
 

Noncommutativity of the static and homogeneous limit
of the axial chemical potential in the chiral magnetic effect

Bo Feng,1 De-fu Hou,2,* Hai-cang Ren,2,3,† and Shuai Yuan1
1School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

2Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE),
Huazhong Normal University, Wuhan 430079, China

3Physics Department, The Rockefeller University, 1230 York Avenue, New York,
New York 10021-6399, USA

(Received 28 September 2020; accepted 10 February 2021; published 5 March 2021)

We study the noncommutativity of different orders of zero energy-momentum limit pertaining to the
axial chemical potential in the chiral magnetic effect. While this noncommutativity issue originates from
the pinching singularity at one-loop order, it cannot be removed by introducing a damping term to the
fermion propagators. The physical reason is that modifying the propagator alone would violate the axial-
vector Ward identity and as a result a modification of the longitudinal component of the axial-vector vertex
is required, which contributes to chiral magnetic effect (CME). The pinching singularity with free fermion
propagators was then taken over by the singularity stemming from the dressed axial-vector vertex. We show
this mechanism by a concrete example. Moreover, we proved, in general, the vanishing CME in the limit
order that the static limit was taken prior to the homogeneous limit in the light of Coleman-Hill theorem for
a static external magnetic field. For the opposite limit that the homogeneous limit is taken first, we show
that the nonvanishing CME was a consequence of the nonrenormalization of chiral anomaly for an arbitrary
external magnetic field.
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I. INTRODUCTION

The collective macroscopic behavior of chiral matter
subject to an external magnetic field or a vorticity field, by
the interplay with chiral anomaly, could manifest in
anomalous transport phenomena. For instance, an electric
current along the magnetic field could be induced in
response to the magnetic field in the presence of a chirality
imbalance, which is known as chiral magnetic effect
(CME) [1–3]. It is of great interest to the phenomenology
in the relativistic heavy ion collisions [4–6], as well as in
the condensed matter systems, such as the Weyl and Dirac
semimetals [7–10]. It is believed that the charge separation
observed in the correlation of final hadrons in noncentral
heavy ion collisions and the negative magnetoresistance
observed in some semimetals are the consequences of
the CME. Because of the noisy background, however, the

CME in heavy ion collisions remains controversial and the
intensive investigations are ongoing [11–14].
With the chirality imbalance proxied by a constant axial

chemical potential μ5, the chiral magnetic current in a
constant magnetic field B takes the simple form [2,3]

J ¼ η
e2

2π2
μ5B; ð1Þ

with η a factor associated with color and flavor degrees of
freedom. In the reality of heavy ion collisions, however,
both magnetic field and chirality imbalance are inhomo-
geneous and time dependent, and (1) serves an approxi-
mation for slowly varying μ5 and B. With an arbitrary
magnetic field and arbitrary axial chemical potential, the
chiral magnetic current in momentum representation reads

Jiðqþ kÞ ¼ η
e2

2π2
Gij0ðq; kÞμ5ðkÞAjðqÞ; ð2Þ

where Gμνρðq; kÞ is proportional to the Axial vector-Vector-
Vector (AVV) three-point functions with one of the photon
vertices and the axial-vector vertex bearing incoming
4-momenta q and k. The current in the form (1) corresponds
to its infrared limit, q → 0 and k → 0, but this limit is subtle
at a nonzero temperature.
At a constant μ5, i.e., k ¼ 0, Gij0ðq; 0Þ can be para-

metrized as
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Gij0ðq; 0Þ ¼ −iFðqÞϵijkqk: ð3Þ

For the benefit of the subsequent discussions, we empha-
size here that this structure solely follows from the rotation
invariance and the parity oddness without applying any
Ward identities [15]. It was first found in [3] that the
limits q → 0 and q0 → 0 do not commutate, i.e.,
limq→0 limq0→0 FðqÞ ¼ 1 and limq0→0 limq→0 FðqÞ ¼ 1=3.
This noncommutativity in different order of limits was
later confirmed by the calculations with Pauli-Villars (PV)
[15] and lattice regularizations [16]. Note that, however,
the calculations with a proper regularization give rise to
different results, i.e., limq→0 limq0→0FðqÞ¼ 0 and
limq0→0 limq→0FðqÞ¼−2=3. In the PV regularization
scheme, for example, the extra contribution making the
difference comes entirely from the regulator term.
The authors of [17] provided a resolution to this non-

commutativity problem by considering the interacting
chiral fermion system. Specifically, it amounts to replacing
the free fermion propagator with a dressed fermion propa-
gator incorporating a damping term in its self-energy. As a
result, because of the finite relaxation time, the pinching
singularity underlying the noncommutativity in different
order of limits disappears. The authors therefore found that
in both orders of limits the form factor Fð0Þ ¼ 1. This
result is also consistent with the calculation in the strong
coupling regime using the AdS=CFT correspondence [18],
where the limit q → 0 is unambiguous. An interesting
discussion of this noncommutativity problem in the frame-
work of chiral kinetic theory including Berry curvature
[19–22] was presented in [23], where a new contribution
called magnetization current to CME was identified and
attributed to the removal of the discontinuity of the CME
conductivity in different order of limits.
Coming to the infrared limit k ¼ ðk0;kÞ → 0, the

explicit one-loop calculation under the PV regularization
in [15] reveals the following noncommutativity. If the static
limit of the chiral imbalance is prior to its homogeneity
limit,

lim
k→0

lim
k0→0

Gij0ðq; kÞ ¼ 0; ð4Þ

for a static magnetic field in the homogeneous limit, i.e.,
q ¼ ð0;qÞ → 0. In the opposite order, if the homogeneity
limit is prior to the static limit

lim
k0→0

lim
k→0

Gij0ðq; kÞ ¼ iϵijkqk; ð5Þ

for arbitrary q. The latter order of limit gives rise to the
chiral magnetic current

J ¼ −η
e2

2π2
μ5B; ð6Þ

which differs from (1) by a sign. The sign difference,
however, cannot be detected with parity-even signal such as
charge separation in heavy ion collisions or magnetoresist-
ance in Weyl/Dirac semimetals. The authors of [15] related
(4) to the vector Ward identity and (5) to the anomalous
axial-vector Ward identity. Both identities go beyond one-
loop order suggesting that the noncommutativity of the
infrared limit persists to all orders.
As will be shown in the next section, the noncommu-

tativity associated with the axial-vector vertex at one-loop
level stems from the same pinching singularity as that
underlying the noncommutativity of the photon vertex. A
natural question that arises is why the dressed propagator
fails to smear the difference between (4) and (5), and its
answer together with related analysis occupy the rest of this
work. Briefly speaking, a Ward identity links the longi-
tudinal component of a vertex function with respect to the
four-momentum transfer to the self-energy function of the
fermion propagator attached to it. Therefore it is incon-
sistent to modify a fermion propagator alone. In case of the
vertex of the magnetic field, only the transverse component
contributes so the inconsistency does not manifest. This,
however, is not the case with the axial-vector vertex. While
the limit order (4) projects out the transverse component of
the vertex and the inconsistency does not contribute, the
opposite order of limits (5) does pick up the longitudinal
component and the modification of the vertex function
cannot be ignored. Through a subset of diagrams contrib-
uting to CME with the recipe [17] of the modified
propagator, we shall demonstrate that the role of the
pinching singularity of free propagators is taken over by
the new infrared singularity of the modified axial-vector
vertex and the difference between the two orders of limits
(4) and (5) remains.
The rest of the paper is organized as follows: in Sec. II

we shall present a one-loop calculation in order to elucidate
the role of pinching singularity in the noncommutativity
issue at the axial-vector vertex. A recapitulation of the
Ward identity arguments in [24] in the light of the
Coleman-Hill’s theorem and the nonrenormalization theo-
rem of anomaly will be presented in Sec. III for self-
containedness. In Sec. IV, a concrete example is given
for demonstrating the mechanism of the failure of the
dressed fermion propagator in the noncommutativity issue.
Section V concludes the paper. For the sake of simplicity,
we shall mainly consider a static magnetic field. Except for
Sec. III A, we shall work in the framework of the closed-
time path (CTP) Green’s functions which is detailed in the
Appendix. Throughout the paper, we will stay with the
Minkowski metric and four vectors represented by
xμ ¼ ðx0;xÞ, qμ ¼ ðq0;qÞ with q0 the energy.
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II. ONE-LOOP ANALYSIS

In this section, we shall calculate the contribution to
CME from the one-loop AVV three-point function in
terms of CTP Green functions at a nonzero temperature in
order to exhibit the role of the pinching singularity. The
CTP Green’s functions [25] are generated by a path
integral whose action is the integration of the classical
Lagrangian along a closed time path that consists of a
forward branch and a backward branch. The quantum field
operator in CTP is denoted by ϕaðxÞ with a ¼ 1, 2
labeling the forward and backward branches. For more
details about CTP Green’s functions, see the Appendix
and Ref. [25]. The amplitude of Fig. 1 in CTP formalism
reads

Gμνρ
abcðq; kÞ ¼ −ie2

Z
d4p
ð2πÞ4 Tr½Γ

μηaSðpþ qþ kÞΓρ5ηcSðpþ qÞΓνηbSðpÞ þ ΓμηaSðpþ qþ kÞΓνηbSðpþ kÞΓρ5ηcSðpÞ�;

ð7Þ

where the trace Tr(...) was extended to Dirac and CTP indices. The subscripts in Gμνρ
abc are CTP indices each taking values

1 and 2, which are projected by the 2 × 2 matrices

η1 ¼
�
1 0

0 0

�
; and η2 ¼

�
0 0

0 1

�
: ð8Þ

The bare vertices and propagators take the form

Γμ ¼
�
γμ 0

0 −γμ

�
; Γμ5 ¼

�
γμγ5 0

0 −γμγ5

�
; ð9Þ

with the negative sign taking into account the reversed time integration along the backward branch, and

SðpÞ ¼
�
S11 S12
S21 S22

�
; ð10Þ

with

S11ðpÞ ¼
i

pþ i0þ
− 2πp½θð−p0Þ þ ϵðp0ÞfFðp0Þ�δðp2Þ;

S12ðpÞ ¼ −2πpϵðp0ÞfFðp0Þδðp2Þ;
S21ðpÞ ¼ −2πpϵðp0Þ½fFðp0Þ − 1�δðp2Þ;

S22ðpÞ ¼
−i

p − i0þ
− 2πp½θð−p0Þ þ ϵðp0ÞfFðp0Þ�δðp2Þ; ð11Þ

for massless fermions with fFðxÞ ¼ 1=ðeβx þ 1Þ, the Fermi-Dirac distribution function at temperature T ¼ 1=β. We also
defined θðxÞ ¼ 1 if x > 0 and vanishing otherwise as well as ϵðxÞ ¼ �1 for positive and negative x, respectively. The AVV
three-point function underlying retarded responses of theCME current to themagnetic field and axial chemical potential was
obtained by restricting the electric current operator within the forward branch and summing up the rest CTP indices, i.e.,

FIG. 1. The AVV triangle diagram. There is a second diagram
with the photon four-momenta and polarization as well as CTP
indices interchanged.
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Gij0
R ðq; kÞ ¼

X
b;c

Gij0
1bcðq; kÞ

¼ −ie2
Z

d4p
ð2πÞ4 Trγ

i½SRðpþ qþ kÞγ0γ5SRðpþ qÞγjSCðpÞ þ SCðpþ qþ kÞγ0γ5SAðpþ qÞγjSAðpÞ

þ SRðpþ qþ kÞγ0γ5SCðpþ qÞγjSAðpÞ þ SCðpþ qþ kÞγjSAðpþ kÞγ0γ5SAðpÞ
þ SRðpþ qþ kÞγjSCðpþ kÞγ0γ5SAðpÞ þ SRðpþ qþ kÞγjSRðpþ kÞγ0γ5SCðpÞ�; ð12Þ

where we have switched to the physical representation of CTP formalism and the trace tr(...) extends to Dirac indices only.
The physical representation can be obtained from (10) by an orthogonal transformation given in the Appendix and we have
the retarded and advanced fermion propagators, and the correlator given by

SRðpÞ ¼
i

pþ i0þγ0
; ð13Þ

SAðpÞ ¼
i

p − i0−γ0
; ð14Þ

SCðpÞ ¼ 2πpð1 − 2fFðp0ÞÞδðp2Þ: ð15Þ

Substituting the Kubo-Martin-Schwinger (KMS) relation SCðpÞ ¼ ½1 − 2fFðp0Þ�½SRðpÞ − SAðpÞ�, we have

Gij0
R ðq; kÞ ¼ −ie2

Z
d4p
ð2πÞ4 Trγ

i

× ffFðp0Þ½SRðpþ qþ kÞγ0γ5SRðpþ qÞγjSRðpÞ þ SRðpþ qþ kÞγjSRðpþ kÞγ0γ5SRðpÞ
− SRðpþ qþ kÞγ0γ5SRðpþ qÞγjSAðpÞ − SRðpþ qþ kÞγjSRðpþ kÞγ0γ5SAðpÞ�
− fFðp0 þ q0 þ k0Þ½SAðpþ qþ kÞγ0γ5SAðpþ qÞγjSAðpÞ þ SAðpþ qþ kÞγjSAðpþ kÞγ0γ5SAðpÞ
− SRðpþ qþ kÞγ0γ5SAðpþ qÞγjSAðpÞ − SRðpþ qþ kÞγjSAðpþ kÞγ0γ5SAðpÞ�
þ fFðp0 þ q0Þ½SRðpþ qþ kÞγ0γ5SRðpþ qÞγjSAðpÞ − SRðpþ qþ kÞγ0γ5SAðpþ qÞγjSAðpÞ�
− fFðp0 þ k0Þ½SRðpþ qþ kÞγjSAðpþ kÞγ0γ5SAðpÞ − SRðpþ qþ kÞγjSRðpþ kÞγ0γ5SAðpÞ�g: ð16Þ

For a static magnetic field, i.e., q ¼ ð0;qÞ, the above equation is simplified to

Gij0
R ðq; kÞ ¼ −ie2

Z
d4p
ð2πÞ4 Trγ

i

× ffFðp0Þ½SRðpþ qþ kÞγ0γ5SRðpþ qÞγjSRðpÞ þ SRðpþ qþ kÞγjSRðpþ kÞγ0γ5SRðpÞ�
þ ½fFðp0 þ k0Þ − fFðp0Þ�½SRðpþ qþ kÞγ0γ5SAðpþ qÞγjSAðpÞ þ SRðpþ qþ kÞγjSRðpþ kÞγ0γ5SAðpÞ�
− fFðp0 þ k0Þ½SAðpþ qþ kÞγ0γ5SAðpþ qÞγjSAðpÞ þ SAðpþ qþ kÞγjSAðpþ kÞγ0γ5SAðpÞ�g: ð17Þ

The noncommutativity in the orders of limits k → 0 stems from the pinching singularity of the terms of the structure
SRγ0γ5SA. If k0 → 0 at a nonzero k, the poles of SR and SA on the complex p0 plane are separate and prefactor ½fFðp0 þ
k0Þ − fFðp0Þ� vanishes. The vanishing prefactor in this case renders the pinching not contributing when the limit k → 0 was
taken afterwards and we end up with

lim
k→0

lim
k0→0

Gij0
R ðq; kÞ ¼ e2

Z
d4p
ð2πÞ4 fFðp

0Þ ∂
∂p0

Trγi½SRðpþ qÞγ5γjSRðpÞ − SAðpþ qÞγ5γjSAðpÞ�; ð18Þ

where the identities
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∂
∂p0

SRðAÞðpÞ ¼ iSRðAÞðpÞγ0SRðAÞðpÞ;

γ5SRðAÞðpÞ ¼ −SRðAÞðpÞγ5 ð19Þ
are employed. With a PV regularization, an expression with
SR and SA in (17) replaced by massive propagators

SRðpjMsÞ ¼
i

pþ i0þγ0 −Ms
; ð20Þ

SAðpjMsÞ ¼
i

p − i0−γ0 −Ms
ð21Þ

has to be subtracted from (17). As the second identity in (19)
becomes

γ5SRðAÞðpjMsÞ¼−SRðAÞðpjMsÞγ5þ
2iMsγ

5

ðp0� i0þÞ2−p2−M2
s
;

ð22Þ

for massive propagators, we find the regularized version
of (18),

lim
k→0

lim
k0→0

Gij0
R ðq; kÞ ¼ e2

Z
d4p
ð2πÞ4 fFðp

0Þ ∂
∂p0

�
Trγi½SRðpþ qÞγ5γjSRðpÞ − SAðpþ qÞγ5γjSAðpÞ�

−
X
s

CsTrγi½SRðpþ qjMsÞγ5γjSRðpjMsÞ − SAðpþ qjMsÞγ5γjSAðpjMsÞ�
�

− 2i
X
s

CsMs

Z
d4p
ð2πÞ4 fFðp

0Þ
�
½ΔRðpþ qjMsÞ þ ΔRðpjMsÞ�Trγi½SRðpþ qÞγ0γ5γjSRðpÞ�

− ½ΔAðpþ qjMsÞ þ ΔAðpjMsÞ�Trγi½SAðpþ qÞγ0γ5γjSAðpÞ�
�
; ð23Þ

with

ΔðR;AÞðpjMÞ ¼ i
ðp0 � i0þÞ2 − p2 −M2

s
; ð24Þ

and
P

s Cs ¼ 1. We choose Cs such that the p0-integration
by part of the first two lines legitimate, which transfers ∂

∂p0 to

fFðp0Þ. Then the p0 integral takes the formZ
∞

−∞
dp0½Fðp0 þ i0þÞ − Fðp0 − i0þÞ� ¼

I
C
dp0Fðp0Þ;

ð25Þ

with C a contour going around the entire real axis of the p0-
plane clockwise. Consequently, all we need are the residues
of poles of Fðp0Þ along the real axis. In the limit of infinite
regulator masses, only the massless poles contribute to the
integral with the integrand∝ dfF

dp0 and only the regulator poles

with p0 < 0 (fFðp0Þ → 1) to the integral in the last line of
(23). The two contributions cancel each other when

q ¼ ð0;qÞ → 0, leaving a null chiral magnetic current.
[The illustration of this cancellation can be seen from the
example given in Sec. III A from (38) to (48)].
In the opposite order of limit, starting with k ¼ 0, we use

the relation [26]

SRðpþ kÞγ0γ5SAðpÞ ¼ SRðpþ kÞγ0γ5SRðpÞ

þ i
k0

½SRðpÞ − SAðpÞ�γ5: ð26Þ

Then in the limit k0 → 0, the poles of SRðpþ kÞ and SRðpÞ
of the first term coalesce below the path ofp0 integration. As
one is free to deform the integration path away from the
double poles, this term does not contribute when multiplied
by the vanishing prefactor ½fFðp0 þ k0Þ − fFðp0Þ�.
On the other hand, the 1=k0 of the second term together
with the prefactor generates a nonzero contribution
−ið∂fFðp0Þ=∂p0Þ½SRðpÞ − SAðpÞ� in the limit k0 → 0
and we obtain that:

lim
k0→0

lim
k→0

Gij0
R ðq; kÞ ¼ e2

Z
d4p
ð2πÞ4

∂
∂p0

ffFðp0ÞTrγi½SRðpþ qÞγ5γjSRðpÞ − SAðpþ qÞγ5γjSAðpÞ�g: ð27Þ
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When (17) is PV-regularized, the regulators do not con-
tribute the integral with ½fFðp0 þ k0Þ − fFðp0Þ� in the
integrand as Ms → ∞. This follows from the observation
that the pinching singularity occurs at the poles of the
propagators. In the infinite mass limit of the regulators,
their poles move to infinity, where ½fFðp0 þ k0Þ−
fFðp0Þ� → 0. Consequently, the regulator contribution is
independent of the order of limits. However, because of
(27), the massless contribution associated with dfF

dp0 is

absent, and a nonzero chiral magnetic current emerges
from the regulator contribution alone.
It appears that the pinching singularity can be removed

by introducing damping term in the fermion propagator
[17,27,28], i.e.,

SRðpÞ → SRðpÞ ¼
i

pþ i
τ γ

0
; ð28Þ

SAðpÞ → SAðpÞ ¼
i

p − i
τ γ

0
: ð29Þ

Then the poles of SRðpþ kÞ and SAðpÞwill never coalesce
in any orders of limit k → 0 and the noncommutativity
disappears. While this approach of smearing the non-
commutativity of limits works for the magnetic vertex, it
violates the axial-vector Ward identity for the Aμψ̄γ

μψ
vertex (with Aμ and ψ̄ , ψ axial-vector and fermion fields,
respectively) in our case as will be demonstrated in
subsequent sections.
The conclusion of our one-loop analysis is not tied to the

PV-regularization scheme employed above. The proof of
the Coleman-Hill-like theorem that underlies (4) does not
specify a particular regularization and (5) is a direct
consequence of the axial anomaly. Therefore the non-
commutativity of different orders of limit of the form (4)
and (5) is valid for any UV regularization that maintains the
electromagnetic gauge invariance [29]. Nevertheless, the
PV regularization appears to be the simplest approach for
the explicit demonstration in terms of Feynman diagrams.

III. A GENERAL ANALYSIS

In this section, we shall prove that the noncommutativity
issue at the axial-vector vertex persists to all orders of
perturbations. In one order of limits where the static limit is
taken prior to the spatial homogeneity limit, we shall follow
the argument of Coleman-Hill theorem [30]. In the opposite
order of limits where the spatial homogeneity limit is taken
first, we shall extend the diagrammatical technique
employed to derive the anomalous Ward identity at zero
temperature [31] to CTP Green’s functions. It is convenient
to revert to the conventional notation pertaining to the
three-point function underlying the axial anomaly, i.e.,
Λμνρðq1; q2Þ with q1 and q2 the four-momenta of two
outgoing photons. In terms of the external momentum setup

in Fig. 1, Gμνρðq; kÞ ¼ Λμνρðqþ k;−qÞ with k ¼ q1 þ q2
and q ¼ −q2. In the rest of this section Λμνρðqþ k;−qÞ
will include all higher order corrections of Fig. 1.

A. The order of limit limk→0 limk0→0

Assuming a static magnetic field, i.e., q0 ¼ 0, the first
limit k0 → 0 renders all external momenta static and the
system is in thermal equilibrium. The general three-point
function Λij0ðqþ k;−qÞ could be evaluated by means of
the Matsubara formalism. Let

Γijðq1;q2Þ≡ lim
k0→0

Λij0ðqþ k;−qÞ: ð30Þ

We have, in the limit k → 0,
Theorem.—Γijðq; qÞ ¼ Oðjqj2Þ as q → 0.
Proof.—Consider the set of AVV diagrams for

Γijðq1;q2Þ where the outgoing photon with 4-momentum
ð0;q2Þ is attached to a particular fermion loop L of n
vertices (photons or the axial-vector corresponding to μ5).
There are n internal fermion lines of L to which the
outgoing photon can be attached to, resulting in n such
diagrams for Γijðq1;q2Þ. Denote by Giðq1Þ the amplitude
of the diagram prior to attachment (the progenitor Γij

according to [30]) and write

Giðq1Þ ¼
Z

d3p
ð2πÞ3 F

iðp;q1Þ; ð31Þ

where p is the momentum running through the fermion
loop L and all other loop momentum integration as well as
all Matsubara summations are included in Fiðp;q1Þ. The
axial vertex, i.e., μ5 vertex, is not shown explicitly in
Giðq1Þ. In the presence of the gauge invariant regulator,
e.g., Pauli-Villars regulator, shifting integration momentum
is legitimate, we have

Giðq1Þ ¼
Z

d3p
ð2πÞ3 F

iðpþ δ;q1Þ; ð32Þ

with δ an arbitrary constant vector. Consequently, all terms
of the Taylor expansion of (32) in nonzero powers of δ
vanish. To the linear power

δj

Z
d3p
ð2πÞ3

∂
∂pj

Fiðp;q1Þ ¼ 0: ð33Þ

Since δ is nonzero and its direction is arbitrary, one has

Z
d3p
ð2πÞ3

∂
∂pj

Fiðp;q1Þ ¼ Γijðq1; 0Þ ¼ 0: ð34Þ

The first equality follows from the observation that taking
derivative with respect to the loop momentum amounts to
attach a photon vertex of zero outgoing momentum to each
internal fermion line in succession because of

FENG, HOU, REN, and YUAN PHYS. REV. D 103, 056004 (2021)

056004-6



∂
∂pj

SðpÞ ¼ SðpÞγjSðpÞ: ð35Þ

Repeating the same argument for the photon vertex of
incoming 4-momentum ð0;q1Þ, we end up with

Γijð0;q2Þ ¼ 0: ð36Þ

Consequently Γijð0; 0Þ ¼ 0 and

∂Γij

∂qk
����
q¼0

¼ ∂
∂q1k Γijðq1; 0Þ

����
q1¼0

þ ∂
∂q2k Γijð0;q2Þ

����
q2¼0

¼ 0:

ð37Þ

The theorem is thereby proved. The validity of this theorem
requires at least two independent external spatial momenta
which is the case for a three-point function. Also, the
presence of axial-vector vertices is not essential other than
providing an independent momentum for its proof, unlike
the anomaly nonrenormalization theorem presented in
Sec. III B. As a corollary of the theorem, the chiral
magnetic current under a constant magnetic field vanishes
with this order of limits. ▪
As an illustration of the afore proved theorem, we shall

calculate explicitly the contribution of the one-loop triangle
diagram to the chiral magnetic current shown in Fig. 1 with
four-momenta q ¼ ð0;qÞ and k ¼ ð0;kÞ:

Λij0ðqþ k;−qÞ ¼ ie2μ5
1

β

X
n

Z
d3p
ð2πÞ3 ftr½γ

iSðpþ qþ kj0Þγ0γ5Sðpþ qj0ÞγjSðpj0Þ�

−
X
s

Cstr½γiSðpþ qþ kjMsÞγ0γ5Sðpþ qjMsÞγjSðpjMsÞ� þ ððqþ kÞ ↔ −q; i ↔ jÞg; ð38Þ

with

SðpjmÞ ¼ i
p −m

; ð39Þ

the free propagator for quarks. Note that we have regularized the amplitude by PV regularization with
P

s Cs ¼ 1 and
Ms → ∞ after the integration. In the limit k → 0, we have

Λij0ðq;−qÞ ¼ ie2μ5
1

β

X
n

Z
d3p
ð2πÞ3

�
tr½γiSðpþ qj0Þγ0γ5Sðpþ qj0ÞγjSðpj0Þ�

−
X
s

Cstr½γiSðpþ qjMsÞγ0γ5Sðpþ qjMsÞγjSðpjMsÞ� þ ðq ↔ −q; i ↔ jÞ
�
: ð40Þ

Using the identity

SðpjmÞðiγ0γ5ÞSðpjmÞ ¼ −
2m

p2 −m2
SðpjmÞγ0γ5 − ∂SðpjmÞ

∂p0
γ5; ð41Þ

we find that

Λij0ðq;−qÞ¼−e2μ5
1

β

X
n

Z
d3p
ð2πÞ3

�
tr

�
γi
∂Sðpþqj0Þ

∂p0
γ5γjSðpj0Þ

�

−
X
s

Cstr

�
γi
�

2Ms

ðpþqÞ2−M2
s
SðpþqjMsÞγ0γ5þ

∂SðpþqjMsÞ
∂p0

γ5
�
γjSðpjMSÞ

�
þðq↔−q;i↔ jÞ

�
; ð42Þ

where the derivative with respect to p0 is evaluated at the Matsubara frequency p0 ¼ ið2nþ 1ÞπT. Since the integral is
properly regularized, one can shift the momentum in the last terms in parentheses by p → pþ q and has
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Λij0ðq;−qÞ ¼ −e2μ5
1

β

X
n

Z
d3p
ð2πÞ3

� ∂
∂p0

Ξijðp; pþ qj0Þ −
X
s

Cs
∂

∂p0
Ξijðp; pþ qjMsÞ

−
X
s

Cs

�
2Ms

p2 −M2
s
Θijðp; pþ qjMsÞ þ

2Ms

ðpþ qÞ2 −M2
s
Θjiðpþ q; pjMsÞ

��
; ð43Þ

with

Ξijðp; pþ qjmÞ ¼ tr½γiSðpjmÞγ5γjSðpþ qjmÞ�; ð44Þ

and

Θijðp; pþ qjmÞ ¼ tr½γiSðpjmÞγ0γ5γjSðpþ qjmÞ�: ð45Þ

Although the first term on the RHS of (43) is a total derivative, its contribution does not vanish at nonzero temperature
due to the distribution function that emerges from converting the Matsubara summation to a contour integral.
We have

1

β

X
n

∂
∂p0

Ξijðp; pþ qj0Þjp0¼ið2nþ1ÞπT ¼ −
1

2πi

I
C
dp0

∂
∂p0

Ξijðp; pþ qj0ÞfFðp0Þ

¼ 1

2πi

I
C
dp0Ξijðp; pþ qj0Þ ∂fFðp

0Þ
∂p0

¼ 2qkϵijk
β

π

I
C
dp0

p0

½ðp0Þ2 − p2�2
eβp

0

ð1þ eβp
0Þ2 þOðq2Þ: ð46Þ

In the last step, we have taken the limit q → 0 and kept only the linear term in q. Carrying out the integrals, we obtain

−e2μ5
1

β

X
n

Z
d3p
ð2πÞ3

∂
∂p0

Ξijðp; pþ qj0Þjp0¼ið2nþ1ÞπT ¼ −i
e2

2π2
μ5qkϵijk: ð47Þ

The contribution of the PV regulators on the RHS of (43) can be calculated without employing the Matsubara formalism
even at nonzero temperature because of the large regulator mass Ms in the quark propagators. Then the total derivative
vanishes and we end up with

e2μ5
X
s

Cs

Z
d4p
ð2πÞ4

�
2Ms

p2 −M2
s
Θijðp; pþ qjMsÞ þ

2Ms

ðpþ qÞ2 −M2
s
Θjiðpþ q; pjMsÞ

�

¼ −16ie2μ5qkϵijk
X
s

CsM2
s

Z
d4p
ð2πÞ4

1

ðp2 −M2
sÞ2½ðpþ qÞ2 −M2

s �
þOðq2Þ

¼ i
e2

2π2
μ5qkϵijk; ð48Þ

where we used the fact that
P

s Cs ¼ 1. The contribution of
the PV regulators (48) cancels that of the unregularized part
(47) in the one-loop triangle diagram. Therefore, for a
properly regularized AVV three-point function, the CME
current vanishes in the order of limits limk→0 limk0→0 for a
static external magnetic field up to the linear order in its
spatial momentum q. This is exactly the expected result
from the theorem above.

B. The order of limit limk0→0 limk→0

We shall consider in this section the other order of limit,
i.e., taking the spatial homogeneity limit prior to the static
limit in the axial-vector vertex. Let us consider the fermion
loop of an AVV diagram to which the axial-vector vertex is
attached, whose contribution is denoted by Γ, with n > 1
vector vertices as shown in Fig. 2. Note that the photon
lines attached to this loop could be either internal lines or
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external ones. In the case n ¼ 2, Fig. 2 becomes the usual
one-loop AVV diagram. In this loop, the axial-vector field
with incoming momentum k was inserted between vertices

ν1 and ν2. By convention, the additional momentum k
running around the fermion loop from the axial-vector
vertex would exit at vertex ν1. We have in CTP formalism

Γν1ρν2���νn
a1ca2…anðk; k1;…; knÞ

¼ −ð−ieÞn
Z

dp1

ð2πÞ4 Tr½Γ
ρ5ηcSðp1ÞΓν1ηa1Sðpn þ kÞΓνnηanSðpn−1 þ kÞ � � � Sðp3 þ kÞΓν3ηa3Sðp2 þ kÞΓν2ηa2Sðp1 þ kÞ�;

ð49Þ

where Γν, Γρ5, and SðpÞ, given in (9) and (10), are the bare vector, axial-vector vertices, and quark propagator, respectively.
Taking the divergence with respect to the axial-vector vertex and employing the identity

Sðpþ kÞð−ikρÞΓρ5ηaSðpÞ ¼ ηaγ
5SðpÞ þ Sðpþ kÞγ5ηa ð50Þ

for massless fermions, we have

ikρΓ
ν1ρν2���νn
a1ca2…anðk; k1;…; knÞ

¼ ð−ieÞn
Z

dp1

ð2πÞ4Tr½Γ
ν2ηa2ηcγ

5ðSðp1Þ− Sðp1 þ kÞÞΓν1ηa1Sðpn þ kÞΓνnηanSðpn−1 þ kÞ � � �Sðp3 þ kÞΓν3ηa3Sðp2 þ kÞ�:

ð51Þ

Likewise, if the axial-vector vertex was inserted between vertices ν2 and ν3, we will have

ikρΓ
ν1ν2ρν3���νn
a1a2ca3…anðk; k1;…; knÞ

¼ ð−ieÞn
Z

dp1

ð2πÞ4 Tr½Γ
ν2ηa2ηcγ

5Sðp1ÞΓν1ηa1Sðpn þ kÞΓνnηanSðpn−1 þ kÞ � � � Sðp3 þ kÞΓν3ηa3ðSðp2Þ − Sðp2 þ kÞÞ�:

ð52Þ

Therefore the first term in (51) will be canceled by the second term in (52). Similar cancellations take place between terms
from other pairs of diagrams with adjacent insertions of axial-vector vertices. Summing over all n insertions, we end up with

Xn
i¼1

ikρΓ
ν1ν2���νiρνiþ1���νn
a1a2���aicaiþ1���anðk; k1;…; knÞ

¼ −ð−ieÞn
Z

dp1

ð2πÞ4 Tr½Γ
ν2ηa2ηcγ

5Sðp1 þ kÞΓν1ηa1Sðpn þ kÞΓνnηanSðpn−1 þ kÞ � � � Sðp3 þ kÞΓν3ηa3Sðp2 þ kÞ

− Γν2ηa2ηcγ
5Sðp1ÞΓν1ηa1SðpnÞΓνnηanSðpn−1Þ � � � Sðp3ÞΓν3ηa3Sðp2Þ�; ð53Þ

where the number i in the summation is modulo n. Shifting the integration variable from p1 to p1 þ k in the second term, if
it is legitimate, the two remaining terms cancel. As shown by Adler and Bardeen [32], the only circumstance that invalidates
this momentum shift was the diagram with n ¼ 2. While the legitimacy of the momentum shifting can be restored by a UV
regulator, say a Pauli-Villars regulator, the regulator mass invalidates (50) and gives rise to the anomalous Ward identity

−iðk1 þ k2ÞρΓρν1ν2
ca1a2ðk1; k2Þ ¼

8>><
>>:

e2

4π2
ϵν1ν2αβk1αk2β; c ¼ a1 ¼ a2 ¼ 1;

− e2

4π2
ϵν1ν2αβk1αk2β; c ¼ a1 ¼ a2 ¼ 2;

0; otherwise:

ð54Þ
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Consequently, the chiral magnetic current with this order of
limits takes the form of (6) [33]. This results is in contrast to
the null result in the order of limits, limk→0 limk0→0, which
is only valid in linear order of a small magnetic field
momentum.

IV. A CONCRETE EXAMPLE

In this section, we shall show a concrete example which
demonstrates that dressing the fermion propagators could
not smear the noncommutativity of the order of the spatial
homogeneity limit and the static limit in the axial-vector
vertex. One important lesson we learn is that in order to
preserve the Ward identities for the vector or axial-vector
vertex, Vμψ̄γ

μψ or Aμψ̄γ
μγ5ψ, with dressed fermion propa-

gators, the vertex should be dressed accordingly.
In CTP formulation, the Ward identities satisfied by the

vector and axial-vector vertices are

Sðp0Þσ1ð−iqμÞΓμðp0; pÞσ1SðpÞ ¼ SðpÞ − Sðp0Þ; ð55Þ

and

Sðp0Þσ1ð−iqμÞΓμ5ðp0; pÞσ1SðpÞ ¼ γ5SðpÞ þ Sðp0Þγ5;
ð56Þ

in the physical representation, where SðpÞ is the full
fermion propagator carrying both spinor and CTP indices,
Γμ, Γμ5 are the amputated full vector and axial-vector vertex
functions with q ¼ p0 − p the momentum flowing into it,
and σ1 is the Pauli matrix with respect to CTP indices, which
always accompanies the CTP Green functions in physical
representations. As shown, the Ward identity ties the longi-
tudinal component of the vertex function to the propagator.
Any dressing of the latter has to be reflected in the
longitudinal component of the former. In case of the triangle
diagrams underlying CME, while the longitudinal compo-
nent of the photon vertex contributes to neither order of limit
of the response to magnetic field, the longitudinal compo-
nents of the axial-vector vertex does contribute to the order of
limit in Sec. III B. The mechanism of removing the ambi-
guity of the orders of limit with respect to the magnetic field
does not contradict to the vector Ward identity but fails here
with respect to the axial-vector Ward identity.
In terms of the explicit form of the fermion propagator

and axial-vector vertex function

SðpÞ ¼
�

0 SAðpÞ
SRðpÞ SCðpÞ

�
; ð57Þ

and

Γμ5ðp0; pÞ ¼
 

0 Γμ5
A ðp0; pÞ

Γμ5
R ðp0; pÞ Γμ5

C ðp0; pÞ

!
; ð58Þ

the Ward identity (56) becomes

SAðp0Þð−iqμÞΓμ5
A ðp0; pÞSAðpÞ ¼ γ5SAðpÞ þ SAðp0Þγ5;

ð59aÞ

SRðp0Þð−iqμÞΓμ5
R ðp0; pÞSRðpÞ ¼ γ5SRðpÞ þ SRðp0Þγ5;

ð59bÞ

SRðp0Þð−iqμÞΓμ5
RAðp0; pÞSAðpÞ ¼ γ5SAðpÞ þ SRðp0Þγ5;

ð59cÞ

where

Γμ5
RAðp0; pÞ≡ Γμ5

C ðp0; pÞ þ ½1 − 2fFðp00Þ�Γμ5
A ðp0; pÞ − ½1 − 2fFðp0Þ�Γμ5

R ðp0; pÞ
2½fFðp0Þ − fFðp00Þ� ; ð60Þ

and the KMS relation

SCðpÞ ¼ ½1 − 2fFðp0Þ�½SRðpÞ − SAðpÞ�; ð61Þ

is employed. To the zeroth order, SAðpÞ and SRðpÞ are
given by free propagators and Γμ5

A ðp0; pÞ ¼ Γμ5
R ðp0; pÞ ¼

γμγ5 and Γμ5
C ¼ 0. Consequently, Γμ5

RA ¼ γμγ5. Note that, in
general, a full axial-vector vertex function Γμ5ðp0; pÞ

FIG. 2. The axial-vector vertex is attached to an internal
fermion loop with n > 1 vector vertices.
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contains eight components with respect to the CTP indices.
The external field, however, has equal values on both time
branches in the CTP contour and thus the operator coupled
to it only takes the physical component. Consequently, the
number of components of the full axial-vector vertex
reduces to four and it can be written by a 2 × 2 form as

in (58). For the specific definitions of the components in
(58), see the Appendix.
Let us consider the AVV three-point function shown in

Fig. 3 with full propagators and a modified axial-vector
vertex, and bare vector vertices. The retarded CME kernel
implied by this diagram has the form

Gij0
R ðq; kÞ ¼ −ie2

Z
d4p
ð2πÞ4 Trγ

i½SRðpþ qþ kÞΓ05
R ðpþ qþ k; pþ qÞSRðpþ qÞγjSCðpÞ

þ SRðpþ qþ kÞΓ05
C ðpþ qþ k; pþ qÞSAðpþ qÞγjSAðpÞ

þ SCðpþ qþ kÞΓ05
A ðpþ qþ k; pþ qÞSAðpþ qÞγjSAðpÞ

þ SRðpþ qþ kÞΓ05
R ðpþ qþ k; pþ qÞSCðpþ qÞγjSAðpÞ

þ SCðpþ qþ kÞγjSAðpþ kÞΓ05
A ðpþ k; pÞSAðpÞ þ SRðpþ qþ kÞγjSRðpþ kÞΓ05

C ðpþ k; pÞSAðpÞ
þ SRðpþ qþ kÞγjSCðpþ kÞΓ05

A ðpþ k; pÞSAðpÞ þ SRðpþ qþ kÞγjSRðpþ kÞΓ05
R ðpþ k; pÞSCðpÞ�: ð62Þ

Employing the KMS relation (61), we can rewrite the retarded CME kernel for a static magnetic field in terms of retarded
and advanced propagators

Gij0
R ðq; kÞ ¼ −ie2

Z
d4p
ð2πÞ4 Trγ

iffFðp0Þ½SRðpþ qþ kÞΓ05
R ðpþ qþ k; pþ qÞSRðpþ qÞγjSRðpÞ

þ SRðpþ qþ kÞγjSRðpþ kÞΓ05
R ðpþ k; pÞSRðpÞ�

þ ½fFðp0 þ q0Þ − fFðp0Þ�½SRðpþ qþ kÞΓ05
RAðpþ qþ k; pþ qÞSAðpþ qÞγjSAðpÞ

− SRðpþ qþ kÞγjSRðpþ kÞΓ05
RAðpþ k; pÞSAðpÞ�

− fFðp0 þ k0Þ½SAðpþ qþ kÞΓ05
A ðpþ qþ k; pþ qÞSAðpþ qÞγjSAðpÞ

þ SAðpþ qþ kÞγjSAðpþ qÞΓ05
A ðpþ q; pÞSAðpÞ�g; ð63Þ

with q ¼ ð0;qÞ and k ¼ ðk0;kÞ, in parallel to the one-loop expression (17). Considering a homogeneous axial chemical
potential, i.e., k ¼ ðk0; 0Þ, and taking the divergence at the axial-vector vertex (projecting out the longitudinal component),
we end up with

k0Gij0
R ¼ e2

Z
d4p
ð2πÞ4 ffFðp

0ÞTrγiγ5½SRðpþ qÞγjSRðpÞ − SAðpþ qÞγjSAðpÞ�

− fFðp0 þ k0ÞTrγiγ5½SRðpþ qþ kÞγjSRðpþ kÞ − SAðpþ qþ kÞγjSAðpþ kÞ�g; ð64Þ

where the Ward identities (59) were employed. It follows that

lim
k0→0

lim
k→0

Gij0
R ðq; kÞ ¼ e2

Z
d4p
ð2πÞ4

∂
∂p0

ffFðp0ÞTrγi½SRðpþ qÞγ5γjSRðpÞ − SAðpþ qÞγ5γjSAðpÞ�g; ð65Þ

in parallel to (27). In a proper regularization, for instance the PV regularization, the momentum shift will be legitimate and
the two terms cancel out, or, equivalently, (65) vanish. The regulator term will contribute to the nonzero current (6).
To be specific, let us consider the dressed propagator (29). It follows from (59) and (60) for p0 − p ¼ ðk0; 0Þ that

Γ05
R ðp0; pÞ ¼ Γ05

A ðp0; pÞ ¼ γ0γ5;

Γ05
RAðp0; pÞ ¼ γ0γ5 þ 2i

k0τ
γ0γ5;

Γ05
C ðp0; pÞ ¼ 4i

k0τ
½fFðp0Þ − fFðp0 þ k0Þ�γ0γ5: ð66Þ
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Consequently, the role of the pinching singularity with the
bare propagator and axial-vector vertex is taken over by the
1=k0 singularity of the dressed axial-vector vertex function
Γ05
RAðp0; pÞ in the limit of k0 → 0. In another word, it is

precisely this singularity that facilitates the reduction from
(63) to (65), in the limit k0 → 0, in parallel with the
reduction from (17) to (27) in the one-loop case.
We have to emphasize that Fig. 3 only represents a subset

of diagrams underlying the radiative corrections to the AVV
triangle whose integrand adds up to a total derivative with
respect to the energy running through the Fermion loop and
thereby contributing to the nonrenormalization of the

anomaly independent of other diagrams. The dressed
axial-vector vertex in Fig. 3 excludes the diagrams in
Fig. 4, which adds another term to the RHS of (56) because
of the anomaly [31,32]. The photon vertices in Fig. 3
remain undressed. Dressing the photon vertices amounts to
introducing more bare photon vertices with internal photon
lines attached to them and the logic from (57) to (64) is
expected to be carried through. On the other hand, even
with dressed photon vertices, the diagrams included in
Fig. 3 do not cover all radiative corrections to AVV triangle.
An example not included in Fig. 3 can be found in
Refs. [34,35]. Nevertheless, the selection of the subset
of diagrams in Fig. 3 demonstrates that modifying the
fermion propagator with damping term does not remove
ambiguity of the infrared limit of the four-momentum
pertaining to the axial chemical potential.

V. CONCLUSIONS AND OUTLOOKS

In this paper, we studied the noncommutativity of
different orders of zero energy-momentum limit pertaining
to the axial chemical potential in the chiral magnetic effect.
The vanishing CME in the limit that the static limit was
taken prior to the homogeneous limit was proved in general
by an argument similar to the Coleman-Hill theorem for a
static external magnetic field. For the opposite limit that the
homogeneous limit is taken first the nonvanishing CME
was a consequence of the nonrenormalization of chiral
anomaly. While the nonrenormalization of chiral anomaly
is valid for arbitrary external momenta, the Coleman-Hill
theorem applies only in the limit q → 0 with q the spatial
momentum of the external magnetic field. A possible
caveat of the Coleman-Hill theorem is the infrared diver-
gence at a nonzero temperature when more and more
internal gluon lines are introduced. But the lattice simu-
lation indicates a nonzero magnetic mass of gluons
[36–38], which serves an infrared cutoff. In addition, a
recent calculation based on holography shows that such a
noncommutativity stays in strongly coupled N ¼ 4 super
Yang-Mills theory [39].
At one-loop level, the noncommutativity of different

orders of zero momentum limit is originated from the
pinching of the poles of the retarded and advanced fermion
propagators convoluting with the difference of the distri-
bution functions of this fermion pair. It is tentative to smear
the pinching singularity by introducing a finite damping
term to the fermion propagators and thereby removing the
noncommutativity between different orders of limits. The
mechanism works for the photon vertex attached to the
magnetic field and the infrared ambiguity is indeed
removed. As we have shown in this work, this approach
does not work for the axial-vector vertex. The physical
reason is that modifying the propagator alone would violate
the vector and axial-vector Ward identities, which requires
a corresponding modification of the longitudinal compo-
nent of the vector and axial-vector vertices with respect to

FIG. 3. Subdiagrams with a modified axial-vector vertex and
full fermion propagators, but bare vector vertices. There is a
second set of subdiagrams with the photon four-momenta and
polarization indices interchanged.

FIG. 4. An axial-vector vertex not considered in Fig. 3.
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the four-momentum transfer. For the vector vertex attached
to the magnetic field, according to (3), only the transverse
component matters in either order of limits and the issue
does not arise. For the axial-vector vertex, the static limit
after homogeneity limit picks up the longitudinal compo-
nent and the modified vertex contributes. We demonstrate
this point by a subset of diagrams contributing to CME and
show explicitly that the difference between the two orders
of limits remains as expected.
Our work at this stage is of theoretical value only. In view

of the dynamical nature of the chirality imbalance in
realistic heavy ion collisions, it is important to explore
under which order of limits the constant μ5 approximation
better describes the phenomenology of the chiral magnetic
effect there.
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APPENDIX: GREEN FUNCTIONS AND
VERTICES IN CLOSED-TIME PATH

FORMALISM

As the closed-time path (CTP) Green’s function is less
well known than the Green’s functions underlying the
Feynman diagrams and Matsubara diagrams, we provide
some background behind the CTP formalism employed in
this work. A systematic discussion of CTP formulation and
its applications can be found in [25].
The CTP Green’s functions are generated by a path

integral whose action is the integration of the classical
Lagrangian along a closed time path which consists of a
forward branch,

R
∞
−∞ dtð…Þ and a backward branch,R−∞

∞ dtð…Þ. The number of degrees of freedom is thereby
doubled. The quantum field operator in CTP is denoted by
ϕαðxÞ with α ¼ 1, 2 labeling the forward and backward
branches. The time-ordering operator underlying the CTP
Green’s functions becomes the path-ordering along the
closed time path, i.e., ordinary time ordering along the
forward branch and antitime ordering along the backward
branch with the backward branch preceding the forward
branch. The two-point Green function of operators Aαðt1Þ
and Bβðt2Þ is defined as

Dαβðt1; t2Þ ¼ hTpðAαðt1ÞBβðt2ÞÞi; ðA1Þ

where Tp enforces the path-ordering operator along the
CTP contour and the dependence on the spatial and internal
coordinates is suppressed for clarity.
It is convenient to write the two-point function in a 2 × 2

matrix form, named as the single-time representation in
[25], i.e.,

D ¼
�
D11; D12

D21; D22

�
; ðA2Þ

with

D11ðt1; t2Þ ¼ hTðAðt1ÞBðt2ÞÞi; ðA3aÞ

D12ðt1; t2Þ ¼ hBðt2ÞAðt1Þi; ðA3bÞ

D21ðt1; t2Þ ¼ �hAðt1ÞBðt2Þi; ðA3cÞ

D22ðt1; t2Þ ¼ hT̃ðAðt1ÞBðt2ÞÞi; ðA3dÞ

where T is the usual time-ordering operator, while T̃ is the
antitime-ordering operator. Whenever ”�” or ”∓” shows
up, the upper sign refers to bosons and the lower sign to
fermions. The four components in the matrix form (A2) are
not independent and satisfy the following identity:

D11 þD22 ¼ D12 þD21: ðA4Þ

As shown in (A3), once the operators are placed explicitly
in the order with backward branch preceding the forward
branch, the branch indices are removed since both ϕ1ðtÞ
and ϕ2ðtÞ corresponds to the same Hilbert space operator.
In particular, we have Tpðϕ1ðtÞÞ ¼ Tpðϕ2ðtÞÞ ¼ ϕðtÞ.
The CTP Green functions are also defined with respect to

“physical” field operators

ϕΔðtÞ ¼ ϕ1ðtÞ − ϕ2ðtÞ;

ϕcðtÞ ¼
1

2
ðϕ1ðtÞ þ ϕ2ðtÞÞ: ðA5Þ

Consequently, the physical representation (with Δ and c
indices) of the CTP Green function can be obtained from
(A2) by an orthogonal transformation, i.e.,

D ¼ V−1DV; ðA6Þ

with

V¼ 1ffiffiffi
2

p ð1− iσ2Þ¼ 1ffiffiffi
2

p
�
1 −1
1 1

�
; V−1¼ 1ffiffiffi

2
p
�

1 1

−1 1

�
;

ðA7Þ

and we end up with

D ¼
�

0 DA

DR DC

�
; ðA8Þ

where

DRðt1; t2Þ ¼ θð12Þh½Aðt1Þ; Bðt2Þ�∓i; ðA9aÞ
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DAðt1; t2Þ ¼ −θð21Þh½Aðt1Þ; Bðt2Þ�∓i; ðA9bÞ

DCðt1; t2Þ ¼ h½Aðt1Þ; Bðt2Þ��i; ðA9cÞ

where θð12Þ is the step function, which equals one if
t1 > t2 and vanishes otherwise, and ½� � ��∓ stands for
commutator and anticommutator. DR, DA, and DC are
the retarded, advanced and correlation functions, respec-
tively, and they satisfy the KMS relation

DCðpÞ ¼ ½1 − 2fðp0Þ�½DRðpÞ −DAðpÞ�; ðA10Þ

with fðp0Þ ¼ 1=ðeβp0 ∓ 1Þ the Bose-Einstein or Fermi-
Dirac distribution functions for the bosonic or fermionic
fields, respectively. The same orthogonal transformation
(A6) also converts the signature matrix of time integration
along the CTP contour, σ3 in the single time representation
to σ1 in the physical representation.
It is instructive to verify the structure of (A8) directly

from definition since the methodology can be readily
extended to the three-point function considered in this
work. The ΔΔ-component of (A8) takes the form

hTpðAΔðt1ÞBΔðt2ÞÞi ¼ θð12ÞhTpðAΔðt1ÞBΔðt2ÞÞi � θð21ÞhTpðBΔðt2ÞAΔðt1ÞÞi
¼ θð12ÞhTpðAΔðt1ÞðB1ðt2Þ − B2ðt2ÞÞÞi � θð21ÞhTpðBΔðt2ÞðA1ðt1Þ − A2ðt1ÞÞÞi: ðA11Þ

Looking at the first term on RHS, t2 is the earliest moment, therefore, B1ðt2Þ should reside at the rightmost position and
B2ðt2Þ at the leftmost position, i.e.,

1st term ¼ θð12ÞhðA1ðt1Þ − A2ðt1ÞÞB1ðt2Þ ∓ B2ðt2ÞðA1ðt1Þ − A2ðt2ÞÞi ¼ θð12Þh½Aðt1Þ − Aðt1Þ; Bðt2Þ�∓i ¼ 0: ðA12Þ

The same logic renders the second term vanish as well and we find hTpðAΔðt1ÞBΔðt2ÞÞi ¼ 0. Next, let us consider the
Δc-component. We have

hTpðAΔðt1ÞBcðt2ÞÞi¼
1

2
θð12ÞhTp½ðA1ðt1Þ−A2ðt1ÞÞðB1ðt2ÞþB2ðt2ÞÞ�i�

1

2
θð21ÞhTp½ðB1ðt2ÞþB2ðt2ÞÞðA1ðt1Þ−A2ðt1ÞÞ�i;

ðA13Þ

where

1st term¼ 1

2
θð12ÞhðA1ðt1Þ−A2ðt1ÞÞB1ðt2Þ �B2ðt2ÞðA1ðt1Þ−A2ðt2ÞÞi ¼

1

2
θð12Þh½ðAðt1Þ−Aðt1ÞÞ;Bðt2Þ�∓i ¼ 0; ðA14Þ

and

2nd term ¼ 1

2
θð21ÞhðB1ðt2Þ þ B2ðt2ÞÞA1ðt1Þ ∓ A2ðt1ÞðB1ðt2Þ þ B2ðt2ÞÞi ¼ θð21Þh½Bðt2Þ; Aðt1Þ�∓i; ðA15Þ

which gives rise to (A9b). The same manipulation, when applied to the cΔ-component, leads to (A9a).
This type of reduction extends readily to n-point Green function with the recipe: 1) Write down all possible orders of the

time variables by inserting the identity

1 ¼
X
P

θðp1p2…pn−1pnÞ; ðA16Þ

with θð12…nÞ ¼ θð12Þθð23Þ…θððn − 1ÞnÞ and the sum extends to all permutation of 1; 2;…; n. 2) Time order the
operators inside Tpð…Þ, and 3) Remove the operators one by one from Tpð…Þ according to their location in the forward or
backward time branches. As an illustration, we consider the following three-point function:

hTpðAΔðt1ÞBαðt2ÞCβðt3ÞÞi; ðA17Þ

with α; β ¼ Δ or c. The RHS of (A16) consists of six permutations of the time ordering. To have a nonzero Tp product, the
latest time must be associated with the c-component. Consequently
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hTpðAΔðt1ÞBΔðt2ÞCΔðt3ÞÞi ¼ 0: ðA18Þ

For the Tp product with one operator in c-component, we have

hTpðAΔðt1ÞBΔðt2ÞCcðt3ÞÞi ¼ θð312ÞhTpðCcðt3ÞAΔðt1ÞBΔðt2ÞÞi � θð321ÞhTpðCcðt3ÞBΔðt2ÞAΔðt1ÞÞi
¼ θð312Þh½½Cðt3Þ; Aðt1Þ�∓; Bðt2Þ�−i � θð321Þh½½Cðt3Þ; Bðt2Þ�∓; Aðt1Þ�−i; ðA19Þ

and

hTpðAΔðt1ÞBcðt2ÞCΔðt3ÞÞi ¼ �θð213ÞhTpðBcðt2ÞAΔðt1ÞCΔðt3ÞÞi þ θð231ÞhTpðBcðt2ÞCΔðt3ÞAΔðt1ÞÞi
¼ �θð213Þh½½Bðt2Þ; Aðt1Þ�∓; Cðt3Þ�−i þ θð231Þh½½Bðt2Þ; Cðt3Þ�∓; Aðt1Þ�−i; ðA20Þ

where, without loss of generality, we assume that the
operators AðtÞ, BðtÞ and CðtÞ are simultaneously bosonic
or fermionic ones. It is straightforward to figure out the
relative signs in (A19) and (A20) if one ormore operators are
in different type.
Nowwe are equipped to analyze the structure of the three-

point functions encountered in this work.While a three-point
function has eight CTP components in general, not all
components contribute to our case. If an operator underlying
the three point-function couples to an external field, only Δ-
component of the operator contributes since the external field
takes equal values on both time branches. For the AVV
function, we associate Aðt1Þ with the axial-vector current
density couplingwith the axial chemical potential,Bðt2Þwith
the electric current coupling with gauge potential underlying
the magnetic field, and Cðt3Þ with the electric current to be
measured. Thereby only two CTP components are left over,
i.e., ΔΔΔ- and ΔΔc-components with the former one
vanishing in according to (A18). Consequently

hTpðAΔðt1ÞBΔðt2ÞCcðt3ÞÞi ¼ hTpðAΔðt1ÞBΔðt2ÞC1ðt3ÞÞ;
ðA21Þ

which, upon applying the Wick theorem, gives rise to the
retarded kernel (12) or (62).
Coming to the dressed axial-vector vertex in (58),

Aμψ̄γ
μψ , we associate Aðt1Þ with the axial vector current,

and Bðt2Þ and Cðt3Þ fermionic fields. Only Aðt1Þ couples to
the external μ5, we are left with four CTP components,
which can be packed in a 2 × 2 matrix

�hTpðAΔðt1ÞBΔðt2ÞCΔðt3ÞÞi hTpðAΔðt1ÞBΔðt2ÞCcðt3ÞÞi
hTpðAΔðt1ÞBcðt2ÞCΔðt3ÞÞi hTpðAΔðt1ÞBcðt2ÞCcðt3ÞÞi

�
;

ðA22Þ

where the upper left element vanishes, resonating the
structure of (58). Notice that the vertex function is obtained
by amputating the two fermion legs and the amputation
leaves the structure intact.
A comprehensive discussion of the general multipoint

Green functions and vertices in the physical representation
can be found in [25].
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