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We make a detailed study on the typical production channel of double charmoniums, eþe− → J=ψ þ ηc,
at the center-of-mass collision energy

ffiffiffi
s

p ¼ 10.58 GeV. The key component of the process is the form
factor FVPðq2Þ, which has been calculated within the QCD light-cone sum rules (LCSR). To improve the
accuracy of the derived LCSR, we keep the J=ψ light-cone distribution amplitude up to twist-4 accuracy.
Total cross sections for eþe− → J=ψ þ ηc at three typical factorization scales are σjμs ¼ 22.53þ3.46

−3.49 fb,

σjμk ¼ 21.98þ3.35
−3.38 fb, and σjμ0 ¼ 21.74þ3.29

−3.33 fb, respectively. The factorization scale dependence is small,
and those predictions are consistent with the BABAR and Belle measurements within errors.

DOI: 10.1103/PhysRevD.103.056012

I. INTRODUCTION

Double charmonium production at the B-factories has
attracted large attention of experimentalists and theorists
for a long time. At the beginning of this century, total
cross section of eþe− → J=ψ þ ηc at the center-of-mass
collision energy

ffiffiffi
s

p ¼ 10.58 GeV was firstly reported by
the Belle Collaboration, σðeþe− → J=ψ þ ηcÞ × B≥4 ¼
33.0þ7.0−6.0 � 9.0 fb with B≥4 being the branching ratio of
ηc into four or more charged tracks [1], which was update
to σðeþe− → J=ψ þ ηcÞ × B≥2 ¼ 25.6� 2.8� 3.4 fb [2].
Lately, the BABAR Collaboration issued their measured
value σðeþe− → J=ψ þ ηcÞ × B≥2 ¼ 17.6� 2.8þ1.5

−2.1 fb [3].
Those measurements have severe discrepancy with the
leading-order predictions based on the nonrelativistic
QCD (NRQCD) factorization theory, which are within
the range of 2.3–5.5 fb [4–6]. By including large and
positive next-to-leading-order (NLO) contributions [7],
a larger total cross section σ ¼ 18.9 fb by choosing
the renormalization scale around 2–3 GeV has been

obtained, which is improved as σ ¼ 17.6þ8.1
−6.7 fb [8] by

further including relativistic corrections. A recent scale-
invariant NRQCD prediction has been given in Ref. [9] by
applying the principle of maximum conformality (PMC)
[10–13], which gives σ ¼ 20.35þ3.5

−3.8 fb, where the uncer-
tainties are squared averages of the errors due to uncertain-
ties from the charm-quark mass and the quarkonium wave
function at the origin. Thus, it could be treated as another
successful application of NRQCD.
The total cross section of eþe− → J=ψ þ ηc has also been

studied by using the light-cone formalism [14–17]. Within
the light-cone formalism, the amplitude of the process can be
factorized as the perturbatively calculable short-distance
part and the nonperturbative light-cone distribution ampli-
tudes (LCDAs), which result in σ ¼ 14.4þ11.2

−9.8 fb [18]. The
electromagnetic form factor FVPðq2Þ dominates the light-
cone formalism, which can be calculated by using the
QCD light-cone sum rules (LCSRs). In Ref. [19], after
applying the operator production expansion (OPE) near
the light cone and taking the ηc leading-twist LCDA into
account, the authors obtained a large factorization scale–
dependent total cross section. By choosing the factorization
scale as μs ¼ 5.00 GeV, the total cross section is
σjμs ¼ 25.96� 0.55 fb; and by setting the factorization as
μk ¼ 3.46 GeV, the total cross section changes to
σjμk ¼ 13.08� 0.32 fb. A physical observable should be
independent to the choice of factorization scale, and in the
present paper, we shall adopt the LCSR approach to
reanalyze the process and its factorization scale dependence.
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The LCSR prediction should be independent to any
choice of the correlator, an example for the QCD sum rules
prediction of the B-meson constant fB under various
choices of the correlator has been given in Ref. [20]. It
is helpful to show whether other choices of correlator can
also explain the data. As a new attempt, in the present
paper, we shall adopt different correlator from Ref. [19] to
do the LCSR calculation, in which the J=ψ LCDAs other
than the ηc LCDAs shall be introduced. To improve the
accuracy, we shall keep the J=ψ LCDAs up to twist-4
accuracy, i.e., the resultant form factor FVPðq2Þwill contain
ϕλ
2;J=ψðxÞ, ϕλ

3;J=ψðxÞ, ϕλ
4;J=ψ ðxÞ, ψ⊥

4;J=ψ ðxÞ with λ ¼ ðk;⊥Þ,
which correspond to longitudinal and transverse distribu-
tions, respectively.
The paper is organized as follows. In Sec. II, we present

the calculation technology for dealing with the form factor
FVPðq2Þ up to twist-4 accuracy within the LCSR approach.
Our choices of the J=ψ LCDAs shall also be given here. In
Sec. III, the phenomenological results and discussions are
presented. Section IV is reserved for a summary.

II. THEORETICAL FRAMEWORK

A. Cross section for e+ + e − → J=ψ + ηc
In this subsection, we give a brief review on how to

calculate the cross section of the process eþðp1Þ þ
e−ðp2Þ → J=ψðp3Þ þ ηcðp4Þ, which can be written as [21]

σ ¼ 1

4E1E2vrel

Z
d3p⃗3d3p⃗4

ð2πÞ32E3ð2πÞ32E4

ð2πÞ4

× δ4ðp1 þ p2 − p3 − p4ÞjM̄j2; ð1Þ

where pi ¼ ðEi; p⃗iÞ stands for the four-momentum of the
initial or final particle, and the relative velocity between
positron and electron, vrel ¼ jp⃗1=E1 − p⃗2=E2j. jM̄j2 is the
squared absolute value of the matrix element, where the
color states and spin projections of the initial and final
particles have been summed up and those of the initial
particles have been averaged. The matrix element M can
be written as

M ¼ i
Z

d4x

× hVPjTfQcJcμðxÞAμðxÞ; ēð0Þγνeð0ÞAνð0Þgjeþe−i:
ð2Þ

Hereafter, to simplify the notation, we set V ¼ J=ψ and
P ¼ ηc. The c-quark electromagnetic current JcμðxÞ ¼
c̄ðxÞγμcðxÞ. Then, we obtain

jM̄j2 ¼ 2Q2
cjFVPðq2Þj2

ffiffiffiffiffiffiffiffi
2jpjp
4s

½1þ cos2 θ�; ð3Þ

where θ is the scattering angle, Qc ¼ 2=3 is the charge of
c-quark, s ¼ −q2 ¼ ðp1 þ p2Þ2 or ðp3 þ p4Þ2, jpj is the
magnitude of the three-momentum of one of the final-state
mesons in the center-of-mass frame.
The form factor FVPðq2Þ is defined through the follow-

ing matrix element [15]:

hJ=ψðp3; λÞ; ηcðp4ÞjJVμ j0i ¼ εμναβϵ̃
�ðλÞνpα

3p
β
4FVPðq2Þ; ð4Þ

where ϵν is the polarization vector of J=ψ . Neglecting the
spin-flitting effects, we have mηc ¼ mJ=ψ , and the cross
section becomes

σ ¼ πα2Q2
c

6

�
1 −

4m2
J=ψ

s

�3=2

jFVPðq2Þj2: ð5Þ

B. The form factor FVPðq2Þ within the QCD LCSR

To derive the form factor FVPðq2Þwithin the QCD LCSR
approach, we start with the following two-point correlation
function (correlator):

Πμνðp;qÞ¼ i
Z

d4xeiq·xhVðp;λÞjTfJVμ ðxÞ;JAν ð0Þgj0i; ð6Þ

where q and p are four-momentum of the virtual photon
and J=ψ . The current JAν ðxÞ ¼ c̄ðxÞγνγ5cðxÞ is the c-quark
axial-vector current.
On the one hand, we deal with the hadronic representa-

tion of the correlator. It can be calculated by inserting a
complete set of the intermediate hadronic states into the
correlator, e.g.,

Πμνðp; qÞ ¼
hVðp; λÞjJVμ ð0ÞjPðp − qÞihPðp − qÞjJPν ð0Þj0i

m2
P − ðp − qÞ2

þ 1

π

Z
∞

s0

ds
ImΠμν

s − ðp − qÞ2 ; ð7Þ

where ϵν is the polarization vector of J=ψ and s0 is the
continuum threshold parameter, whose value could be set
near the squared mass of the lowest vector charmonium
state. The dispersion integration in Eq. (7) contains the
contributions from the higher resonances and the con-
tinuum states. The matrix elements hVðp; λÞjJVμ ð0ÞjPðp −
qÞi and hPðp − qÞjJAν ð0Þj0i are defined as

hVðp; λÞjJVμ ð0ÞjPðp − qÞi ¼ εμναβϵ̃
�ðλÞνqαpβFVPðq2Þ; ð8Þ

h0jJAν ð0ÞjPðp − qÞi ¼ ifPðp − qÞν; ð9Þ

where fP is the ηc decay constant. Inserting Eqs. (8) and (9)
into Eq. (7), we obtain
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ΠHad
μν ðp; qÞ ¼ εμναβϵ̃

�ðλÞαpβ m
2
PfPFVPðq2Þ

m2
P − ðp − qÞ2

þ 1

π

Z
∞

s0

ds
Fμνðq2Þ

s − ðp − qÞ2 : ð10Þ

On the other hand, the correlator in the large spacelike
region, i.e., ðpþ qÞ2 −m2

c ≪ 0 with q2 ∼Oð1 GeVÞ ≪
m2

c for the momentum transfer, corresponds to the T
product of quark currents near small light-cone distance
x2 → 0, which can be treated by OPE with the coefficients
being pQCD calculable. For such purpose, we contract the
two c-quark fields and write down a free c-quark propa-
gator with gluon field Scðx; 0Þ ¼ h0jciαðxÞc̄jβð0Þj0i as
follows [22,23]:

h0jciαðxÞc̄jβð0Þj0i

¼ −i
Z

d4k
ð2πÞ4 e

−ik·x
�
δij

=kþmc

m2
c − k2

þ gs

Z
1

0

dvGμνðvxÞ
�
λ

2

�
ij
�

=kþmc

2ðm2
c − k2Þ2 σμν

þ 1

m2
c − k2

vxμγν

��
αβ

: ð11Þ

Substituting Eq. (11) into the correlator, one needs to deal
with the matrix elements of the nonlocal operators between
vector meson and vacuum state, i.e.,

hVðp; λÞjq̄1ðxÞσμνq2ð0Þj0i ¼ if⊥V
Z

1

0

duϵ̃iup·x
�
ðϵ̃�ðλÞμ pν − ϵ̃�ðλÞν pμÞ

�
ϕ⊥
2;VðuÞ þ

m2
Vx

2

4
ϕ⊥
4;VðuÞ

�

þ ðpμxν − pνxμÞ
ϵ̃�ðλÞ · x
ðp · xÞ2m

2
V

�
ϕk
3;VðuÞ −

1

2
ϕ⊥
2;VðuÞ −

1

2
ψ⊥
4;VðuÞ

�

þ 1

2
ðϵ̃�ðλÞμ xν − ϵ̃�ðλÞν xμÞ

m2
V

p · x
½ψ⊥

4;VðuÞ − ϕ⊥
2;VðuÞ�

�
; ð12Þ

hVðp; λÞjq̄1ðxÞγμq2ð0Þj0i ¼ mVf
k
V

Z
1

0

dueiup·x
�
ϵ̃�ðλÞμ ϕ⊥

3;VðuÞ þ
ϵ̃�ðλÞ · x
p · x

pμ½ϕk
2;VðuÞ þ ϕ⊥

3;VðuÞ�

þ ϵ̃�ðλÞ · x
ðp · xÞ pμ

m2
Vx

2

4
ϕk
4;VðuÞ −

1

2
xμ

ϵ̃�ðλÞ · x
ðp · xÞ2m

2
V

× ½ψk
4;VðuÞ þ ϕk

2;VðuÞ − 2ϕ⊥
3;VðuÞ�

�
; ð13Þ

and

hVðp; λÞjq̄1ðxÞiγμgGαβðvxÞq2ð0Þj0i ¼ pμðϵ̃�ðλÞ⊥α pβ − ϵ̃�ðλÞ⊥β pαÞfkVmVΦ
k
3;Vðv; p · xÞ

þ ðpαg⊥μβ − pβg⊥μαÞ
ϵ̃�ðλÞ · x
p · x

fkVm
3
VΦ

k
4;Vðv; p · xÞ

þ pμðpαxβ − pβxαÞ
ϵ̃�ðλÞ · x
p · x

fkVm
3
VΨ

k
4;Vðv; p · xÞ þ…: ð14Þ

The J=ψ LCDAs ϕk;⊥
2;V ðuÞ, ϕk;⊥

3;V ðuÞ, and ϕk;⊥
4;V ðuÞ=ψ⊥

4;VðuÞ
stand for the two-particles twist-2, twist-3, and twist-4

ones, respectively; and the J=ψ LCDAs Φk
3;Vðv; p · xÞ and

Φk
4;Vðv; p · xÞ=Ψk

4;Vðv; p · xÞ stand for the three-particles
twist-3 and twist-4 ones, respectively.
Inserting the above LCDAs into the correlator (6), and

completing the integration over x and k, we can derive the
OPE representation of the correlator. By equating both

phenomenological and theoretical sides of the correlator
and employing the usual Borel transform

BM2Πðq2Þ ¼ lim −q2 ;n→∞
−q2=n¼M2

ð−q2Þnþ1

n!

�
d
dq2

�
n
Πðq2Þ; ð15Þ

the LCSR for the form factors FVPðq2Þ can be obtained,
which reads
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FVPðq2Þ ¼
mV

m2
PfP

�Z
1

0

dueðm2
P−sðuÞÞ=M2

�
mcmVf⊥V

�
1

um2
V
Θðcðu; s0ÞÞϕ⊥

2;VðuÞ −
m2

c

u3M4
˜̃Θðcðu; s0ÞÞϕ⊥

4;VðuÞ

−
2

u2M2
Θ̃ðcðu; s0ÞÞILðuÞ −

1

uM2
Θ̃ðcðu; s0ÞÞH3ðuÞ

�
þ fkV

×

�
Θðcðu; s0ÞÞϕ⊥

3;VðuÞ þ
1

u
Θðcðu; s0ÞÞAðuÞ−m2

V

�
m2

c

u3M4
˜̃Θðcðu; s0ÞÞ þ

1

u2M2
Θ̃ðcðu; s0ÞÞ

�
BðuÞ

�

þ fkV

Z
Dαi

Z
dveðm2

P−sðXÞÞ=M2

�
m2

Vð2vþ 1Þ 1

XM2
Θ̃ðcðX; s0ÞÞ þ ð4vþ 1Þðm2

V −m2
P þ q2Þ 1

4X2M2
Θ̃ðcðX; s0ÞÞ

�

×Φk
3;VðαÞ

�
; ð16Þ

where αi ¼ ðα1; α2; α3Þ, sðXÞ ¼ ½m2
c − X̄ðq2 − Xm2

VÞ�=X
with X ¼ α1 þ vα3 and X̄ ¼ ð1 − XÞ. The integration over
x can be done by transforming the xμ in the nominator to
i∂=∂ðupμÞ, or equivalently to −i∂=∂qμ, and make trans-
formation

1

p · x
ϕðuÞ → −i

Z
u

0

dvϕðvÞ≡ −iΦðuÞ: ð17Þ

The simplified distribution functions ILðuÞ, H3ðuÞ, AðuÞ,
and BðuÞ are defined as

ILðuÞ ¼
Z

u

0

dv
Z

v

0

dw

�
ϕk
3;VðwÞ−

1

2
ϕ⊥
2;VðwÞ−

1

2
ψ⊥
4;VðwÞ

�
;

H3ðuÞ ¼
Z

u

0

dv½ψ⊥
4;VðvÞ−ϕ⊥

2;VðvÞ�;

AðuÞ ¼
Z

u

0

dv½ϕk
2;VðuÞ þϕ⊥

3;VðuÞ�;

BðuÞ ¼
Z

u

0

dvϕk
4;VðuÞ: ð18Þ

The Θðcðu; s0ÞÞ with cðu; s0Þ ¼ us0 −m2
b þ ūq2 − uūm2

V

is the conventional step function; Θ̃½cðu; s0Þ� and
˜̃Θ½cðu; s0Þ� take the following form:

Z
1

0

du
u2M2

e−sðuÞ=M2Θ̃ðcðu; s0ÞÞfðuÞ

¼
Z

1

u0

du
u2M2

e−sðuÞ=M2

fðuÞ þ δðcðu0; s0ÞÞ; ð19Þ

Z
1

0

du
2u3M4

e−sðuÞ=M2 ˜̃Θðcðu; s0ÞÞfðuÞ

¼
Z

1

u0

du
2u3M4

e−sðuÞ=M2

fðuÞ þ Δðcðu0; s0ÞÞ; ð20Þ

where

δðcðu; s0ÞÞ ¼ e−s0=M
2 fðu0Þ

C0
;

Δðcðu; s0ÞÞ ¼ e−s0=M
2

�
1

2u0M2

fðu0Þ
C0

−
u20
2C0

d
du

�
fðuÞ
uC

�				
u¼u0

�
;

C0¼m2
bþu20m

2
V −q2 and u0 is the solution of cðu0; s0Þ ¼ 0

with 0 ≤ u0 ≤ 1 [24]. Here we do not present the surface
terms involving the three-particle LCDAs, since we have
found numerically that their contributions to the form factor
are quite small and can be safely neglected.

C. The J=ψ LCDAs

The important components for the form factor FVPðq2Þ
are the gauge-independent and process-independent
LCDAs, which can be derived from the wave function
by integrating over the transverse components. For the J=ψ
LCDAs, we start from the following Brodsky-Huang-
Lepage [25] J=ψ longitudinal/transverse twist-2 wave
function:

ψλ
2;J;ψ ðx;k⊥Þ ¼ χJ=ψðk⊥Þψλ;R

2;J;ψðx;k⊥Þ; ð21Þ

where k⊥ stands for the transverse momentum, χJ=ψðk⊥Þ is
the spin-space wave function which can be taken as the
form χJ=ψ ðk⊥Þ ¼ m̂c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ m̂2

c

p
. The m̂c ¼ 1.8 GeV is

the constituent charm-quark mass [19]. The spatial wave
function ψλ;R

2;J;ψðx;k⊥Þ can be written as

ψλ;R
2;J;ψðx;k⊥Þ ¼ Aλ

J=ψ exp

�
−

1

8βλ2J=ψ

k2⊥ þ m̂2
c

xx̄

�
; ð22Þ

where x̄ ¼ 1 − x, Aλ
J=ψ is normalization constant, and βλJ=ψ

is the harmonic parameter that dominantly determines the
wave function transverse distributions. The LCDA can be
obtained by integrating over the transverse momentum of
the wave function, i.e.,
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ϕλ
2;J=ψðx; μÞ ¼

2
ffiffiffi
6

p

fλJ=ψ

Z
jk⊥j2≤μ20

d2k⊥
16π3

ψλ
2;J;ψ ðx;k⊥Þ; ð23Þ

where μ0 ¼ m̂c ¼ 1.8 GeV [19]. Then, we obtain

ϕλ
2;J=ψðx; μÞ ¼

ffiffiffi
3

p
Aλ
J=ψm̂cβ

λ
J=ψ

2π3=2fλJ=ψ

ffiffiffiffiffi
xx̄

p

×

(
Erf

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

c þ μ2

8μ2xx̄

s #
− Erf

" ffiffiffiffiffiffiffiffiffiffiffiffi
m̂2

c

8μ8xx̄

s #)
;

ð24Þ

where λ ¼ ⊥; k and the error function ErfðxÞ ¼
2
R
x
0 e

−t2dt=
ffiffiffi
π

p
. For the nonleading twist-3 wave function,

we take the heavy quarkonium the light-front 1S-Coulomb
form [15]

ψCoulomb
3;J=ψ ∼

�
k2⊥ þ ð1 − 4xx̄Þm̂2

c

4xx̄
þ q2B

�
−2
; ð25Þ

where qB is the Bohr momentum. After integrating with the
transverse momentum k⊥, the fully expression can be
written as

ϕλ
3;J=ψðx; v2Þ ¼ ciðv2Þϕλ;Asy:

3;J=ψ ðxÞ
�

xx̄
1 − 4xx̄ð1 − v2Þ

�
1−v2

;

ð26Þ

where the mean heavy quark velocity v ¼ qB=m̂c ≪ 1,
and we set v2 ≃ 0.30 [26] to do the numerical analysis.
The twist-3 LCDAs are normalized to 1, i.e.,R
1
0 ϕλ

3;J=ψðx; v2Þ ¼ 1. Finally, the twist-3 LCDAs takes
the following form:

ϕk
3;J=ψ ðxÞ ¼ 10.94ξ2

�
xx̄

1 − 2.8xx̄

�
0.70

;

ϕ⊥
3;J=ψ ðxÞ ¼ 1.67ð1þ ξ2Þ

�
xx̄

1 − 2.8xx̄

�
0.70

; ð27Þ

where ξ ¼ 2x − 1. The twist-3 LCDAs ϕλ
3;J=ψðxÞ can also

be derived from the twist-2 LCDAs ϕλ
2;J=ψðxÞ by using the

Wandzura-Wilczek approximation [27,28]. However, we
observe that the contribution of LCDAs from the end point
region x ∼ 0, 1 cannot be effectively suppressed, leading to
a unwanted large cross section. Thus, we adopt the above
light-front 1S-Coulomb form for the twist-3 wave function
which is usually taken in the literature to deal with the
double charmonium production.
Because the terms involving the twist-4 LCDAs are quite

small in comparison to the twist-2 and twist-3 terms, so the
uncertainties from the twist-4 LCDAs themselves could be
negligible; thus, we shall employ the twist-4 LCDAs

ϕλ
4;J=ψðxÞ and ψ⊥

4;J=ψðxÞ without charm-quark mass effect
that have been suggested by Ball and Braun [29] to do the
numerical calculation.

III. NUMERICAL ANALYSIS

A. Input parameters and the J=ψ LCDAs

To do the numerical calculation, we neglect the spin-
flipping effect for the charmoniums and set the mass of ηc
or J=ψ to be the same, mηc ¼ mJ=ψ ¼ 3.097 GeV [21]. As

for the J=ψ decay constant fkJ=ψ , we extract it from its
leptonic decay width ΓðJ=ψ → eþe−Þ by using the follow-
ing relation [30]:

fk2J=ψ ¼ 3mJ=ψ

4πα2cJ=ψ
ΓðJ=ψ → eþe−Þ; ð28Þ

where α ¼ 1=137 and cJ=ψ ¼ 4=9. Taking the PDG aver-
aged value, ΓðJ=ψ → eþe−Þ ¼ 5.547ð140Þ KeV [21], we

obtain fkJ=ψ ¼ 416.2ð53Þ MeV. The transverse decay con-

stant f⊥J=ψ is taken as 0.410(10) GeV [31] and the ηc decay
constant fηc ¼ 0.453ð4Þ [32].
The twist-2 wave function parameters Aλ

J=ψ and βλJ=ψ are
fixed by the following two criteria:

(i) The normalization condition of the twist-2 LCDA,
i.e.,

Z
ϕλ
2;J=ψðx; μÞdx ¼ 1: ð29Þ

(ii) The Gegenbauer moment aλn and the twist-2 LCDA
can be related via the following relation:

aλn;J=ψðμÞ ¼
R
1
0 dxϕ

λ
2;J=ψðx; μÞC3=2

n ð2x − 1ÞR
1
0 6xx̄½C3=2

n ð2x − 1Þ�2
: ð30Þ

One can derive the Gegenbauer moments aλn;J=ψ ðμÞ
of ϕλ

2;J=ψ by using their relationship to the moments,

hξλn;J=ψi ¼
R
1
0 dxð2x − 1Þnϕλ

2;J=ψ ðx; μÞ. More explic-
itly, we have

hξλ2;J=ψ i ¼
1

5

�
1þ 12

7
aλ2;J=ψ

�
: ð31Þ

The first moments of ϕλ
2;J=ψ have been calculated

by Ref. [33], e.g., hξk2;J=ψi ¼ 0.070� 0.0075 and

hξ⊥2;J=ψ i ¼ 0.072� 0.0075 at the scale μ¼1.2GeV.
The Gegenbauer moments at any other scale aλn;J=ψðμÞ

can be obtained via the QCD evolution. At the NLO
accuracy, we have
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aλn;J=ψ ðμÞ ¼ aλn;J=ψðμ0ÞENLO
n;J=ψ

þ αsðμÞ
4π

Xn−2
k¼0

aλk;J=ψ ðμ0ÞLγð0Þk =ð2β0Þdð1Þnk : ð32Þ

Here μ0 is the initial scale, μ is the required scale, and

ENLO
n;J=ψ ¼ Lγð0Þn =ð2β0Þ

×

�
1þ γð1Þn β0 − γð0Þn β1

8πβ20
½αsðμÞ − αsðμ0Þ�

�
; ð33Þ

where L ¼ αsðμÞ=αsðμ0Þ, β0 ¼ 11 − 2nf=3, and β1 ¼
102 − 38nf=3 with nf being the active flavor numbers.

γð0Þn stands for the anomalous dimensions to NLO accuracy,

γð0Þn is the diagonal two-loop anomalous dimension, and the

mixing coefficients dð1Þnk with k ≤ n − 2 can be found in
Ref. [34]. For example, we present the central values for the
input parameters of the J=ψ longitudinal and transverse
wave functions at the scale μ0 ¼ 1.8 GeV in Table I, where

the LCDA moments are taken as ak2ðμ0Þ ¼ −0.321 and
a⊥2 ðμ0Þ ¼ −0.327.
Using those parameters, we present the J=ψ longitudinal

and transverse twist-2 LCDAs at the scale μ0 ¼ 1.8 GeV in
Fig. 1. As a comparison, we also present the curves from
various approaches in Fig. 1, which are predicted by using

the QCD sum rules [33], the background field theory sum
rule (BFTSR) [35], the model suggested by Bondar and
Chernyak (BC) [15], the model constructed from the
potential model (PM) [17], and the asymptotic form
ϕasy: ¼ 6xx̄. Figure 1 indicates that all the LCDA models
prefer a single-peaked behavior, the BC and PM LCDAs
are close in shape. Our present LCDA has a slightly sharper
peak around x ∼ 0.5 in agreement with the quantum
chromodynamics sum rule (QCDSR) and BFTSR, which
has a stronger suppression around the ending point x ∼ 0, 1.

We find that the shape of ϕk
2;J=ψ ðx; μ0Þ LCDAs within

uncertainties is almost the same as that of the BFTSR in the
whole regions.

B. e+ e − → J=ψ + ηc cross section

To derive the numerical results of FVPðq2Þ, we need to
fix the magnitudes of the effective threshold parameter s0
and the Borel parameter M2. As for s0, we set s0 ¼
3.692 GeV2 [36] which is close to the squared mass of
ψð2SÞ. As for the Borel parameterM2, we set it in the range
M2 ∈ ½39; 41� GeV2. In this Borel window, not only the
contributions of the higher resonance states and continuum
states are greatly suppressed, but also theM2 dependence is
effectively suppressed [19].
As for the factorization scale μ of eþ þ e− → J=ψ þ ηc,

to discuss the factorization scale dependence, in addition
to the previously choice of μ ¼ μ0, we also take another
two frequently choices to do our calculation, i.e., μ ¼
μk ≈

ffiffiffiffiffi
k2

p
≈ 3.46 GeV, which is determined by fixing the

coupling constant hαsðk2Þi ≈ 0.263 and the mean value of
hZk

mi ≈ 0.80 [15], and μ ¼ μs ≈
ffiffiffi
s

p
=2 ≈ 5 GeV [37].

Using those inputs together with the total cross section
(5), we calculate the total cross sections of eþe−→J=ψþηc
under three different factorization scales, and we put their

TABLE I. Two parameters of the J=ψ longitudinal and trans-
verse wave functions at the scale μ0 ¼ 1.8 GeV.

Aλ
J=ψ βλJ=ψ

ϕk
2;J=ψ

458 0.682

ϕ⊥
2;J=ψ 526 0.667

FIG. 1. The J=ψ twist-2 LCDAs ϕλ
2;J=ψ ðx; μÞ at the scale μ0 ¼ 1.8 GeV, where λ ¼ ðk;⊥Þ stand for the longitudinal (left diagram) and

the transverse (right diagram) parts, respectively. As a comparison, the asymptotic form, the BFTSR [35], the QCDSR [33], the BC
model [15], and the potential model [17] are also presented.
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values versus the Borel parameter M2 in Fig. 2. Figure 2
confirms that the total cross section changes slightly within
the allowable Borel widow, because the higher-twist terms
are 1=M2 power suppressed.
To have a clear look at the errors coming from all the

input parameters, we list the errors caused by each
parameter in Table II. When discussing the error from
one input parameter, all the other input parameters are set to
be their central values. By adding up all the errors in mean
square, our final LCSR predictions for the total cross
section of eþ þ e− → J=ψ þ ηc at three typical factoriza-
tion scales are

σjμs ¼ 22.53þ3.46
−3.49 fb; ð34Þ

σjμk ¼ 21.98þ3.35
−3.38 fb; ð35Þ

σjμ0 ¼ 21.74þ3.29
−3.33 fb: ð36Þ

Those cross sections are close to each other, indicating the
factorization scale dependence is small. Thus, by properly
dealing with the QCD evolution effect, the LCSR predic-
tions shall be slightly affected by different choice of
factorization scale.

IV. SUMMARY

In this paper, we have investigated the total cross section
for eþe− → J=ψ þ ηc within the QCD LCSR approach.
We put a comparison of total cross section with other
theoretical and experimental predictions in Fig. 3. Figure 3
shows that our results are in consistent with the BABAR and
Belle measurements and also the PMC NRQCD prediction
within errors. Thus, the LCSR approach also provides a
helpful and reliable approach to deal with the high-energy
processes involving charmoniums.

ACKNOWLEDGMENTS

We are grateful to Dr. Tao Zhong and Xu-Chang Zheng
for helpful discussions and valuable suggestions. Hai-Bing
Fu would like to thank the Institute of Theoretical Physics
in Chongqing University for kind hospitality. This work
was supported in part by the National Natural Science

FIG. 2. Total cross section of eþ þ e− → J=ψ þ ηc at different
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TABLE II. Uncertainties of the total cross section of eþ þ
e− → J=ψ þ ηc caused by the mentioned input parameters within
the QCD LCSR approach.

μs μk μ0
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FIG. 3. Total cross section of eþ þ e− → J=ψ þ ηc at different
factorization scales within the LCSR approach. The marks
represent the corresponding central values, and lines are the
errors from the variation of all inputs parameters. As a compari-
son, the Belle data [2], the BABAR data [3], the NLO NRQCD
prediction (NLO-I) [7], the NRQCD prediction with NLO
radiative and relativistic corrections (NLO-II) [8], and the
PMC NLO NRQCD prediction [9] are also presented.
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