞ ¼ Yð1Þ

3̂0
, fE2

ðYÞ ¼ Yð2Þ
3 , and fE3

ðYÞ ¼ Yð3Þ
3̂0
.—

There are also four representation assignments for
the lepton fields:

ρL ¼ 3; ρEc
1
¼ 1̂; ρEc

2
¼ 1; ρEc

3
¼ 1̂;

ρL ¼ 30; ρEc
1
¼ 1̂0; ρEc

2
¼ 10; ρEc

3
¼ 1̂0;

ρL ¼ 3̂; ρEc
1
¼ 1; ρEc

2
¼ 1̂0; ρEc

3
¼ 1;

ρL ¼ 3̂0; ρEc
1
¼ 10; ρEc

2
¼ 1̂; ρEc

3
¼ 10: ð46Þ

The superpotential for the charged lepton masses
takes the following form:

We ¼ αðEc
1LY

ð1Þ
3̂0
Þ1Hd þ βðEc

2LY
ð2Þ
3 Þ1Hd

þ γðEc
3LY

ð3Þ
3̂0
Þ1Hd

¼ αEc
1ðL1Y1 þ L3Y2 þ L2Y3ÞHd

þ βEc
2ðL1Y

ð2Þ
3 þ L3Y

ð2Þ
4 þ L2Y

ð2Þ
5 ÞHd

þ γEc
3ðL1Y

ð3Þ
5 þ L3Y

ð3Þ
6 þ L2Y

ð3Þ
7 ÞHd: ð47Þ

Modular invariance imposes the following constraints
on modular weights:

kE1
¼ kE2

− 1 ¼ kE3
− 2 ¼ 1 − kL: ð48Þ

(iii) fE1
ðYÞ ¼ Yð1Þ

3̂0
, fE2

ðYÞ ¼ Yð3Þ
3̂0
, and fE3

ðYÞ ¼ Yð3Þ
3̂
.—

Similar to previous cases, the lepton fields can be
assigned to

ρL ¼ 3; ρEc
1
¼ 1̂; ρEc

2
¼ 1̂; ρEc

3
¼ 1̂0;

ρL ¼ 30; ρEc
1
¼ 1̂0; ρEc

2
¼ 1̂0; ρEc

3
¼ 1̂;

ρL ¼ 3̂; ρEc
1
¼ 1; ρEc

2
¼ 1; ρEc

3
¼ 10;

ρL ¼ 3̂0; ρEc
1
¼ 10; ρEc

2
¼ 10; ρEc

3
¼ 1: ð49Þ

The superpotential for the charged lepton masses is of
the form

We ¼ αðEc
1LY

ð1Þ
3̂0
Þ1Hd þ βðEc

2LY
ð3Þ
3̂0
Þ1Hd

þ γðEc
3LY

ð3Þ
3̂
Þ1Hd

¼ αEc
1ðL1Y1 þ L3Y2 þ L2Y3ÞHd

þ βEc
2ðL1Y

ð3Þ
5 þ L3Y

ð3Þ
6 þ L2Y

ð3Þ
7 ÞHd

þ γEc
3ðL1Y

ð3Þ
2 þ L3Y

ð3Þ
3 þ L2Y

ð3Þ
4 ÞHd; ð50Þ

with the modular weights

kE1
¼ kE2

− 2 ¼ kE3
− 2 ¼ 1 − kL: ð51Þ

(iv) fE1
ðYÞ ¼ Yð3Þ

3̂0
, fE2

ðYÞ ¼ Yð2Þ
3 , and fE3

ðYÞ ¼ Yð3Þ
3̂
.—

Likewise, we have four different representation as-
signments which give the same superpotentialWe as
well as the same charged lepton mass matrix:

ρL ¼ 3; ρEc
1
¼ 1̂; ρEc

2
¼ 1; ρEc

3
¼ 1̂0;

ρL ¼ 30; ρEc
1
¼ 1̂0; ρEc

2
¼ 10; ρEc

3
¼ 1̂;

ρL ¼ 3̂; ρEc
1
¼ 1; ρEc

2
¼ 1̂0; ρEc

3
¼ 10;

ρL ¼ 3̂0; ρEc
1
¼ 10; ρEc

2
¼ 1̂; ρEc

3
¼ 1: ð52Þ

The superpotential for the charged lepton masses
reads as

We ¼ αðEc
1LY

ð3Þ
3̂0
Þ1Hd þ βðEc

2LY
ð2Þ
3 Þ1Hd

þ γðEc
3LY

ð3Þ
3̂
Þ1Hd

¼ αEc
1ðL1Y

ð3Þ
5 þ L3Y

ð3Þ
6 þ L2Y

ð3Þ
7 ÞHd

þ βEc
2ðL1Y

ð2Þ
3 þ L3Y

ð2Þ
4 þ L2Y

ð2Þ
5 ÞHd

þ γEc
3ðL1Y

ð3Þ
2 þ L3Y

ð3Þ
3 þ L2Y

ð3Þ
4 ÞHd: ð53Þ

The modular weights kL and kE1;E2;E3
satisfy the

constraints

kE1
− 1 ¼ kE2

¼ kE3
− 1 ¼ 2 − kL: ð54Þ

It is straightforward to read out the predicted charged
lepton mass matrix for each case discussed above, and
results are summarized in Table II. We can exchange the
assignments for the right-handed charged lepton fields
Ec
1;2;3; accordingly, the rows of the charged lepton mass

matrix would be permutated. However, the Hermitian
combination M†

eMe is left invariant such that the predic-
tions for charged lepton mass and the unitary rotation Ue
are unchanged, where Ue diagonalize the charged lepton
mass matrix via U†

eM
†
eMeUe ¼ diagðm2

e; m2
μ; m2

τÞ.
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B. Neutrino sector

In the neutrino sector, we assume that neutrinos are
Majorana particles, and we consider two scenarios that the
neutrino masses are described by the effective Weinberg
operator or arise from the type-I seesaw mechanism. The
left-handed lepton doublets would be assigned to transform
as a triplet under S04. Guided by the principle of minimality
and simplicity, we shall consider modular multiplets with
weight less than four similar to the charged lepton sector.
For the cases involving higher weight modular forms, more
modular invariant operators accompanied by free coupling
constants would be allowed, and the predictive power of the
models would be reduced.

1. Weinberg operator

From the S04 Kronecker products 3 ⊗ 3 ¼ 30 ⊗ 30 ¼
1 ⊕ 2 ⊕ 3 ⊕ 30 and 3̂ ⊗ 3̂ ¼ 3̂0 ⊗ 3̂0 ¼ 10 ⊕ 2 ⊕ 3 ⊕ 30,
we know that the operator LLHuHu cannot couple with

odd weight modular forms such as Yð1Þ
3̂0
, Yð3Þ

1̂0
, Yð3Þ

3̂
, and Yð3Þ

3̂0

to form a S04 singlet. At the lowest order, the weight 2

modular multiplets Yð2Þ
2 and Yð2Þ

3 enter into the Weinberg
operator, and the superpotentials for neutrino masses are as
follows.

(i) ρL ¼ 3 or 30.—

Wν¼
g1
Λ
ððLLÞ2Yð2Þ

2 Þ1HuHuþ
g2
Λ
ððLLÞ3Yð2Þ

3 Þ1HuHu

¼ ½g1ð2L1L2þL2
3ÞYð2Þ

1

þg1ð2L1L3þL2
2ÞYð2Þ

2 �H
2
u

Λ
: ð55Þ

The modular weight kL should be equal to 1, i.e.,
kL ¼ 1. From the CG coefficients of 3 ⊗ 3 → 3 and
30 ⊗ 30 → 3, we know that the contraction ðLLÞ3 is
an antisymmetric combination of lepton fields L,
while Lorentz invariance requires that the Majorana

mass term ððLLÞ3Yð2Þ
3 Þ1HuHu should be symmetric

with respect to L. As a result, the term proportional
to g2 is vanishing, and the corresponding neutrino
mass matrix Mν reads as

Mν ¼ g1

0
BB@

0 Yð2Þ
1 Yð2Þ

2

Yð2Þ
1 Yð2Þ

2 0

Yð2Þ
2 0 Yð2Þ

1

1
CCA v2u

Λ
; ð56Þ

where vu ¼ hH0
ui.

(ii) ρL ¼ 3̂ or 3̂0.—

Wν¼
g1
Λ
ððLLÞ2Yð2Þ

2 Þ1HuHuþ
g2
Λ
ððLLÞ3Yð2Þ

3 Þ1HuHu

¼ ½g1ð2L1L2þL2
3ÞYð2Þ

1 −g1ð2L1L3þL2
2ÞYð2Þ

2

þg2ð2L2
1−2L2L3ÞYð2Þ

3 þg2ð2L2
2−2L1L3ÞYð2Þ

4

þg2ð2L2
3−2L1L2ÞYð2Þ

5 �H
2
u

Λ
; ð57Þ

with the weight kL ¼ 1. The light neutrino mass
matrix Mν is of the form

TABLE II. The modular S04 models in the charged lepton sector for different weight and representation assignments, where the charged
lepton mass matrix Me is given in the convention EcMeL with vd ¼ hH0

di.

Cases

Rep assignments
ðρL; ρEc

1
; ρEc

2
; ρEc

3
Þ Weights kL þ kEc

1;2;3 Charged lepton mass matrix

C1

8>><
>>:

ð3; 1̂; 1; 1̂0Þ
ð30; 1̂0; 10; 1̂Þ
ð3̂; 1; 1̂0; 10Þ
ð3̂0; 10; 1̂; 1Þ

(1, 2, 3)

Me ¼

0
B@ αY1 αY3 αY2

βYð2Þ
3 βYð2Þ

5 βYð2Þ
4

γYð3Þ
2 γYð3Þ

4 γYð3Þ
3

1
CAvd

C2

8>><
>>:

ð3; 1̂; 1; 1̂Þ
ð30; 1̂0; 10; 1̂0Þ
ð3̂; 1; 1̂0; 1Þ
ð3̂0; 10; 1̂; 10Þ

(1, 2, 3)

Me ¼

0
B@ αY1 αY3 αY2

βYð2Þ
3 βYð2Þ

5 βYð2Þ
4

γYð3Þ
5 γYð3Þ

7 γYð3Þ
6

1
CAvd

C3

8>><
>>:

ð3; 1̂; 1̂; 1̂0Þ
ð30; 1̂0; 1̂0; 1̂Þ
ð3̂; 1; 1; 10Þ
ð3̂0; 10; 10; 1Þ

(1, 3, 3)

Me ¼

0
B@ αY1 αY3 αY2

βYð3Þ
5 βYð3Þ

7 βYð3Þ
6

γYð3Þ
2 γYð3Þ

4 γYð3Þ
3

1
CAvd

C4

8>><
>>:

ð3; 1̂; 1; 1̂0Þ
ð30; 1̂0; 10; 1̂Þ
ð3̂; 1; 1̂0; 10Þ
ð3̂0; 10; 1̂; 1Þ

(3, 2, 3)

Me ¼

0
B@ αYð3Þ

5 αYð3Þ
7 αYð3Þ

6

βYð2Þ
3 βYð2Þ

5 βYð2Þ
4

γYð3Þ
2 γYð3Þ

4 γYð3Þ
3

1
CAvd
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Mν ¼

0
BB@

2g2Y
ð2Þ
3 g1Y

ð2Þ
1 − g2Y

ð2Þ
5 −g1Y

ð2Þ
2 − g2Y

ð2Þ
4

g1Y
ð2Þ
1 − g2Y

ð2Þ
5 −g1Y

ð2Þ
2 þ 2g2Y

ð2Þ
4 −g2Y

ð2Þ
3

−g1Y
ð2Þ
2 − g2Y

ð2Þ
4 −g2Y

ð2Þ
3 g1Y

ð2Þ
1 þ 2g2Y

ð2Þ
5

1
CCA v2u

Λ
: ð58Þ

2. Type-I seesaw mechanism

Three generations of right-handed neutrinos are intro-
duced in the present work, and they are assumed to
transform as a triplet under the S04. Then the most general
superpotential in the neutrino sector can be written as

Wν ¼ gðNcLHufDðYÞÞ1 þ ΛðNcNcfMðYÞÞ1; ð59Þ

where fNðYÞ and fMðYÞ are modular multiplets. Similar to
the case of the Weinberg operator, from the Kronecker
products of two triplets, we know that fMðYÞ can be τ-
independent constant4 or weight 2 modular form.

(i) fMðYÞ ¼ 1.—In this case, the right-handed neutri-
nos can transform as 3 or 30 under S04 (i.e., ρNc ¼ 3 or
30), and their modular weight should be vanishing
with kNc ¼ 0. The heavy neutrino mass term is

WN ¼ ΛðNcNcÞ1 ¼ ΛðNc
1N

c
1 þ Nc

2N
c
3 þ Nc

3N
c
2Þ;
ð60Þ

which leads to the following heavy neutrino mass
matrix:

MN ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CAΛ: ð61Þ

(ii) fMðYÞ ¼ Yð2Þ
2 ; Yð2Þ

3 .—If the right-handed neutrinos
are assigned to transform as unhatted triplet ρNc ¼ 3
or 30 with kNc ¼ 1, we have

WN ¼ ΛððNcNcÞ2Yð2Þ
2 Þ1 þ Λ0ððNcNcÞ3Yð2Þ

3 Þ1
¼ Λ½ð2Nc

1N
c
2 þ Nc

3N
c
3ÞYð2Þ

1

þ ð2Nc
1N

c
3 þ Nc

2N
c
2ÞYð2Þ

2 �: ð62Þ

Notice that the term ½ðNcNcÞ3Yð2Þ
3 �1 is vanishing,

because the contractions for both 3 ⊗ 3 → 3 and
30 ⊗ 30 → 3 are antisymmetric combinations. The
corresponding heavy Majorana mass matrixMN can
be easily read out as

MN ¼

0
B@

0 Yð2Þ
1 Yð2Þ

2

Yð2Þ
1 Yð2Þ

2 0

Yð2Þ
2 0 Yð2Þ

1

1
CAΛ: ð63Þ

On the other hand, we can also assign the right-
handed neutrinos to hatted triplets ρNc ¼ 3̂ or 3̂0 with
kNc ¼ 1. Then the superpotential WN is

WN ¼ Λ½ðNcNcÞ2Yð2Þ
2 �1 þ Λ0½ðNcNcÞ3Yð2Þ

3 �1
¼ Λ½ð2Nc

1N
c
2 þ Nc

3N
c
3ÞYð2Þ

1 − ð2Nc
1N

c
3 þ Nc

2N
c
2ÞYð2Þ

2 � þ Λ0½ð2Nc
1N

c
1 − 2Nc

2N
c
3ÞYð2Þ

3

þ ð2Nc
2N

c
2 − 2Nc

1N
c
3ÞYð2Þ

4 þ ð2Nc
3N

c
3 − 2Nc

1N
c
2ÞYð2Þ

5 �; ð64Þ

which gives rise to

MN ¼

0
BB@

2Λ0Yð2Þ
3 ΛYð2Þ

1 − Λ0Yð2Þ
5 −ΛYð2Þ

2 − Λ0Yð2Þ
4

ΛYð2Þ
1 − Λ0Yð2Þ

5 −ΛYð2Þ
2 þ 2Λ0Yð2Þ

4 −Λ0Yð2Þ
3

−ΛYð2Þ
2 − Λ0Yð2Þ

4 −Λ0Yð2Þ
3 ΛYð2Þ

1 þ 2Λ0Yð2Þ
5

1
CCA: ð65Þ

Nowwe proceed to discuss the neutrino Yukawa interaction
term gðNcLHufDðYÞÞ1. The modular form fDðYÞ is fixed
by the assignments for L andNc; it can be 1, Yð1Þ

3̂0
, Yð2Þ

2 , Yð2Þ
3 ,

Yð3Þ
1̂0
, Yð3Þ

3̂
, and Yð3Þ

3̂0
up to weight 3. We shall report the

predictions for the Dirac neutrino mass matrix for each
possible case.

(i) fDðYÞ ¼ 1.—In this case, left-handed lepton
doublet L and right-handed neutrinos N contract
to a singlet; hence, their assignments can be4There are no nontrivial modular forms of weight zero.
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ðρNc; ρLÞ ¼ ð3; 3Þ or ð30; 30Þ or ð3̂; 3̂0Þ or ð3̂0; 3̂Þ. The
Dirac neutrino mass term is

WD ¼ gðNcLÞ1Hu

¼ gðL1Nc
1 þ L2Nc

3 þ L3Nc
2ÞHu; ð66Þ

with kNc þ kL ¼ 0. Consequently, the Dirac neu-
trino mass matrix reads as

MD ¼ g

0
B@

1 0 0

0 0 1

0 1 0

1
CAvu: ð67Þ

(ii) fDðYÞ ¼ Yð1Þ
3̂0
.—There are eight possible assign-

ments for ρL and ρNc , and they can be divided into
two categories. In the case of ðρNc; ρLÞ ¼ ð3; 3̂Þ,
ð30; 3̂0Þ or ð3̂; 3Þ, ð3̂0; 30Þ, we have

WD ¼ gððNcLÞ3̂Yð1Þ
3̂0
Þ1Hu

¼ g½ðL2Nc
3 − L3Nc

2ÞY1 þ ðL3Nc
1 − L1Nc

3ÞY2

þ ðL1Nc
2 − L2Nc

1ÞY3�Hu; ð68Þ

with the modular weights kNc þ kL ¼ 1. We can
read out the Dirac neutrino mass matrix as

MD ¼ g

0
B@

0 −Y3 Y2

Y3 0 −Y1

−Y2 Y1 0

1
CAvu: ð69Þ

For the second type of assignments ðρNc; ρLÞ ¼
ð3; 3̂0Þ, ð30; 3̂Þ, ð3̂0; 3Þ, or ð3̂; 30Þ with kNcþkL¼1,
we find

WD ¼ gððNcLÞ3̂Yð1Þ
3̂0
Þ1Hu

¼ g½ð2L1Nc
1 − L2Nc

3 − L3Nc
2ÞY1

þ ð2L2Nc
2 − L1Nc

3 − L3Nc
1ÞY2

þ ð2L3Nc
3 − L1Nc

2 − L2Nc
1ÞY3�Hu; ð70Þ

which leads to

MD ¼ g

0
B@

2Y1 −Y3 −Y2

−Y3 2Y2 −Y1

−Y2 −Y1 2Y3

1
CAvu: ð71Þ

(iii) fDðYÞ ¼ Yð2Þ
2 ; Yð2Þ

3 .—The modular weights of L and
Nc should compensate that of fDðYÞ; they satisfy
the condition kNc þ kL ¼ 2. For the assignments
ðρNc; ρLÞ ¼ ð3; 3Þ, ð30; 30Þ, ð3̂; 3̂0Þ, or ð3̂0; 3̂Þ, we have

WD¼ðg1ðNcLÞ2Yð2Þ
2 Þ1Huþg2ððNcLÞ3Yð2Þ

3 Þ1Hu

¼ g1½ðL2Nc
1þL1Nc

2þL3Nc
3ÞYð2Þ

1

þðL3Nc
1þL1Nc

3þL2Nc
2ÞYð2Þ

2 �Hu

þg2½ðL2Nc
3−L3Nc

2ÞYð2Þ
3 þðL3Nc

1−L1Nc
3ÞYð2Þ

4

þðL1Nc
2−L2Nc

1ÞYð2Þ
5 �Hu: ð72Þ

Accordingly, the Dirac neutrino mass matrix is of the
following form:

MD ¼

0
BB@

0 g1Y
ð2Þ
1 − g2Y

ð2Þ
5 g1Y

ð2Þ
2 þ g2Y

ð2Þ
4

g1Y
ð2Þ
1 þ g2Y

ð2Þ
5 g1Y

ð2Þ
2 −g2Y

ð2Þ
3

g1Y
ð2Þ
2 − g2Y

ð2Þ
4 g2Y

ð2Þ
3 g1Y

ð2Þ
1

1
CCAvu: ð73Þ

We can also assign Nc and L to the S04 triplets ðρNc; ρLÞ ¼ ð3̂; 3̂Þ, ð3̂0; 3̂0Þ, ð3; 30Þ, or ð30; 3Þ, and, thus,

WD ¼ ðg1ðNcLÞ2Yð2Þ
2 Þ1Hu þ g2ððNcLÞ3Yð2Þ

3 Þ1Hu

¼ g1½ðL2Nc
1 þ L1Nc

2 þ L3Nc
3ÞYð2Þ

1 − ðL3Nc
1 þ L1Nc

3 þ L2Nc
2ÞYð2Þ

2 �Hu

þ g2½ð2L1Nc
1 − L2Nc

3 − L3Nc
2ÞYð2Þ

3 þ ð2L2Nc
2 − L3Nc

1 − L1Nc
3ÞYð2Þ

4

þ ð2L3Nc
3 − L1Nc

2 − L2Nc
1ÞYð2Þ

5 �Hu: ð74Þ

The Dirac neutrino mass matrix reads as

MD ¼

0
BB@

2g2Y
ð2Þ
3 g1Y

ð2Þ
1 − g2Y

ð2Þ
5 −g1Y

ð2Þ
2 − g2Y

ð2Þ
4

g1Y
ð2Þ
1 − g2Y

ð2Þ
5 −g1Y

ð2Þ
2 þ 2g2Y

ð2Þ
4 −g2Y

ð2Þ
3

−g1Y
ð2Þ
2 − g2Y

ð2Þ
4 −g2Y

ð2Þ
3 g1Y

ð2Þ
1 þ 2g2Y

ð2Þ
5

1
CCAvu: ð75Þ
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(iv) fDðYÞ ¼ Yð3Þ
1̂0
; Yð3Þ

3̂
; Yð3Þ

3̂0
.—The weight cancellation requires kL and kNc to fulfill the condition kNc þ kL ¼ 3.

Invariance of the neutrino Yukawa coupling under S04 entails N
c and L should contract to 1̂, 3̂, and 3̂0. Therefore, Nc

and L can be assigned to ðρNc; ρLÞ ¼ ð3; 3̂Þ, ð30; 3̂0Þ, ð3̂; 3Þ, or ð3̂0; 30Þ, and then the superpotentialWD is of the form

WD ¼ g1ððNcLÞ3̂Yð3Þ
3̂0
Þ1Hu þ g2ððNcLÞ0

3̂
Yð3Þ
3̂
Þ1Hu þ g3ððNcLÞ1̂Yð3Þ

1̂0
Þ1Hu

¼ �g1½ðL2Nc
3 − L3Nc

2ÞYð3Þ
5 þ ðL3Nc

1 − L1Nc
3ÞYð3Þ

6 þ ðL1Nc
2 − L2Nc

1ÞYð3Þ
7 �Hu

þ g2½ð2L1Nc
1 − L2Nc

3 − L3Nc
2ÞYð3Þ

2 þ ð2L2Nc
2 − L1Nc

3 − L3Nc
1ÞYð3Þ

3

þ ð2L3Nc
3 − L1Nc

2 − L2Nc
1ÞYð3Þ

4 �Hu þ g3½L1Nc
1 þ L2Nc

3 þ L3Nc
2�Hu; ð76Þ

which gives rise to

MD ¼

0
BB@

2g2Y
ð3Þ
2 þ g3Y

ð3Þ
1 −g1Y

ð3Þ
7 − g2Y

ð3Þ
4 g1Y

ð3Þ
6 − g2Y

ð3Þ
3

g1Y
ð3Þ
7 − g2Y

ð3Þ
4 2g2Y

ð3Þ
3 −g1Y

ð3Þ
5 − g2Y

ð3Þ
2 þ g3Y

ð3Þ
1

−g1Y
ð3Þ
6 − g2Y

ð3Þ
3 g1Y

ð3Þ
5 − g2Y

ð3Þ
2 þ g3Y

ð3Þ
1 2g2Y

ð3Þ
4

1
CCAvu: ð77Þ

We can also assign Nc and L to transform as ðρNc; ρLÞ ¼ ð3; 3̂0Þ, ð30; 3̂Þ, ð3̂0; 3Þ, or ð3̂; 30Þ, and then we have

WD ¼ g1ððNcLÞ3̂Yð3Þ
3̂0
Þ1Hu þ g2ððNcLÞ0

3̂
Yð3Þ
3̂
Þ1Hu

¼ g1½ð2L1Nc
1 − L2Nc

3 − L3Nc
2ÞYð3Þ

5 þ ð2L2Nc
2 − L1Nc

3 − L3Nc
1ÞYð3Þ

6

þ ð2L3Nc
3 − L1Nc

2 − L2Nc
1ÞYð3Þ

7 �Hu þ g2½ðL2Nc
3 − L3Nc

2ÞYð3Þ
2

þ ðL3Nc
1 − L1Nc

3ÞYð3Þ
3 þ ðL1Nc

2 − L2Nc
1ÞYð3Þ

4 �Hu: ð78Þ

The Dirac neutrino mass matrix is determined to be

MD ¼

0
BB@

2g1Y
ð3Þ
5 −g1Y

ð3Þ
7 − g2Y

ð3Þ
4 −g1Y

ð3Þ
6 þ g2Y

ð3Þ
3

−g1Y
ð3Þ
7 þ g2Y

ð3Þ
4 2g1Y

ð3Þ
6 −g1Y

ð3Þ
5 − g2Y

ð3Þ
2

−g1Y
ð3Þ
6 − g2Y

ð3Þ
3 −g1Y

ð3Þ
5 þ g2Y

ð3Þ
2 2g1Y

ð3Þ
7

1
CCAvu: ð79Þ

For all the above type-I seesaw models, the effective light
neutrino mass matrix is given by the seesaw formula

Mν ¼ −MT
DM

−1
N MD: ð80Þ

We are interested in the models with fewer free parameters,
and we list the possible neutrino models in Table III for
which the resulting light neutrino mass matrices contain
fewer than four free parameters excluding the modulus τ.

C. Numerical results

In short, the charged lepton can take four possible forms
shown in Table II if only modular forms of weight less than
4 are considered, and there are 18 neutrino models with
parameters less than 4, as summarized in Table III.
Combining the charged lepton sector with the neutrino
sector, we obtain totally 4 × 18 ¼ 72 lepton models which
are denoted as Ci −W1, Ci −W2, and Ci − Sj with the

indices i ¼ 1;…; 4 and j ¼ 1;…; 16. We see that for the
four cases C1;2;3;4 the charged lepton mass matrix Me

depends on three parameters α, β, and γ which can be made
real by redefining the phases of the right-handed charged
leptons Ec

1;2;3. The three parameters α, β, and γ are in one-
to-one correspondence with the charged lepton masses. The
electron, muon, and tau masses can be reproduced by
adjusting the parameters α, β, and γ. We confront each
model with the neutrino oscillation data and charged lepton
masses; we perform a conventional χ2 analysis to optimize
the model parameters and determine how well each model
can be compatible with the observations. The overall mass
scale αvd in the charged lepton mass matrix and g2v2u=Λ in
the neutrino mass matrix can be fixed by requiring that the
electron mass and the mass splitting Δm2

21 are reproduced.
Since the overall factor of the mass matrix does not
affect the predictions for mass ratios, mixing angles, and
CP-violating phases, we construct the χ2 function using the
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lepton mixing angles θ12, θ13, and θ23 and the mass ratios
me=mμ, mμ=mτ, and Δm2

21=Δm2
31. The neutrino oscillation

parameters are taken from the latest global fit results of
NuFIT v4.1 including the atmospheric neutrino data from
SuperKamiokande [67]. Since the current data somewhat
prefer normal ordering (NO) over inverted neutrino (IO)
mass ordering, we shall focus on NO neutrino masses in the
numerical analysis. The best fit values and 1σ ranges of the
three lepton mixing angles, CP-violating phase δCP, and
the neutrino mass squared differences are as follows:

sin2θ12 ¼ 0.310þ0.013
−0.012 ; sin2θ13 ¼ 0.02237þ0.00066

−0.00065 ;

sin2θ23 ¼ 0.563þ0.018
−0.024 ;

δlCP=π ¼ 1.2278þ0.2167
−0.1556 ;

Δm2
21

10−5 eV2
¼ 7.39þ0.21

−0.20 ;

Δm2
31

10−3 eV2
¼ 2.528þ0.029

−0.031 : ð81Þ

The ratios of charged lepton masses are taken from
Ref. [68]:

me=mμ ¼ 0.0048� 0.0002;

mμ=mτ ¼ 0.0565� 0.0045 ð82Þ

The leptonic Dirac CP phase δlCP is not measured precisely
at present, and the indication of a preferred value of δlCP
from global data analyses is rather weak; we do not include
the information of δlCP in the χ2 function.
It is an open question to dynamically determine the VEV

of the complex modulus τ. It has been conjectured that the
VEV of the complex modulus is pure imaginary or along
the border of the fundamental domain in the modular
invariant N ¼ 1 supergravity theories [69]. It has been
shown that the complex modulus could possibly be
stabilized at some Z2 fixed points in string compactifica-
tions [70]. Following the original work [10,15], we will not
address the vacuum selection mechanism here, and, con-
sequently, we will not attempt to build the most general
supersymmetric and modular invariant scalar potential for τ
in a more fundamental theory. The VEVof τ will be treated
as a free parameter, to be varied to maximize the agreement
with data.
The absolute values of all coupling constants are scanned

in the region ½0; 104�, the phases are freely varied in the
range ½0; 2π�, and the modulus τ is restricted in the
right-hand part of the fundamental domain D with
0 ≤ ReðτÞ ≤ 0.5; the reason for not scanning the complete
fundamental domain is explained below. We numerically
minimize the χ2 function by using the minimization
algorithms incorporated in the package MINUIT developed
by CERN to determine the optimum values of the input
parameters. We find that 15 models can give a very good
fit to the data for certain values of input parameters.TA
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We display the best fit values of the input parameter for
which the χ2 function reach a global minimum χ2min in
Table IV, and we also give the predictions for lepton mixing
parameters and neutrino masses at the best fitting point in
Table IV. We see that the charged lepton mass hierarchies
require hierarchical values of the parameters α, β, and γ;
this can be naturally realized by the weighton mechanism
[34]. For all 15 phenomenologically viable models, the
light neutrino mass matrixMν depends on a single complex
parameter g2=g1 and the complex modulus τ besides the
overall scale g21v

2
u=Λ. Hence, the three lepton mixing

angles, Dirac and Majorana CP phases, and three light
neutrino masses are completely determined by five real

parameters jg2=g1j, arg ðg2=g1Þ, ReðτÞ, ImðτÞ, and g21v
2
u=Λ,

whose values can be fixed by the precisely measured lepton
mixing angles and neutrino mass squared splittings shown
in Eq. (81). The number of free parameters is four less than
that of observables; therefore, these models are quite
predictive. It is remarkable that all these 15 models can
predict the unknown values of absolute neutrino masses,
the Dirac and Majorana CP-violation phases, and the
effective neutrino masses in neutrinoless double beta decay.
These predictions could be tested in future more sensitive
experiments. Note that the models Ci − S9 and Ci − S10
contain more free parameters; consequently, we do not
show the numerical results of these model here. As can be

TABLE IV. The best fit values of the input parameters at the minimum of the χ2 under the assumption of NO neutrino masses. We give
the predictions for neutrino mixing angles θ12 and θ13 and Dirac CP-violating phase δlCP as well as Majorana CP-violating phases α21
and α31 and the light neutrino masses m1;2;3 and the effective mass jmeej in neutrinoless double decay. Notice in the CP dual point
τ → −τ�, g1;2 → g�1;2, the signs of Dirac and Majorana CP phases are reversed, while the predictions for lepton mixing angles and
neutrino masses are unchanged.

Models

Best fit values of the input parameters for NO

Rehτi Imhτi β=α γ=α jg2=g1j arg ðg2=g1Þ=π αvd=MeV g2
1
v2u
Λ =meV χ2min

C1 −W2 0.3656 1.1638 670.6170 13.7484 0.7008 0.0261 0.1995 2.7462 2.277
C2 −W2 0.4600 0.8911 34.6012 203.4790 0.8046 1.8275 0.1700 5.2737 0.005
C3 −W2 0.4519 0.8957 196.2490 57.8262 0.7826 0.1813 0.1705 4.9698 7.570 × 10−5

C4 −W2 0.3658 1.1639 4536.5100 92.9859 0.7007 0.0261 0.0295 2.7461 2.261
C1 − S3 0.3860 1.3025 717.9890 13.6791 0.5157 1.8065 0.2030 4.5728 8.211
C4 − S3 0.3860 1.3025 6074.9500 115.7380 0.5157 0.8065 0.0240 4.5727 8.211
C1 − S5 0.1470 0.9994 0.0001 0.0031 0.3405 0.3505 653.0910 0.2332 7.780 × 10−6

C4 − S5 0.0582 1.0131 9584.4200 253.7910 0.3889 0.3067 0.0123 0.2139 2.269 × 10−5

C1 − S6 0.1764 0.9915 0.0016 0.8839 1.5584 1.8651 38.3255 0.0846 1.581
C3 − S6 0.1763 0.9914 0.0003 0.8838 1.5576 1.8646 38.3203 0.0847 1.577
C1 − S15 0.4792 1.1710 44.6105 215.7250 1.8280 1.3567 0.1934 0.0357 1.665 × 10−5

C4 − S15 0.4881 1.1629 244.8360 1192.4900 1.7919 0.6360 0.0349 0.0363 1.011 × 10−5

C1 − S16 0.2609 1.1527 608.7890 13.2779 0.2412 0.0940 0.2178 7.3242 4.323
C3 − S16 0.3065 1.0220 229.7120 15.8054 0.2119 0.0672 0.1860 8.0831 4.323
C4 − S16 0.2673 1.1501 5679.8400 123.5270 0.2342 1.9063 0.0233 7.2261 4.309

Predictions for mixing parameters and neutrino masses at best fitting point

Models sin2 θ12 sin2 θ13 sin2 θ23 δlCP=π α21=π α31=π m1=meV m2=meV m3=meV jmeej=meV

C1 −W2 0.3100 0.02184 0.5326 1.3285 1.5086 0.5246 32.4905 33.6085 59.8177 25.7353
C2 −W2 0.3100 0.02237 0.5643 0.4160 1.9869 0.9920 115.0660 115.3870 125.5740 115.0220
C3 −W2 0.3100 0.02237 0.5628 0.4325 0.0046 1.0061 104.7660 105.1180 116.2070 104.8860
C4 −W2 0.3100 0.02184 0.5327 1.3285 1.5085 0.5247 32.4781 33.5965 59.8100 25.7233
C1 − S3 0.3136 0.02254 0.4949 0.9971 1.3424 1.0547 26.3479 27.7148 56.7644 14.5905
C4 − S3 0.3136 0.02254 0.4949 0.9971 1.3424 1.0547 26.3474 27.7144 56.7638 14.5901
C1 − S5 0.3100 0.02237 0.5630 0.4389 0.0776 0.7294 19.3629 21.1854 53.8788 20.3940
C4 − S5 0.3100 0.02237 0.5630 0.8519 0.0920 0.3068 19.5386 21.3461 53.9455 19.2309
C1 − S6 0.3220 0.02227 0.5435 1.0014 1.0004 1.0015 6.9527 11.0562 50.6110 2.8645 × 10−6

C3 − S6 0.3221 0.02226 0.5435 1.0012 1.0004 1.0012 6.9534 11.0560 50.6117 8.6208 × 10−7

C1 − S15 0.3100 0.02237 0.5629 1.1729 1.6460 1.5562 18.8024 20.6744 53.6802 15.8409
C4 − S15 0.3100 0.02237 0.5630 0.5832 0.3523 0.3831 19.1636 21.0035 53.8077 15.6386
C1 − S16 0.3008 0.02147 0.5630 1.6759 1.5782 1.7340 5.0645 9.9774 49.5504 4.9267
C3 − S16 0.3008 0.02147 0.5630 0.6638 0.7622 1.5373 7.4979 11.4070 49.8573 4.5791
C4 − S16 0.3008 0.02147 0.5630 0.2980 1.4096 0.2421 4.9822 9.9359 49.5433 4.8485
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seen from Table IV, the three lepton mixing angles θ12, θ13,
and θ23 and the neutrino mass squared difference Δm2

21 and
Δm2

31 fall in the 1σ experimental range for these 15 viable
models except the models C1 − S3 and C4 − S3, where
sin2 θ23 ¼ 0.4949 is outside the 1σ region but still in the 3σ
region. Although predictions for the lepton mixing angles
are quite similar, the predictions for CP-violation phases
δlCP, α21, and α31 as well as light neutrino massesm1;2;3 and
jmeej are different. The future long baseline neutrino
experiments DUNE [71–74] and T2HK [75], if running
in both neutrino and antineutrino modes, will significantly
improve the precision on θ23 and δlCP. Hence, future
neutrino oscillation facilities have the potential to discrimi-
nate among the above possible cases or rule out some of
them completely. It seems extremely difficult or impossible
to directly measure the two Majorana CP-violating phases
from any feasible measurements of the lepton number-
violating processes. However, the Majorana phases play an
important role in the neutrinoless double beta, and most of
our predictions for the effective neutrino mass jmeej are
within the reach of future neutrinoless double decay
experiments, as discussed below. Moreover, the predictions
for neutrino masses in our models could be tested at
cosmological experiments such as Planck which can
constrain the sum of light neutrino masses.
Furthermore, we notice that the modular forms have the

property YðkÞ
r ð−τ�Þ ¼ ρrðSÞ½YðkÞ

r ðτÞ�� as shown in Eq. (35).
Therefore, if we make the replacement τ → −τ�, g1;2 →
g�1;2 and perform the S transformation on both lepton and
right-handed neutrino fields, the charged lepton and neu-
trino mass matrices would become their complex conju-
gate. Hence, under such transformation, lepton masses and
mixing angles are unchanged while the signs of all CP-
violating phases are flipped. As a consequence, the com-
plex modulus τ is limited in the right-hand part of the
fundamental domain D with 0 ≤ ReðτÞ ≤ 0.5 when we
scan over the parameter space in numerical minimization.
The predictions of the mixing parameters in the left-hand
part of D with −0.5 ≤ ReðτÞ ≤ 0 can be easily obtained by
reversing the overall signs of the Dirac and Majorana CP
phases. Hence, all the numerical results given in Table IV
should understand to come in pair with opposite CP-
violating phases.
It is known that the neutrino mass spectrum tends to be

nearly degenerate in modular invariant models based on an
inhomogeneous finite modular group. As can be seen from
Table IV, a remarkable feature of these modular S04 models
is that the neutrino masses are hierarchical except the
models C2 −W2 and C3 −W2. From the predictions for
neutrino masses, mixing angles, and CP-violating phases
in Table IV, we can pin down the effective neutrino mass
jmeej relevant to neutrinoless double beta decay. We
displayed the lightest neutrino mass and jmeej of each
viable model in Fig. 1, where the experimental bound of
KamLAND-Zen [76] and the expected sensitivities of

future experiments [77–82] are indicated by the horizontal
lines. For the models C1 − S6 and C3 − S6, the effective
Majorana mass is jmeej ≃ 2.864 × 10−6 meV and
jmeej ¼ 8.620 × 10−7 meV, respectively, with the lightest
neutrino mass m1 ≃ 6.953 meV. Hence, the corresponding
points are not visible in the figure. The future neutrinoless
double beta decay experiments are designed at the tonne
scale, and the sensitivity is expected to be improved by
about 2 orders of magnitude over current experiments.
Thus, we expect that some of our predictions could be
tested in future neutrinoless double beta decay experiments,
as indicated in the figure.
If we require the theory to be invariant under both S04

modular symmetry and the generalized CP symmetry, all
the couplings would be restricted to be real in our working
basis, as shown in Sec. IV. Thus, the number of free
parameters in a model would be reduced further. For the 15
viable models listed in Table IV, the generalized CP
symmetry enforces both coupling constants g1 and g2 to
be real such that the phase arg ðg2=g1Þ is equal to zero or π.
As a consequence, the minimal CP-invariant models with
S04 modular symmetry are characterized by only seven free
parameters: β=α, γ=α, αvd, g2=g1, g21v

2
u=Λ, ReðτÞ, and

ImðτÞ; the predictive power of the models is enhanced. The
former three parameters β=α, γ=α, and αvd in the charged
lepton mass matrix are still fixed by the charged lepton
masses me;μ;τ. The remaining four parameters g2=g1,
g21v

2
u=Λ, ReðτÞ, and ImðτÞ describe the entire neutrino

sector including the three neutrino masses m1;2;3, three

FIG. 1. The predictions for lightest neutrino mass m1 and the
effective Majorana mass jmeej for the 15 phenomenologically
viable models at the best fit points shown in Table IV. The blue
(red) lines denote the most general allowed regions for NO (IO)
where the neutrino oscillation parameters are freely varied in their
3σ regions [67]. The vertical gray exclusion band denotes the
bound on the lightest neutrino mass coming from the cosmo-
logical data Σimi < 0.120 eV at 95% confidence level obtained
by the Planck Collaboration [83]. The values of jmeej in the
models C1 − S6 and C3 − S6 are too tiny to be visible.
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neutrino mixing angles θ12, θ13, and θ23, the Dirac CP-
violation phase δlCP, and the Majorana CP phases α21 and
α31. In particular, the complex modulus τ and modular
forms would be sources of all CP-violation phases. We find
that only seven out of the 15 models are compatible with
data; the numerical results are shown in Table V.

The modular symmetry models are quite predictive; the
mixing parameters and neutrino masses are generally
correlated with each other, since the number of free
parameters is generally less than the number of observ-
ables. As an example, we take the model C1 − S5 for
illustration, and we use the popular tool MultiNest [84,85] to

TABLE V. The best fit values of the input parameters after imposing generalized CP. We give the predictions for lepton mixing
parameters and neutrino masses at the best fit points. Notice in the CP dual point τ → −τ�, the signs of Dirac and Majorana CP phases
are reversed, while the predictions for lepton mixing angles and neutrino masses are unchanged.

Models with gCP C1 − S5 C4 − S5 C1 − S6 C3 − S6 C1 − S16 C3 − S16 C4 − S16

Rehτi 0.1997 0.2118 0.1745 0.1745 0.3028 0.3166 0.3028
Imhτi 0.9969 0.9709 0.9846 0.9847 1.1351 1.0086 1.1351
β=α 0.0001 435.0270 0.0017 0.0003 629.3540 227.1940 4958.2700
γ=α 0.0031 1696.6900 0.8776 0.8776 13.4699 16.5263 106.1150
g2=g1 −0.0066 0.6520 1.6936 1.6939 0.1779 0.1899 0.1780
αvd=MeV 654.2130 0.0199 38.1991 38.1998 0.2079 0.1843 0.0264
g2
1
v2u
Λ =meV 0.3712 0.1600 0.0718 0.0718 6.5644 7.8506 6.5646

sin2 θ12 0.3105 0.3145 0.3234 0.3234 0.3008 0.3008 0.3008
sin2 θ13 0.02239 0.02289 0.02230 0.02230 0.02147 0.02147 0.02147
sin2 θ23 0.5057 0.4491 0.5460 0.5461 0.5630 05630 0.5630
δCP=π 0.5405 1.7891 1.0000 1.0001 0 0.8932 0.0001
α21=π 0.0857 0.8369 1.0000 1.0000 1.4223 0.7645 1.4222
α31=π 1.0569 1.7147 1.0000 1.0001 0 1.7866 0

me=mμ 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048
mμ=mτ 0.0564 0.0561 0.0565 0.0565 0.0565 0.0565 0.0565

m1=meV 14.6582 37.3832 7.0066 7.0063 4.4561 7.4556 4.4564
m2=meV 16.9930 38.3589 11.0902 11.0900 9.6828 11.3792 9.6830
m3=meV 52.3800 62.7243 50.6287 50.6287 49.4911 49.8506 49.4918P

i mi=meV 84.0312 138.4660 68.7255 68.7250 63.6300 68.6854 63.6312
jmeej=meV 16.0735 17.2902 2.8886 × 10−6 8.6181 × 10−7 4.4001 4.3325 4.3998

χ2min 5.694 23.279 1.605 1.601 4.328 4.331 4.328

FIG. 2. The regions of the complex modulus hτi compatible with experimental data in the fundamental domain D for the model
C1 − S5 without gCP. There are five disconnected parameter regions, and two of them (region II and region III) coincide on the hτi plane
as can be seen in the right panel. The values of χ2 are represented by different colors, as shown in the color bar. Here we focus on the
right-hand part of D with 0 ≤ ReðτÞ ≤ 0.5. The predictions for mixing angles are unchanged, and the signs of the CP-violating phases
are reversed in the CP dual regions τ → τ�, gi → g�i .

MODULAR INVARIANT QUARK AND LEPTON MODELS IN … PHYS. REV. D 103, 056013 (2021)

056013-17



scan the parameter space fully and efficiently. We require
all three lepton mixing angles θ12, θ13, and θ23 and the mass
ratios Δm2

21=Δm2
31, mμ=me, and mτ=me to lie in the 3σ

allowed regions; the observed values of the neutrino mass
squared differences and charged lepton masses can be
reproduced by adjusting the overall mass scales αvd and
g21v

2
u=Λ. The experimentally allowed values of the complex

modulus τ are displayed in Fig. 2, and they are all located
near the boundary jτj ¼ 1 of D. There are five independent
and disconnected regions compatible with experiment data
in the parameter space. Notice that, although region II and

region III coincide on the hτi plane, the allowed regions in
the β=α − γ=α plane and jg2=g1j − argðg2=g1Þ plane are
different. The correlations between the input parameters,
neutrino mixing parameters, and neutrino masses are
shown in Figs. 3–7. We see that observables are really
strongly correlated and show different patterns in each
region. After gCP symmetry is imposed, only two inde-
pendent and disconnected regions together with their CP
dual regions in D are compatible with experimental data,
and all observables are predicted to vary in quite small
regions, as can be seen from Fig. 8. Hence, gCP makes the

FIG. 3. The predictions for the correlations among the input free parameters, neutrino mixing angles, CP-violating phases, and
neutrino masses in region I of model C1 − S5 without gCP symmetry.
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predictive power of modular invariant models increase
considerably.
We have focused on NO neutrino masses in the

above numerical analysis. However, the IO mass spec-
trum still is not excluded, although it is slightly disfa-
vored by the current data [67]. Analogous to the NO
cases, we can numerically scan the parameter space of
each model, search for the minimum of the χ2 function
built with the leptonic data of the IO case, and eventually
find out the models compatible with experimental data of
IO. In the following, we take the model C2 − S9 as an

example; the best fit values of the input parameters are
found to be

τ ¼ −0.0131þ 1.0418i; β=α ¼ 3.0561;

γ=α ¼ 0.0003;

g2=g1 ¼ 0.5459 − 0.1804i; g21v
2
u=Λ ¼ 0.0221 meV;

αvd ¼ 39.5755 MeV; ð83Þ
which gives rise to the following predictions for lepton
masses and mixing parameters:

FIG. 4. The predictions for the correlations among the input free parameters, neutrino mixing angles, CP-violating phases, and
neutrino masses in region II of model C1 − S5 without gCP symmetry.
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me=mμ ¼ 0.0048; mμ=mτ ¼ 0.0566;

sin2θ12 ¼ 0.3100; sin2θ13 ¼ 0.02258;

sin2θ23 ¼ 0.504;

δCP=π ¼ 1.5281; α21=π ¼ 0.0266;

α31=π ¼ 0.9935; m1 ¼ 51.0533 meV;

m2 ¼ 51.7720 meV; m3 ¼ 13.0471 meV;

jmeej ¼ 50.3679 meV: ð84Þ
It is remarkable that the lepton mixing angles θ12 and θ13
and neutrino mass squared differences fall in the 1σ

ranges [67], and θ23 is slightly below its 1σ lower limit.
The Dirac CP phase is very close to 3π=2, and the
effective neutrino mass jmeej is within the reach of future
neutrinoless double decay experiments. The sum of
neutrino masses

P
i mi ≃ 115.8724 meV is compatible

with the latest Planck bound on neutrino mass sumP
i mi < 0.12 eV–0.60 eV at 95% confidence level [83].

VI. QUARK MODELS BASED ON
S04 MODULAR SYMMETRY

In this section, we will exploit the S04 modular sym-
metry to understand the quark mass hierarchies and the

FIG. 5. The predictions for the correlations among the input free parameters, neutrino mixing angles, CP-violation phases, and
neutrino masses in region III of model C1 − S5 without gCP symmetry.
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observed pattern of hierarchial quark mixing angles and
CP-violating phase encoded in the CKMmatrix. We aim to
construct viable quark mass models with a minimal amount
of free parameters. The quark fields can be assigned to a
triplet of S04, the direct product of a doublet and a singlet, or
the direct sum of three singlets. Similar to what we have
done in the charged lepton sector, we can classify the
structures of the quark mass matrix for each assignment.
For instance, analogous to the charged lepton sector, we
could assign the three generations of quark doublets Q to a
triplet of S04, the right-handed up-type quarks uc, cc, and tc

and down-type quarks dc, sc, and bc transform as singlets

of S04, then the up-type quark mass matrix Mu and down-
type quark mass matrix Md can take only the four possible
forms shown in Table II if modular forms of weight less
than four are used. ConsequentlyMu andMd would depend
on three coupling constants αu, βu, and γu and αd, βd, and
γd, respectively, which can be taken to be real by field
redefinitions. We can tune the values of αu, βu, and γu to
match the up-type quark masses mu;c;t, and the down-type
quark masses md;s;b can be reproduced by adjusting the
parameters αd, βd, and γd. Hence, the CKM quark mixing
matrix is completely determined by the modulus τ; we find
it is impossible to reproduce the three hierarchical quark

FIG. 6. The predictions for the correlations among the input free parameters, neutrino mixing angles, CP-violating phases, and
neutrino masses in region IV of model C1 − S5 without gCP symmetry.
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mixing angles and CP phase by varying a single complex
parameter τ. We have constructed tens of thousands of
quark models by using Wolfram Mathematica for different
possible weight and representation assignments of quark
fields.
The modular symmetry is broken by the vacuum

expectation value of the modulus τ at high-energy
scale. We assume that the modular invariance breaking
scale is around the grand unified theory (GUT) scale
2 × 1016 GeV. From the up-type and down-type quark
mass matrices Mu and Md, we can calculate the quark

masses, mixing angles, and CP-violation phase in terms of
the input parameters of the model. In order to find the point
in parameter space which optimizes the agreement between
predictions and data, we generalize the numerical analysis
strategy of Sec. V C to the quark sector, and we search the
minimum of the χ2 contributions from quark mass ratios
and CKM parameters. For the calculation of χ2min, we use
the values of quark masses and the CKM parameters
calculated at the GUT scale from a minimal supersymmetry
(SUSY) breaking scenario, with SUSY-breaking scale
MSUSY ¼ 1 TeV and tan β ¼ 7.5, η̄b ¼ 0.09375 [86]:

FIG. 7. The predictions for the correlations among the input free parameters, neutrino mixing angles, CP-violating phases, and
neutrino masses in region V of model C1 − S5 without gCP symmetry.
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mu=mc ¼ð1.9286�0.6017Þ×10−3;

mc=mt¼ð2.7247�0.1200Þ×10−3;

md=ms¼ð5.0528�0.6192Þ×10−2;

ms=mb ¼ð1.7684�0.0975Þ×10−2;

mt¼ 89.5335GeV; mb¼ 0.9336GeV;

δqCP ¼ 69.213°�3.115°;

θq12¼ 0.22736�0.00073; θq13¼ 0.00338�0.00012;

θq23¼ 0.03888�0.00062; ð85Þ

where η̄b denotes the contribution from SUSY threshold
corrections which mainly affects the bottom quark
Yukawa coupling. After examining tens of thousands
of quark models constructed by using Wolfram
Mathematica, we succeeded in finding some models
which can accommodate the experimental data of quark
masses and CKM matrix. In the following, we present
eight benchmark models with a small number of free
parameters. The transformation properties of the quark
fields under S04 and their modular weights are summarized
in Table VI.

FIG. 8. The predictions for the correlations among the input free parameters, neutrino mixing angles, CP-violating phases, and
neutrino masses in the model C1 − S5 with gCP symmetry.
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A. Model I with gCP: Nine free real parameters
including ReðτÞ and ImðτÞ

In this model, left-handed quarks Q and right-handed up
quarks uc, cc, and tc are assigned to a direct sum of doublet
and singlet 2 ⊕ 1 of S04, and the right-handed down quarks
dc, sc, and bc are assigned to 2̂ ⊕ 10 of S04. For conven-
ience, we use the subscript “D” to denote the doublet
assignment, i.e., QD ≡ ðQ1; Q2ÞT , ucD ≡ ðuc; dcÞT , and
dcD ≡ ðdc; scÞT . The modular weights of the quark super-
fields are set to

kQ3
¼ kQD

þ 2 ¼ 6 − kucD ¼ 6 − ktc ¼ 7 − kdcD ¼ 6 − kbc :

ð86Þ

Thus, the modular invariant superpotentials for quark
masses read as follows:

Wu ¼ αu1ðucDQDÞ1Yð4Þ
1 Hu þ αu2ðucDQDY

ð4Þ
2 Þ1Hu

þ βttcðQDY
ð4Þ
2 Þ1 þ γuQ3ðucDYð6Þ

2 Þ1Hu;

Wd ¼ αdðdcDQDY
ð5Þ
2̂
Þ1Hd þ βdbcðQDY

ð4Þ
2 Þ10Hd

þ γdbcQ3Y
ð6Þ
10 Hd: ð87Þ

From the CG coefficients of S04 group in Appendix A, we
find the up and down quark mass matrices are given,
respectively, by

Mu ¼

0
BB@

αu2Y
ð4Þ
2 αu1Y

ð4Þ
1 γuY

ð6Þ
4

αu1Y
ð4Þ
1 αu2Y

ð4Þ
3 γuY

ð6Þ
3

βtY
ð4Þ
3 βtY

ð4Þ
2 0

1
CCAvu;

Md ¼

0
BB@

αdY
ð5Þ
1 0 0

0 −αdY
ð5Þ
2 0

−βdY
ð4Þ
3 βdY

ð4Þ
2 γdY

ð6Þ
1

1
CCAvd: ð88Þ

We see that this model makes use of five real positive
parameters αu1;d, βt;d, and γd and two complex parameter
αu2 and γu to describe quark masses and the CKM matrix,
respectively. If we impose gCP symmetry on this model,
αu2 and γu are restricted to be real and they can be either
positive or negative. A good agreement between data and
predictions is obtained for the following values of input
parameters:

hτi¼−0.4385þ0.9100i; αu2=αu1¼−1.8814;

γu=αu1¼0.1846;

βt=αu1¼719.0101; βd=αd¼23.3376; γd=αd¼0.0225;

αu1vu¼0.00080GeV; αdvd¼0.00025GeV: ð89Þ

The quark mass ratios and mixing parameters are deter-
mined to be

θq12 ¼ 0.22732; θq13 ¼ 0.00338;

θq23 ¼ 0.03880; δqCP ¼ 68.0952°;

mu=mc ¼ 0.001927; mc=mt ¼ 0.002726;

md=ms ¼ 0.060247; ms=mb ¼ 0.017679: ð90Þ

B. Model II with gCP: Nine free real parameters
including ReðτÞ and ImðτÞ

In this model, the representation assignments for quark
fields are the same as model I except changing the
assignments of tc and bc to 10 and 1, respectively, under
S04. The modular weights of quark fields still satisfy the
condition of Eq. (86). Consequently, the superpotential in
quark sector is given by

Wu ¼ αu1ðucDQDÞ1Yð4Þ
1 Hu þ αu2ðucDQDY

ð4Þ
2 Þ1Hu

þ βttcðQDY
ð4Þ
2 Þ10 þ γuQ3ðucDYð6Þ

2 Þ1Hu;

Wd ¼ αdðdcDQDY
ð5Þ
2̂
Þ1Hd þ βdbcðQDY

ð4Þ
2 Þ1Hd

þ γdbcQ3Y
ð6Þ
1 Hd; ð91Þ

which give rise to the following up and down quark mass
matrices:

Mu ¼

0
BB@

αu2Y
ð4Þ
2 αu1Y

ð4Þ
1 γuY

ð6Þ
4

αu1Y
ð4Þ
1 αu2Y

ð4Þ
3 γuY

ð6Þ
3

−βtY
ð4Þ
3 βtY

ð4Þ
2 0

1
CCAvu;

Md ¼

0
BB@

αdY
ð5Þ
1 0 0

0 −αdY
ð5Þ
2 0

βdY
ð4Þ
3 βdY

ð4Þ
2 γdY

ð6Þ
2

1
CCAvd: ð92Þ

The parameters αu1;d, βt;d, and γd can be taken to be real by
field redefinition, and αu1 and γu are generically real
numbers if we impose gCP symmetry on this model. We
find that the agreement between predictions and data is
optimized for the following values of input parameters:

hτi ¼ 0.4894þ 0.9423i; αu2=αu1 ¼ −2.1364;

γu=αu1 ¼ 0.2163;

βt=αu1 ¼ 814.6742; βd=αd ¼ 22.7465;

γd=αd ¼ 0.0113;

αu1vu ¼ 0.00075 GeV; αdvd ¼ 0.00028 GeV: ð93Þ
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The quark mass ratios and mixing parameters are deter-
mined to be

θq12 ¼ 0.22731; θq13 ¼ 0.00338;

θq23 ¼ 0.03876; δqCP ¼ 67.9162°;

mu=mc ¼ 0.001956; mc=mt ¼ 0.002724;

md=ms ¼ 0.060138; ms=mb ¼ 0.017783: ð94Þ

C. Model III with gCP: Nine free real parameters
including ReðτÞ and ImðτÞ

In comparison with model I, the representation assign-
ments for the right-handed up quarks and down quarks are
interchanged. We choose the modular weights of quark
fields as

kQ3
¼ kQD

þ 2 ¼ 5 − kucD ¼ 6 − ktc ¼ 6 − kdcD ¼ 6 − kbc :

ð95Þ
The superpotentials for quark masses take the following
form:

Wu ¼ αuðdcDQDY
ð3Þ
1̂0
Þ1Hu þ βutcðQDY

ð4Þ
2 Þ10Hu

þ γutcQ3Y
ð6Þ
10 Hu;

Wd ¼ αd1ðucDQDÞ1Yð4Þ
1 Hu þ αd2ðucDQDY

ð4Þ
2 Þ1Hd

þ βdbcðQDY
ð4Þ
2 Þ1 þ γdQ3ðucDYð6Þ

2 Þ1Hd: ð96Þ
Then we can straightforwardly read out the quark mass
matrices

Mu ¼

0
BB@

0 αuY
ð3Þ
1 0

αuY
ð3Þ
1 0 0

−βuY
ð4Þ
3 βuY

ð4Þ
2 γuY

ð6Þ
1

1
CCAvu;

Md ¼

0
BB@

αd2Y
ð4Þ
2 αd1Y

ð4Þ
1 γdY

ð6Þ
4

αd1Y
ð4Þ
1 αd2Y

ð4Þ
3 γdY

ð6Þ
3

βdY
ð4Þ
3 βdY

ð4Þ
2 0

1
CCAvd; ð97Þ

where αu;d1, βu;d, and γu are positive real parameters, since
their phases are unphysical, and αd2 and γd should be real

because of the invariance of the model under gCP sym-
metry. The best fit values of these input parameters
determined to be

hτi ¼ 0.4522þ 0.9262i; βu=αu ¼ 124.4933;

γu=αu ¼ 0.0475;

αd2=αd1 ¼ 3.1475; γd=αd1 ¼ −0.3056;

βd=αd1 ¼ 183.1602;

αuvu ¼ 0.00476 GeV;

αd1vd ¼ 3.37231 × 10−5 GeV: ð98Þ
Accordingly, the quark mass ratios and mixing parameters
at the best fit point are

θq12 ¼ 0.22736; θq13 ¼ 0.00333;

θq23 ¼ 0.03888; δqCP ¼ 69.2142°;

mu=mc ¼ 0.003322; mc=mt ¼ 0.002725;

md=ms ¼ 0.050560; ms=mb ¼ 0.017689: ð99Þ

D. Model IV with gCP: Nine free real parameters
including ReðτÞ and ImðτÞ

The left-handed quarks Q are embedded into a triplet 30
of S04, and the right-handed up- and down-type quark fields
are assigned to 2 ⊕ 1̂0 and 2̂ ⊕ 1, respectively, as shown in
Table VI. The modular weights of the quark fields satisfy
the condition

kQ ¼ 2 − kucD ¼ 5 − ktc ¼ 5 − kdcD ¼ 4 − kbc : ð100Þ
We can read out the superpotential for quark masses as
follows:

Wu ¼ αuðucDQYð2Þ
3 Þ1Hu þ βutcðQYð5Þ

3̂0;I
Þ1̂Hu

þ γutcðQYð5Þ
3̂0;II

Þ1̂Hu;

Wd ¼ αdðdcDQYð5Þ
3̂
Þ1Hd þ βdðdcDQYð5Þ

3̂0;I
Þ1Hd

þ γdðdcDQYð5Þ
3̂0;II

Þ1Hd þ δdbcðQYð4Þ
30 Þ1Hd; ð101Þ

which leads to the following quark mass matrices:

Mu ¼

0
BBB@

−αuY
ð2Þ
4 −αuY

ð2Þ
3 −αuY

ð2Þ
5

αuY
ð2Þ
5 αuY

ð2Þ
4 αuY

ð2Þ
3

βuY
ð5Þ
6 þ γuY

ð5Þ
9 βuY

ð5Þ
8 þ γuY

ð5Þ
11 βuY

ð5Þ
7 þ γuY

ð5Þ
10

1
CCCAvu;

Md ¼

0
BBB@

αdY
ð5Þ
4 − βdY

ð5Þ
7 − γdY

ð5Þ
10 αdY

ð5Þ
3 − βdY

ð5Þ
6 − γdY

ð5Þ
9 αdY

ð5Þ
5 − βdY

ð5Þ
8 − γdY

ð5Þ
11

αdY
ð5Þ
5 þ βdY

ð5Þ
8 þ γdY

ð5Þ
11 αdY

ð5Þ
4 þ βdY

ð5Þ
7 þ γdY

ð5Þ
10 αdY

ð5Þ
3 þ βdY

ð5Þ
6 þ γdY

ð5Þ
9

δdY
ð4Þ
7 δdY

ð4Þ
9 δdY

ð4Þ
8

1
CCCAvd: ð102Þ
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The parameters αu;d, βu, and δd can be taken to be real and
positive by field redefinitions, and the gCP symmetry
constrains γu;d and βd to be real numbers. Note that γu;d
and βd would be complex without gCP. The predictions
approach the experimental data best for the following
values of input parameters:

hτi¼−0.3382þ1.4779i; βu=αu ¼ 0.1960;

γu=αu ¼ 19.8731;

δd=αd ¼ 1.3238; βd=αd¼ 1.7610; γd=αd ¼ 0.1085;

αuvu ¼ 0.01653GeV; αdvd ¼ 0.00117GeV: ð103Þ

The quark mass ratios and mixing parameters are deter-
mined to be

θq12 ¼ 0.22747; θq13 ¼ 0.00338;

θq23 ¼ 0.03849; δqCP ¼ 70.1665°;

mu=mc ¼ 0.001570; mc=mt ¼ 0.002736;

md=ms ¼ 0.050425; ms=mb ¼ 0.018259; ð104Þ

which are compatible with experimental data at 1σ level.

E. Model V with gCP: Nine free real parameters
including ReðτÞ and ImðτÞ

Similar tomodel IV, the left-handed quarksQ transform as
30 under S04, and the right-handed up- and down-type quarks
are assigned to the direct sum of doublet and singlet 2̂ ⊕ 10

and 2 ⊕ 1̂, respectively. The modular weights satisfy
the relations kQ ¼ 3 − kucD ¼ 6 − ktc ¼ 4 − kdcD ¼ 5 − kbc .
Consequently, the superpotential for quark masses is
given by

Wu ¼ αuðucDQYð3Þ
3̂
Þ1Hu þ βuðucDQYð3Þ

3̂0
Þ1Hu

þ γutcðQYð6Þ
3;I Þ10Hu þ δutcðQYð6Þ

3;IIÞ10Hu;

Wd ¼ αdðdcDQYð4Þ
3 Þ1Hd þ βdðdcDQYð4Þ

30 Þ1Hd

þ γdbcðQYð5Þ
3̂
Þ0
1̂
Hd; ð105Þ

where αu;d and γu;d can be taken to be real and positive
without loss of generality and the couplings βu;d and δu are
real, since gCP symmetry is imposed on the model.
Subsequently, we can read out the up- and down-type quark
mass matrices

TABLE VI. Transformation properties of the quark fields under the S04 modular symmetry and the modular weight assignments. The
Higgs fields Hu;d are invariant under S04 with vanishing modular weight.

uc cc tc dc sc bc Q1 Q2 Q3

Model I S04 2 1 2̂ 10 2 1
kI 6 − kQ3

6 − kQ3
7 − kQ3

6 − kQ3
kQ3

− 2 kQ3

Model II S04 2 10 2̂ 1 2 1
kI 6 − kQ3

6 − kQ3
7 − kQ3

6 − kQ3
kQ3

− 2 kQ3

Model III S04 2̂ 10 2 1 2 1
kI 5 − kQ3

6 − kQ3
6 − kQ3

6 − kQ3
kQ3

− 2 kQ3

Model IV S04 2 1̂0 2̂ 1 30

kI 2 − kQ 5 − kQ 5 − kQ 4 − kQ kQ

Model V S04 2̂ 10 2 1̂ 30

kI 3 − kQ 6 − kQ 4 − kQ 5 − kQ kQ

Model VI S04 1̂ 1 1̂0 1̂ 1̂0 1̂ 3
kI 1 − kQ 2 − kQ 5 − kQ 1 − kQ 5 − kQ 5 − kQ kQ

Model VII S04 1 1 1̂ 1̂ 1 1 3
kI 2 − kQ 4 − kQ 5 − kQ 1 − kQ 2 − kQ 6 − kQ kQ

Model VIII S04 1̂ 1 1̂ 1̂ 1 1 3
kI 1 − kQ 4 − kQ 5 − kQ 1 − kQ 2 − kQ 6 − kQ kQ
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Mu ¼

0
BBB@

αuY
ð3Þ
3 − βuY

ð3Þ
6 αuY

ð3Þ
2 − βuY

ð3Þ
5 αuY

ð3Þ
4 − βuY

ð3Þ
7

βuY
ð3Þ
7 þ αuY

ð3Þ
4 βuY

ð3Þ
6 þ αuY

ð3Þ
3 βuY

ð3Þ
5 þ αuY

ð3Þ
2

γuY
ð6Þ
5 þ δuY

ð6Þ
8 γuY

ð6Þ
7 þ δuY

ð6Þ
10 γuY

ð6Þ
6 þ δuY

ð6Þ
9

1
CCCAvu;

Md ¼

0
BBB@

βdY
ð4Þ
8 − αdY

ð4Þ
5 βdY

ð4Þ
7 − αdY

ð4Þ
4 βdY

ð4Þ
9 − αdY

ð4Þ
6

βdY
ð4Þ
9 þ αdY

ð4Þ
6 βdY

ð4Þ
8 þ αdY

ð4Þ
5 βdY

ð4Þ
7 þ αdY

ð4Þ
4

γdY
ð5Þ
3 γdY

ð5Þ
5 γdY

ð5Þ
4

1
CCCAvd: ð106Þ

The χ2 analysis gives the best fit values of input parameters and the predictions for quark masses and mixing parameters at
the best fit point as follows:

hτi ¼ −0.4382þ 2.0445i; γu=αu ¼ 103.4796; βu=αu ¼ −0.0105;

δu=αu ¼ −51.8872; γd=αd ¼ 362.6550; βd=αd ¼ −189.0835;

αuvu ¼ 0.00450 GeV; αdvd ¼ 5.61219 × 10−6 GeV;

θq12 ¼ 0.22736; θq13 ¼ 0.00338; θq23 ¼ 0.03888; δqCP ¼ 69.1973°;

mu=mc ¼ 0.001928; mc=mt ¼ 0.002724; md=ms ¼ 0.050546; ms=mb ¼ 0.017684: ð107Þ

It is notable that the experimental data are accommodated
within 1σ.

F. Model VI without gCP: Ten free real parameters
including ReðτÞ and ImðτÞ

In this model, we assume the left-handed quarks Q
transform as triplet 3 of S04, the right-handed up quark
fields uc, cc, and tc transform as 1̂, 1, and 1̂0, and the right-
handed down quark fields dc, sc, and bc are assigned to 1̂,
1̂0, and 1̂, respectively. We take the weights to fulfill the
relations

kQ ¼ 1 − kuc ¼ 2 − kcc ¼ 5 − ktc

¼ 1 − kdc ¼ 5 − ksc ¼ 5 − kbc : ð108Þ

Thus, the modular invariant superpotentials for quark
masses read as follows:

Wu ¼ αuucðQYð1Þ
3̂0
Þ0
1̂
Hu þ βuccðQYð2Þ

3 Þ1Hu

þ γutcðQYð5Þ
3̂
Þ1̂Hu;

Wd ¼ αddcðQYð1Þ
3̂0
Þ0
1̂
Hd þ βdscðQYð5Þ

3̂
Þ1̂Hd

þ γd1bcðQYð5Þ
3̂0;I

Þ0
1̂
Hd þ γd2bcðQYð5Þ

3̂0;II
Þ0
1̂
Hd: ð109Þ

The phases of αu, βu, γu, αd, βd, and γd1 can be absorbed
into the quark fields, while the phase of γd2 cannot be
removed by field redefinition. Using the CG coefficients of
the S04 group in Appendix A, we find the up and down quark
mass matrices are given, respectively, by

Mu ¼

0
BB@

αuY
ð1Þ
1 αuY

ð1Þ
3 αuY

ð1Þ
2

βuY
ð2Þ
3 βuY

ð2Þ
5 βuY

ð2Þ
4

γuY
ð5Þ
3 γuY

ð5Þ
5 γuY

ð5Þ
4

1
CCAvu;

Md ¼

0
BB@

αdY
ð1Þ
1 αdY

ð1Þ
3 αdY

ð1Þ
2

βdY
ð5Þ
3 βdY

ð5Þ
5 βdY

ð5Þ
4

γd1Y
ð5Þ
6 þ γd2Y

ð5Þ
9 γd1Y

ð5Þ
8 þ γd2Y

ð5Þ
11 γd1Y

ð5Þ
7 þ γd2Y

ð5Þ
10

1
CCAvd: ð110Þ

We see that this model make uses of six real parameters αu;d, βu;d, and γu;d1 and one complex parameter γd2 to describe
quark masses and the CKM matrix. A good agreement between data and predictions is obtained for the following values of
input parameters:
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hτi ¼ −0.4999þ 0.8958i; βu=αu ¼ 62.2142; γu=αu ¼ 0.00104;

βd=αd ¼ 0.7378; γd1=αd ¼ 1.4946; γd2=αd ¼ −0.1958 − 0.2762i;

αuvu ¼ 0.07989 GeV; αdvd ¼ 0.00091 GeV: ð111Þ

The quark mass ratios and mixing parameters are determined to be

θq12 ¼ 0.22731; θq13 ¼ 0.00298; θq23 ¼ 0.04873; δqCP ¼ 67.1962°;

mu=mc ¼ 0.00204; mc=mt ¼ 0.00268; md=ms ¼ 0.05182; ms=mb ¼ 0.01309; ð112Þ

which are compatible with the experimental data in Eq. (85) except that θq23 is somewhat larger. Notice that the top and
bottom quark masses can be reproduced by adjusting the parameters αu and αd.

G. Model VII with gCP: Ten free real parameters including ReðτÞ and ImðτÞ
The left-handed quarksQ are assigned to triplet 3 of S04, u

c, cc, and tc transform as 1, 1, and 1̂, respectively, and under S04,
down-type quarks dc, sc, and bc transform as 1̂, 1, and 1, respectively. Note that uc and cc are distinguished by their
different modular weight, and similarly for sc and bc. We choose the weights of quark fields to fulfill kQ ¼ 2 − kuc ¼
4 − kcc ¼ 5 − ktc ¼ 1 − kdc ¼ 2 − ksc ¼ 6 − kbc . The superpotential of the quark sector is given by

Wu ¼ αuucðQYð2Þ
3 Þ1̂Hu þ βuccðQYð4Þ

3 Þ1Hu þ γu1tcðQYð5Þ
3̂0;I

Þ0
1̂
Hu þ γu2tcðQYð5Þ

3̂0;II
Þ0
1̂
Hu;

Wd ¼ αddcðQYð1Þ
3̂0
Þ0
1̂
Hd þ βdscðQYð2Þ

3 Þ1Hd þ γd1bcðQYð6Þ
3;I Þ1Hd þ γd2bcðQYð6Þ

3;IIÞ1Hd; ð113Þ

which lead to the quark mass matrices

Mu ¼

0
BBB@

αuY
ð2Þ
3 αuY

ð2Þ
5 αuY

ð2Þ
4

βuY
ð4Þ
4 βuY

ð4Þ
6 βuY

ð4Þ
5

γu1Y
ð5Þ
6 þ γu2Y

ð5Þ
9 γu1Y

ð5Þ
8 þ γu2Y

ð5Þ
11 γu1Y

ð5Þ
7 þ γu2Y

ð5Þ
10

1
CCCAvu;

Md ¼

0
BBB@

αdY
ð1Þ
1 αdY

ð1Þ
3 αdY

ð1Þ
2

βdY
ð2Þ
3 βdY

ð2Þ
5 βdY

ð2Þ
4

γd1Y
ð6Þ
5 þ γd2Y

ð6Þ
8 γd1Y

ð6Þ
7 þ γd2Y

ð6Þ
10 γd1Y

ð6Þ
6 þ γd2Y

ð6Þ
9

1
CCCAvd: ð114Þ

The parameters αu;d, βu;d, and γu1;d1 can be made real and positive by field redefinition, while γu2 and γd2 are complex. If we
impose CP as symmetry on the model, all couplings are constrained to be real, and γu2 and γd2 are either positive or
negative. The best fit values of input parameters and the predictions for quark mass ratios and CKM mixing parameters are

hτi ¼ −0.4362þ 1.8184i; βu=αu ¼ 9104.8600; γu1=αu ¼ 19.7442; γu2=αu ¼ −19.9232;

βd=αd ¼ 0.0244; γd1=αd ¼ 0.2479; γd2=αd ¼ −0.0021;

αuvu ¼ 0.00009 GeV; αdvd ¼ 0.00672 GeV;

θq12 ¼ 0.22735; θq13 ¼ 0.00337; θq23 ¼ 0.03922; δqCP ¼ 68.9352°;

mu=mc ¼ 0.001811; mc=mt ¼ 0.002714; md=ms ¼ 0.050529; ms=mb ¼ 0.017686: ð115Þ

It is remarkable that all observables are within the 1σ experimental ranges.

H. Model VIII with gCP: Ten free real parameters including ReðτÞ and ImðτÞ
This model is different from model VII in the assignment of uc which is assigned to 1̂ with weight kuc ¼ 1 − kQ. Thus,

the superpotential in the quark sector reads as
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Wu ¼ αuucðQYð1Þ
3̂0
Þ1̂Hu þ βuccðQYð4Þ

3 Þ1Hu þ γu1tcðQYð5Þ
3̂0;I

Þ0
1̂
Hu þ γu2tcðQYð5Þ

3̂0;II
Þ0
1̂
Hu;

Wd ¼ αddcðQYð1Þ
3̂0
Þ0
1̂
Hd þ βdscðQYð2Þ

3 Þ1Hd þ γd1bcðQYð6Þ
3;I Þ1Hd þ γd2bcðQYð6Þ

3;IIÞ1Hd; ð116Þ

where all the couplings are enforced to be real by the generalized CP symmetry. The resulting quark mass matrices are
different from those of Eq. (92) in the first row of Mu:

Mu ¼

0
BBB@

αuY
ð1Þ
1 αuY

ð1Þ
3 αuY

ð1Þ
2

βuY
ð4Þ
4 βuY

ð4Þ
6 βuY

ð4Þ
5

γu1Y
ð5Þ
6 þ γu2Y

ð5Þ
9 γu1Y

ð5Þ
8 þ γu2Y

ð5Þ
11 γu1Y

ð5Þ
7 þ γu2Y

ð5Þ
10

1
CCCAvu;

Md ¼

0
BBB@

αdY
ð1Þ
1 αdY

ð1Þ
3 αdY

ð1Þ
2

βdY
ð2Þ
3 βdY

ð2Þ
5 βdY

ð2Þ
4

γd1Y
ð6Þ
5 þ γd2Y

ð6Þ
8 γd1Y

ð6Þ
7 þ γd2Y

ð6Þ
10 γd1Y

ð6Þ
6 þ γd2Y

ð6Þ
9

1
CCCAvd: ð117Þ

The numerical minimization of the χ2 function gives the best fit point of the model:

hτi ¼ 0.0617þ 1.5127i; βu=αu ¼ 16.5002; γu1=αu ¼ 3919.0300; γu2=αu ¼ −1945.1100;

βd=αd ¼ 91.1983; γd1=αd ¼ 0.3027; γd2=αd ¼ −1.9970;

αuvu ¼ 0.00019 GeV; αdvd ¼ 0.00035 GeV;

θq12 ¼ 0.22737; θq13 ¼ 0.00338; θq23 ¼ 0.03889; δqCP ¼ 69.2564°;

mu=mc ¼ 0.001965; mc=mt ¼ 0.002729; md=ms ¼ 0.050363; ms=mb ¼ 0.017679; ð118Þ

which are compatible with experimental data at 1σ level as well.

VII. A COMPLETE MODEL FOR QUARK
AND LEPTON

As shown in Secs. V and VI, the charged lepton masses
and the neutrino oscillation data can be explained very well
in the S04 modular symmetry models, and the S04 modular
symmetry can also help to understand the quark mass
hierarchies and CKM mixing matrix. In this section,
we shall investigate the quark-lepton unified models which
can explain the experimental data of quarks and leptons
simultaneously for certain common value of modulus τ.
Such a kind of models at level N ¼ 3 has been studied
[18,21,33,35] in the literature. It is generally not an easy
task to construct a quark-lepton unified model. After trying
many possibilities, we find a realistic quark-lepton unified
model with 15 real free parameters. Note that 16 real
input parameters [33] or more [18,21,35] are required to
describe the masses and mixing patterns of quark and
lepton in the models based on level N ¼ 3 modular group.
Consequently, our model is the most predictive modular
quark-lepton unification model as far as we know at
present.

In the lepton sector, we assign the three generations
of left-handed lepton doublets L and right-handed neutri-
nos Nc to two triplets 3 of S04, while the right-handed
charged leptons Ec

1, E
c
2, and Ec

3 transform as 1, 1, and 1̂0,
respectively. We choose the modular weights of lepton
fields as kNc ¼ 0, kL ¼ 2, kEc

1
¼ 2, kEc

2
¼ 0, and kEc

3
¼ 1.

Then the modular invariant superpotential of the lepton
sector is given by

We ¼ αeðEc
1LY

ð4Þ
3 Þ1Hd þ βeðEc

2LY
ð2Þ
3 Þ1Hd

þ γeðEc
3LY

ð3Þ
3̂
Þ1Hd;

Wν ¼ g1ðNcLYð2Þ
2 Þ1Hu þ g2ðNcLYð2Þ

3 Þ1Hu

þ ΛðNcNcÞ1; ð119Þ

where all couplings αe, βe, γe, g1, g2, andΛ are real because
of the generalized CP invariance. We see that the charged
lepton sector is different from C4 in the values of fE1

ðYÞ,
and the neutrino sector is exactly the model S2. Then we
can read out the lepton mass matrices as follows:
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Me ¼

0
BBB@

αeY
ð4Þ
4 αeY

ð4Þ
6 αeY

ð4Þ
5

βeY
ð2Þ
3 βeY

ð2Þ
5 βeY

ð2Þ
4

γeY
ð3Þ
2 γeY

ð3Þ
4 γeY

ð3Þ
3

1
CCCAvd; MN ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CAΛ;

MD ¼

0
BBB@

0 g1Y
ð2Þ
1 − g2Y

ð2Þ
5 g1Y

ð2Þ
2 þ g2Y

ð2Þ
4

g1Y
ð2Þ
1 þ g2Y

ð2Þ
5 g1Y

ð2Þ
2 −g2Y

ð2Þ
3

g1Y
ð2Þ
2 − g2Y

ð2Þ
4 g2Y

ð2Þ
3 g1Y

ð2Þ
1

1
CCCAvu: ð120Þ

In the quark sector, the left-handed quarks Q are assigned to triplet 3 of S04, u
c, cc, and tc transform as 1, 1, and 1̂0,

respectively, under S04, down-type quarks dc, sc, and bc transform as 10, 1̂, and 1̂0, respectively. Note that uc and cc are
distinguished by their different modular weights. We choose the weights of quark fields to fulfill the conditions
kQ ¼ 4 − kuc ¼ 6 − kcc ¼ 3 − ktc ¼ 4 − kdc ¼ 5 − ksc ¼ 5 − kbc . The superpotential of the quark sector is given by

Wu ¼ αuðucQYð4Þ
3 Þ1Hu þ βuðccQYð6Þ

3;I Þ1Hu þ γuðccQYð6Þ
3;IIÞ1Hu þ δuðtcQYð3Þ

3̂
Þ1Hu;

Wd ¼ αdðdcQYð4Þ
30 Þ1Hd þ βdðscQYð5Þ

3̂0;I
Þ1Hd þ γdðscQYð5Þ

3̂0;II
Þ1Hd þ δdðbcQYð5Þ

3̂
Þ1Hd; ð121Þ

which lead to the quark mass matrices

Mu ¼

0
BB@

αuY
ð4Þ
4 αuY

ð4Þ
6 αuY

ð4Þ
5

βuY
ð6Þ
5 þ γuY

ð6Þ
8 βuY

ð6Þ
7 þ γuY

ð6Þ
10 βuY

ð6Þ
6 þ γuY

ð6Þ
9

δuY
ð3Þ
2 δuY

ð3Þ
4 δuY

ð3Þ
3

1
CCAvu;

Md ¼

0
BB@

αdY
ð4Þ
7 αdY

ð4Þ
9 αdY

ð4Þ
8

βdY
ð5Þ
6 þ γdY

ð5Þ
9 βdY

ð5Þ
8 þ γdY

ð5Þ
11 βdY

ð5Þ
7 þ γdY

ð5Þ
10

δdY
ð5Þ
3 δdY

ð5Þ
5 δdY

ð5Þ
4

1
CCAvd: ð122Þ

The parameters αu;d, βu;d, and δu;d can be made real and
positive by field redefinition, while γu and γd are complex.
If we impose CP as symmetry on this model, all couplings
are constrained to be real, and γu and γd are either positive
or negative.
It is notable that the model has fewer free parameters

than the number of observable quantities including quark
and lepton masses and mixing parameters. We perform a
comprehensive numerical scan over the parameter space,
and we find that good agreement with experimental data
can be achieved for the following value of τ common to
quark and lepton sectors:

hτi ¼ −0.2123þ 1.5201i; ð123Þ

which is mainly determined by the quark masses and CKM
mixing parameters. Given this value of τ, the charged
lepton masses can be reproduced by adjusting αe, βe, and
γe; only two real parameters g21v

2
u=Λ and g2=g1 describe the

nine neutrino observables: three neutrino masses, three
neutrino mixing angles, and three CP-violating phases. The
best fit values of the free parameters of both lepton and
quark sectors are found to be

βu=αu ¼ 325.6502; γu=αu ¼ 2427.3101; δu=αu ¼ 219.3019;

αuvu ¼ 2.7758 × 10−5 GeV; βd=αd ¼ 466.6990; γd=αd ¼ −234.0473;

δd=αd ¼ 2.3388; αdvd ¼ 1.72111 × 10−5 GeV; βe=αe ¼ 0.0187;

γe=αe ¼ 0.1466; g2=g1 ¼ 0.6834; αevd ¼ 16.8880 MeV; g21v
2
u=Λ ¼ 0.3043 meV: ð124Þ

The masses and mixing parameters of quarks and leptons are predicted to be
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θq12 ¼ 0.22752; θq13 ¼ 0.003379; θq23 ¼ 0.038886; δqCP ¼ 75.9958°;

mu=mc ¼ 0.001929; mc=mt ¼ 0.002725; md=ms ¼ 0.050345; ms=mb ¼ 0.017726;

sin2θl12 ¼ 0.34981; sin2θl13 ¼ 0.02193; sin2θl23 ¼ 0.56393;

δlCP ¼ 266.1824°; α21 ¼ 1.1482π; α31 ¼ 0.1522π;

m1 ¼ 3.5269 meV; m2 ¼ 9.2919 meV; m3 ¼ 50.2404 meV;X
i

mi ¼ 63.0592 meV; jmeej ¼ 2.5480 meV: ð125Þ

We see that the solar mixing angle θl12 and δqCP are
within the 3σ experimental region, δlCP are within the 2σ
experimental region, and all other observables fall in the 1σ
ranges. The sum of neutrino masses is determined to be
63.0592 meV; this is compatible with the latest boundP

i mi < 120 meV at 95% confidence level from
Planck [83].
Moreover, we find another quite similar model which

can be obtained from the above model by taking the down
quark modular weight kdc ¼ 6 − kQ. Thus, the superpo-
tential of the down quark sector reads as

Wd ¼ αdðdcQYð6Þ
30 Þ1Hd þ βdðscQYð5Þ

3̂0;I
Þ1Hd

þ γdðscQYð5Þ
3̂0;II

Þ1Hd þ δdðbcQYð5Þ
3̂
Þ1Hd: ð126Þ

All the other superpotentials for lepton and quark masses
are not changed. After numerically scanning overall the
parameter space, we find the numerical results are quite
similar to those of the above model given in Eq. (125);
consequently, we will not show the corresponding num-
bers here.

VIII. CONCLUSION

The modular invariance is a promising framework to
describe the masses and mixing of both quarks and leptons
[10]. The homogeneous finite modular group Γ0

N provides a
new opportunity for understanding the flavor structure of
quarks and leptons based on modular invariance. Γ0

2 is
identical to Γ2 ≅ S3, Γ0

N is the double covering of the
inhomogeneous finite modular group ΓN forN > 2, and ΓN
is isomorphic to the quotient of Γ0

N over its center f1; Rg,
i.e., ΓN ≅ Γ0

N=f1; Rg. It is notable that texture zeros of
fermion mass matrices can be naturally obtained from Γ0

N ,
and Γ0

3 ≅ T 0 has been studied in Refs. [23,44]. In the
present work, we have considered the modular group
Γ0
4 ≡ S04 in the setup of modular invariance approach.
The weight 1 modular forms of level 4 are constructed in

terms of the Dedekind eta function, and they can be
arranged into a triplet Yð1Þ

3̂0
ðτÞ ¼ ðY1ðτÞ; Y2ðτÞ; Y3ðτÞÞT

which transforms as 3̂0 of S04. The higher weight modular
forms up to weight 6 are built from the tensor products of

Yð1Þ
3̂0
ðτÞ, and they are homogeneous polynomials of Y1;2;3.

The odd weight modular forms can be decomposed into the
hatted representations 1̂, 1̂0, 2̂, 3̂, and 3̂0 of S04, while the
even weight modular forms can be organized into the other
representations 1, 10, 2, 3, and 30 in common with S4. The
results are summarized in Table I. Solving the consistency
condition, we find the generalized CP transformation
corresponding to τ → −τ� is Xr ¼ ρrðSÞ, which is a
combination of the modular symmetry transformation S
and the canonical CP transformation. All couplings in the
Lagrangian would be real if generalized CP symmetry is
imposed.
We perform a systematical analysis of S04 modular

models for lepton masses and mixing with and without
generalized CP. We assume that the left-handed leptons
transform as a triplet of S04 and the right-handed charged
leptons are assigned to singlets under S04, and we consider
both the case where neutrino masses are described by the
Weinberg operator and the case where neutrino masses
arise from the type-I seesaw mechanism. The charged
lepton mass matrix can take only four possible forms in
Table II, and the forms of the neutrino mass matrices are
summarized in Table III if the weights of the involved
modular forms are less than 4. The charged lepton masses
me,mμ, andmτ are in a one-to-one correspondence with the
parameters α, β, and γ which can be taken to be real without
losing generality. We look for phenomenologically viable
models with a minimal amount of free parameters. We find
15 predictive lepton models which can describe the
neutrino masses, mixing angles, and CP-violation phases
in terms of five real parameters jg2=g1j, arg ðg2=g1Þ, ReðτÞ,
ImðτÞ, and the overall scale g21v

2
u=Λ. If generalized CP

symmetry is imposed, the models have more predictive
power and the phase arg ðg2=g1Þ is restricted to be 0 or π.
Thus, only four real input parameters g2=g1, ReðτÞ, ImðτÞ,
and g21v

2
u=Λ are left in the neutrino sector, and we find

seven out of the 15 models can fit the charged lepton
masses and neutrino oscillation data very well, as shown in
Table V. The different observables are correlated with each
other, as displayed in Figs. 3–8. A remarkable feature of
these models is that the light neutrino masses can be very
tiny, while the neutrino masses are typically quasidegen-
erate in previous models based on the ΓN modular group.
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We have extended the S04 modular symmetry to the quark
sector, and different possible assignments (triplet, the direct
sum of a doublet and a singlet, or the direct sum of three
singlets) of the quark fields under S04 are considered. For the
first time, we consider the generalized CP symmetry when
constructing modular invariant models for quark masses
and mixing. Because of the rich structure of the S04 modular
group, we find many models can accommodate the
observed patterns of quark masses and CKM mixing
matrix. For illustration, we select eight benchmark models
in which all the best fit values of observables fall in the 1σ
experimental ranges. It is remarkable that the hierarchical
quark masses, quark mixing angles, and CP-violation
phase can be described very well by models with only
nine real parameters including real and imaginary parts of
the modulus τ. Note that so far few predictive models use
ten [33] or more free parameters [18,21,35] to describe
quark masses and the CKM mixing matrix; consequently,
our benchmark models for quarks can be considered as the
minimal ones.
Finally, we present a quark-lepton unified model; this

model predicting 22 observables is characterized by 15 real
parameters: 13 real couplings αe;u;d, βe;u;d, γe;u;d, δu;d,
g2=g1, g21v

2
u=Λ, and the complex modulus τ, and it is the

most predictive modular invariant model for quark-lepton
unification we know. The masses and mixing of quarks and
leptons can be explained simultaneously for a common
value of the complex modulus τ. The value of τ is mainly
fixed by the precisely measured quark masses and mixing,
and then the entire neutrino sector including the three
neutrino masses as well as the lepton mixing matrix
depends only on two real parameters g2=g1 and g21v

2
u=Λ.

We conclude that S04 modular symmetry is a promising
framework to understand the flavor structure of quarks and
leptons, and generalized CP can help to construct minimal
and predictive models with modular symmetry. However,
the bottom-up approach of modular invariance is less
constrained so that a large number of phenomenologically
viable models with few parameters could be constructed, as
our present work shows. This drawback could potentially
be overcome by embedding this approach in a more
fundamental theory; for instance, both modular weights
and representation assignments of the matter fields are
severely restricted in the eclectic flavor scheme [64,65],
and, thus, model building with finite modular flavor
symmetries becomes much more restrictive.
Note added.—Recently, a paper [87] dealing with the

same topic appeared on the arXiv. We use a different
representation basis of S04, the Clebsch-Gordan coefficients
in our basis is simpler, and this basis is convenient to
classify the S04 modular models. Modular forms of level
N ¼ 4 up to weight 6 are constructed in this work, and
higher weight modular forms until weight 10 are given in
Ref. [87]. The authors of Ref. [87] present one Weinberg
operator model and one type-I seesaw model, and the

right-handed charged leptons Ec are assigned to a triplet of
S04 in Ref. [87]. We perform a systematical classification of
modular S04 symmetry models for leptons with and without
generalizedCP symmetry, and Ec are assumed to transform
as singlets under S04 in this work. We also apply the S04
modular symmetry to the quark sector and construct a
quark-lepton unified model. Our work significantly extends
the model construction of Ref. [87].
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APPENDIX A: GROUP THEORY OF S04
The double covering group of S4 has 48 elements, and it

can be generated by three generators S, T, and R satisfying
the multiplication rules:

S2¼R; T4¼ðSTÞ3¼ 1; R2¼ 1; RT¼TR: ðA1Þ

After we input these multiplication rules in GAP [88], its
group ID can be determined [48, 30]. Notice that S4 is not a
subgroup of S04; it is isomorphic to the quotient group of S04
over ZR

2 , i.e., S4 ≅ S04=Z
R
2 , where Z

R
2 ¼ f1; Rg is a normal

subgroup of S04. The homogeneous finite modular group S04
is isomorphic to A4 ⋊ Z4. Therefore, it can be expressed in
terms of another set of generators s, t, and r obeying the
relations

s2 ¼ ðstÞ3 ¼ t3 ¼ 1; r4 ¼ 1;

rsr−1 ¼ s; rtr−1 ¼ ðstÞ2; ðA2Þ

where s and t generate an A4 subgroup, r generates a Z4

subgroup, and the last two relations define the semidirect
product “⋊.” The generators s, t, and r are related to S, T,
and R by

s ¼ T2R; t ¼ ðSTÞ2; r ¼ T;

S ¼ t2r3; T ¼ r; R ¼ r2s: ðA3Þ

All the elements of S04 group can be divided into ten
conjugacy classes:
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1C1 ¼ f1g;
1C2 ¼ fRg ¼ ð1C1Þ · R;
3C2 ¼ fT2; ST2S3; ðST2Þ2g;
3C0

2 ¼ fT2R; ST2S; ðST2Þ2Rg ¼ ð3C2Þ · R;
8C3 ¼ fST; TS; ðSTÞ2; ðTSÞ2; TS3T2; T2ST3;

T2S3T; T3ST2g;
6C4 ¼ fS; TST3; T2ST2; T3ST; TST2S3; ST2S3Tg;
6C0

4 ¼ fT; ST2; T2S; T3S2; TST; STS3g;
6C00

4 ¼ fSR; TST3R; T2ST2R; T3STR; TST2S; ST2S3TRg
¼ ð6C4Þ · R;

6C4
000 ¼ fTR; ST2R; T2SR; T3; TSTR; STSg ¼ ð6C0

4Þ · R;
8C6 ¼ fSTR; TSR; ðSTÞ2R; ðTSÞ2R; TS3T2R; T2ST3R;

T2S3TR; T3ST2Rg ¼ ð8C3Þ · R; ðA4Þ

where kCn denotes a conjugacy class with k elements of
the order of n. Note that one-half of these conjugacy
classes can be written as the product of the other half with
R. There are four one-dimensional irreducible represen-
tations 1, 10, 1̂, and 1̂0, two two-dimensional irreducible
representations 2 and 2̂, and four three-dimensional
irreducible representations 3, 30, 3̂, and 3̂0. We have
summarized the explicit matrix representations in
Table VII. In the representations 1, 10, 2, 3, and 30, the
generator R ¼ 1 is the identity matrix, and the represen-
tation matrices of S and T coincide with those of S4 [29];
consequently, S04 cannot be distinguished from S4 in these
representations, since they are represented by the same set
of matrices. In the representations 1̂, 1̂0, 2̂, 3̂, and 3̂0, the
generator R ¼ −1. The character table of S04 can be
obtained directly as shown in Table VIII. Moreover, the
Kronecker products between all irreducible representa-
tions are given as follows:

TABLE VII. The representation matrices of the generators S, T, and R in the irreducible representations of S04 in our working basis,
where ω ¼ e2πi=3.

S T R

1; 10 �1 �1 1
1̂; 1̂0 �i ∓i −1
2 


0 1

1 0

� 

0 ω2

ω 0

� 

1 0

0 1

�
2̂ i



0 1

1 0

�
−i


0 ω2

ω 0

�
−


1 0

0 1

�
3; 30

� 1

3

 
1 −2 −2
−2 −2 1

−2 1 −2

!
� 1

3

 
1 −2ω2 −2ω
−2 −2ω2 ω
−2 ω2 −2ω

!  
1 0 0

0 1 0

0 0 1

!

3̂; 3̂0
� i
3

 
1 −2 −2
−2 −2 1

−2 1 −2

!
∓ i

3

 
1 −2ω2 −2ω
−2 −2ω2 ω
−2 ω2 −2ω

!
−

 
1 0 0

0 1 0

0 0 1

!

TABLE VIII. Character table of S04; the representative element of each conjugacy class is given in the second row.

Classes 1C1 1C2 3C2 3C0
2 8C3 6C4 6C0

4 6C00
4 6C000

4 8C6

G 1 R T2 T2R ST S T SR TR STR
1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 −1 −1 −1 −1 1
1̂ 1 −1 −1 1 1 i −i −i i −1
1̂0 1 −1 −1 1 1 −i i i −i −1
2 2 2 2 2 −1 0 0 0 0 −1
2̂ 2 −2 −2 2 −1 0 0 0 0 1
3 3 3 −1 −1 0 −1 1 −1 1 0
30 3 3 −1 −1 0 1 −1 1 −1 0
3̂ 3 −3 1 −1 0 −i −i i i 0

3̂0 3 −3 1 −1 0 i i −i −i 0
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1 ⊗ 1 ¼ 10 ⊗ 10 ¼ 1̂ ⊗ 1̂0 ¼ 1; 1 ⊗ 1̂ ¼ 10 ⊗ 1̂0 ¼ 1̂;

1 ⊗ 10 ¼ 1̂ ⊗ 1̂ ¼ 1̂0 ⊗ 1̂0 ¼ 10; 1 ⊗ 1̂0 ¼ 10 ⊗ 1̂ ¼ 1̂0;

1 ⊗ 2 ¼ 10 ⊗ 2 ¼ 1̂ ⊗ 2̂ ¼ 1̂0 ⊗ 2̂ ¼ 2; 1 ⊗ 2̂ ¼ 10 ⊗ 2̂ ¼ 1̂ ⊗ 2 ¼ 1̂0 ⊗ 2 ¼ 2̂;

1 ⊗ 3 ¼ 10 ⊗ 30 ¼ 1̂ ⊗ 3̂0 ¼ 1̂0 ⊗ 3̂ ¼ 3; 1 ⊗ 3̂ ¼ 10 ⊗ 3̂0 ¼ 1̂ ⊗ 3 ¼ 1̂0 ⊗ 30 ¼ 3̂;

1 ⊗ 30 ¼ 10 ⊗ 3 ¼ 1̂ ⊗ 3̂ ¼ 1̂0 ⊗ 3̂0 ¼ 30; 1 ⊗ 3̂0 ¼ 10 ⊗ 3̂ ¼ 1̂ ⊗ 30 ¼ 1̂0 ⊗ 3 ¼ 3̂0;

2 ⊗ 2 ¼ 2̂ ⊗ 2̂ ¼ 1 ⊕ 10 ⊕ 2; 2 ⊗ 2̂ ¼ 1̂ ⊕ 1̂0 ⊕ 2̂;

2 ⊗ 3 ¼ 2 ⊗ 30 ¼ 2̂ ⊗ 3̂ ¼ 2̂ ⊗ 3̂0 ¼ 3 ⊕ 30; 2 ⊗ 3̂ ¼ 2 ⊗ 3̂0 ¼ 2̂ ⊗ 3 ¼ 2̂ ⊗ 30 ¼ 3̂ ⊕ 3̂0;

3 ⊗ 3 ¼ 30 ⊗ 30 ¼ 3̂ ⊗ 3̂0 ¼ 1 ⊕ 2 ⊕ 3 ⊕ 30; 3 ⊗ 3̂ ¼ 30 ⊗ 3̂0 ¼ 1̂ ⊕ 2̂ ⊕ 3̂ ⊕ 3̂0;

3 ⊗ 30 ¼ 3̂ ⊗ 3̂ ¼ 3̂0 ⊗ 3̂0 ¼ 10 ⊕ 2 ⊕ 3 ⊕ 30; 3 ⊗ 3̂0 ¼ 30 ⊗ 3̂ ¼ 1̂0 ⊕ 2̂ ⊕ 3̂ ⊕ 3̂0: ðA5Þ

Corresponding to the above direct product rule, we give the Clebsch-Gordan (CG) coefficients of S04 one by
one in our working basis. All CG coefficients can be expressed in the form of α ⊗ β; we use αi ðβiÞ to denote

the component of the left (right) basis vector αðβÞ. For direct products involving singlet 1
ðˆ Þð0Þ

, their CG coefficients are as
follows:

1
ðˆ Þð0Þ

⊗ 1
ðˆ Þð0Þ

→ 1
ðˆ Þð0Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

p ¼ even

1 ⊗ 1 → 1

1 ⊗ 10 → 10

1 ⊗ 1̂ → 1̂

1 ⊗ 1̂0 → 1̂0

10 ⊗ 10 → 1

10 ⊗ 1̂ → 1̂0

10 ⊗ 1̂0 → 1̂

1̂ ⊗ 1̂ → 10

1̂ ⊗ 1̂0 → 1

1̂0 ⊗ 1̂0 → 10

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

1
ðˆ Þ0

∼ αβ;

1
ðˆ Þð0Þ

⊗ 2
ðˆ Þ

→ 2
ðˆ Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

p ¼ even

1 ⊗ 2 → 2

1̂0 ⊗ 2̂ → 2

1 ⊗ 2̂ → 2̂

1̂ ⊗ 2 → 2̂

p ¼ odd

10 ⊗ 2 → 2

1̂ ⊗ 2̂ → 2

10 ⊗ 2̂ → 2̂

1̂0 ⊗ 2 → 2̂

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

2
ðˆ Þ

∼ α

� ð−1Þpβ1
β2

�
;
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1
ðˆ Þð0Þ

⊗ 3
ðˆ Þð0Þ

→ 3
ðˆ Þð0Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

p ¼ even

1 ⊗ 3 → 3

10 ⊗ 30 → 3

1̂ ⊗ 3̂0 → 3

1̂0 ⊗ 3̂ → 3

1 ⊗ 30 → 30

10 ⊗ 3 → 30

1̂ ⊗ 3̂ → 30

1̂0 ⊗ 3̂0 → 30

1 ⊗ 3̂ → 3̂

10 ⊗ 3̂0 → 3̂

1̂ ⊗ 3 → 3̂

1̂0 ⊗ 30 → 3̂

1 ⊗ 3̂0 → 3̂0

10 ⊗ 3̂ → 3̂0

1̂ ⊗ 30 → 3̂0

1̂0 ⊗ 3 → 3̂0

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

3
ðˆ Þð0Þ

∼ α

0
B@

β1

β2

β3

1
CA;

where we have introduced the notation p to distinguish between different products; it makes the results more compact. The

CG coefficients for the direct product involving doublet 2
ðˆ Þ

are as follows:

2
ðˆ Þ

⊗ 2
ðˆ Þ

→ 1
ðˆ Þ

⊕ 1
ðˆ Þ0

⊕ 2
ðˆ Þ

8<
:p ¼ even

2 ⊗ 2 → 1 ⊕ 10 ⊕ 2

2 ⊗ 2̂ → 1̂ ⊕ 1̂0 ⊕ 2̂

p ¼ odd 2̂ ⊗ 2̂ → 1 ⊕ 10 ⊕ 2

9=
;

1
ðˆ Þ

∼ α1β2 þ ð−1Þpα2β1
1
ðˆ Þ0

∼ α1β2 − ð−1Þpα2β1
2
ðˆ Þ

∼
�

α2β2

ð−1Þpα1β1

�
;

2
ðˆ Þ

⊗ 3
ðˆ Þð0Þ

→ 3
ðˆ Þ

⊕ 3
ðˆ Þ0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

p ¼ even

2 ⊗ 3 → 3 ⊕ 30

2̂ ⊗ 3̂0 → 3 ⊕ 30

2 ⊗ 3̂ → 3̂ ⊕ 3̂0

2̂ ⊗ 3 → 3̂ ⊕ 3̂0

p ¼ odd

2 ⊗ 30 → 3 ⊕ 30

2̂ ⊗ 3̂ → 3 ⊕ 30

2 ⊗ 3̂0 → 3̂ ⊕ 3̂0

2̂ ⊗ 30 → 3̂ ⊕ 3̂0

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

3
ðˆ Þ

∼

0
B@

α2β3 þ ð−1Þpα1β2
α2β1 þ ð−1Þpα1β3
α2β2 þ ð−1Þpα1β1

1
CA

3
ðˆ Þ0

∼

0
B@

α2β3 − ð−1Þpα1β2
α2β1 − ð−1Þpα1β3
α2β2 − ð−1Þpα1β1

1
CA:
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The last case involves the direct product of 3
ðˆ Þð0Þ

⊗ 3
ðˆ Þð0Þ

; the CG coefficients are given as follows:

3
ðˆÞð0Þ ⊗ 3

ðˆÞð0Þ
→ 1

ðˆÞð0Þ ⊕ 2
ðˆÞ ⊕ 3

ðˆÞ ⊕ 3
ðˆÞ0

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

p¼ even

3⊗ 3→ 1⊕ 2⊕ 3⊕ 30

30 ⊗ 30 → 1⊕ 2⊕ 3⊕ 30

3̂⊗ 3̂0 → 1⊕ 2⊕ 3⊕ 30

3⊗ 3̂→ 1̂⊕ 2̂⊕ 3̂⊕ 3̂0

30 ⊗ 3̂0 → 1̂⊕ 2̂⊕ 3̂⊕ 3̂0

p¼ odd

3⊗ 30 → 10 ⊕ 2⊕ 3⊕ 30

3̂⊗ 3̂→ 10 ⊕ 2⊕ 3⊕ 30

3̂0 ⊗ 3̂0 → 10 ⊕ 2⊕ 3⊕ 30

3⊗ 3̂0 → 1̂0 ⊕ 2̂⊕ 3̂⊕ 3̂0

30 ⊗ 3̂→ 1̂0 ⊕ 2̂⊕ 3̂⊕ 3̂0

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

1
ðˆÞð0Þ ∼ α1β1 þ α2β3þ α3β2

2
ðˆÞ∼
� ð−1Þpðα1β3 þ α2β2þ α3β1Þ

α1β2 þ α2β1þ α3β3

�

3
ðˆÞ∼

0
B@
α1β1 − α2β3þð−1Þpðα3β2 − α1β1Þ
α3β3 − α1β2þð−1Þpðα2β1 − α3β3Þ
α2β2 − α3β1þð−1Þpðα1β3 − α2β2Þ

1
CA

3
ðˆ Þ0

∼

0
B@
α1β1 − α2β3 − ð−1Þpðα3β2 − α1β1Þ
α3β3 − α1β2 − ð−1Þpðα2β1 − α3β3Þ
α2β2 − α3β1 − ð−1Þpðα1β3 − α2β2Þ

1
CA:

APPENDIX B: HIGHER WEIGHT MODULAR FORMS OF LEVEL N = 4

In this Appendix, we present the explicit forms of the modular forms for higher weight k ¼ 4, 5, 6.
The weight 4 modular space has dimension 2 × 4þ 1 ¼ 9; they arrange into the irreducible presentations 1, 2, 3 and 30

of S04:

Yð4Þ
1 ¼ ðYð3Þ

3̂
Yð1Þ
3̂0
Þ
1
¼ 4ðY4

1 − 2Y1ðY3
2 þ Y3

3Þ þ 3Y2
2Y

2
3Þ;

Yð4Þ
2 ¼ ðYð3Þ

3̂
Yð1Þ
3̂0
Þ
2
¼
�−2Y4

3 þ 4Y3
1Y3 þ 4Y3

2Y3 − 6Y2
1Y

2
2

−2Y4
2 þ 4Y3

1Y2 þ 4Y2Y3
3 − 6Y2

1Y
2
3

�
;

Yð4Þ
3 ¼ ðYð3Þ

3̂
Yð1Þ
3̂0
Þ
3
¼

0
B@

6Y1ð−Y3
2 þ Y3

3Þ
6Y1Y3ðY2

2 − Y1Y3Þ þ 2Y2ð−2Y3
1 þ Y3

2 þ Y3
3Þ

6Y1Y2ðY1Y2 − Y2
3Þ − 2Y3ð−2Y3

1 þ Y3
2 þ Y3

3Þ

1
CA;

Yð4Þ
30 ¼ ðYð3Þ

3̂
Yð1Þ
3̂0
Þ
30
¼

0
B@

2ð4Y4
1 − 6Y2

2Y
2
3 þ Y1ðY3

2 þ Y3
3ÞÞ

2ðY4
2 − 2Y3

1Y2 þ 7Y2Y3
3 þ 3Y2

1Y
2
3 − 9Y1Y2

2Y3Þ
2ðY4

3 − 2Y3
1Y3 þ 7Y3

2Y3 þ 3Y2
1Y

2
2 − 9Y1Y2Y2

3Þ

1
CA: ðB1Þ

The weight 5 modular forms of level 4 decompose as 2̂ ⊕ 3̂ ⊕ 3̂0 ⊕ 3̂0 under S04, and they are given by

Yð5Þ
2̂

¼ ðYð4Þ
30 Y

ð1Þ
3̂0
Þ
2̂
¼
�
2ðY5

2 þ 2Y4
1Y3 þ 2Y1Y4

3 þ Y2
2Y

3
3 þ Y3

1Y
2
2 − Y1Y3

2Y3 − 6Y2
1Y2Y2

3Þ
2ðY5

3 þ 2Y4
1Y2 þ 2Y1Y4

2 þ Y3
1Y

2
3 þ Y3

2Y
2
3 − Y1Y2Y3

3 − 6Y2
1Y

2
2Y3Þ

�
;

Yð5Þ
3̂

¼ ðYð4Þ
3 Yð1Þ

3̂0
Þ
3̂
¼

0
B@

18Y2
1ð−Y3

2 þ Y3
3Þ

4Y4
1Y2 þ 4Y1ðY4

2 − 5Y2Y3
3Þ þ 14Y3

1Y
2
3 − 4Y2

3ðY3
2 þ Y3

3Þ þ 6Y2
1Y

2
2Y3

−4Y4
1Y3 − 4Y1ðY4

3 − 5Y3
2Y3Þ − 14Y3

1Y
2
2 þ 4Y2

2ðY3
2 þ Y3

3Þ − 6Y2
1Y2Y2

3

1
CA;

Yð5Þ
3̂0;I

¼ ðYð4Þ
2 Yð1Þ

3̂0
Þ
3̂0
¼

0
B@

8Y3
1Y2Y3 − 6Y2

1ðY3
2 þ Y3

3Þ þ 2Y2Y3ðY3
2 þ Y3

3Þ
4Y4

1Y2 − 2Y1Y4
2 − 6Y2

1Y
2
2Y3 − 2Y3

1Y
2
3 þ 4Y3

2Y
2
3 þ 4Y1Y2Y3

3 − 2Y5
3

−2ðY3
1Y

2
2 þ Y5

2 − 2Y4
1Y3 þ 3Y2

1Y2Y2
3 − 2Y2

2Y
3
3 þ Y1ð−2Y3

2Y3 þ Y4
3ÞÞ

1
CA;

Yð5Þ
3̂0;II

¼ ðYð4Þ
1 Yð1Þ

3̂0
Þ
3̂0
¼

0
B@

4Y1ðY4
1 þ 3Y2

2Y
2
3 − 2Y1ðY3

2 þ Y3
3ÞÞ

4Y2ðY4
1 þ 3Y2

2Y
2
3 − 2Y1ðY3

2 þ Y3
3ÞÞ

4Y3ðY4
1 þ 3Y2

2Y
2
3 − 2Y1ðY3

2 þ Y3
3ÞÞ

1
CA; ðB2Þ
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where Yð5Þ
3̂0;I

and Yð5Þ
3̂0;II

denote two weight 5 modular forms transforming as triplet 3̂0 of S04, and they can also taken to be any

two linearly independent combinations of Yð5Þ
3̂0;I

and Yð5Þ
3̂0;II

. Finally there are 13 independent weight 6 modular forms of level

5, and they can be arranged into the following irreducible representations of S04:

Yð6Þ
10 ¼ ðYð5Þ

3̂0;I
Yð1Þ
3̂0
Þ
10

¼ −2ðY6
2 þ Y6

3 − 8Y4
1Y2Y3 þ 6Y2

1Y
2
2Y

2
3 − 4Y3

2Y
3
3 þ 4Y3

1ðY3
2 þ Y3

3Þ − 2Y1Y2Y3ðY3
2 þ Y3

3ÞÞ;
Yð6Þ
1 ¼ ðYð5Þ

3̂
Yð1Þ
3̂0
Þ
1
¼ 4ðY3

2 − Y3
3Þð−8Y3

1 þ Y3
2 þ Y3

3 þ 6Y1Y2Y3Þ;

Yð6Þ
2 ¼ ðYð5Þ

3̂0;II
Yð1Þ
3̂0
Þ
2
¼
�−4ðY2

2 þ 2Y1Y3ÞðY4
1 þ 3Y2

2Y
2
3 − 2Y1ðY3

2 þ Y3
3ÞÞ

4ðY2
3 þ 2Y1Y2ÞðY4

1 þ 3Y2
2Y

2
3 − 2Y1ðY3

2 þ Y3
3ÞÞ

�
;

Yð6Þ
3;I ¼ ðYð5Þ

3̂0;I
Yð1Þ
3̂0
Þ
3

¼

0
B@

2ðY6
2 þ Y6

3 þ 4Y4
1Y2Y3 þ 6Y2

1Y
2
2Y

2
3 − 4Y3

2Y
3
3 − 5Y3

1ðY3
2 þ Y3

3Þ þ Y1Y2Y3ðY3
2 þ Y3

3ÞÞ
−2ð2Y5

1Y2 − 5Y4
1Y

2
3 þ 3Y3

1Y
2
2Y3 þ 3Y2

2Y3ðY3
2 − Y3

3Þ þ Y2
1ð5Y2Y3

3 − 4Y4
2Þ þ Y1ðY5

3 − 2Y3
2Y

2
3ÞÞ

−2ð2Y5
1Y3 − 5Y4

1Y
2
2 þ 3Y3

1Y2Y2
3 þ 3Y2Y2

3ðY3
3 − Y3

2Þ þ Y1ðY5
2 − 2Y2

2Y
3
3Þ þ Y2

1ð5Y3
2Y3 − 4Y4

3ÞÞ

1
CA;

Yð6Þ
3;II ¼ ðYð5Þ

3̂0;II
Yð1Þ
3̂0
Þ
3
¼

0
B@

8ðY2
1 − Y2Y3ÞðY4

1 − 2Y1ðY3
2 þ Y3

3Þ þ 3Y2
2Y

2
3Þ

8ðY2
3 − Y1Y2ÞðY4

1 − 2Y1ðY3
2 þ Y3

3Þ þ 3Y2
2Y

2
3Þ

8ðY2
2 − Y1Y3ÞðY4

1 − 2Y1ðY3
2 þ Y3

3Þ þ 3Y2
2Y

2
3Þ

1
CA;

Yð6Þ
30 ¼ ðYð5Þ

3̂0;I
Yð1Þ
3̂0
Þ
30

¼

0
B@

−2ðY3
2 − Y3

3ÞðY3
1 þ Y3

2 þ Y3
3 − 3Y1Y2Y3Þ

2ð2Y5
1Y2 − 7Y3

1Y
2
2Y3 − Y4

1Y
2
3 − Y2

2Y3ðY3
2 þ Y3

3Þ þ Y2
1ð2Y4

2 þ 5Y2Y3
3Þ þ Y1ð2Y3

2Y
2
3 − Y5

3ÞÞ
2ðY4

1Y
2
2 þ 7Y3

1Y2Y2
3 − 2Y5

1Y3 þ Y2Y2
3ðY3

2 þ Y3
3Þ − Y2

1ð5Y3
2Y3 þ 2Y4

3Þ þ Y1ðY5
2 − 2Y2

2Y
3
3ÞÞ

1
CA: ðB3Þ

We note that the results of even weight modular forms obtained here coincide with those of our previous work [29] up to
some overall constants. Specifically, the following relations are fulfilled:

Yð2Þ
2 ¼ 3

2
ð3iþ

ffiffiffi
3

p
ÞỸð2Þ

2 ; Yð2Þ
3 ¼ ð3 − 3i

ffiffiffi
3

p
ÞỸð2Þ

3 ; Yð4Þ
1 ¼ −27e3πi=4ðiþ

ffiffiffi
3

p
ÞỸð4Þ

1 ;

Yð4Þ
2 ¼ 27e3πi=4ðiþ

ffiffiffi
3

p
ÞỸð4Þ

2 ; Yð4Þ
3 ¼ 18

ffiffiffi
3

p
eπi=4Ỹð4Þ

3 ; Yð4Þ
30 ¼ 18

ffiffiffi
3

p
eπi=4Ỹð4Þ

30 ;

Yð6Þ
1 ¼ −162

ffiffiffi
6

p
ð1þ iÞỸð6Þ

1 ; Yð6Þ
10 ¼ −81

ffiffiffi
6

p
ð1þ iÞỸð6Þ

10 ; Yð6Þ
2 ¼ 81

ffiffiffi
6

p
ð1þ iÞỸð6Þ

2 ;

Yð6Þ
3;I ¼ −162e7πi=12Ỹð6Þ

3;II ; Yð6Þ
3;II ¼ −324e7πi=12Ỹð6Þ

3;I ; Yð6Þ
30 ¼ −162e7πi=12Ỹð6Þ

30 ; ðB4Þ

where the modular forms in [29] are denoted with a symbol “ ˜ .”

APPENDIX C: LEPTON MODELS FOR TRIPLET
AND DOUBLET PLUS SINGLET ASSIGNMENT
OF RIGHT-HANDED CHARGED LEPTONS

In order to accommodate the hierarchical charged lepton
masses, the right-handed charged leptons are usually
assumed to transform as singlets under modular flavor
symmetry, and this type of assignment in the setup of S04
modular symmetry has been studied in Sec. V. However,
the singlet assignment is not unique; they can also be

assigned to a triplet or the direct sum of a doublet and a
singlet under S04. If the three right-handed charged leptons
are embedded into a triplet of S04, the most general super-
potential for the charged lepton masses is of the form

We ¼ αðEcLfEðYÞÞ1Hd; ðC1Þ

where the triplet assignment for L is preserved, fEðYÞ is a
modular multiplet, and all possible modular invariant terms
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TABLE IX. The possible forms of the charged lepton mass matrix for the case that both L and Ec transform as triplets of S04, where
integral weight and level 4 modular forms of weight less than 3 are considered.

Cases Rep ðρL; ρEcÞ Weights kL þ kEc Charged lepton mass matrix

C5

8>><
>>:

ð3; 3̂Þ
ð30; 3̂0Þ
ð3̂; 3Þ
ð3̂0; 30Þ

1
Me ¼ α

 
0 −Y3 Y2

Y3 0 −Y1

−Y2 Y1 0

!
vd

C6

8>><
>>:

ð3; 3̂0Þ
ð30; 3̂Þ
ð3̂0; 3Þ
ð3̂; 30Þ

1
Me ¼ α

 
2Y1 −Y3 −Y2

−Y3 2Y2 −Y1

−Y2 −Y1 2Y3

!
vd

C7

8>><
>>:

ð3; 3Þ
ð30; 30Þ
ð3̂; 3̂0Þ
ð3̂0; 3̂Þ

2

Me ¼

0
B@ 0 α1Y

ð2Þ
1 − α2Y

ð2Þ
5 α1Y

ð2Þ
2 þ α2Y

ð2Þ
4

α1Y
ð2Þ
1 þ α2Y

ð2Þ
5 α1Y

ð2Þ
2 −α2Y

ð2Þ
3

α1Y
ð2Þ
2 − α2Y

ð2Þ
4 α2Y

ð2Þ
3 α1Y

ð2Þ
1

1
CAvd

C8

8>><
>>:

ð3̂; 3̂Þ
ð3̂0; 3̂0Þ
ð3; 30Þ
ð30; 3Þ

2

Me ¼

0
B@ 2α2Y

ð2Þ
3 α1Y

ð2Þ
1 − α2Y

ð2Þ
5 −α1Y

ð2Þ
2 − α2Y

ð2Þ
4

α1Y
ð2Þ
1 − α2Y

ð2Þ
5 −α1Y

ð2Þ
2 þ 2α2Y

ð2Þ
4 −α2Y

ð2Þ
3

−α1Y
ð2Þ
2 − α2Y

ð2Þ
4 −α2Y

ð2Þ
3 α1Y

ð2Þ
1 þ 2α2Y

ð2Þ
5

1
CAvd

C9

8>><
>>:

ð3; 3̂Þ
ð30; 3̂0Þ
ð3̂; 3Þ
ð3̂0; 30Þ

3

Me ¼

0
BB@

2α2Y
ð3Þ
2 þ α1Y

ð3Þ
1 −α3Y

ð3Þ
7 − α2Y

ð3Þ
4 α3Y

ð3Þ
6 − α2Y

ð3Þ
3

α3Y
ð3Þ
7 − α2Y

ð3Þ
4 2α2Y

ð3Þ
3 −α3Y

ð3Þ
5 − α2Y

ð3Þ
2 þ α1Y

ð3Þ
1

−α3Y
ð3Þ
6 − α2Y

ð3Þ
3 α3Y

ð3Þ
5 − α2Y

ð3Þ
2 þ α1Y

ð3Þ
1 2α2Y

ð3Þ
4

1
CCAvd

C10

8>><
>>:

ð3; 3̂0Þ
ð30; 3̂Þ
ð3̂0; 3Þ
ð3̂; 30Þ

3

Me ¼

0
B@ 2α1Y

ð3Þ
5 −α1Y

ð3Þ
7 − α2Y

ð3Þ
4 −α1Y

ð3Þ
6 þ α2Y

ð3Þ
3

−α1Y
ð3Þ
7 þ α2Y

ð3Þ
4 2α1Y

ð3Þ
6 −α1Y

ð3Þ
5 − α2Y

ð3Þ
2

−α1Y
ð3Þ
6 − α2Y

ð3Þ
3 −α1Y

ð3Þ
5 þ α2Y

ð3Þ
2 2α1Y

ð3Þ
7

1
CAvd

TABLE X. The possible forms of the charged lepton mass matrix for the doublet plus singlet assignment of the right-handed charged
leptons, where T and D defined in Eq. (C3) denote the first two rows and the last row of the charged lepton mass matrix, respectively.
Hence, the charged lepton mass matrix can take 24 possible forms denoted as T1 −D1,…, T6 −D4.

Cases Rep ðρL; ρEc
D
Þ Weights kL þ kEc

D
First two rows of charged lepton mass matrix

T1
n ð3̂; 2Þ
ð3; 2̂Þ

1
T ¼ α


Y2 Y1 Y3

Y3 Y2 Y1

�
T2

n ð3̂0; 2Þ
ð30; 2̂Þ

1
T ¼ α


−Y2 −Y1 −Y3

Y3 Y2 Y1

�
T3

n ð3; 2Þ
ð3̂0; 2̂Þ

2
T ¼ α

�
Yð2Þ
4 Yð2Þ

3 Yð2Þ
5

Yð2Þ
5 Yð2Þ

4 Yð2Þ
3

�
T4

n ð30; 2Þ
ð3̂; 2̂Þ

2
T ¼ α

�
−Yð2Þ

4 −Yð2Þ
3 −Yð2Þ

5

Yð2Þ
5 Yð2Þ

4 Yð2Þ
3

�
T5

n ð3̂; 2Þ
ð3; 2̂Þ

3
T ¼

�
α2Y

ð3Þ
6 − α1Y

ð3Þ
3 α2Y

ð3Þ
5 − α1Y

ð3Þ
2 α2Y

ð3Þ
7 − α1Y

ð3Þ
4

α2Y
ð3Þ
7 þ α1Y

ð3Þ
4 α2Y

ð3Þ
6 þ α1Y

ð3Þ
3 α2Y

ð3Þ
5 þ α1Y

ð3Þ
2

�
T6

n ð3̂0; 2Þ
ð30; 2̂Þ

3
T ¼

�
−α2Y

ð3Þ
6 þ α1Y

ð3Þ
3 −α2Y

ð3Þ
5 þ α1Y

ð3Þ
2 −α2Y

ð3Þ
7 þ α1Y

ð3Þ
4

α2Y
ð3Þ
7 þ α1Y

ð3Þ
4 α2Y

ð3Þ
6 þ α1Y

ð3Þ
3 α2Y

ð3Þ
5 þ α1Y

ð3Þ
2

�

Cases Rep ðρL; ρEc
3
Þ Weights kL þ kEc

3
Third row of charged lepton mass matrix

D1

8>><
>>:

ð3; 1̂Þ
ð30; 1̂0Þ
ð3̂; 1Þ
ð3̂0; 10Þ

1 D ¼ βðY1 Y3 Y2 Þ

(Table continued)

LIU, YAO, and DING PHYS. REV. D 103, 056013 (2021)

056013-38



should be included. In the same way as we have done in
Sec. V, the possible charged lepton models can be
straightforwardly searched for. For illustration, we consider
the modular forms with weight less than four, and higher
weight modular forms can be studied analogously. The
predictions for the charged lepton mass matrix are sum-
marized in Table IX.
If the right-handed charged leptons are assigned to the

direct sum of a doublet and a singlet of S04, the most general
superpotential for the charged lepton masses is given by

We ¼ αðEc
DLfED

ðYÞÞ1Hd þ αðEc
3LfE3

ðYÞÞ1Hd; ðC2Þ

where Ec
D ¼ ðEc

1; E
c
2ÞT and the modular multiplets fED

ðYÞ
and fE3

ðYÞ have to be triplets of S04. As a consequence, the

charged lepton mass matrices can be divided into two
blocks as follows:

Me ¼

0
B@

T

� � � � � � � � �
D

1
CAvd; ðC3Þ

where T and D are 2 × 3 and 1 × 3 submatrices, respec-
tively. Likewise, we focus on modular forms of weight less
than four; the charged lepton mass matrix can take 24
possible forms denoted as Ti −Dj with i ¼ 1;…; 6 and
j ¼ 1;…; 4, as shown in Table X.
Combining the possible new constructions C5;6;7;8;9;10

and Ti −Dj in the charged lepton sector with the 18
possible neutrino models summarized in Table III, we can

TABLE X. (Continued)

Cases Rep ðρL; ρEc
3
Þ Weights kL þ kEc

3
Third row of charged lepton mass matrix

D2

8>><
>>:

ð3; 1Þ
ð30; 10Þ
ð3̂; 1̂0Þ
ð3̂0; 1̂Þ

2 D ¼ βðYð2Þ
3 Yð2Þ

5 Yð2Þ
4

Þ

D3

8>><
>>:

ð3; 1̂0Þ
ð30; 1̂Þ
ð3̂; 10Þ
ð3̂0; 1Þ

3 D ¼ βðYð3Þ
2 Yð3Þ

4 Yð3Þ
3

Þ

D4

8>><
>>:

ð3; 1̂Þ
ð30; 1̂0Þ
ð3̂; 1Þ
ð3̂0; 10Þ

3 D ¼ βðYð3Þ
5 Yð3Þ

7 Yð3Þ
6

Þ

TABLE XI. Fit results of the models in which the right-handed charged leptons are assigned to transform as a triplet or the direct sum
of a doublet and a singlet of S04, and the generalized CP symmetry is imposed on the models. Notice in the CP dual point τ → −τ�, the
signs of Dirac and Majorana CP phases are reversed, while the predictions for lepton mixing angles and neutrino masses are unchanged.

Best fit values of the input parameters for NO

Models with gCP Rehτi Imhτi α2=α1 α3=α1ðγ=αÞ g2=g1 (Λ2=Λ1) α1vd=MeV g2
1
v2u
Λ =meV χ2min

C9 − S5 0.1018 1.0158 0.4996 −1.3198 −0.0117 10.3363 0.3496 5.9620
C9 − S14 0.0001 1.2710 0.5007 −1.6978 −2.6304 12.1858 0.0414 10.6475
T5 −D3 − S2 0.0262 1.6776 −1.1567 30.7289 −1.1794 0.9848 0.4933 12.2994
T5 −D3 − S5 −0.1996 0.9969 −1.0008 0.1076 −0.0066 13.3618 0.3712 5.6448
T5 −D4 − S16 0.2728 1.0610 1.0111 34.3734 0.3230 0.9356 12.0795 1.7592

Predictions for mixing parameters and neutrino masses at best fit point

Models with gCP sin2 θ12 sin2 θ13 sin2 θ23 δlCP=π α21=π α31=π m1=meV m2=meV m3=meV jmeej=meV

C9 − S5 0.3108 0.02236 0.5046 1.6383 0.3533 1.2565 12.2470 14.9629 51.7726 12.1087
C9 − S14 0.3322 0.02266 0.4972 0.9997 0.9997 1.9997 19.3821 21.2030 53.8872 6.9868
T5 −D3 − S2 0.3099 0.02246 0.4789 1.4599 1.8344 0.8841 51.3018 52.0171 71.8306 50.5241
T5 −D3 − S5 0.3105 0.02239 0.5060 1.4595 1.9142 0.9431 14.6563 16.9914 52.3797 16.0717
T5 −D4 − S16 0.3039 0.02180 0.5637 1.8261 0.6232 0.6580 11.8968 14.6777 51.0478 6.6853
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obtain totally 540 lepton models. The transformation
properties of matter fields under S04 and their modular
weights can be straightforwardly read out. We numerically
scan the parameter space of each model to estimate whether
the measured values of lepton masses and mixing angles
can be accommodated. The generalized CP symmetry is
included to make the model more predictive; all coupling
constants are enforced to be real. In the following, we

present five typical models compatible with the current
experimental data. These models contain only seven real
free parameters including ReðτÞ and ImðτÞ at low energy;
the best fit values of the input parameters and the
corresponding predictions for neutrino masses and mixing
parameters are listed in Table XI. Note that the correct
charged lepton masses can be reproduced, and, conse-
quently, they are not shown in this table.
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