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We study the models of Kafri et al. (KTM) and Tilloy and Diósi (TD), both of which implement gravity
between quantum systems through a continuous measurement and feedback mechanism. The first model is
for two particles, moving in one dimension, where the Newtonian potential is linearized. The second is
applicable to any quantum system, within the context of Newtonian gravity. We address the issue of how to
generalize the KTM model for an arbitrary finite number of particles. We find that the most straightforward
generalizations are either inconsistent or are ruled out by experimental evidence. We also show that the
TD model does not reduce to the KTM model under the approximations, which define the latter model.
We then argue that under the simplest conditions, the TD model is the only viable implementation of a
full-Newtonian interaction through a continuous measurement and feedback mechanism.
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I. INTRODUCTION

Gravity is very well described by general relativity in
terms of space-time deformations caused by mass and
energy [1]. All experiments so far have confirmed the
theory, up to the direct detection of gravitational waves by
the LIGO Collaboration [2], although the open problems in
cosmology with dark energy [3] and dark matter [4] might
eventually call for a different description of gravity.
For decades, the scientific community hasworked towards

formulating a quantum theory of gravity, andmany important
results have been achieved, yet at present a conclusive answer
has not been reached [5,6]. The lack of a fully consistent
quantum theory of gravity has opened the possibility that
gravity might not be fundamentally quantum. The scientific
community considered several times the option that gravity
might be ultimately classical, and this originated a dispute
whether this assumption is compatible with the quantum
nature ofmatter or not [7–21], until quite recently, when fully
consistent models of Newtonian gravity have been formu-
lated, where matter is quantum and gravity is classical
[22–31]. Two of such models were proposed by Kafri et al.
(KTM) [32] and by Tilloy and Diósi (TD) [33].
In this work, we study these two models, which imple-

ment Newtonian gravity through a continuous measure-
ment and feedback mechanism, whose detailed description
is provided below. The first model refers to two particles
moving only in one direction, and the Newtonian potential
is linearized. The second model applies to any nonrelativ-
istic quantum system, and the full Newtonian interaction is
considered.

We address the issue of how to generalize the KTM
model for a system of N particles (with N > 2), taking into
account previous results in the literature [29,34]. We find
that the most straightforward generalizations are either
inconsistent or are ruled out by experimental evidence.
For the TD model, we analyze the requirements for

regularizing the dynamics, and we explicitly derive its
conditions. In particular, we construct a family of smearing
functions for the case of local operations and classical
communication (LOCC) dynamics, which is described
below. Then, in the appropriate limit, we compare the
TD and the KTM models, finding that they predict
quantitatively different decoherence effects and thus, con-
cluding that the TD model is not a generalization of the
KTM model, although it is built on the same ideas.
We also address the issue of how to construct a full-

Newtonian interaction within a continuous measurement
and feedback framework. We argue that the TD model is
the only viable one within the simplest form of implement-
ing the feedback mechanism.

II. KAFRI-TAYLOR-MILBURN MODEL

We review the KTM model; this will allow us to set the
stage and introduce the key elements for the following
discussion.
The model [32] makes the assumption that Newtonian

gravity is fundamentally classical. In order to be consistent
with a quantum description of matter, the classical inter-
action is implemented through a two-step mechanism. The
first step is a weak continuous measurement [35] of the
positions x̂ of each mass. Then, the (classical) outcome of
the position measurement of each mass is coupled to the*joseluis.gaonareyes@phd.units.it
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position of the other mass through a Newtonian potential
[36,37]. This second step corresponds to the implementation
of a feedback dynamics. Since the measurement of the
positions of themasses has an intrinsic error, the evolution of
the system will be characterized by unavoidable noisy dyna-
mics. Thus, this two-step mechanism leads to a decoherence
mechanism alongside the desired effective Newtonian gravi-
tational attraction between different masses [25].
To be quantitative, KTM considered a system composed

of two masses m1 and m2, which are harmonically sus-
pended at an initial distance d, as shown in Fig. 1, and
coupled through gravity, which will be accounted for as
presented here below. Since there are only two masses, the
problem can be fully studied in one dimension. Assuming
that the harmonic trap is sufficiently strong, and thus, the
fluctuations of the masses are small with respect to d, one
can Taylor expand the Newtonian gravitational interaction
up to the second order in the relative displacement. Then,
with a suitable choice of coordinates, the Hamiltonian
of the system reads Ĥ ¼ Ĥ0 þ Ĥgrav, where Ĥ0 ¼P

2
α¼1 p̂

2
α=2mα þ 1

2
mαΩ2

αx̂2α is the Hamiltonian of a pair
of harmonic oscillators, while Ĥgrav describes the linearized
interaction due to gravity,

Ĥgrav ¼ Kx̂1x̂2; ð1Þ

where K ¼ 2Gm1m2=d3, with G denoting the gravitational
constant. The goal of the KTM model is to replace Ĥgrav,
which is quantum in the sense that it depends on the
position operators of the two particles, with the two-step
mechanism above described: i) measurement of the posi-
tions and ii) implementation of the feedback dynamics.

(i) Position measurements.— The first step is a weak
continuous measurement of the positions of the two
masses. According to the standard formalism [35],
the variation of the state jψi due to such a meas-
urement is given by

ðdjψiÞm ¼
X2
α¼1

�
−

γα
8ℏ2

ðx̂α − hx̂αiÞ2dt

þ
ffiffiffiffiffi
γα

p
2ℏ

ðx̂α − hx̂αiÞdWα;t

�
jψi; ð2Þ

where hx̂αi ¼ hψ jx̂αjψi, and the two noises Wα;t are
standard independent Wiener processes. The param-
eters γα denote the information rate gained by the
measurement.

(ii) Feedback dynamics.— The feedback dynamics is
implemented by replacing Ĥgrav with the new feed-
back Hamiltonian,

Ĥfb ¼ χ12r1x̂2 þ χ21r2x̂1; ð3Þ

with χ12 and χ21 denoting real constants yet to be
determined. A key element is the measurement
record rα, which encodes the classical information
about the position of the αth particle [35],

rα ¼ hx̂αi þ
ℏffiffiffiffiffi
γα

p dWα;t

dt
: ð4Þ

This is a random variable, centered at the expect-
ation value hx̂αi and with a variance defined by the
information gain rate γα and the Wiener process
Wα;t, which in turn is defined by the relations,

E½dWα;t� ¼ 0;

E½dWα;tdWβ;t� ¼ δαβdt; ð5Þ

see the Appendix A for further details. The Ham-
iltonian Ĥfb leads to the following feedback evolu-
tion for the state:

ðdjψiÞfb ¼ −
X2
α;β¼1
β≠α

�
i
ℏ
rα þ

χαβx̂β
2γα

�
χαβx̂βdtjψi: ð6Þ

We report its derivation in Appendix A.
The full dynamics of the state jψi is then given by the

combining the contributions in Eq. (24) and Eq. (6). This
reads

djψi ¼
�
−
X2
α;β¼1
β≠α

�
i
ℏ
rαþ

χαβx̂β
2γα

�
χαβx̂βdt

þ
X2
α¼1

�
−

γα
8ℏ2

ðx̂α − hx̂αiÞ2dtþ
ffiffiffiffiffi
γα

p
2ℏ

ðx̂α − hx̂αiÞdWα;t

�

−
i
2ℏ

X2
α;β¼1
β≠α

χαβx̂βðx̂α − hx̂αiÞdt
�
jψi; ð7Þ

FIG. 1. Graphical representation of the KTM model. Two
particles are initially placed at a distance d with respect to each
other. The position of each particle is measured by the other
particle. The corresponding measurement record rα is used to
implement a classical Newtonian gravitational interaction
through a feedback evolution. Here, the measurement is repre-
sented with ×, whose color matches the particle performing the
measurement, while the measurement record rα is spread as
indicated by the arrows whose color matches the measured
particle.
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where the first line corresponds to the feedback contribu-
tion, the second line to that of the continuous measurement,
while the third line is the Itô term arising from their
combined effect. The corresponding master equation reads

dρ̂
dt

¼ −
i
ℏ
½Ĥ0; ρ̂� −

i
2ℏ

X2
α;β¼1
β≠α

χαβ½x̂β; fx̂α; ρ̂g�

−
X2
α¼1

�
γα
8ℏ2

þ
X2
β¼1
β≠α

χ2βα
2γβ

�
½x̂α; ½x̂α; ρ̂��; ð8Þ

with ρ̂ ¼ E½jψihψ j�, where E½·� denotes the stochastic
average; in Eq. (8), we also included the free evolution
described by Ĥ0.
To correctly mimic the gravitational interaction, one sets

χ12 ¼ χ21 ¼ K, and the master equation becomes

dρ̂
dt

¼ −
i
ℏ
½Ĥ0 þ Kx̂1x̂2; ρ̂�

−
X2
α¼1

�
γα
8ℏ2

þ
X2
β¼1
β≠α

K2

2γβ

�
½x̂α; ½x̂α; ρ̂��: ð9Þ

Hence, one recovers, at the level of the master equation, the
quantum gravitational interaction Ĥgrav in Eq. (1). In this
way, the KTM prescription retrieves the standard
Newtonian quantum gravitational interaction through a
classical communication channel. The price to pay is to
have decoherence effects, whose strength is determined by
the parameters γα. In the particular case of two equal
masses m1 ¼ m2, it is reasonable to assume that the
measurement processes have the same rate [32]; thus,
we set γ ¼ γ1 ¼ γ2. This is a free parameter of the model,
which can be fixed by looking for a minimum. The
particular structure of the decoherence terms in Eq. (9)
allows us to perform such a minimization, after which the
second line of Eq. (9) becomes

−
K
2ℏ

X2
α¼1

½x̂α; ½x̂α; ρ̂��; ð10Þ

and corresponds to an information gain rate equal to γmin ¼
2ℏK [32].
In summary, the KTM model implements a local

operation and classical communication (LOCC) dynamics
[38,39], where the local operation is provided by the
continuous measurement of the positions, while the feed-
back dynamics works as a classical communication [40].
Such a LOCC dynamics simulates the action of a
Newtonian quantum gravitational field in the sense speci-
fied above, paying the price of having a decoherence
mechanism affecting the system dynamics.

III. LINEARIZED-GRAVITY GENERALIZATION
OF THE KTM MODEL

The KTM model describes the Newtonian gravitational
interaction of two particles only. A natural question is how
to generalize it to include an arbitrary finite number of
particles: this is the subject of this section. We will keep
gravity at linear order.
Two generalizations naturally follow from the original

proposal: the first ones assumes that the position of each
mass is measured by each of the other masses (pairwise
measurement); the second one assumes a single, universal
measurement of the position of each mass. Then the
measurement records are used to implement the feedback
dynamics consistently.

A. Pairwise approach

The pairwise approach was first proposed by Altamirano
et al. [26,29,41], where they considered two bodies of N1

and N2 constituents, moving in one dimension. We review
the model, and at the same time, we generalize it to a
arbitrary configuration of particles in three dimensions.
The Taylor expansion of the many body Newtonian

potential reads

V̂ ≈
XN
α¼1

Ŷα þ
1

2

XN
α;β¼1
β≠α

X3
l;j¼1

Kαβljx̂αlx̂βj; ð11Þ

where the greek indices α, β denote the particles and the
latin indices l, j denote the directions in space. The single
particle operator Ŷα is a second-order polynomial of the
position operator x̂α, which is not relevant because it can be
reabsorbed with a proper redefinition of the variables, while
the second term gives the Newtonian potential at linear
order, with the coefficients Kαβlj defined as follows:

Kαβlj ¼ Gmαmβ

�
3dαβldαβj
jdαβj5

−
δlj

jdαβj3
�
; ð12Þ

where the vector dαβ joins the positions of the two masses.
This is the generalization of K introduced in Eq. (1).
We now apply the two-step mechanism outlined before.

The variation of the wave function due to the continuous
measurements of the positions x̂αl is described by

ðdjψiÞm ¼
XN
α;β¼1
β≠α

X3
l;j¼1

�
−
γαβlj
8ℏ2

ðx̂αl − hx̂αliÞ2dt

þ
ffiffiffiffiffiffiffiffiffi
γαβlj

p
2ℏ

ðx̂αl − hx̂αliÞdWαβlj;t

�
jψi; ð13Þ

where the parameters γαβlj are the information gain rates of
the measurements, and the noises Wαβlj;t are standard
independent Wiener processes, satisfying
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E½dWαβlj;t� ¼ 0

E½dWαβlj;tdWα0β0l0j0;t� ¼ δαα0δββ0δll0δjj0dt: ð14Þ

The corresponding measurement records read

rαβlj ¼ hx̂αli þ
ℏffiffiffiffiffiffiffiffiffi
γαβlj

p
dWαβlj;t

dt
: ð15Þ

We speak of a pairwise approach because, as we can see
from Eq. (13), the position of each particle is measured
9ðN − 1Þ times in the three directions in space, for a total of
9NðN − 1Þ measurement records rαβlj. These embed the
information about the position of particle α along the lth
direction, which will be used to generate the gravitational
attraction on particle β along the jth direction. Different
particles will use different measurement records coming
from the same particle to implement the feedback dynam-
ics. See Fig. 2 for a graphical representation of the
situation.
The feedback Hamiltonian is defined as follows:

Ĥfb ¼
XN
α;β¼1
β≠α

X3
l;j¼1

Kαβljrαβljx̂βj: ð16Þ

The corresponding feedback evolution for the wave func-
tion is given by

ðdjψiÞfb ¼ −
XN
α;β¼1
β≠α

X3
l;j¼1

�
i
ℏ
rαβlj þ

Kαβljx̂βj
2γαβlj

�
Kαβljx̂βjdtjψi:

ð17Þ

Following the procedure outlined in the previous section
and reported in Appendix A, we arrive at the following
master equation for the combined measurement and feed-
back dynamics:

dρ̂
dt

¼ −
i
ℏ
½Ĥ0; ρ̂� −

i
2ℏ

XN
α;β¼1
β≠α

X3
l;j¼1

Kαβlj½x̂αlx̂βj; ρ̂�

−
XN
α;β¼1
β≠α

X3
l;j¼1

�
γαβlj
8ℏ2

þ 1

2

K2
αβlj

γαβlj

�
½x̂αl; ½x̂αl; ρ̂��; ð18Þ

where we absorbed the operators Ŷα in the Hamiltonian Ĥ0,
and we assumed that γαβlj ¼ γβαlj ¼ γαβjl. The master
equation (18) is a three-dimensional pairwise generaliza-
tion of the KTM model. As before, the unitary evolution
(apart from Ĥ0) describes the gravitational interaction
among the particles. The other terms in the second line
lead to decoherence and can be suitably minimized by
fixing an appropriate value of the information rates γαβlj.
Thus, as for the KTM model, one obtains a minimum
decoherence coefficient that can be tested experimentally.
Note that Eq. (18) reduces to the KTM master equation (9)
for N ¼ 2 particles. The same holds when one considers
two subsystems made of, respectively, N1 and N2 particles,
with N1 þ N2 ¼ N. Indeed, once expressing each of the
position operators x̂α as the sum of the center-of-mass
operator X̂σ

α, with σ ¼ 1 or 2, and relative displacement
δx̂σ

α, we have that the double commutator in Eq. (18) can be
expressed as

½x̂αl; ½x̂αl; ρ̂�� ¼ ½X̂σ
αl; ½X̂σ

αl; ρ̂�� þ ½X̂σ
αl; ½δx̂σαl; ρ̂��

þ ½δx̂σαl; ½X̂σ
αl; ρ̂�� þ ½δx̂σαl; ½δx̂σαl; ρ̂��: ð19Þ

Then, by tracing over the relative degrees of freedom,

Trrelð½x̂αl; ½x̂αl; ρ̂��Þ ¼ ½X̂σ
αl; ½X̂σ

αl; ρ̂CM��; ð20Þ

and one recovers the dynamics in Eq. (9) for the centers-
of-mass of the two subsystems. This model is mathemati-
cally consistent; however, it is experimentally ruled out as
discussed in Ref. [29]. Indeed, each of the particles is
measured as many times as the number of the other
particles present in the system. If one takes the example
of the system made of an atom and the entire Earth [29],
then every particle constituting the latter provides a con-
tribution to the decoherence term in Eq. (18). For the atom,
after tracing over the Earth’s degrees of freedom, one
obtains the decoherence term in the vertical direction z of
motion,

−
CGmatomM⊕

ℏR3
⊕

½ẑ; ½ẑ; ρ̂atom��; ð21Þ

FIG. 2. Graphical representation of the pairwise KTM gener-
alization for N ¼ 3 particles. Each particle position is measured
by all the other N − 1 ¼ 2 particles. Here, the measurement is
represented with ×, whose color matches the particle performing
the measurement, while the measurement record rαβ is broad-
casted as indicated by the arrows, whose color matches the
measured particle.
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after the minimization procedure is applied. Here, matom ∼
1.4 × 10−25 kg is the mass of the 87Rb atom used in the
considered experiment [42], M⊕ ∼ 6 × 1024 kg and R⊕ ∼
6 × 106 m are the mass and the radius of Earth, while C ∼
0.47 is a suitable factor accounting for the Earth’s geometry
[29]. By following the analysis in [29], one finds that
Eq. (21) predicts a visibility which is more than 80 orders of
magnitude smaller than that experimentally measured.

B. Universal approach

Since a pairwise procedure, where every particle mea-
sures the others, is experimentally ruled out due to the
excessive number of measurements, one needs to con-
sider an alternative [26]. Here, we consider an universal
approach, where the position of each particle is measured
only once, and such an information is broadcasted to all the
other particles through the feedback Hamiltonian.
Now, we have one measurement record for each of the N

particles in each of the three dimensions, of the form,

rαl ¼ hx̂αli þ
ℏffiffiffiffiffiffi
γαl

p dWαl;t

dt
; ð22Þ

where the noise is characterized by

E½dWαl;t� ¼ 0;

E½dWαl;tdWβj;t� ¼ δαβδljdt: ð23Þ

In such a way, once the position of one particle is measured,
the other particles receive the same measurement record. A
graphical scheme of such a protocol is shown in Fig. 3.
After the continuous measurements, which is described by

ðdjψiÞm ¼
XN
α¼1

X3
l¼1

�
−

γαl
8ℏ2

ðx̂αl − hx̂αliÞ2dt

þ
ffiffiffiffiffiffi
γαl

p
2ℏ

ðx̂αl − hx̂αliÞdWαl;t

�
jψi; ð24Þ

one implements the gravitational interaction through the
following feedback Hamiltonian:

Ĥfb ¼
XN
α;β¼1
β≠α

X3
l;j¼1

Kαβljrαlx̂βj; ð25Þ

where Kαβlj is defined in Eq. (12). The corresponding
contribution to the evolution of the wave function reads

ðdjψiÞfb ¼ −
XN
α¼1

X3
l¼1

�
i
ℏ
rαl þ

XN
ϵ¼1
ϵ≠α

X3
i¼1

Kαϵlix̂ϵi
2γαl

�

×
XN
β¼1
β≠α

X3
j¼1

Kαβljx̂βjdtjψi: ð26Þ

Following the procedure described in Appendix A, we
obtain the following master equation:

dρ̂
dt

¼ −
i
ℏ
½Ĥ0; ρ̂� −

i
2ℏ

XN
α;β¼1
β≠α

X3
l;j¼1

Kαβlj½x̂βj; fx̂αl; ρ̂g�

−
XN
α¼1

X3
l¼1

γαl
8ℏ2

½x̂αl; ½x̂αl; ρ̂��

−
XN
α;β;ϵ¼1
β;ϵ≠α

X3
l;j;i¼1

KαβljKαϵli

2γαl
½x̂βj; ½x̂ϵi; ρ̂��: ð27Þ

Differently from Eq. (9) and Eq. (18), the decoherence term
in Eq. (27) involves the position operators of different
particles. This poses a serious problem. To see this, let us
consider again the case of two subsystems made of N1 and
N2 particles, respectively. Now, by splitting x̂β as the sum
of the center-of-mass operator X̂σ

β, with σ ¼ 1 or 2, and
relative displacement δx̂σ

β, we have that the last double
commutator in Eq. (27) becomes

½x̂βj; ½x̂ϵi; ρ̂�� ¼ ½X̂σ
βj; ½X̂μ

ϵi; ρ̂�� þ ½X̂σ
βj; ½δx̂μϵi; ρ̂��

þ ½δx̂σβj; ½X̂μ
ϵi; ρ̂�� þ ½δx̂σβj; ½δx̂μϵi; ρ̂��: ð28Þ

Then, by tracing over the relative degrees of freedom, one
finds

Trrelð½x̂βj; ½x̂ϵi; ρ̂��Þ ¼ ½X̂σ
βj; ½X̂μ

ϵi; ρ̂CM��; ð29Þ

where μ and σ do not necessarily coincide. Thus, one has
also terms of the form ½X̂1

βj; ½X̂2
ϵi; ρ̂CM��, which do not appear

FIG. 3. Graphical representation of the universal KTM gener-
alization for N ¼ 3 particles. Each particle position is measured
only once, this is represented by the grey ×. The corresponding
measurement records rα are broadcasted as indicated by the
arrows, whose color matches the measured particle.
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in the KTM master equation (9). In Appendix C, we pre-
sent an explicit example proving that the corresponding
coefficient is nonvanishing. On the contrary, for the case
of N ¼ 2, one recovers exactly the KTM model without
additional terms. Indeed, for N ¼ 2, the constraint β; ϵ ≠ α
in the last term of Eq. (27) is satisfied only for β ¼ ϵ
and β ≠ α. Thus, one does not have double commuta-
tors involving position operators of different particles.
Therefore, two composite systems do not behave like
two pointlike particles, whose internal dynamics can be
ignored. This inconsistency discards the universal gener-
alization of the KTM model.
In the next section, we will consider the model proposed

by Tilloy and Diosi [33,43], which consistently describes
gravity as a measurement plus feedback interaction for an
arbitrary number of particles, also implementing the full
Newtonian potential, not only its linear approximation. We
will show that it does not reduce to the KTM model in the
limit of linearized gravity for two particles.

IV. TILLOY-DIÓSI MODEL

The TD model [33,43] implements a full Newtonian
interaction by monitoring the mass density of the system.
This choice allows us a straightforward extension to the
case of identical particles, where one expresses the mass
density operator as a mass-weighted sum over different
species of particles. In this setting, Eq. (1) is replaced by

Ĥgrav ¼
1

2

Z
dxdyVðx − yÞμ̂ðxÞμ̂ðyÞ; ð30Þ

where Vðx − yÞ ¼ −G=jx − yj is the full Newtonian gravi-
tational potential and μ̂ðxÞ is the mass density operator of
the system. This is the interaction one aims at recovering
with the measurement and feedback process.
In analogy with the KTM model, now the mass density

μ̂ðxÞ is continuously measured. The variation of the wave
function due to the continuous measurement is given by

ðdjψiÞm ¼
�
−

1

8ℏ2

Z
dxdyγðx; yÞðμ̂ðxÞ − hμ̂ðxÞiÞ

× ðμ̂ðyÞ − hμ̂ðyÞiÞdt

þ 1

2ℏ

Z
dxðμ̂ðxÞ − hμ̂ðxÞiÞδμtðxÞdt

�
jψi: ð31Þ

This is the analogue of Eq. (24) in the KTM model. Here,
we introduced hμ̂ðxÞi ¼ hψ jμ̂ðxÞjψi and the noise δμtðxÞ
(the generalization of dWt

dt of the KTM model) is charac-
terized by

E½δμtðxÞ� ¼ 0;

E½δμtðxÞδμt0 ðyÞ� ¼ γðx; yÞδðt − t0Þ; ð32Þ

where γðx; yÞ is a spatial correlator. The latter is assumed to
be symmetric, and satisfying γðx; yÞ ¼ γðy;xÞ¼ γðx − yÞ.
In analogy with Eq. (3), we introduce the feedback

Hamiltonian,

Ĥfb ¼
Z

dxdyVðx − yÞμ̂ðxÞμðyÞ; ð33Þ

where μðyÞ is the measurement record of the mass density
associated to the measurement process in Eq. (31),

μðxÞ ¼ hμ̂ðxÞi þ ℏ
Z

dyγ−1ðx − yÞδμtðyÞ: ð34Þ

Here, γ−1ðx − yÞ is the inverse function of γðx − yÞ, for
which the following relation holds:

ðγ ∘ γ−1Þðx − yÞ ¼
Z

drγðx − rÞγ−1ðr − yÞ ¼ δðx − yÞ:

ð35Þ

We report a method to construct the inverse kernel γ−1ðx −
yÞ in Appendix B. The corresponding feedback wave
function dynamics is given by [43]

ðdjψiÞfb ¼ −
Z

dxdy

�
i
ℏ
Vðx − yÞμðyÞ

þ 1

2
ðV ∘ γ−1 ∘VÞðx − yÞμ̂ðyÞ

�
μ̂ðxÞdtjψi: ð36Þ

We note that Eq. (33) and Eq. (34) indicate that there is one
measurement record at each point of space. Moreover, each
constituent receives the same information about the mass
density at a given point. Therefore, the TD model imple-
ments a universal interaction. See Fig. 4 for a graphical
representation of the model.
The full evolution of the wave function is obtained by

merging Eq. (31) and Eq. (36), yielding

djψi ¼
�
−
i
ℏ

Z
dxdyVðx − yÞμ̂ðxÞμðyÞdt

−
1

2

Z
dxdyðV ∘ γ−1 ∘VÞðx − yÞμ̂ðxÞμ̂ðyÞdt

−
1

8ℏ2

Z
dxdyγðx − yÞðμ̂ðxÞ

− hμ̂ðxÞiÞðμ̂ðyÞ − hμ̂ðyÞiÞdt

þ 1

2ℏ

Z
dxðμ̂ðxÞ − hμ̂ðxÞiÞδμtðxÞdt

−
i
2ℏ

Z
dxdyVðx − yÞμ̂ðxÞðμ̂ðyÞ − hμ̂ðyÞiÞdt

�
jψi:

ð37Þ
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As in Eq. (7), such a dynamical equation now includes the
feedback and the continuous measurement, as well as the
Itô term resulting from the combination of the two steps.
The corresponding master equation reads

dρ̂
dt

¼ −
i
ℏ
½Ĥ0 þ Ĥgrav; ρ̂�

−
Z

dxdyDðx − yÞ½μ̂ðxÞ; ½μ̂ðyÞ; ρ̂��; ð38Þ

where Ĥgrav is the Newtonian gravitational interaction
defined in Eq. (30); we added the free Hamiltonian Ĥ0

and defined

Dðx − yÞ ¼
�

γ

8ℏ2
þ 1

2
ðV ∘ γ−1 ∘VÞ

�
ðx − yÞ; ð39Þ

which is the decoherence kernel of the model. The latter has
a structure which is similar to that of the KTM master
equation (9): one term is proportional to γ while the second
is inversely proportional to it. This shows the presence of a
minimum, which can be retrieved by setting γðx − yÞ ¼
−2ℏVðx − yÞ [33]. Such a correlation kernel leads to the
decoherence rate of the Diósi-Penrose model [22,23,33].
Similarly to the KTM model, TD model retrieves the
quantum gravitational interaction, whose unitary evolution
is modified by the decoherence due to the measurement and
the feedback dynamics. The advantages of the TD model
over the KTM model are two. First, one considers the full
form of the Newtonian potential and not only its Taylor
expansion near an equilibrium position. Second, the use of
mass density operator allows to study also identical
particles. In Appendix D, we discuss in detail the issues

of divergences in the TD model and how to regularize them
through the use of a suitable smearing function gðxÞ.

A. The KTM2 model

As we will show in this subsection, a particular case of
the TD model is given by the model described in Ref. [34],
where the specific case of N particles on a lattice is
considered. We will refer to it as the KTM2 model, in
order to avoid confusion with the model in Ref. [32].
In this case, the mass density operator reads

μ̂ðxÞ ¼ m
P

α n̂αδðx − xαÞ, where n̂α is the local number
density of the αth lattice site located at position xα. Given
the form of μ̂ðxÞ, Eq. (38) becomes

dρ̂
dt

¼ −
i
ℏ
½Ĥ0 þ Ĥgrav; ρ̂�

−
XN
α;β¼1

m2Dðxα − xβÞ½n̂α; ½n̂β; ρ̂��; ð40Þ

where

Ĥgrav ¼
m2

2

XN
α;β¼1

Vðxα − xβÞn̂αn̂β: ð41Þ

To avoid divergences due to the self-interaction, one
can regularize V with a suitable smearing function.
The choice considered in Ref. [34] is such that
m2Vðxα − xβÞ → χαβ ¼ −Gm2=½2ðjxα − xβj þ aÞ�, where
a denotes a minimum length cutoff. Now, by considering
γðx − yÞ and γ−1ðx − yÞ as non-negligible only for x − y
smaller than the lattice distance and considering that in
such a case they read γðx − yÞ ¼ 2ℏ=m and
γ−1ðx − yÞ ¼ m=2ℏ, then Eq. (40) reduces to

dρ̂
dt

¼ −
i
ℏ

�
Ĥ0 þ

XN
α;β¼1

V̂αβ; ρ̂

�
−
ξ

2

XN
α¼1

½n̂α; ½n̂α; ρ̂��

−
1

2ξ

XN
α;β;ϵ¼1

χαβχαϵ½n̂β; ½n̂ϵ; ρ̂��; ð42Þ

where ξ ¼ m=2ℏ. Equation (42) coincides with the KTM2
master equation [34] once the self-interacting terms,
although not being divergent, are removed by hand.

V. COMPARISON BETWEEN THE TD
AND KTM MODEL

The TD and KTM models consider the same problem:
how to effectively implement the Newtonian gravitational
interaction among quantum systems by using a continuous
measurement and a feedback. The way this is done is
different in the two cases.
In this section, we compare the two models. We first

expand the gravitational interaction in the TD model to

FIG. 4. Graphical representation of the TD model scheme for
N ¼ 3 particles. The mass density in each point of space is
measured: whether in that particular position, there is a particle
(grey ×) or not (dashed ×). If a nonzero value of the mass density
is found, then the corresponding measurement record μðxÞ is
broadcasted as indicated by the arrow, whose color matches the
measured particle.
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linear order. Then, by comparing the resulting master
equations, we will see that the KTM model does not
coincide with the linearized TD model.
Let us rewrite the position operator of each particle as

follows

x̂α ¼ xð0Þ
α þ Δx̂α; ð43Þ

where Δx̂α is the quantum displacement from a given

position xð0Þ
α . For small displacements, we can approximate

Eq. (38) as

dρ̂
dt

¼ −
i
ℏ
½Ĥ0; ρ̂� þ

2iπG
ℏ

XN
α;β¼1
β≠α

X3
l;j¼1

mαmβηαβ2lj½x̂αlx̂βj; ρ̂�

−
XN
α;β¼1

X3
l;j¼1

mαmβηαβlj½x̂αl; ½x̂βj; ρ̂��; ð44Þ

where x̂αl is the component in the l direction of Δx̂α. This
choice of notation matches that used in Sec. II. Moreover,
we included the terms coming from Ĥgrav corresponding to
the same particle (α ¼ β) in the definition of Ĥ0. The
parameter ηαβlj is defined as

ηαβlj ¼
�
π3

8ℏ5

�
1=2

ηαβ0lj þ ð8πℏÞ1=2G2ηαβ4lj; ð45Þ

and coefficients ηαβnlj are given by

ηαβ0lj ¼
Z

dkg̃2ðkÞγ̃ðkÞklkje−
i
ℏk·ðxð0Þα −xð0Þβ Þ;

ηαβ2lj ¼
Z

dk
k2

g̃2ðkÞklkje−
i
ℏk·ðxð0Þα −xð0Þβ Þ;

ηαβ4lj ¼
Z

dk
k4

g̃2ðkÞ
γ̃ðkÞ klkje

− i
ℏk·ðxð0Þα −xð0Þβ Þ; ð46Þ

which are fixed once the correlation kernel γðx − yÞ and the
Fourier transform g̃ðkÞ of the smearing function gðxÞ are
chosen. For example, one can take the Diósi-Penrose
choice γðx − yÞ ¼ −2ℏVðx − yÞ and a Gaussian smearing
function.
In the case of two particles in one dimension, Eq. (44)

reduces to

dρ̂
dt

¼ −
i
ℏ
½Ĥ0 þ Ĥgrav; ρ̂� −

X2
α¼1

m2
αηαα½x̂α; ½x̂α; ρ̂��

−m1m2ðη12½x̂1; ½x̂2; ρ̂�� þ η21½x̂2; ½x̂1; ρ̂��Þ; ð47Þ

which clearly differs from Eq. (9). While the double
commutator term in Eq. (9) contains only the position
operators corresponding to the same particle, the corre-
sponding term in Eq. (47) contains also position operators

of different particles. The result of Eq. (44) differs from
both the pairwise and universal generalizations of the KTM
model [cf. Eq. (18) and Eq. (27)] for the same reason.
Therefore, the TD model cannot be reduced to that of
KTM, or, vice versa, the TD model is not a generalization
of the KTM model to continuous mass densities and full
gravitational interactions.
The fact that the two models are different is not

surprising, because they implement the measurement and
feedback mechanism in two different ways. In the KTM
model and its generalizations considered in Sec. III, one or
more noises are attached to the position of the particle, and
they follow it while it moves in space. In the TD model,
there is one noise for each point of space; these noises do
not follow the particle, rather the particle feels different
noises while moving in space. This is the ultimate reason
for the difference between the two models.
Finally, we underline that Eq. (44) does not suffer from

the limitations of the generalizations of the KTM model
in Eq. (18) and Eq. (27). On one hand, the TD model is
implemented through an universal measurement and feed-
back protocol—a single measurement is performed—
instead of a pairwise one, where N − 1 measurements
take place for each particle. Thus, the decoherence effects
do not scale with the number of measurements N − 1 as in
Eq. (18). On the other hand, the TD model is self-
consistent: when considering the system as divided in
two subsystems of N1 and N2 particles, respectively, the
master equation describing the center-of-mass motion of
these subsystems coincides with that of two particles given
by N ¼ 2, and in both master equations, there will be
present double-commutator terms containing operators of
different particles, see for instance the linearized case in
Eq. (47). This is simply a feature of the model, which
differs from that of KTM. This is even more explicit by
comparing the KTM master equation (9) and that in
Eq. (47) for the TD model in the linear case for N ¼ 2.
We also remind that the TD model easily accounts for
identical particles by properly writing the mass-density
operator in a quantum field theoretical language. On the
contrary, it is not obvious to see how this can be achieved in
the KTM model.

VI. DISCUSSION AND CONCLUSIONS

The main virtue of the KTM [32] and TD [33] models is
that the Newtonian gravitational interaction is implemented
within a hybrid classical-quantum framework, where grav-
ity is classical and matter is quantum, thus showing that this
possibility is not inconsistent. The price to pay are addi-
tional decoherence effects, which can be minimized but not
fully evaded.
In this work, we discussed the generalization of the

KTM model to N particles, keeping the original spirit of a
continuous measurement of the position of the particles and
subsequent feedback evolution, which together reproduce
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the linearized Newtonian potential. The pairwise generali-
zation was shown to be incompatible with experimental
data [29], whereas the universal one is inconsistent.
Therefore, the two most natural ways to generalize the
KTM model are not viable.
Next, we considered the TD model [33] model, and we

showed that, when reduced to two particles in one
dimension, in the limit of a linearized Newtonian potential,
it does not reproduce the KTM model, which then is not an
approximated version of the TD model.
The KTM and TD models implement the continuous

measurement plus feedback protocol in two different ways.
In the first case, the position of the particle is measured, in
the second case the mass density is measured. This is the
difference, which ultimately allows TD to consider the full
Newtonian potential, not only its linearized limit as for the
KTM model. In a nutshell, the reason is that the mass of a
particle enters the Newtonian potential linearly; therefore,
the standard theory of linear feedback can be used: see
Sec. IV. The position instead enters nonlinearly (at the
denominator), and the standard formalism cannot be
applied any longer [44]. In fact, suppose that the position
of the particle is measured and one uses it to write the
feedback Hamiltonian, in analogy with what discussed in
the previous sections. This would look like

Ĥfb ¼ −
XN
α;β¼1
β≠α

Gmαmβ

jx̂α − rβj
; ð48Þ

where the measurement record rα enters nonlinearly. This
nonlinearity does not allow to implement the prescription
of Eq. (6) to obtain the feedback contribution to the
dynamics.
Although it is “morally” the same to measure the

position of the particles or their mass density, these two
are different operations. When measuring the position, the
noise is attached to the particle and follows its position.
Conversely, when measuring the mass density, there is a
noise for each point of space: if the particle moves, different
noises act on it. One consequence of this difference is that
the resulting master equations are different, because they
correspond to two different measurement schemes. This is
why the KTM and TD models, when compared in the same
regime of applicability, give different results.
A natural open question is whether this approach can be

generalized to a relativistic setting. This will be subject of
future research.
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APPENDIX A: CONTINUOUS MEASUREMENTS
AND FEEDBACK

We recall here the main properties characterizing the
continuous measurement of a Hermitian operator â. The
results follow mainly from Refs. [35,45].
We consider a continuous observable â with associated

eigenstates fjaiga∈R satisfying âjai ¼ ajai. One divides
time into (infinitesimal) intervals of length Δt. In each
interval, one makes the weak measurement described by the
operator,

ÂðrÞ ¼
�
γΔt
2πℏ2

�
1=4

Z
∞

−∞
da exp

�
−
γΔt
4ℏ2

ða − rÞ2
�
jaihaj:

ðA1Þ

One then obtains a continuum of measurement results
labelled by this parameter r. Denoting by PðrÞ ¼
hψ jÂ†ðrÞÂðrÞjψi the probability density of the measure-
ment result r, the mean value hri of r, and the variance σ2r of
r are related to those of â by

hri ¼
Z

∞

−∞
rPðrÞdr¼ hâi; σ2r ¼ hr2i− hri2 ¼ σ2âþ

ℏ2

γΔt
:

ðA2Þ

Since the time interval Δt is infinitesimal, the probability
density PðrÞ can be approximated as

PðrÞ ≈ 1

ℏ

ffiffiffiffiffiffiffiffi
γΔt
2π

r
exp

�
−
γΔt
2ℏ2

ðr − hâiÞ2
�
: ðA3Þ

From the results of Eq. (A2) and Eq. (A3), r can be written
as a stochastic quantity,

r ¼ hâi þ ℏffiffiffi
γ

p ΔWt

Δt
; ðA4Þ

where ΔWt is a Gaussian random variable with zero mean
and variance Δt.
By performing a sequence of these measurements, and

taking the limit Δt → 0, one obtains a so-called continuous
measurement, described by

r ¼ hâi þ ℏffiffiffi
γ

p dWt

dt
: ðA5Þ
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In the above equation, the parameter γ is the information
rate gained by the measurement, and Wt is a standard
Wiener process, satisfying

E½dWt� ¼ 0; E½ðdWtÞ2� ¼ dt: ðA6Þ

We can see that the measurement records defined in
Eq. (4) are a specific application of Eq. (A5), where the
observables measured are the position operators x̂α of the
particles, with α ¼ 1, 2.
Let us denote by jψi the state of a system at a time t before

performing a continuous measurement of the observable â.
The evolution of the systemwill be described by applying the
operator ÂðrÞ to the state jψi, and performing the limit
Δt → 0. Bydemanding that the resulting dynamical equation
preserves the norm, one obtains

ðdjψiÞm ¼
�
−

γ

8ℏ2
ðâ − hâiÞ2dtþ

ffiffiffi
γ

p
2ℏ

ðâ − hâiÞdWt

�
jψi;

ðA7Þ

so that the result of Eq. (27) is consistent with the general
formalismof Eq. (A7). The generalization to a continuous set
of observables used in Sec. IV can be found in Ref. [43].
Quantum feedback is implemented to modify and control

the evolution of a system [35]. In this Appendix, we review
the derivation of the Wiseman-Milburn Markovian feed-
back master equation [46–48]. The derivation follows the
approach of Ref. [49].
In the Markovian case, the feedback Hamiltonian Ĥfb is

expressed in terms of the measurement record r of the
observable â as

Ĥfb ¼ rb̂; ðA8Þ

where b̂ is a Hermitian operator. The feedback evolution
can be obtained by unitarily evolving the state of the system
jψi [49]. This gives

e−
i
ℏĤfbdtjψi ¼ jψi þ ðdjψiÞfb; ðA9Þ

where ðdjψiÞfb turns out to be

ðdjψiÞfb ¼
��

−
i
ℏ
hâib̂ −

1

2γ
b̂2
�
dt −

iffiffiffi
γ

p b̂dWt

�
jψi:

ðA10Þ

The combined measurementþ feedback evolution of
the system is obtained by considering the contributions
of both the continuous measurement of â [cf. Eq. (A7)]
and the subsequent feedback dynamics driven by b̂ as
described by Eq. (A10) [35,49]. In an infinitesimal
time dt, the wave function of the system is given by
jψðtþ dtÞi ¼ jψi þ djψi, where

djψi ¼ ðdjψiÞm þ ðdjψiÞfb þ ðdjψiÞmþfb: ðA11Þ

The first two terms of the stochastic differential equation
for the wave function are given by Eq. (A7) and Eq. (A10),
while the contribution in the last term comes from the
product of the noise terms in the differential equations for
the measurement and the feedback, i.e., from the applica-
tion of eiĤfbdt=ℏ to the postmeasurement state jψi þ ðdjψiÞm
approximated to the first order in dt. This term is explicitly
given by

ðdjψiÞmþfb ¼ −
i
2ℏ

b̂ðâ − hâiÞdtjψi: ðA12Þ

From the definition of the density operator in terms of the
wave function, ρ̂ ¼ E½jψihψ j�, it follows that

dρ̂ ¼ dðE½jψihψ j�Þ
¼ E½ðdjψiÞhψ j þ jψiðdhψ jÞ þ ðdjψiÞðdhψ jÞ�: ðA13Þ

Therefore, we can derive the master equation, by using
Eq. (A11). One obtains

dρ̂
dt

¼ −
i
2ℏ

½b̂; fâ; ρ̂g� − γ

8ℏ2
½â; ½â; ρ̂�� − 1

2γ
½b̂; ½b̂; ρ̂��:

ðA14Þ

We now generalize the procedure to M measurements.
Consider a set of observables with associated Hermitian
operators fâαgMλ¼1, which are continuously measured. The
corresponding measurement records read

rλ ¼ hâλi þ
ℏffiffiffiffi
γλ

p dWλ;t

dt
; ðA15Þ

with γλ denoting the information rates and Wλ;t standard
independent Wiener processes, satisfying

E½dWλ;t� ¼ 0

E½dWλ;tdWλ0;t� ¼ δλλ0dt: ðA16Þ

The stochastic differential equation for the continuous
measurement is given by the sum of all the contributions
due to each measurement, i.e.,

ðdjψiÞm ¼
XM
λ¼1

�
−

γλ
8ℏ2

ðâλ − hâλiÞ2dt

þ
ffiffiffiffi
γλ

p
2ℏ

ðâλ − hâλiÞdWλ;t

�
jψi; ðA17Þ

and for a feedback Hamiltonian Ĥfb of the form,
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Ĥfb ¼
XM
λ¼1

rλb̂λ; ðA18Þ

with fb̂λgMλ¼1 a set of Hermitian operators, we obtain

ðdjψiÞfb¼
XM
λ¼1

��
−
i
ℏ
hâλib̂λ−

1

2γλ
b̂2λ

�
dt−

iffiffiffiffi
γλ

p b̂λdWλ;t

�
jψi:

ðA19Þ

The stochastic differential equation for the wave function is
given by Eq. (A11), where now

ðdjψiÞfbðdjψiÞm ¼ −
i
2ℏ

XM
λ¼1

b̂λðâλ − hâλiÞdt: ðA20Þ

From Eq. (A13), the density operator satisfies

dρ̂
dt

¼
XM
λ¼1

�
−

i
2ℏ

½b̂λ; fâλ; ρ̂g� −
γλ
8ℏ2

½âλ; ½âλ; ρ̂��

−
1

2γλ
½b̂λ; ½b̂λ; ρ̂��

�
: ðA21Þ

From Eq. (A21), one can derive the master equations of the
two generalizations of the KTM model corresponding to
Eq. (18) and Eq. (27). In particular, the master equation
implementing the measurement and feedback through a
pairwise protocol, i.e., Eq. (18), is obtained by using M ¼
9NðN − 1Þ measurement records frλgλ, which are identi-
fied by four indices: l and j run over the three Cartesian
directions, α identifies one among the N measured particle
and β ≠ α identifies one among the remaining N − 1
particles to which the information is sent. Namely, one
imposes

fâλgλ → fx̂αlgαl; ∀ β; j

fb̂λgλ → fKαβljx̂βjgαβlj;
fγλgλ → fγαβljgαβlj; ðA22Þ

in Eq. (A21) and obtains Eq. (18).
The universal generalization of the KTM model, i.e.,

Eq. (27), is instead easily provided by imposing

fâλgλ → fx̂αlgαl;

fb̂λgλ →
�XN

β¼1
β≠α

X3
j¼1

χαβljx̂βj

�
αl
;

fγλgλ → fγαlgαl; ðA23Þ

in Eq. (A21) with M ¼ 3N.

APPENDIX B: CONSTRUCTION OF THE
CORRELATION KERNELS

We describe with more detail the relation between a
kernel Kðx − yÞ and its inverse K−1ðx − yÞ by following
the approach developed in Ref. [50]. Consider the operator
A, which satisfies

AKðx − yÞ ¼ δðx − yÞ; ðB1Þ

where Kðx − yÞ is the associated kernel. We define the
integral transform,

uðxÞ ¼
Z

drKðr − xÞfðrÞ; ðB2Þ

and require that the inverse kernel K−1ðx − yÞ satisfies

δðx − yÞ ¼
Z

drKðx − rÞK−1ðr − yÞ: ðB3Þ

From these expressions, we can show that

fðxÞ ¼
Z

drAKðr − xÞfðrÞ; ðB4Þ

and equivalently,

fðxÞ ¼
Z

drK−1ðr − xÞuðrÞ: ðB5Þ

The substitution of Eq. (B2) in Eq. (B5) and the comparison
with Eq. (B4) lead to

K−1ðx − yÞ ¼ A2Kðx − yÞ ¼ Aδðx − yÞ; ðB6Þ

where the last equality follows from Eq. (B1). In the
following we consider two examples. First, let us take

A ¼ 1

4πG
∇2; Kðx − yÞ ¼ −

G
jx − yj ; ðB7Þ

then from Eq. (B6), we have

K−1ðx − yÞ ¼ 1

4πG
∇2δðx − yÞ: ðB8Þ

A less trivial example is that of the operator,

A ¼ exp

�
−
1

4
σ2∇2

�
; ðB9Þ

and the kernel,

Kðx − yÞ ¼ 1

ðπσ2Þ3=2 exp
�
−
ðx − yÞ2

σ2

�
: ðB10Þ
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Then, it can be shown [50] that

K−1ðx − yÞ ¼ Kðx − yÞ
Y3
k¼1

X∞
nk¼0

cnkH2nk

�
xk − yk

σ

�
;

ðB11Þ

whereH2nk are the Hermite polynomials of degree 2nk, and
cnk ¼ ð−1Þ2nk=ð2nknk!Þ [51].

APPENDIX C: INCONSISTENCY OF THE
UNIVERSAL GENERALIZATION

OF THE KTM MODEL

We showed in the main text that, when reducing the
master equation (27) of the universal generalization of the
KTM for N particles to that for the center-of-mass, addi-
tional terms appear with respect to the master equation
of the original KTM model, and as such, the universal
KTM model is inconsistent. Here, we provide an explicit
example proving that coefficient multiplying the double
commutator in Eq. (29) in general is nonvanishing. We take
the case of N ¼ 3 masses aligned along one dimension,
which are then aggregated as displayed in Fig. 5. Under
such an assumption, the last term of Eq. (27) becomes

−
XN
α;β;ϵ¼1
β;ϵ≠α

KαβKαϵ

2γα
½x̂β; ½x̂ϵ; ρ̂��; ðC1Þ

where

Kαβ ¼
2Gmαmβ

d3αβ
; ðC2Þ

is obtained from Eq. (12) by setting l ¼ j and jdαβj ¼ dαβ.
Note that Kαβ > 0 for any value of α and β, which implies
that also the coefficient in front of the double commutator
in Eq. (C1) is positive. Now, we express the position
operators x̂α as sum of the center-of-mass position operator

X̂μ
α and relative position operator x̂μα. In particular, in

accordance with the division displayed in Fig. 5, we have
μ ¼ ⋄ for α ¼ 1 or 2; while μ ¼ • for α ¼ 3. Then, by
tracing over the relative degrees of freedom [cf. Eq. (29)],
Eq. (C1) reduces to

−S⋄⋄½X̂⋄; ½X̂⋄; ρ̂CM�� − S••½X̂•; ½X̂•; ρ̂CM��
−S•⋄½X̂•; ½X̂⋄; ρ̂CM��: ðC3Þ

The last term of this equation is the additional term with
respect to the original KTM model. The explicit expression
of its coefficient is

S•⋄ ¼ 2

�
K12K13

γ1
þ K21K23

γ2

�
; ðC4Þ

which is always strictly positive, as noted above. This
proves that such additional terms in general are
nonvanishing.

APPENDIX D: THE DIVERGENCES AND
REGULARIZATION IN THE TD MODEL

The decoherence term (39) in the master equation (38)
is only formally defined. We show that, under the
assumption that γðx; yÞ is invariant under translations,
i.e., γðx; yÞ ¼ γðx − yÞ, any choice of γ leads to divergen-
ces. To do so, let us consider a system of pointlike particles,
whose mass density is given by

μ̂ðxÞ ¼
XN
α¼1

mαδðx − x̂αÞ: ðD1Þ

By substituting it, once expressed in terms of its Fourier
transform, in the decoherence term of Eq. (38), we obtainZ

dxdyDðx; yÞ½μ̂ðxÞ; ½μ̂ðyÞ; ρ̂��

¼
XN
α;β¼1

mαmβ

Z
dkD̃ðkÞ
ð2πℏÞ3=2 ½e

− i
ℏk·x̂α ; ½ei

ℏk·x̂β ; ρ̂��; ðD2Þ

where D̃ðkÞ is the Fourier transform of Dðx − yÞ, which
inherits the translational invariance from γ. Let us consider
the terms in the above sum corresponding to the same
particle (α ¼ β). These are proportional to

Z
dkD̃ðkÞð2ρ̂ − e−

i
ℏk·x̂α ρ̂e

i
ℏk·x̂α − e

i
ℏk·x̂α ρ̂e−

i
ℏk·x̂αÞ: ðD3Þ

The first term
R
dkD̃ðkÞ diverges; a straightforward cal-

culation show that according to Eq. (39),

FIG. 5. Example of lack of scale invariance in the universal
KTM model with three masses, which are identified by the green
spheres and are aligned along one dimension. They are aggre-
gated as two composite systems: the blue diamond and the red
circle.
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Z
dkD̃ðkÞ ¼

Z
dk

�
γ̃ðkÞ
8ℏ2

þ 8π2ℏ4G2
fγ−1ðkÞ
k4

�
; ðD4Þ

where the Fourier transform of the inverse of the noise

kernel fγ−1ðkÞ is related to γ̃ðkÞ via Eq. (35),

γ̃ðkÞfγ−1ðkÞ ¼ 1

ð2πℏÞ3 : ðD5Þ

Then, Eq. (D4) can be written in terms of γ̃ðkÞ asZ
dkD̃ðkÞ ¼

Z
dk

�
γ̃ðkÞ
8ℏ2

þ ℏG2

π

1

k4γ̃ðkÞ
�
: ðD6Þ

Equation (D6) is the sum of two contributions: the con-
tinuous measurement, which gives the first term, and the
application of the gravitational interaction through a feed-
back evolution, which provides the second term. Before
analyzing the general case, let us study two particular
correlation kernels.
The first case corresponds to a LOCC dynamics, which

requires that the dynamics acts only locally [33]. A noise
correlation function reflecting this property is proportional
to a Dirac-delta. Thus, we set

γðx − yÞ ¼ Aδðx − yÞ; ðD7Þ

where A is an arbitrary constant. In such a case, we have
that γ̃ðkÞ ¼ A=ð2πℏÞ3=2. By substituting the latter expres-
sion in Eq. (D6), one gets that none of its contributions is
convergent. Thus, in the TD model, the assumptions of
having pointlike particles and implementing a LOCC
dynamics lead to divergences.
As second case of interest, we consider a Gaussian

correlation kernel γðzÞ ¼ ð2πσ2Þ−3=2 exp ½−z2=ð2σ2Þ�. In
this case, one has γ̃ðkÞ ¼ ð2πℏÞ−3=2 expð−k2σ2=2ℏ2Þ.
Now, by substituting the latter expression in Eq. (D6),
we find that although the continuous measurement con-
tribution converges, the feedback contribution is still
divergent.
Next, we show the general case: any choice of γðx − yÞ

leads to divergences. Similarly to what was done in the
KTM model, we minimize the decoherence kernel D̃ðkÞ
with respect to γ̃ðkÞ. The minimum is reached for γ̃ðkÞ ¼
Gð2πℏÞ3=2=ðπ2k2Þ, which corresponds to γðx − yÞ ¼
−2ℏVðx − yÞ. Such a correlation kernel leads to the
decoherence rate of the Diósi-Penrose model [22,23,33],
which is still divergent [52]. Indeed, Eq. (D6) in this case
reads Z

dkD̃ðkÞ ¼ 2ð2πℏÞ1=2G
ℏ

Z
∞

0

dk → ∞: ðD8Þ

Since the latter choice of γðx − yÞ provides the mini-
mum decoherence rate, we deduce that Eq. (D6), and

subsequently, the master equation (38), diverges for any
choice of γðx − yÞ.
A regularization process is needed to avoid divergences

in the decoherence terms in Eq. (38). This regularization
mechanism is applied also to the Diósi-Penrose model [52],
by introducing a smearing function. For the TD model, the
contributions to the decoherence term are those coming
from the measurement part, through γðx − yÞ, and from the
feedback evolution, through ðV ∘ γ−1 ∘V−1Þðx − yÞ. Both
these terms must be regularized. Indeed, the regularization
of the noise kernel γðx − yÞ alone would only give a
different noise kernel γ0ðx − yÞ, which is not sufficient to
avoid the divergence, as proved before. On the other hand,
the regularization of the gravitational potential Vðx − yÞ
could remove the divergences in the feedback contribution,
but not that due to the measurement, which is independent
from the gravitational interaction. We conclude that the
regularization mechanism must be performed by smearing
both γðx − yÞ and Vðx − yÞ.
An effective regularization procedure consists in smear-

ing the mass density operator as proposed in Refs. [33,53].
According to this prescription, we substitute the mass
density μ̂ðxÞ with the smeared one,

ν̂ðrÞ ¼
Z

dxgðx − rÞμ̂ðxÞ; ðD9Þ

where gðx − yÞ is a suitable smearing function. This is
equivalent to regularizing both the noise kernel γðx − yÞ
and the gravitational potential Vðx − yÞ with the same
smearing function [33],

γ → g ∘ γ ∘ g; and V → g ∘V ∘ g: ðD10Þ

An appropriate smearing function should remove all the
divergences of the master equation (38) for an arbitrary
choice of the mass density and of the noise kernel. In
particular, Ĥgrav in Eq. (30) becomes

Ĥ0
grav ¼

1

2

Z
dxdyðg ∘V ∘ gÞðx − yÞμ̂ðxÞμ̂ðyÞ; ðD11Þ

and the decoherence kernel defined in Eq. (39) turns into

D0ðx − yÞ ¼
�
g ∘ γ ∘ g
8ℏ2

þ 1

2
g ∘ ðV ∘ γ−1 ∘VÞ ∘ g

�
ðx − yÞ:

ðD12Þ

By substituting Ĥgrav with Ĥ
0
grav andDðx−yÞwithD0ðx−yÞ

in Eq. (38), we obtain

dρ̂
dt

¼ −
i
ℏ
½Ĥ0 þ Ĥ0

grav; ρ̂�

−
Z

dxdyD0ðx − yÞ½μ̂ðxÞ; ½μ̂ðyÞ; ρ̂��: ðD13Þ
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In this way, we are able to retrieve a smeared quantum
Newtonian gravitational interaction.
As a case of interest, we consider the noise correlation

function given by Eq. (D7). In such a case, we obtain

ðg ∘V ∘ gÞðx − yÞ ¼ −4πGℏ2η2ðx − yÞ;
ðg ∘ γ ∘ gÞðx − yÞ ¼ Aη0ðx − yÞ;

½g ∘ ðV ∘ γ−1 ∘VÞ ∘ g�ðx − yÞ ¼ 16π2G2ℏ4

A
η4ðx − yÞ;

ðD14Þ

where we defined

ηnðx − yÞ ¼
Z

dk
kn

g̃2ðkÞei
ℏk·ðx−yÞ; ðD15Þ

with g̃ðkÞ denoting the Fourier transform of gðx − yÞ.
A good smearing function must give finite expressions in
Eq. (D14), which reflect an appropriate short-distance
regularization of the Newtonian gravitational potential
Vðx − yÞ, the correlation kernel γðx − yÞ, and the feed-
back dynamics ðV ∘ γ−1 ∘VÞðx − yÞ. In turn, one can
exploit Eq. (D14) to restrict the class of smearing function
thus providing a sufficient condition for the convergence of
the integrals entering the master equation (D13). In
particular, the requirement of the convergence of η4 makes
the use of some intuitive choices for the smearing prob-
lematic. Indeed, if one considers a Gaussian smearing
gðzÞ ¼ ð2πσ2Þ−3=2 exp ð−z2=2σ2Þ, one has that both
η0ðx − yÞ and η2ðx − yÞ converge, while η4ðx − yÞ, in
spherical coordinates, becomes

η4ðx − yÞ ¼ 4π

ð2πℏÞ3
Z

∞

0

dk
e−σ

2k2=ℏ2

k2
sin ðkℏ jx − yjÞ

k
ℏ jx − yj ;

ðD16Þ

which diverges, since the integrand is not well defined for
k → 0. However, once inserting Eq. (D16) in the second
term of Eq. (D13), one finds that the double commutator
cancels the divergences due to η4ðx − yÞ, thus leading to a
finite master equation [43,54].

In the following, we determine the convergence require-
ments for the coefficients ηnðx − yÞ. For the sake of
simplicity, we consider only spherical smearing functions,
i.e., g̃ðkÞ ¼ g̃ðkÞ. In such a case, Eq. (D15) simplifies to

ηnðx − yÞ ¼ 4π

Z
∞

0

dk
kn−2

g̃2ðkÞ sin ð
k
ℏ jx − yjÞ

k
ℏ jx − yj ; ðD17Þ

which converges, for example, for smearing functions of
the family g̃ðkÞ ¼ kβe−αk

2

with α > 0 and β ≥ 1. Con-
cretely, a smearing function of the form,

gðx − yÞ ¼ 1

ð2αℏÞ7=2 ½6αℏ
2 − ðx − yÞ2�e−ðx−yÞ2

4αℏ2 ; ðD18Þ

whose Fourier transform is

g̃ðkÞ ¼ k2e−αk
2

; ðD19Þ

belongs to such a family. In particular, explicit calculations
lead to

η0ðzÞ ¼
π3=2

16ℏ4ð2αÞ11=2 ½z
4 þ 40αℏ2ð6αℏ2 − z2Þ�e− z2

8αℏ2 ;

η2ðzÞ ¼ −
π3=2

4ℏ2ð2αÞ7=2 ðz
2 − 12αℏ2Þe− z2

8αℏ2 ;

η4ðzÞ ¼
π3=2

ð2αÞ3=2 e
− z2

8αℏ2 ; ðD20Þ

which are well defined also for jzj ¼ jx − yj → 0. In this
way, the divergences in the TD model are indeed avoided.
If instead of Eq. (D7), one takes γðx − yÞ ¼

−2ℏVðx − yÞ, a normalized Gaussian smearing of standard
deviation σ leads to the following a decoherence kernel:

D0ðx; yÞ ¼ G
2ℏjx − yj erf

�jx − yj
2σ

�
; ðD21Þ

which behaves well also for jx − yj → 0.
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