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The importance of implementing a proper regularization procedure in order to treat thermo and magnetic
contributions within nonrenormalizable theories is investigated. Our study suggests that potential
divergences should be isolated into the vacuum and purely magnetic contributions and then regularized
while the convergent thermomagnetic contributions should be integrated over the full momentum range.
This prescription is illustrated by applying the proper time formalism to the two flavor Polyakov-Nambu-
Jona-Lasinio model, whose magnetic field–dependent coupling has been recently determined. Observables
such as the pressure, magnetization, speed of sound squared, and specific heat evaluated within our scheme
are compared with results furnished by other three possible prescriptions. We show that these quantities
display a thermomagnetic behavior which is physically more consistent when our scheme is adopted. In
particular, we demonstrate that naively regulating the (entangled) vacuum, magnetic, and thermomagnetic
contributions leads to physically inconsistent results especially at the high temperature domain.
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I. INTRODUCTION

Understanding the behavior of magnetized quark matter
is of fundamental importance for the correct description
of physical situations that may take place in magnetars as
well as in peripheral heavy ion collisions [1–4]. On the
theoretical side, this problem has received a lot of attention
recently through the use lattice QCD (LQCD) numerical
simulations and analytical model approximations. One
controversy has emerged when precise LQCD applications,
carried out at zero baryonic densities and physical pionic
masses, have indicated that the crossover pseudocritical
temperature (Tpc) should decrease with increasing magnetic
field values [5,6]. This outcome contradicts early LQCD
simulations [7–9], where high pionic mass values were

considered,1 and also analytical evaluations (mostly at the
mean field level) performed with effective theories such as
the Nambu-Jona-Lasinio model (NJL) [11] and the quark
meson model (QMM) [12,13] as well as their Polyakov
loop extended versions (PNJL [14] and PQMM [15],
respectively). The possible origin of this discrepancy has
later been elucidated in Ref. [16] where the authors have
shown that adding pionic loops to the mean field quark
pressure could fix the problem. Another possible alternative
is to include thermomagnetic effects on the coupling
constants [17–23]. This approach has been adopted in
various investigations where different possible ansatz
[24–27] to describe the B-dependent running of the
coupling have been proposed leading to results for Tpc

which are in line with LQCD predictions. The same type
of technique has been generalized to the SU(3) PNJL
model where the six fermion coupling has also been fixed
according to LQCD data [28]. The reader is referred to
Ref. [29] for a comprehensive review on effective models
under strong magnetic fields.
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1In a recent LQCD study [10], the authors obtained the
decrease of Tpc with increasing magnetic fields when heavy
pions were considered.
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Recently, the two-flavor PNJL model coupling has been
fixed by using, as input, LQCD results that determine the
baryon spectrum of 1þ 1þ 1-flavors in the presence of a
strong magnetic background and at physical pionic masses
[25]. In this case, the running coupling, GðBÞ, has been
determined by constraining the PNJL constituent quark
mass to match the LQCD results including, of course, the
decrease of Tpc with B. For the present work, it is important
to remark that to evaluate quantities such as the pressure the
authors of Ref. [25] have adopted Schwinger’s proper time
formalism [30] and regularized all integrals without sepa-
rating the divergent (vacuum) piece from the convergent
(thermomagnetic) contribution. Next, this regularization
choice has been used to evaluate the effective mass, the
quark condensate, and the pressure for eB ¼ 0 to 0.6 GeV2

covering temperatures up to T ≈ 0.27 GeV so that the final
result for TpcðBÞ is in good agreement with LQCD
predictions. Nevertheless, it is now well established that
such a regularization procedure can give rise to a series
of inconsistencies if the calculations are pushed to higher
temperatures (when, e.g., the pressure may not converge to
the Stefan-Boltzmann limit, as observed in the case eB ¼ 0
[31–33]) or to finite baryon chemical potentials (where the
appearance of unphysical oscillations is more noticeable).
For example, using a B-dependent regularization scheme
for the calculation of the magnetization, some authors find
oscillations which are unphysical while others find imagi-
nary meson masses which are in fact spurious solutions
due to the inappropriate choice of the regularization. This
can be seen by comparing the meson masses results of
Ref. [34] where real values can only be reproduced upon
implementing a consistent regularization strategy.
The importance of using an appropriate regularization

scheme to describe magnetized quark matter has been
clearly demonstrated in Refs. [35–37] which suggest a
strong dependence on the choice of the regularization
scheme for the calculation of physical observables and,
more importantly, that an inappropriate regularization
scheme may give rise to spurious solutions. Here, our
main goal is to investigate different regularization schemes
in order to select the ones which produce physically more
reliable results as far as nonrenormalizable theories are
concerned. With this aim, it is important to first recall the
possibility that different regularization (and renormaliza-
tion) procedures implemented to treat divergences in
quantum field theories always introduce some degree of
arbitrariness during formal evaluations. Generally, within
renormalizable theories, such as QCD, this arbitrariness is
associated to the possibility of choosing different regula-
tors, subtraction points, and energy scales. However,
physically unambiguous results may be obtained by further
constraints such as the ones imposed by the renormaliza-
tion group equations which require that physical observ-
ables be invariant with respect to changes in the arbitrary
energy scale. The situation is less clear when it comes to

nonrenormalizable theories such as the PNJL model in
3þ 1d considered here. Traditionally, this type of theory is
regularized with a sharp cutoff,2 Λ, which instead of being
removed by some subtraction prescription is formally
treated as a “parameter” that sets the energy scale value
(generally ∼0.6–1 GeV) up to which the theory can be
considered to be effective [39]. In the absence of control
parameters such as T, μ, and B, where it is free from
ambiguities, this became the standard procedure to deal
with NJL type of models. The case of T ¼ B ¼ 0 and
μ ≠ 0 is also unambiguous since the Fermi momentum,
pF ¼ ðμ2 −M2Þ1=2, naturally regularizes the convergent
contributions. When finite temperatures come into play
(still at B ¼ 0), the thermodynamical potential at the (one
loop) mean field level considered here splits into two parts,
Ω ¼ ΩV þΩT . The first represents the ultraviolet (UV)
divergent vacuum piece and the second one represents the
convergent thermal contribution. In renormalizable theo-
ries, one usually isolates and renormalizes the divergences
contained in ΩV so that its final contribution is finite in the
extreme UV limit and does not depend on any regulator. At
the same time, the convergent thermal integrals are simply
integrated over the full momentum range. When consid-
ering nonrenormalizable theories where the final vacuum
contribution depends on the regulator (now a finite valued
parameter), one has two options to treat the thermal part.
In early works (see Ref. [40] and references therein), the
preferred method was that (for “consistency”) one should
also regularize the convergent thermal integrals so that
Ω ¼ ΩVðΛÞ þ ΩTðΛÞ. Later, it has been suggested that this
course of action is unnecessary since the finite temperature
contribution has a natural cutoff in itself specified by the
temperature [41] and in this case one should consider
Ω ¼ ΩVðΛÞ þ ΩTð∞Þ. The drawback associated with the
former approach is that thermodynamical quantities evalu-
ated in this way do not converge to the expected Stefan-
Boltzmann limit as T → ∞ [40]. On the other hand,
although the latter strategy does not spoil the high-T
behavior of quantities such as the pressure, it can generate
thermal effective masses which are smaller than the actual
current mass value, mc. Although happening at temper-
atures of the order T ≈Mð0Þ ≈ 300 MeV, this is still an
undesirable feature [33]. It should be mentioned that
alternatives to recover the Stefan-Boltzmann limit while
maintaining MðTÞ > mc at high-T have been given in
Refs. [42,43].
Additional care is needed when regularizing a non-

renormalizable theory to describe magnetized hadronic
matter due to the Landau level (LL) structure acquired
by the vacuum energy. To treat this situation, a seminal
work [44] employed the proper time formalism without
disentangling the purely magnetic part from the vacuum so

2See Ref. [38] for alternatives such as dimensional
regularization.
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that Ω ¼ ΩVMðΛÞ. Adding finite temperature effects brings
in, once again, the question about the need to regularize (or
not) the finite thermomagnetic contribution, ΩTM. Since
these two possibilities will be examined here, let us dub
standard proper time (SPT) the one in which this term is not
regularized so that Ω ¼ ΩVMðΛÞ þ ΩTMð∞Þ. At the same
time, let us dub thermomagnetic regulated proper time
scheme (TRPT), the one in which ΩTM is regularized as in
Ref. [25] so that Ω ¼ ΩVMðΛÞ þ ΩTMðΛÞ. Later, the
interesting possibility of isolating all the divergences within
the vacuum term by separating a finite purely magnetic
term (summed over all LL) has been suggested [45,46].
This scheme, which avoids unphysical oscillations, was
originally applied in the proper time (PT) framework [46]
and latter generalized to the sharp cutoff framework [47]
allowing for several further applications [36,37,48–54].
Within this magnetic field independent regularization
scheme3 (MFIR), which uses dimensional regularization
techniques, a magnetic field–dependent divergence is
subtracted together with other finite mass independent
(B-dependent) terms so that, at T ¼ 0, one ends up with
Ω ¼ ΩVðΛÞ þ ΩM where ΩM represents a purely magnetic
finite contribution that does not require further integration
or sum over LL. As before, when going to finite temper-
atures, one needs to add the thermomagnetic contribution
ΩTMðΛÞ or ΩTMð∞Þ to Ω (here we will consider the latter
case which is the one most adopted in the literature).
At this point, it is legitimate to ask how the MFIR

subtraction prescription may affect physical observables
since subtracting mass-independent terms means that finite
B-dependent terms also end up by being neglected.
Adopting this scheme to analyze phase transitions as in
Refs. [45,47] through order parameters such as the quark
condensate, hψ̄ψi ¼ ∂Ω=∂mc, can be justified by the fact
that these quantities are mass dependent. However, the
same scheme is certainly not appropriate to treat quantities
such as the magnetization,M ¼ −∂Ω=∂B. This is because
a flawless evaluation of M requires the knowledge of the
complete Ω including all finite B-dependent terms (see
Ref. [55] for a related discussion). In order to circumvent
this eventual problem, a fourth possibility which avoids any
subtractions will be proposed in the present work. Within
this prescription one starts by isolating the purely magnetic
part of Ω and then identifying two potential divergences:
one that is B independent (M dependent) and another one
which is B dependent (M independent) just as in the MFIR
case. However, the most important difference is that now
the B-dependent divergence is simply regularized but not
subtracted (by renormalizing B2) as in the MFIR case.
Therefore, at T ¼ 0, the thermodynamical potential has the
form Ω ¼ ΩVðΛÞ þ ΩMðΛÞ [when considering the T ≠ 0

case in this scheme we will consider a nonregularized
piece, ΩTMð∞Þ]. We shall dub this prescription vacuum
magnetic regularization (VMR) scheme since the diver-
gences present in the vacuum and purely magnetic con-
tributions are regulated. In summary, the fact that at B ≠ 0
the Lagrangian density of nonrenormalizable models is
enlarged by a finite QED type of sector together with the
additional possible choices of regularizing the convergent
thermomagnetic part generates a great number of possible
regularization prescriptions. Unfortunately, dealing with
divergences in nonrenormalizable theories in the presence
of a magnetic field and a thermal bath cannot be dealt with
in a pragmatic manner as in the case of renormalizable
theories where further constraints based on a well-
established renormalization programme are available.
Nevertheless, one may select the most effective one by
analyzing the physical behavior of different observables.
With this purpose in this work, we will consider the four
possible regularization schemes already described to evalu-
ate physical quantities such as the quark condensate,
pressure, magnetization, speed of sound, and specific heat
at finite temperatures and in the presence of a strong
magnetic field. The work is organized as follows. In the
next section, we present the model and review finite
temperature results in the absence of magnetic fields.
Then, in Sec. III, we obtain the thermodynamical potential
using four possible regularization prescriptions. Numerical
results are presented in Sec. IVand the conclusions in Sec. V.

II. THE MODEL

The PNJL Lagrangian density in the presence of an
external magnetic field is given by [41]

LPNJL ¼ ψ̄ðiγμDμ − m̂cÞψ þ G½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�

− UðΦ; Φ̄; TÞ − 1

4
FμνFμν; ð2:1Þ

where ψ represents fermionic fields (a sum in color and
flavor indices is implicit), τ are isospin Pauli matrices, m̂c
are the current quark masses which, for simplicity, we set as
mu ¼ md ≡mc while G represents the coupling constant.
The covariant derivative is given by

Dμ ¼ ∂μ − iqfA
μ
EM − iAμ; ð2:2Þ

where qf represents the quark electric charge,4 Aμ
EM is the

electromagnetic gauge field, Fμν ¼ ∂μAμ
EM − ∂νAν

EM where
Aμ
EM ¼ δμ2x1B and B⃗ ¼ Bê3 within the Landau gauge

adopted here. We also consider the Polyakov gauge where
the gluonic term, Aμ ¼ gAμ

aðxÞ λa2 , only contributes with the
spatial components: Aμ ¼ δ0μA0 ¼ −iδ0μA4 where g is the
strong coupling, Aμ

aðxÞ represents the SU(3) gauge fields3More recently, the MFIR has been further improved by means
of the Hurwitz-Riemann-zeta function defining the so-called zeta
MFIR regularization procedure [52]. 4qu ¼ 2e=3, qd ¼ −e=3 with e ¼ 1=

ffiffiffiffiffiffiffiffi
137

p
.
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while λa are the Gell-Mann matrices. The expectation
value of the Polyakov loop, Φ, is then given by the
expected value of the Wilson line [56], LðxÞ≡
P exp ½i R β

0 dτA4ðτ; xÞ�. That is,

Φ≡
�

1

Nc
TrLðxÞ

�
; and Φ̄≡

�
1

Nc
TrL†ðxÞ

�
: ð2:3Þ

Remark that the Polyakov potential, UðΦ; Φ̄; TÞ, is fixed to
reproduce pure-gauge LQCD results [14]. In the case of
vanishing baryonic densities (μ ¼ 0) considered here, one
has Φ̄ ¼ Φ so that the ansatz proposed in Ref. [57] reads

UðΦ; TÞ
T4

¼ −
1

2
b2ðTÞΦ2 þ b4ðTÞ ln ½1− 6Φ2 þ 8Φ3 − 3Φ4�;

ð2:4Þ

with

b2ðTÞ¼a0þa1

�
T0

T

�
þa2

�
T0

T

�
2

; b4ðTÞ¼b4

�
T0

T

�
3

;

ð2:5Þ

where the parametrization is given in Table I. Following
Ref. [25], we choose T0 ¼ 208 MeV in order to consider
two quark flavor contributions [58].

III. THERMODYNAMICAL POTENTIAL
EVALUATIONS

Let us now evaluate the thermodynamical potential,
ΩðM;Φ; T; BÞ, by applying the MFA to the PNJL within
the PT framework. As discussed in the Introduction, the
divergences will be handled in four different ways.

A. TRPT and SPT frameworks

Within the regulated thermomagnetic integral PT for-
malism (TRPT) adopted in Ref. [25], the thermodynamical
potential is

ΩTRPTðM;Φ;T;BÞ¼UðΦ;TÞþðM−mcÞ2
4G

þ Nc

8π2
X
f¼u;d

ðjqfjBÞ2
Z

∞

jqf jB
Λ2

ds
s2
e
−M2s
jqf jBcothðsÞ

þ 1

8π2
X
f¼u;d

ðjqfjBÞ2
Z

∞

jqf jB
Λ2

ds
s2
e
−M2s
jqf jBcothðsÞ

�
2
X∞
n¼1

e−
jqf jBn2
4sT2 ð−1Þn

�
2cos

�
ncos−1

3Φ−1

2

�
þ1

	

; ð3:1Þ

where the effective mass is given by the solution of the self-consistent gap equation

M −mc

2G
¼ MNc

4π2
X
f¼u;d

jqfjB
Z

∞

jqf jB
Λ2

ds
s
e
−M2s
jqf jB cothðsÞ

þ M
4π2

X
f¼u;d

jqfjB
Z

∞

jqf jB
Λ2

ds
s
e
−M2s
jqf jB cothðsÞ

�
2
X∞
n¼1

e−
jqf jBn2
4sT2 ð−1Þn

�
2 cos

�
ncos−1

3Φ − 1

2

�
þ 1

	

; ð3:2Þ

which is to be solved simultaneously with ∂ΩðM;Φ;TÞ
∂Φ jM;T ¼ 0. Remark the presence of the regulator jqfjB=Λ2 in the lower

limit of the convergent thermomagnetic integrals represented by the last terms of Eqs. (3.1) and (3.2) which indicates that
ΩTRPT ¼ ΩVMðΛÞ þ ΩTMðΛÞ. To obtain the equivalent SPT relation, one simply needs to consider these convergent terms
upon performing the replacement jqfjB=Λ2 → 0 in the lower limit of those integrals so thatΩSPT ¼ ΩVMðΛÞ þ ΩTMð∞Þ as
already discussed. For completeness, let us also quote the B ¼ 0 relations,

ΩTRPTðM;Φ; T; 0Þ ¼ UðΦ; TÞ þ ðM −mcÞ2
4G

þ NcNf

8π2

Z
∞

1

Λ2

ds
s3

e−M
2s

þ Nf

8π2

Z
∞

1

Λ2

ds
s3

e−M
2s

�
2
X∞
n¼1

e−
n2

4sT2ð−1Þn
�
2 cos

�
ncos−1

3Φ − 1

2

�
þ 1

	

ð3:3Þ

and

M −mc

2G
¼ MNcNf

4π2

Z
∞

1

Λ2

ds
s2

e−M
2s þMNf

4π2

Z
∞

1

Λ2

ds
s2

e−M
2s

�
2
X∞
n¼1

e−
n2

4sT2ð−1Þn
�
2 cos

�
ncos−1

3Φ − 1

2

�
þ 1

	

: ð3:4Þ

TABLE I. Parameter set used for the Polyakov loop potential.

a0 a1 a2 b4

3.51 −2.47 15.22 −1.75
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To obtain the equivalent VMR relations, one performs the replacement 1=Λ2 → 0 in the lower limit of the convergent
thermal integrals represented by the last terms of Eqs. (3.3) and (3.4).

B. VMR and MFIR frameworks

The first step to implement the vacuummagnetic regularization scheme proposed here is to split the (divergent) third term
of Eq. (3.1) in one B-independent integral and one pure magnetic expression (see Appendix A for details). Then,

Nc

8π2
X

qf¼u;d

ðjqfjBÞ2
Z

∞

jqf jB
Λ2

ds
s2

e
−M2s
jqf jB cothðsÞ ¼ NcNf

8π2

Z
∞

1

Λ2

ds
s3

e−M
2s þ Nc

24π2
X

qf¼u;d

ðjqfjBÞ2
�
ln

�
Λ2

2jqfjB
�
þ 1 − γE

	

− Nc

X
f¼u;d

ðjqfjBÞ2
2π2

�
ζ0ð−1; xfÞ − ½x2f − xf�

ln xf
2

þ x2f
4

	
; ð3:5Þ

where xf ¼ M2

2jqf jB, and ζ represents the Hurwitz-Riemann-zeta function.

Then, considering Eq. (3.5) together with the finite thermomagnetic contribution, one obtains the full VMR
thermodynamical potential

ΩVMRðM;Φ;T;BÞ¼UðΦ;TÞþðM−mcÞ2
4G

þNcNf

8π2

Z
∞

1

Λ2

ds
s3
e−M

2sþ Nc

24π2
X

qf¼u;d

ðjqfjBÞ2
�
ln

�
Λ2

2jqfjB
�
þ1−γE

	

−Nc

X
f¼u;d

ðjqfjBÞ2
2π2

�
ζ0ð−1;xfÞ−

1

2
½x2f−xf� lnxfþ

x2f
4

	

þ 1

8π2
X
f¼u;d

ðjqfjBÞ2
Z

∞

0

ds
s2
e
−M2s
jqf jBcothðsÞ

�
2
X∞
n¼1

e−
jqf jBn2
4sT2 ð−1Þn

�
2cos

�
ncos−1

3Φ−1

2

�
þ1

	

; ð3:6Þ

which is clearly of the form ΩVMR ¼ ΩVðΛÞ þΩMðΛÞ þΩTMð∞Þ. For completeness, let us recall the equivalent MFIR
equation [35,36,45,47],

ΩMFIRðM;Φ; T;BÞ ¼ UðΦ; TÞ þ ðM −mcÞ2
4G

þNcNf

8π2

Z
∞

1

Λ2

ds
s3

e−M
2s −Nc

X
f¼u;d

ðjqfjBÞ2
2π2

�
ζ0ð−1; xfÞ−

1

2
½x2f − xf� lnxf þ

x2f
4

	

þ 1

8π2
X
f¼u;d

ðjqfjBÞ2
Z

∞

0

ds
s2

e
−M2s
jqf jB cothðsÞ

�
2
X∞
n¼1

e−
jqf jBn2
4sT2 ð−1Þn

�
2 cos

�
ncos−1

3Φ− 1

2

�
þ 1

	

;

ð3:7Þ

which is of the form ΩMFIR ¼ ΩVðΛÞ þ ΩM þΩTMð∞Þ. Therefore, one can relate the VMR and MFIR results as

ΩVMRðM;Φ; T; BÞ ¼ ΩMFIRðM;Φ; T; BÞ þ Nc

24π2
X

qf¼u;d

ðjqfjBÞ2
�
ln

�
Λ2

2jqfjB
�
þ 1 − γE

	
; ð3:8Þ

which clearly displays the most important difference between the two regularization prescriptions. Namely, within the
MFIR, the divergence of the magnetic contribution represented by the ln½Λ2=ð2jqfjBÞ� is completely subtracted by
renormalizing B2. However, in this process, important finite contributions represented by the terms proportional to ð1 − γEÞ
are also canceled directly impacting the magnetization. Finally, the VMR gap equation (which is exactly the same as the
MFIR one) is given by

M −mc

2G
¼ MNcNf

4π2

Z
∞

1

Λ2

ds
s2

e−M
2s þMNc

X
f¼u;d

jqfBj
2π2

�
ln ðΓ½xf�Þ −

1

2
ln ð2πÞ þ xf −

1

2
ð2xf − 1Þ ln xf

	

þ M
4π2

X
f¼u;d

jqfjB
Z

∞

0

ds
s
e
−M2s
jqf jB cothðsÞ

�
2
X∞
n¼1

e−
jqf jBn2
4sT2 ð−1Þn

�
2 cos

�
ncos−1

3Φ − 1

2

�
þ 1

	

: ð3:9Þ
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As one can see, the VMR extra (mass independent) term
contained in Eq. (3.8) does not contribute to the mass gap
nor to higher derivatives with respect to the mass and thus
observes Goldstone’s theorem [59,60].

IV. RESULTS

Having the thermodynamical potential, we can easily
obtain some important thermodynamical observables
such as the pressure, P ¼ −Ω, and the energy density,

E ¼ −Pþ TS þ BM, where the entropy density is S ¼
∂P=∂T and the magnetization is M ¼ ∂P=∂B. For our
purposes, it will prove useful to also investigate the quark
condensate

hψ̄fψfi ¼ −
∂P
∂mc

; ð4:1Þ

as well as the specific heat and the speed of sound squared
which are, respectively, defined as

Cv ¼ T
∂S
∂T ð4:2Þ

and

C2
s ¼

∂P
∂E ¼ S

Cv
: ð4:3Þ

As explained in the Introduction, in order to be in line
with LQCD predictions, we shall consider a B-dependent

TABLE II. GðBÞΛ2 values for the four different regularization
prescriptions.

eB [GeV2] VMR and MFIR SPT and TRPT

0.0 5.83200 5.83200
0.2 5.05349 5.19413
0.4 3.74477 4.05506
0.6 2.69719 3.05269

FIG. 1. Normalized quark condensate for different magnetic fields as a function of temperature calculated with the different
regularization procedures. The quantity hψ̄fψfi0 represents the quark condensate at T ¼ 0.
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coupling, GðBÞ, whose running was determined in
Ref. [25]. Following that work, we first set Λ ¼
675 MeV and mc ¼ 3.5 MeV and then tune GðBÞ so that
all four different regularization schemes considered here
yield the quark mass value needed to reproduce the
mesonic masses predicted by LQCD simulations. The
values of the dimensionless quantity GðBÞΛ2 at different
magnetic intensities are given in Table II for the four
different schemes.
Let us start by analyzing the chiral transition order

parameter represented by the quark condensate. Figure 1
shows this quantity as a function of the temperature for
different values of the magnetic field illustrating that except
for the TRPT all other regularization schemes predict a
similar quantitative behavior. As B increases, the TRPT
predictions are in better agreement with the ones furnished
by the other three prescriptions. It is also clear, from the
inflection points, that the pseudocritical temperature value
decreases as B increases as one could anticipate. The
subtracted pressure, ΔP ¼ PðT; BÞ − Pð0; BÞ, as a func-
tion of T is presented in Fig. 2 for different values of B.
One can now observe that the TRPT scheme also produces
a rather different high-T behavior which is enhanced as
higher magnetic fields are considered as the panel for the

eB ¼ 0.6 GeV2 suggests. The maximum at T ≈ 0.23 GeV
(eB ¼ 0.6 GeV2) is a reminder that by regulating the
(convergent) thermomagnetic integrals one loses predictive
power at high temperatures. As already emphasized, a
major drawback of this type of regularization procedure is
that the Stefan-Boltzmann limit is never attained as T → ∞
[40]. Next, to illustrate the effect of the missing mass-
independent terms in the MFIR as well as the effect of
regulating the thermomagnetic integrals within the TRPT
schemes, we offer Fig. 3. This figure shows that the TRPT
predictions become less reliable as T increases, in accor-
dance with our previous discussion. Moreover, the figure
clearly illustrates how the neglected mass-independent
terms seem to affect the pressure by causing its absolute
value to first decrease (at low B) and then increase after
having reached an extremum. This behavior is in contra-
diction with the ones predicted by all the other three
schemes and directly affects the magnetization as Fig. 4
shows. From the qualitative point of view, it is important to
note that the MFIR predicts quark matter to be para-
magnetic (M > 0) at low B and diamagnetic (M < 0) at
high magnetic fields, while the other approximations
predict it to be diamagnetic (at least up to the highest
temperature considered in the figure, T ¼ 0.25 GeV).

FIG. 2. Normalized pressure for different magnetic field values as a function of temperature calculated with the different regularization
procedures.
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FIG. 4. Magnetization for different temperature values as a function of eB calculated with the different regularization procedures.

FIG. 3. Pressure for different temperature values as a function of eB calculated with the different regularization procedures.
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The thermal behavior of the magnetization can be better
analyzed by plotting this quantity as a function of T
for different values of B as Fig. 5 shows. One can observe
that the thermal behavior predicted by the MFIR is
very sensitive to variations of B. At eB ¼ 0.2 GeV2,
the predicted MFIR absolute value for M is lesser
than the ones predicted by the other approximations.
Then, all the predicted values almost coincide at eB ¼
0.4 GeV2 while the MFIR absolute values are higher
at eB ¼ 0.6 GeV2.
At this point, a digression concerning the magnetic

character of the QCD vacuum is in order since LQCD
evaluations, at T ¼ 0, have shown that the vacuum is
paramagnetic [61] in contradiction to our present findings.
The VMR can indeed be reconciled with the LQCD results
provided that one uses the same definition for the renor-
malized magnetization, Mr, used in Ref. [61] where the
authors consider

Mr · eB ¼ M · eB − ðeBÞ2lim
eB→0

M · eB
ðeBÞ2

����
T¼0

: ð4:4Þ

In Appendix B, we give the analytical details necessary to
obtain this quantity within our framework. Figure 6 shows

Mr varying with the magnetic field (left panel) and with
the temperature (right panel) when considering the cou-
pling fixed at the B ¼ 0 value, Gð0Þ. Note that although a
fixed coupling does not favor inverse magnetic catalysis,
the paramagnetic behavior dominates most regions as the
left panel shows. On the other hand, our preliminary
investigations suggest that addressing this issue in an
appropriate manner will require the determination of
how G runs with B with much greater accuracy than the
one provided by Ref. [25] (which was adopted here). This
nontrivial research programme, which may also require the
consideration of strangeness,5 demands a careful numerical
analysis. Therefore, we postpone this investigation for a
future application since for our present purposes the results
shown in Fig. 6 should convince the reader that the
apparent qualitative disagreement between the results
shown in Figs. 4 and 5 and lattice predictions can indeed
be reconciled. For that, one needs to consider the renor-
malized magnetization,Mr, in conjunction with a coupling
which runs with B in a way which is different from the
one proposed in Ref. [25]. This last remark is corroborated

FIG. 5. Magnetization for different magnetic field values as a function of the temperature calculated with the different regularization
procedures.

5Recall that the lattice results [61] were obtained at Nf ¼
2þ 1 while here only the Nf ¼ 2 case is considered.
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by the fact that in the extreme Gð0Þ case (no running at all)
our VMR predicts quark matter to be paramagnetic in
accordance with lattice simulations. Also, when imple-
menting such a programme, one should consider the
quark condensates in the vacuum to be hūui þ hd̄di ¼
−2ð0.25 GeVÞ3 [62].
It is important to emphasize that the VMR scheme

proposed here is not totally compatible with the

renormalized magnetization. This can be understood by
recalling that the purely magnetic contribution guarantees
the magnetic catalysis of the VMR gap equation.
However, in renormalizable theories such as QED con-
sidered by Schwinger [30] or QCD considered in LQCD
applications [61], one expects to renormalize the addi-
tional OðeBÞ2 contribution through the term B2=2.
Therefore, the renormalized magnetization on the

FIG. 7. The squared speed of sound for different magnetic field values as a function of temperature calculated with the different
regularization procedures.

FIG. 6. Left panel: renormalized magnetization for a fixed coupling,Gð0Þ, at different temperatures as a function of the magnetic field.
Right panel: renormalized magnetization for a fixed coupling, Gð0Þ, at different magnetic field values as a function of the temperature.
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PNJL SU(2) model with VMR regularization discussed in
Appendix B is merely a projected magnetization that can
be a useful tool as far as comparisons with LQCD are
concerned. In other words, by doing this, we hope to have
a magnetization as similar as possible to that considered
in lattice applications [61].
Coming back to Fig. 5 another interesting feature

concerns the high-T behavior of the TRPT curves which
increase with T in a less linear fashion than all other curves.
This could be anticipated based on our previous discussion
related to the Stefan-Boltzmann limit. Such a problem
becomes even more transparent when one analyzes the
speed of sound squared as a function of the temperature. In
this case, Fig. 7 clearly reveals that for T ≳ 0.2 GeV the
TRPT scheme predicts that C2

s overshoots the value 1=3
which is the expected value at the Stefan-Boltzmann limit.
The other three methods, on the other hand, predict a steady
convergence toward C2

s ¼ 1=3 as T → ∞. Finally, Fig. 8
which shows the specific heat as a function of T for
different values of B displays a clear difference between the
deconfinement (first peak) and the chiral (second peak)
crossover taking place within the T ∼ 0.15–0.2 GeV range.
One observes a rather good agreement between the full
MFIR, VMR, and SPT prescriptions even when the

magnetic field reaches high values. On the other hand,
the TRPT prescription predicts much lower values when
compared to the other regularization schemes especially for
temperatures around and above the deconfinement pseu-
docritical transition. This appears to be yet another con-
sequence of regulating the convergent thermomagnetic
integrals within this model (a byproduct of underestimating
the Stefan-Boltzmann limit in the pressure). For all regu-
larization prescriptions adopted in this work, one can
observe the presence of two peaks in the specific heat as
a function of the temperature: the first one (more abrupt)
determines the pseudocritical temperature for deconfine-
ment, and the second (smoother) determines the pseudoc-
ritical temperature for chiral symmetry restoration. It is
important to note that all of our results include inverse
magnetic catalysis through GðBÞ in the deconfinement and
chiral transitions and the splitting between these pseudoc-
ritical temperatures remains almost constant if we increase
the strength of the magnetic field as already reported in the
context of the SU(3) PNJL [63]. This is in the opposite
behavior when compared with results of SU(3) PNJL and
SU(2) LSM [64,65], where the splitting increases with B.
The LQCD study [66] gives further support to the behavior
found in Ref. [63].

FIG. 8. The specific heat for different magnetic field values as a function of temperature calculated with the different regularization
procedures.
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V. CONCLUSIONS

We have considered the two-flavor PNJL model in the
presence of a thermomagnetic background within the mean
field framework in order to compare four different regu-
larization prescriptions. In nonrenormalizable theories, the
adoption of different regularization schemes may lead to
rather different predictions when a magnetic field and
thermal bath are present since one lacks further constraints
such as the ones available to renormalizable theories (e.g.,
renormalization group equations). Apart from considering
the three popular schemes represented by the SPT, TRPT,
and MFIR, we have proposed an alternative procedure
(dubbed VMR). Within this scheme, all divergences are
first disentangled and then regulated without any further
subtractions while the finite thermomagnetic contribution is
integrated over the full momentum range. Comparing the
behavior of different physical observables we are able to
conclude that, as expected, the TRPT fails to converge to
the Stefan-Boltzmann limit when high temperatures are
considered. The other three prescriptions predict similar
behaviors for the quark condensate, normalized pressure,
speed of sound, and specific heat. Nevertheless, the MFIR
displays a rather different behavior with regard to the
absolute pressure and magnetization. In particular, the
MFIR predictions for the latter quantity are in qualitative
disagreement with the other three methods. Namely, while
the SPT, TRPT, and VMR predict quark matter to be
diamagnetic at the T, B range analyzed here, the MFIR
predicts it to be paramagnetic at low B and diamagnetic at
high field values. We believe that this different behavior is
due to the missing field-dependent terms subtracted during
the MFIR renormalization process. On the other hand, the
results furnished by the SPT and the VMR, proposed here,
are very similar both qualitatively and quantitatively. The
small differences between both schemes only become
apparent when examining the results for the magnetization
at high field values. This probably happens because within
the VMR the divergences contained in the vacuum and in
the purely magnetic part have been properly isolated and
regulated allowing for the sum over LL to be performed in a
closed analytical form. In the view of these results, one may
conclude that the VMR offers the most versatile regulari-
zation scheme to describe most observables related to
magnetized quark matter. We have also observed that, in
a scenario without inverse magnetic catalysis, the para-
magnetic character of QCD can be properly achieved if one
makes use of the renormalized magnetization applied to the
VMR scheme.
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APPENDIX A: VACUUM MAGNETIC
REGULARIZATION

Let us consider the (entangled) vacuum-magnetic parts
of the thermodymanical potential as it appears in the lhs of
Eq. (3.5),

I ¼
X
f¼u;d

Nc

8π2

Z
∞

1

Λ2

ds
e−M

2s

s3
ðjqfjBs cothðjqfjBsÞÞ; ðA1Þ

where we have used a simple change of variables. Note that
the integral is clearly divergent for s → 0. Within the VMR,
we first separate the integrand of Eq. (A1) into a divergent
and a finite part [30] as s → 0. With this aim, let us first
expand the cothðjqfjBsÞ in Taylor series, such that

e−M
2s

s3
ðjqfjBs cothðjqfjBsÞÞ

¼ e−M
2s

s3

�
1þ ðjqfjBsÞ2

3
−
ðjqfjBsÞ4

45
þOððjqfjBsÞ6Þ

�
;

ðjqfjBsÞ < π: ðA2Þ

As we can see, the first two terms in Eq. (A2) are divergent
for s → 0 and need regularization, so we can rewrite I as

I ¼ I0 þ Ifield þ Iint; ðA3Þ

where

I0 ¼
NfNc

8π2

Z
∞

1

Λ2

ds
e−M

2s

s3
ðA4Þ

and

Ifield ¼
X
f¼u;d

Nc
ðjqfjBÞ2
24π2

Z
∞

1

Λ2

ds
e−M

2s

s
: ðA5Þ
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The integral represented by Eq. (A5) can be further
simplified by considering its explicit solution

Ifield ¼
X
f¼u;d

Nc
ðjqfjBÞ2
24π2

Γ
�
0;
M2

Λ2

	
; ðA6Þ

where Γ½a; z� is the incomplete gamma function.
Expanding the above result in powers of M2=Λ2, one
obtains

Ifield ¼
X
f¼u;d

Nc
ðjqfjBÞ2
24π2

�
− ln

�
M2

Λ2

�
− γE þM2

Λ2

þOðM4=Λ4Þ
	
; ðA7Þ

which allows us to identify the divergences and finite terms
as Λ → ∞. At this limit, all mass-dependent terms vanish
so that one only needs to consider

Ifield ¼
X
f¼u;d

Nc
ðjqfjBÞ2
24π2

�
− ln

�
M2

Λ2

�
− γE

	
: ðA8Þ

This last step guarantees that the gap equation will be
consistent for the following reason. Deriving Ifield with
respect to M, as given by the original Eq. (A5), yields

∂Ifield
∂M ¼ −

X
f¼u;d

Nc
ðjqfjBÞ2
12π2

M
Z

∞

1

Λ2

dse−M
2s; ðA9Þ

which would contribute to the gap equation. However,
since this term is finite, one may replace 1=Λ2 → 0 in the
lower limit of the integral to get

∂Ifield
∂M ¼ −

X
f¼u;d

Nc
ðjqfjBÞ2
12π2M

: ðA10Þ

This is exactly the same result that one obtains by deriving
the truncated Ifield contribution, Eq. (A8), with respect to
M. Therefore, it is Eq. (A8) and not Eq. (A5) the one which
should be considered when evaluating the thermodynam-
ical potential.
The finite pure magnetic contribution Iint is

Iint ¼
X
f¼u;d

Nc

8π2

Z
∞

0

ds
e−M

2s

s3

×

�
jqfjBs cothðjqfjBsÞ − 1 −

ðjqfjBsÞ2
3

�
: ðA11Þ

Now, we can solve the finite integral (A11) using the
representation of the gamma function,

Γðnþ 1Þ
ðβÞnþ1

¼
Z

∞

0

dssne−βs; ðA12Þ

and the Hurwitz-Riemann-zeta function [67],

ζðz; qÞ ¼
X∞
k¼0

1

ðqþ kÞz ; ðA13Þ

such that

Iint ¼
X
f¼u;d

Nclim
ϵ→0

ðjqfjBÞ2
8π2

Z
∞

0

dse
− M2

jqf jBss−3þϵ

�
s cothðsÞ − 1 −

s2

3

�

¼
X
f¼u;d

Nc
ðjqfjBÞ2
8π2

lim
ϵ→0

�
Γð−1þ ϵÞ

�
22−ϵζ

�
−1þ ϵ;

M2

2jqfjB
�
−
�

M2

jqfjB
�

1−ϵ�
−
Γð−2þ ϵÞ
ð M2

jqf jBÞ
−2þϵ

−
1

3

ΓðϵÞ
ð M2

jqf jBÞ
ϵ

	
: ðA14Þ

Make use of some expansions such as a−ϵ ≅ 1 − ln aϵþOðϵÞ and

Γð−nþ ϵÞ ¼ ð−1Þn
n!

�
1

ϵ
þ ψ1ðnþ 1Þ þOðϵÞ

	
; ðA15Þ

where ψ1ðnþ 1Þ ¼ 1þ 1
2
þ � � � þ 1

n − γE, and γE ¼ 0.577216 is the Euler-Mascheroni constant. After some algebraic steps,
we then obtain

Iint ¼ −Nc

X
f¼u;d

ðjqfjBÞ2
2π2

�
ζ0ð−1; xfÞ −

1

2
ðx2f − xfÞ ln xf þ

x2f
4
−

1

12
ð1þ ln xfÞ

	
; ðA16Þ

where we have defined xf ¼ M2=ð2jqfjBÞ so that Eq. (A3) is exactly the rhs of Eq. (3.5). Now adding Ifield as given by the
truncated relation, Eq. (A8), to Iint as given by Eq. (A16) allows us to merge two mass-dependent logarithmic terms into a
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mass-independent one. Namely, − lnðM2=Λ2Þ þ ln xf ¼ ln½Λ2=ð2jqfjBÞ� which does not contribute to the gap equation.
Then, Eq. (3.5) can be finally written as

Nc

8π2
X

qf¼u;d

ðjqfjBÞ2
Z

∞

jqf jB
Λ2

ds
s2

e
−M2s
jqf jB cothðsÞ ¼ NcNf

8π2

Z
∞

1

Λ2

ds
s3

e−M
2s þ Nc

24π2
X

qf¼u;d

ðjqfjBÞ2
�
ln

�
Λ2

2jqfjB
�
þ 1 − γE

	

− Nc

X
f¼u;d

ðjqfjBÞ2
2π2

�
ζ0ð−1; xfÞ − ½x2f − xf�

ln xf
2

þ x2f
4

	
: ðA17Þ

APPENDIX B: RENORMALIZED
MAGNETIZATION

The magnetization (Mr) considered in lattice evalua-
tions [61], defined by Eq. (4.4), is the renormalized one.
However, contrary to QCD, the PNJL model considered
here represents a nonrenormalizable theory. Nevertheless, it
is possible to define within the PNJL framework a quantity
analogous to Mr in the following way. First, recall that in
lattice QCD applications, the thermodynamical quantities
are renormalized in a way to eliminate the contributions
of order OðeB2Þ when T ¼ 0. Then, using the on shell
scheme, one can define the operator

P½X� ¼ ðeBÞ2limeB→0

X
ðeBÞ2

����
T¼0

; ðB1Þ

so that, for a renormalized quantity, one has

Xr ¼ ð1 − PÞ½X�: ðB2Þ

Within the PNJL theory, we first need to evaluate the limit
eB → 0 for each quantity in the VMR thermodynamical
potential, Eq. (3.6). In this case, the thermomagnetic
contribution is obviously zero, following the definition
given by Eq. (B1). Next, let us show that the pure magnetic
contribution also does not contribute in this limit. To this
end, let us first consider the expansion of the Hurwitz
zeta function, ζ0ð−1; xfÞ [55], in the limit eB → 0. This is
given by

ζ0ð−1; xfÞ ¼
1

12
−
x2f
4
þ
�
1

12
−
xf
2
þ x2f

2

�
ln xf þOðx−2f Þ:

ðB3Þ

Substituting Eq. (B3) in the (finite) purely magnetic
contribution Iint given by Eq. (A16), one finds

ðeBÞ2 lim
eB→0

Iint
ðeBÞ2 ¼ 0: ðB4Þ

The only remaining magnetic contribution toΩVMR is given
by Ifield, Eq. (A8). We then apply Eq. (B1) to the VMR
pressure, PVMR ¼ −ΩVMRðM;Φ; T; BÞjM, obtaining our
renormalized pressure

Pr
VMR ¼ PVMR − ðeBÞ2 lim

eB→0

PVMR

ðeBÞ2
����
T¼0

; ðB5Þ

which yields

Pr
VMR ¼ PVMR −

X
f¼u;d

ðjqfjBÞ2
1

8π2

�
ln
Mð0Þ2
Λ2

þ γE

�
:

ðB6Þ
Finally, our “renormalized” magnetization Mr can be
directly evaluated as

Mr ¼ ∂Pr
VMR

∂B : ðB7Þ
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