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Nonlinear QCD evolution equations are essential tools in understanding the saturation of partons at small
Bjorken xB, as they are supposed to restore an upper bound of unitarity for the cross section of high-energy
scattering. In this paper, we present an analytical solution of the Balitsky-Kovchegov equation using the
homogeneous balance method. The obtained analytical solution is similar to the solution of a traveling
wave. By matching the gluon distribution in the dilute region which is determined from the global analysis
of experimental data (CT14 analysis), we get a definitive solution of the dipole-proton forward scattering
amplitude in the momentum space. Based on the acquired scattering amplitude and the behavior of
geometric scaling, we present also a new estimated saturation scale Q2

sðxÞ.
DOI: 10.1103/PhysRevD.103.056008

I. INTRODUCTION

The powerful and sharpest way to resolve the proton
structure is by lepton deep inelastic scattering (DIS) off the
proton at high energy. The current experiments show that
the gluon distribution grows rapidly toward smaller xB. The
fast growth of gluons is described by the well-established
Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [1–3],
which is derived with perturbative quantum chromody-
namics (pQCD) by resumming the leading logarithmic
contribution [lnð1=xÞ] to the scattering off the proton.
However, under the assumption of Regge-like growth of
the gluon distribution as xB decrease, the unitarity limit
[4,5] of the γ�-p cross section eventually is broken. To
restore the unitarity upper bound in QCD theory is an
interesting physics, which has been discussed for decades.
The first idea is to include the parton-parton recombination
process [6–10], which will cease the growth of gluon
distribution when the scattering happens in the high-density
region.

An interesting and successful theory which permits gluon
saturation is the Jalilian-Marian-Iancu-McLerran-Weigert-
Leonidov-Kovner (JIMWLK) equation [11–14], inwhich the
nonlinear correction of the strong field is considered with the
Wilson renormalization group approach. The saturation state
predicted by the JIMWLK equation is called color glass
condensate (CGC) [13,15–17]. However, JIMWLK is a
complex partial derivative functional equation, and it is hard
for one to solve. Another nonlinear evolution equation is the
Balitsky-Kovchegov (BK) equation [18–21], in which the
correction due to the resuming of the fan diagrams (two
Pomeronsmerge into one Pomeron) are added to the standard
BFKL evolution process. In the JIMWLK equation, the
quantum fluctuation is added to the evolution for the strong
gluon field at small x, while in the BK equation, the quantum
corrections from resumming multiple rescatterings is imple-
mented for the dipole forward amplitude. Both equations are
derived in the framework of the quantum evolution process.
In a simple view, the BK equation is regarded as the
mean-field approximation of the JIMWLK equation. The
nonsaturating regime and the saturating regime are well
connected by BK equation, and the unitarization of the high-
energy hadron scattering can be realized as well. Moreover,
the BK equation can be solved easily compared to the
JIMWLK equation, at least numerically [22–25]. It is an
integro-differential equation,which can be transformed into a
partial derivative equation in the momentum space. Recently,
some analytical solutions of the BK equation are proposed
[26–30] from different approaches with some minor approx-
imations. These solutions provide some interesting insights
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on the nonlinear corrections to the BFKL evolution and the
phenomenological applications at high-energy hadron scat-
tering. The applications of the BK equation in explaining the
experimental results are important for us to understand the
small-x physics and the parton saturation.
The relation between the BK equation and the Fisher-

Kolmogorov-Petrovsky-Piscounov (FKPP) equation has
been found [26–28]. The FKPP equation is a famous
reaction-diffusion equation in statistical physics [31–34],
which can be simulated easily using aMonteCarlo technique.
Analytically, the geometric scaling [35] observed at small x
can be explainedwith the travelingwave solutionof the FKPP
equation. It is shown in a pioneeringwork that the transition to
the parton saturation region in high-energy QCD is identical
to the formation of the front of a traveling wave [26,27].
Successful applicationshave beenmade in explaining theDIS
data at HERA collider, with a parametrization of the traveling
wave solution [36,37]. In this work, we present a general
solution of the FKPP equation from the homogeneous
balancemethod.With some transformations and bymatching
to the gluon distribution in the nonsaturating region, we
provide a definitive solution of the BK equation.
The organization of the paper is as follows. The BK

equation and the FKPP equation are reviewed in Sec. II.
The analytical solutions of the FKPP equation are intro-
duced in Sec. III. The definitive and analytical solutions of
the BK equation are shown in Sec. IV, for the physical
forward dipole-proton scattering amplitude in the momen-
tum space. At the end, some discussions and a summary are
given in Sec. V.

II. BK EQUATION AND FKPP EQUATION

In the dipole picture, the DIS cross section of a virtual
photon is factorized into the photon wave function Ψ
splitting into a color dipole qq̄ and the forward dipole-
proton scattering amplitude N [38–40]. In the leading
logarithm approximation, the cross section is written as [39]

σγ
�p ¼

Z
∞

0

rdr
Z

1

0

dzjΨðz; rQÞj2Nðr; YÞ; ð1Þ

in which z is the longitudinal momentum fraction carried by
the quark of the virtual photon, r is the size of the dipole, and
Y ¼ lnð1=xÞ is the total rapidity.
The BK equation is a QCD evolution equation for

describing the rapidity dependence of the imaginary part
of the scattering between a dipole and the proton. For the
scattering amplitude N ðY; kÞ in the momentum space, the
BK equation is given by [20]

∂N ðk; YÞ
∂Y ¼ αsNc

π
χ

�
−

∂
∂ ln k2

�
N ðk; YÞ

−
αsNc

π
N 2ðk; YÞ; ð2Þ

where

χðλÞ ¼ ψð1Þ − 1

2
ψ

�
1 −

λ

2

�
−
1

2
ψ

�
λ

2

�
ð3Þ

is the BFKL kernel with ψðλÞ ¼ Γ0ðλÞ=ΓðλÞ. In ψðλÞ, λ ¼
−∂=∂ ln k2 is a differential operator acting on N ðY; kÞ,
which is a way of writing the integral kernel of the BK
equation in coordinate space as the differential operator in
the momentum space after a Fourier transform. Note that
the original BK equation is an integro-differential equation
in the coordinate space.
For a commonly used approximation and defining

L ¼ lnðk2=k20Þ, Munier and Peschanski suggest an expan-
sion of the BFKL kernel to the second order around
λ ¼ 1=2 [26]:

χ̄

�
−

∂
∂L

�
¼ χ

�
1

2

�
þ χ00ð1

2
Þ

2

� ∂
∂Lþ 1

2

�
2

: ð4Þ

With the above expansion and the following transforma-
tions of the variables as

s ¼ ð1 − γÞ
�
Lþ ᾱχ00ð1

2
Þ

2
Y

�
;

t ¼ ᾱχ00ð1
2
Þ

2
ð1 − γÞ2Y;

uðs; tÞ ¼ 2

χ00ð1
2
Þð1 − γÞ2

×N
�

s
1 − γ

−
t

ð1 − γÞ2 ;
2t

ᾱχ00ð1
2
Þð1 − γÞ2

�
;

ᾱ ¼ αsNc

π
;

γ ¼ 1 −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8χ

�
1

2

�
=χ00

�
1

2

�s
; ð5Þ

the BK equation turns into the FKPP equation for uðs; tÞ,
which is written as [26]

∂tuðs; tÞ ¼ ∂2
suðs; tÞ þ uðs; tÞ − u2ðs; tÞ: ð6Þ

Thus, seeking for the analytical solution of the BK equation
becomes a problem of finding the analytical solution of the
FKPP equation. The FKPP equation is a famous nonlinear
reaction-diffusion equation in statistical physics, which has
already been studied with some systematical methods.

III. SOLUTIONS OF FKPP EQUATION WITH
HOMOGENEOUS BALANCE METHOD

To solve the FKPP equation [41], we begin with a
heuristic solution as
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uðs; tÞ ¼
XN

mþn¼1

cmþn
∂mþnfðωðs; tÞÞ

∂ms∂nt
: ð7Þ

According to the partial balance principle, the power
of ∂ω=∂s should be balanced, and the power of ∂ω=∂t
should also be balanced. Hence, we obtain the following
constraint:

N ¼ 2: ð8Þ

The heuristic solution now is written as

uðs;tÞ¼f00ðωÞ
� ∂
∂sω

�
2

þf0ðωÞ ∂
2

∂2s
ωþc1f0ðωÞ

∂
∂sωþc0:

ð9Þ

Applying the above solution into the FKPP equation
[Eq. (6)] again and applying the homogeneous balance
principle, we get a differential equation of fðωÞ:

ðf00ðωÞÞ2 − fð4ÞðωÞ ¼ 0: ð10Þ

A particular solution for f is then solved to be

fðωÞ ¼ −6 lnω: ð11Þ

Using the FKPP equation and the homogeneous balance
principle once again, we get a differential equation of
ωðs; tÞ. By solving the differential equation of ω, we get a
traveling wave solution as a solitary wave:

ωðs; tÞ ¼ 1þ eκsþβtþθ: ð12Þ

Inserting the solution into the FKPP equation, we get the
following constraints for the coefficients in the solution:

c0 ¼ 0; 1;

c1 ¼ � 1ffiffiffi
6

p ;

κ ¼ 2c0 − 1

6c1
;

β ¼ −5c1κ; ð13Þ

while θ is still a free parameter. We choose c0 ¼ 0 and
c1 ¼ 1=

ffiffiffi
6

p
, in order to meet the physical result that there is

strong absorption for the scattering amplitude at very large
rapidity. Finally, we get an analytical solution for the FKPP
equation, which is written as [41]

uðs; tÞ ¼
�

e−s=
ffiffi
6

p þ5t=6þθ

1þ e−s=
ffiffi
6

p þ5t=6þθ

�2
: ð14Þ

Figure 1 shows the obtained analytical solution for the
FKPP equation as a function of s and t.

IV. DEFINITIVE SOLUTIONOF BKEQUATION BY
MATCHING NONSATURATING GLUON

DISTRIBUTION

Before going onto the solution of the BK equation, let us
have a look at the simplification of the BK equation again.
Fixing the running strong coupling constant and expanding
the BFKL kernel χðλÞ at λ ¼ λ0 [42], we get

A0N −N 2 −
∂N
∂Y − A1

∂N
∂L þ

XP
p¼2

ð−1ÞpAp
∂pN
∂pL

¼ 0;

ð15Þ

with the coefficients derived as [42]

Ap ¼
XP−p
i¼0

ð−1Þi χ
ðiþpÞðλ0Þ
i!p!

λi0: ð16Þ

In the so-called diffusive approximation (keeping the first
three terms of the expansion), the BK equation turns into
the FKPP equation as suggested byMunier and Peschanski.
With P ¼ 2, we get the simplified BK equation [42]

A0N −N 2 −
∂N
∂Y − A1

∂N
∂L þ A2

∂2N
∂2L

¼ 0: ð17Þ

Note that some variations of the values of Ap [Eq. (16)] are
allowed, as the expansion point λ0 is arbitrary, the strong
coupling αsðk2Þ is slightly running, and the truncation of the
diffusive approximation may introduce some corrections.
Based on the analytical solution of the FKPP equation

discussed in the above section, we obtain an analytical

20− 10− 0 10 20 30s 1
2

3
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1

u(
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 t)

FIG. 1. The traveling wave solution of the FKPP equation from
the homogeneous balance method, with the coefficients c0 ¼ 0,
c1 ¼ 1=

ffiffiffi
6

p
, and θ ¼ 0.
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solution of the BK equation through some variable trans-
formations, which is written as

N ðL; YÞ ¼ A0e5A0Y=3

½e5A0Y=6 þ e½θþ
ffiffiffiffiffiffiffiffiffiffiffi
A0=6A2

p
ðL−A1YÞ��2

: ð18Þ

The geometric scaling of the virtual photon-proton cross
section is expressed as σγ

�pðY;Q2Þ ¼ σγ
�pðτÞ, which is a

function of only one dimensionless variable τ ¼ Q2R2
0 in

the x < 0.01 region, where R0 is the saturation radius and
R0 ¼ 1=Qs. In terms of the forward scattering amplitude,
the scaling property at low k takes the form

N ðL ¼ lnðk2=k20Þ; YÞ ¼ N
�

k2

Q2
s ðYÞ

�
; ð19Þ

where the unit of Y is ᾱ. Rewriting the solutionN ðL; YÞ as
N ðk2=Q2

s Þ,

N
�

k2

Q2
s ðYÞ

�
¼ A0

½1þ eθð k2

k2
0
eðA1þ5

ffiffiffiffiffiffiffiffiffi
A2A0=6

p
ÞYÞ

ffiffiffiffiffiffiffiffiffiffiffi
A0=6A2

p
�2
; ð20Þ

then we extract the saturation scale to be

Q2
s ðYÞ ¼ k20e

ðA1þ5
ffiffiffiffiffiffiffiffiffiffiffi
A0A2=6

p
ÞY: ð21Þ

In the following analysis, we take k20 to be Λ2
QCD ¼

0.04 GeV2 as the reference point.
In order to get the definitive solution of the BK equation

for proton structure at small x, the coefficients A0, A1, and
A2 should be determined. By matching the dipole-proton
cross section to the normal DIS cross section in the parton
model, the dipole scattering amplitude is connected to the
gluon distribution via [42]

N ðk; YÞ ¼ 4παs
NcR2

p

Z
∞

k

dp
p

� ∂
∂p2

xgðx; p2Þ
�
ln

�
p
k

�

¼ παs
NcR2

p

Z
∞

k2

dt
t2
xgðx; tÞ ln

�
t

ek2

�
: ð22Þ

With the above formula, we can fix the values of Ap, by
performing the fits between the dipole scattering amplitude
and the widely used global analyses of the proton gluon
distributions in the high-k2 (> 5 GeV2) region. The relation
in Eq. (22) is based on an approximation that the derivative
of gluon distribution contains the information of the unin-
tegrated gluon distribution function. And by a fit to the gluon
distributions of CT14(NNLO), we get the coefficients for the
BK solution to be A0 ¼ 33.3, A1 ¼ −58.3, A2 ¼ 26.2, and
θ ¼ −3.09. The fit to the CT14 parton distribution functions
(PDFs) is shown in Fig. 2, which displays a good fitting
quality.

With the definitive solution of the BK equation deter-
mined above, we present the dipole-proton forward scatter-
ing amplitude in the full momentum range. Figure 3 shows
the BK scattering amplitude at different rapidities con-
strained by CT14 PDFs. It is very clear to see that these
solutions exhibit the saturation behavior at large rapidities.
To demonstrate where the saturation region is, the satu-
ration scale Q2

s ðY ¼ lnð1=xÞÞ is usually used, which is
rapidity dependent. The saturation scaleQ2

s is viewed as the
boundary connecting the saturation domain and the non-
saturation domain of the partons. Figure 4 shows the
saturation scales extracted by the BK solution determined
in this work. Our prediction indicates a very similar domain
of the parton saturation to the Golec-Biernat-Wusthoff
parametrization (GBW parametrization). Our prediction
gives Q2

s ðxÞ ∝ ð1=xÞ0.386, and the GBW prediction gives
Q2

s ðxÞ ∝ ð1=xÞ0.29. The existence of the parton saturation
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FIG. 2. The BK forward scattering amplitude is fitted by the
gluon distributions of CT14(NNLO) at high k2. The curves show
the fitted BK solutions, and the various markers show the
calculations from CT14(NNLO) gluon distributions.
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FIG. 3. The BK forward amplitude in the wide k range at
different rapidities, with the parameters A0 ¼ 33.3, A1 ¼ −58.3,
A2 ¼ 26.2, and θ ¼ −3.09 by matching to CT14 PDFs in the
nonsaturation region.
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inside a proton is understandable in the framework of the
nonlinear evolution equation, and it is a well-established
mechanism for the geometric scaling phenomenon
observed in experiment.
To test our obtained saturation scale Q2

s ðxÞ, we demon-
strate the geometric scaling of the DIS cross section with our
solution. The total γ�p cross section can be written as [35]

σT;Lðx;Q2Þ ¼
Z

d2r
Z

1

0

dzjΨT;Lðr; z;Q2Þj2σ̂ðr; xÞ; ð23Þ

where ΨT;L is the wave function of a longitudinal or a
transverse virtual photon splitting into a dipole and σ̂ is the
dipole cross section. Respectively,ΨT;L and σ̂ can bewritten
as [35]

jΨT j2 ¼
3αem
2π2

X
f

e2ff½z2 þ ð1 − zÞ2�Q̄2
fK

2
1ðQ̄frÞ

þm2
fK

2
0ðQ̄frÞg;

jΨLj2 ¼
3αem
2π2

X
f

e2ff4Q2z2ð1 − zÞ2K2
0ðQ̄frÞg;

σ̂ðr; xÞ ¼ σ0g

�
r

R0ðxÞ
�
; ð24Þ

in which Q̄2
f ¼ zð1 − zÞQ2 þm2

f, K0 and K1 are the
modified Bessel functions, and mf is the quark mass [35].
σ0 is a free parameter of normalization. Then the geometric
scaling [35,46,47] of the virtual photon-proton cross section
is derived as

σγ
�pðx;Q2Þ ¼ σ̄0½γE þ Γð0; ξÞ þ ln ξ�; ð25Þ

where ξ ¼ a=τb, τ ¼ Q2=Q2
s , γE is the Euler constant, and

Γð0; ξÞ is the incomplete Γ function. By matching the ZEUS
data [48,49] in small xB (< 0.01) and high-Q2 region

(2.7 GeV2 ≤ Q2 ≤ 120 GeV2), we get the parameters
a ¼ 2.246 and b ¼ 0.745 with σ̄0 fixed at 40.56 μb
[46,47]. The comparison of our prediction with the ZEUS
data is shown in Fig. 5.

V. DISCUSSIONS AND SUMMARY

We have shown the analytical solution of the nonlinear
BK equation, with the application of a mathematical
method of the homogeneous balance principle. The homo-
geneous balance method would have some broad applica-
tions in solving the nonlinear evolution equations in
high-energy QCD. By fitting to the gluon distributions
in the nonsaturation region (highQ2), we have obtained the
physical BK solution for the proton. The solution in this
work is similar to the traveling wave front introduced by
Munier and Peschanski [26–28]. The saturation is clearly
shown in the scattering amplitude solution in the momen-
tum space. The saturation scales Q2

s ðYÞ are also provided
from our analysis. This solution with saturation behavior is
an important dynamical mechanism to explain the observed
geometric scaling of the proton structure function at small
x. The BK equation with the truncation of the BFKL kernel
is successful in interpreting the deep inelastic scattering
data at current and closed accelerator facilities.
The solution of the BK equation determined in this

work is useful for the phenomenological studies on the
unitarization of high-energy cross section, parton satura-
tion, and small-x physics. Our results may be applied
in deep inelastic scattering [50], the diffractive process
[33,51,52], and hadron collisions at high energy [16],
where the high parton density effect should be considered
[17]. In the United States, the future Electron-Ion Collider
[53] will be an important machine to study the phenom-
enology of parton saturation physics. The saturation-scale
predictions can be evaluated with future experiments. For
the proposed low-energy electron-ion collider in China
[54,55], the DIS cross section measurement at low Q2 and

FIG. 5. Comparison between our fit with the obtained satu-
ration scale Qs (solid curve) and the experimental data of ZEUS
[48,49] (red dots) for the γ�p DIS cross section as a function of τ.

210 310 410 510 610
1/x

2−10

1−10
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10
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 (

G
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Q
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 constrained by CT14(NNLO)2
sQ

FIG. 4. The saturation scales extracted from the solution of the
BK equation in this work (dashed line), compared to the
prediction by the GBW model (solid line) [43–45].

ANALYTICAL SOLUTION OF BALITSKY-KOVCHEGOV … PHYS. REV. D 103, 056008 (2021)

056008-5



small xB is also helpful for us to understand the
saturation phenomenon of partons inside a proton or
nucleus. The future high-energy accelerator facilities are
needed for a precise understanding of the complex
dynamics of strong interaction and the high-energy QCD
frontiers.
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