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Force potential exerting between two classical static sources of pure non-Abelian gauge theory in the

Coulomb gauge is reconsidered at a periodic/twisted box of size L3. Its perturbative behavior is examined
by the short-distance expansion as well as by the derivative expansion. The latter expansion to one-loop
order confirms the well-known change in the effective coupling constant at the Coulomb part as well as the
Uehling potential while the former is given by the convolution of two Coulomb Green functions being
nonsingular at x = y. The effect of the twist comes in through its Green function of the sector.
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I. INTRODUCTION

The force potential between two static classical sources is
a classic object in quantum field theory since Yukawa. In the
theory where the gauge principle is operating, the compu-
tation of this quantity at the Coulomb gauge is a most
straightforward one as the Coulomb potential is present in
the interaction Hamiltonian as its instantaneous part.' In the
covariant gauge, the Coulomb part and the longitudinal part
come together in computation and one often derives the
potential by comparing it with the nonrelativistic potential in
quantum mechanics at the level of amplitudes.

Non-Abelian gauge theory formulated in a finite box has
been exploited in several directions both for the periodic
boundary condition (see, for example, [12]) and for the
twisted boundary conditions [13—19], combining them with
several approximations.
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There is a vast amount of literature dealing with Coulomb
gauge non-Abelian gauge theory. We give here some of the
references [1-11].

For a review, see, for example, [20]. Also, for Witten index in
supersymmetric gauge theories and its computation at finite
volume, see [21,22].
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The goal of this paper is rather modest: we will
reexamine the force potential of the non-Abelian gauge
theory in the Coulomb gauge at a finite periodic as well as
twisted box of size L3 and determine its form both in the
derivative expansion and in the short-distance expansion to
one-loop order in old-fashioned perturbation theory. In the
Coulomb gauge, the Hamiltonian acting on the reduced
Hilbert space consists only of the physical degrees of
freedom, all of the gauge degrees of freedom being
eliminated. The momentum cutoff A can be introduced
consistently with Ward-Slavnov-Taylor identity [6,7] and
this allows us to proceed to the straightforward short-
distance expansion.

In the next section, we give several preliminaries to the
subsequent sections. In particular, we present position
space expression of the Coulomb Green function (the
inverse of the Laplacian) for the periodic sector and that
for the twisted sectors. In Sec. III, we consider the case of
(periodic) QED for comparison with the pure non-abelian
case and illustrate the derivative and the short-distance
expansions. Section four contains main results of our paper.
We deal with the non-Abelian case to confirm the asymp-
totic freedom from the effective coupling constant and to
obtain the Uehling potential (see, for example, [23]) at the
derivative expansion to one-loop order. The one-loop part
of the short-distance expansion begins with A%/ p*, which
translates into A? [ d*zG(x —z)G(z —y) in position space,
being nonsingular at x = y. We determine the coefficient to
one-loop order. The effect of the twist is seen through the
phase factor of the Green function in the twisted sector by
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the Poisson resummation formula. In the final section, we
briefly conclude our results in the bigger perspective.

II. SOME PRELIMINARIES

A. Twisted boundary condition

While it is not a main scope of this paper, pure non-
Abelian gauge theory permits twisted as well as periodic
boundary condition due to the presence of the center of the
SU(N) group. In this subsection, we will briefly recall this
well-known fact and treat the cases of periodic boundary
condition and the twisted boundary conditions collectively.

Let A;(x,y,z) = >_,T°A%(x,y, z) be these spacial com-
ponents of an SU(N) gauge field, which is Lie algebra
valued. As we work on Hamiltonian formalism, we will
suppress time ¢ unless necessary. We adopt the twisted
boundary condition of the following form:
A;(x,y,2) =PA;(x+L,y,z) P!

=QA;(x.y+L,2) 07" =A;(x.y.z+L), (2.1

where P and Q are the constant matrices which satisfy for
SU(N),

PQ = QPR (2.2)

An explicit representation for P and Q is

010
010
0 1
P=a s
0 0
10 0
1
eZm‘/N
0=/ et (23)

p27i(N=1)/N

Here « and f are chosen so thatdet P =detQ = 1 [21]. In
the next subsection and the subsequent ones, we will work
on an explicit solution to this boundary condition in the
case of SU(2) only.

The extension to the explicit solution to the SU(N) case
(N > 3) is a straightforward eigenvalue problem in the
linear algebra and will not be attempted here. In ’t Hooft
terminology, the twisted boundary condition (2.1) describes
one of the three twisted sectors with a unit magnetic flux,
the remaining two obtained by the cubic symmetry of the
box. There are another three sectors (2.1) having the

magnetic fluxes in two different directions and one sector
with the magnetic fluxes in all three directions.

B. Mode expansion and bracket notation

In order to avoid using plane wave expressions in most
places, we will adopt the bracket notation. Let f(x) obey the
twisted boundary condition labeled by A and be expandable
as Fourier series. Preparing the ket |f) and the bra vector
(x| in the coordinate representation such that (x|x’) =
83 (x —x’) and therefore [ d*x'|x')(x'| = 1, we write

ﬂw—avw—/ffmrvww—u/ﬁ%wwﬂﬁ,
(2.4)

while

fay=Y aletrr=

weZ3 A

S ol xiw;.

weZ3 41

(2.5)

Here we have introduced the ket vector |w), in the
momentum representation in the A twisted sector. In the
twisted sector,

1 27i (1l ). 1 3
5 [ daeErx = [ i ) el = )
(2.6)
still holds, so that
1
A
O =55 | e (). (2.7)

Plugging this into (2.5) and comparing with (2.4), we obtain

1
FE Z W) (w| = 1;.

weZ3+1

(2.8)

Here, we have denote by 1, the unit operator in the 4 twisted
sector.

Following the relativistic normalization seen in the
standard textbook, we expand the gauge field A{(x);w
belonging to the A(@ twisted sector and its canonical
conjugate IT¢(x);w at t =0 as

1

A ()0 = WGZ;W N (af (w) (x[w) 0 + Hoc.),
(2.9)
ow),, .
¢ (x),w = 3 —i)at(w)x|w),w + H.c.),
() w%%@ 53 (D (w) (xlw)yo + He.)
(2.10)

where w(w) = 2 |w|. The solution to the twisted boundary
condition (2.1) is
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0 1/2 1/2
A== 172 [, Ae=2=[1/2 |, A=H=| 0
0 0 0

(2.11)

Here, the column vectors refer to the x, y, z components.
Quantization in the Coulomb gauge contains only the
transverse part of the gauge fields: the physically relevant
part of the oscillators is

r)a a Wiw;
o (w) = Pw)yai(w).  P(w); =6~ L.
(2.12)
The canonical commutation relations are
r)a b a
[ (w). o ()] = 508, P(W),.
a b r)at )bt
™ (w), & )] = [ (w), &} (w')] = 0.
(2.13)

C. Green function

We will deal with the loop-corrected Coulomb force
potential in the subsequent sections. We list here the Green
function of the Laplacian in the A twisted sector:

Gl = (9,0 (el
— (x/A )
—(5) Wl (X S whatel ) )

eZm‘}uf

1
=—— —_—. (2.14)
4”;23 |x —x' + LZ|
The last expansion is obtained from the Poisson resumma-
tion formula, which we review in the Appendix. In the case
of the periodic sector A = 0, we obtain

GO (x|x') = <2L—”>2<x % <Z%|w>oo<w|> )

wez3
w#0

1 1
=—— _—. 2.15
4ﬂ2|x—x’+Lf| 2.15)
tez’

This agrees with the Green function in the periodic box.’

The charge neutrality condition for the total source is required
in the periodic box by the Gauss’ law. This removes the zero-
mode from our consideration.

The Green function G*(x|x') in the limit L — co does
not depend on the twist A and is simply

1 1

G(x‘x/) = —Em

(2.16)

D. Coulomb gauge Hamiltonian

Before presenting the Coulomb gauge Hamiltonian of
non-Abelian gauge theory which we work with in this
paper, let us make a pedagogical outline of its derivation,
starting from the operator formalism at the time-like axial
gauge. Here, we closely follow the discussion of [1]. See
also [24]. It is well-known that, in quantizing gauge theory
in general, not all the equations of motion that holds at the
classical level are maintained as operator equations. In the
time-like axial gauge, the non-Abelian analog of the Gauss
law is not realized as an operator equation but instead is
imposed on the state space as constraints. The quantization
itself goes by the standard equal time commutation rela-
tions on positive definite Hilbert space. The transition from
the time-like axial gauge with the Gauss law constraint to
the Coulomb gauge is regarded as the change of coordi-
nates from Cartesian to curvilinear ones in the infinite
dimensional field space. The constraint gets eliminated by
this procedure and the time components of the gauge
field become dependent variables, giving rise to the non-
Abelian analog of the Coulomb potential. Another feature
of this transition to the Coulomb gauge is that we must take
care of the nontrivial Jacobian associated with this trans-
formation, which is nothing but the Faddeev-Popov deter-
minant. Finally, by a similarity transformation, we obtain
the Coulomb gauge Hamiltonian acting on the reduced
Hilbert space consisting of transverse physical degrees of
freedom only.

Here we just list the Hamiltonian

1 Tr)a r)a rja r)a
=33 [ gn s BB ¢ e,

(2.17)
Hew =B [ @xivgtpeel(@0,)
ab
()0, ) T ), .19

(tr)

i

“ Bgtr)a, D;, p* and J are respectively the

conjugate momentum of the transverse gauge field Agtr)a,

the transverse magnetic field, covariant derivative, the
charge density and the Faddeev-Popov determinant
J = det(9;D;). As we are in the Coulomb gauge, only
the transverse parts of the gauge field A; (and its canonical
conjugate I1;) contribute to the Hamiltonian. For simplicity,
we will omit the symbol (tr) in the following discussion. We

where I1
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expand the operater ((9;D;)”'(—=9%)(0;D;)™")*" in the
Coulomb potential part Hc,, of the Hamiltonian by the
coupling constant g, as follows:

(x[((9:D;)~1(=0%)(9;D,)")*"|x")
= (x|(—(A™" ) +2go(8‘1f28‘1)“b
-3@(ATTQATIQATY L O(R))I),  (2.19)

where (A‘l)“b, Q% are the operators respectively repre-
sented as

(AN = G ), (220)
(el = 50 (x — ¥ )e ALK . (221)

Here, the totally antisymmetric tensor €®*¢ is the structure
constant of the gauge group SU(2). In the Hamiltonian, we
have included two of the classical external source terms in
the charge density p“(x)

PAx) = goe®P AL (X)TTE (x) + pf o (%) + p5 o (),
Ploex(®) = Z (X [W)10PT 5 ex (W)

wez3 @

(2.22)

The two delta finction sources localized at x = x;, x, are
respectively represented as

- . 1
Plae(w) = D273, (wlxi2). (2.23)
)
1
Ploex(®) = q’f,zﬁ Z W)z 500 (W[x1 2)
weZ3 Al
= 1,09 (x —x,), (2.24)

in the A twisted sector.

We will be interested in the part of the vacuum energy
which depends linearly upon both pf . (x) and pg . (x).
Clearly, at the lowest classical level,

E, = —Q%Z / Bxdx' pi o, (x)GH (x[x')6 o} ., (x')

= —goZCMSG‘ (o). (2.25)

III. CASE OF QED

In this section, we obtain, to one-loop order, the
interaction energy between the two external static sources
with charges ¢; and g, for QED in the periodic box of size
L3 by old-fashioned perturbation theory well-known in

quantum mechanics. We will confirm the UV divergence
and the renormalization of the coupling constant and the
Uehling potential in QED for the massless fermions at finite
volume.

Let us first denote the free part and the interaction part of
the Coulomb gauge Hamiltonian H by H© and H;,
respectively:

Hy,,=H-H" (3.1)
The massless fermions are expanded as

Z 3 Yut (w)e! 2w -x

weZ3 V 2(0 L

+ b5t (w)* (w)e"TW'x), (3.2)
Px) =) s (0" (W) 7 (W)™

wez? 260 L%

+ d”(w)ﬁs(w)e"TW'x). (3.3)

The Hamiltonian in this section includes the kinetic term
for the fermions and their gauge interactions. The charge
density is

P(X) = p1ex(X) + prex(x) + 97 . (3.4)
The eigenstates and the eigenvalues for the Hamiltonian

of H and the free part of the Hamiltonian H®) are
respectively denoted by

H|Ny;Ng,Np) = Ey nyn,INas Nas Np),  (3.5)
H<0)|Na;Nd’Nb> - EE\(/),S;Nd,Nb‘Na;Nvab% (36)
©0;0,0) = £y 4/0;0,0) = 0, (3.7)

where N, is the number of bosons and N, and N, are
respectively the number of fermions and that of antifer-
mions. As we are interested in the interaction energy
between the two external sources, we ignore the zero point
oscillation and set Eé?()),o =0

As in quantum mechanics, the perturbative expansion of
E(ry») goes as
= EW(rp) + EW(rpp) +---,

E(ry2) (3.8)

E<i)(r12) =

(0|Hin(r12)]0), (3.9)

“In this paper, we do not estimate the contributions coming
from the zero momentum modes and possible infrared divergen-
ces associated with them.
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. O|H; N, N, N 2
E(“>(r12) = Z 0] lm(rZ()(J) > Nas Np)|
(N,l;pl\zlgfxbj[;lfo;o.o) TENGNgN,

(3.10)

After some calculation which we omit presenting here (it is
a routine), we obtain the leading order E)(r,) and the
second order E(“)(ru) corrections respectively given by

2
_ Qe Z %0192
47°L = n-n 471/ ~ |x;

(3.11)
exploiting the Poisson resummation formula, and

eizfﬂn'(xz_xl)

2
E(ii) r _ 9049192
( 12) 4”2L nez’?
n#0

g56(m)],

n-n

6(n) = —

1 1
@n-n"§|m|+|n+m|

m#0
" (1 _m-(n+m)>‘
jm||n +m|

A. Derivative expansion

(3.12)

Let us first consider the derivative expansion, which will
be valid at the distance comparable to the size of the box, to
evaluate the first quantum correction (3.12) to Coulomb
potential in perturbation theory. The derivative expansion
corresponds to the triple Taylor expansion with respect to n’
(i=1, 2, 3). We obtain

5(n) = —rjﬁnf(")
R 1 f o
= idnon (f O+ 31 g O
1 orf

- 74 ininkn? 4 ...
+4!6ni8nj6nk8nf (0)n'n/n*n’ + ), (3.13)

where we have omitted the terms odd in n’ as they cancel
upon taking the summation over n'. Using the symmetry of
cubic lattice, the above expansion (3.13) is written as

1 1 L b
4n® £~ |6|m|?
mez>
m#0

L |n]”

olm) =~ 120 |mf’

+ O(|n| )} (3.14)

Coming back to (3.12) and using the Poisson resummation
formula, we obtain

E<ii)(’12>
_ 1 QOQICIQ
a ;le—xz +nL| < >47TZ:|’"|3
90511512 1 Z(S x —f—nL)—l
(47)* 15 ) ’ L
nez’
1 . . . .
X Z —= + (higher orders in the derivative expansion).
Zlnl
(3.15)

The higher orders will give (Gaussian) width to the delta
function potential. This expression is still at finite vol-
ume L3.

Taking the large volume, up to the second order in
perturbation theory, we obtain the derivative expansion of
the loop-corrected Coulomb potential as the interaction
energy between the two external charges ¢, and g,:

1 q19 9%
E(r15) = rllzzgg<1 60 In(AL)

_ %02 1,
(4r)? 15

(3.16)

where A is the UV cutoff. The first term derives the positive
p-function of QED at one-loop while the second term is the
Uehling potential. Here, when we define the renormalized
coupling constant g; in the box L3:

>
90
7 =q <1 e ln(AL)), (3.17)
g7 is written in g3:

g%( +g—Lln(AL)> +O(g0).

By substituting this into (3.16), we can also write E(r,) as

1 919> b 92611(]2 1 2 1
E - — L2 (1-——
(o) = = (47)% 15 (AL)?
x 83 (x) —x,), (3.18)

at the order g}.

B. Expansion at short-distance

Let us now probe the opposite limit to the last subsection.
We will evaluate the interaction energy by the short-
distance rj, < L expansion. In this expansion, E(r,) is
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expanded in A/ p. Here, we take the limit L — oco from the

beginning. 5p) = —%L/zﬁk 1 <1 L +k)>.
We obtain 4r’p -p k| + |p + k| |kllp + k|
(3.20)

1
B =80 [ Lorinsiiis o), (319
(27)° pp Using the polar coordinates, §(p) is further converted as

A n 1
5(p)=—%L/ kzdk/ do sinf <1— Kt peost )
27°p -p 0 k4 K2+ p>+2kpcosO VK2 + p* 4 2kpcos @

1 1 n
= dOsin0I(A, p,0), 3.21
3y |, d0sinOI(A. p.0) (3.21)

A 1 k 0
I(A,p,é’):/ K>dk (1— + poos ) (3.22)
k+ /K> + p> +2kpcos @ VK> + p* 4 2kpcos 0

Expanding I(A, p.6)/A? in %, we obtain

I(A, p,0) =

1 - ON -1 oA A’
cosOA” + cos” O A* (’)( ) (3.23)

3 p 2 p P’
(3.21) becomes

o [ ) o)
S ORORIE)

The loop-corrected potential as the interaction energy E(r;,) at short-distance expansion is thus given by

%419 ol @ (N A A’
E(rlz)—(ozﬂ) /d3 P (x2 m[?‘ﬁ(ﬁ‘ﬁ“o 7)) (3.25)

IV. STATIC FORCE POTENTIAL IN PURE NON- gector. We manage to treat both cases at once in the notation

ABELIAN GAUGE THEORY AT A PERIODIC AND ™ IX)II?;vgci)l?go“t/lslé method in the Abelian case, we will
TWISTED BOX ’

compute the interaction energy E(r;,) between the two
Let us now turn to the case of pure non-Abelian gauge  external static sources of charge ¢{ and ¢4 in old-fashioned
theory at a twisted or periodic finite box of size L>. Unlike ~ perturbation theory. Up to the second order, it reads
the periodic one, the zero-mode is not present in the twisted  E(ry,) = EV(r,) + E@ (r,):
|

i 9195 1
EO(rn) = SIS () (30 () ). (@)
a nez312@)
n#0
q q 1
J(ri2) —r Z (erlm)ao = (668510 (1)) io mlx2), (4.2)
nEZ3+l(a)

n#0

where
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3 01 (n+m);P(m);n;
b = S 4.3
A (n) 167°n - n CFa mez3+2(¢) |I’l + m|2‘m| ( )
m#0

11 (lm| = |n —m|)> P(m);;P(n —m),

s - Y v 4.4

3o (1) 32ﬂ3n-n; ZZ; m| +n—m|  |m|n—m| 4
m#0

Here we have used

Zebacebdcf(c) _ Z(éad(SCC _ 5a05dc)f(c) _ 5ad2(5cc _ 5ac)f(c) _ 5ad2f(c)_ (45)
b.c c c

c#a

In the case of SU(N), we need only to replace €’ by the structure constant. (The above derivation, of course, does not
hold.) As for E¥)(ry,), recall that Hcyy, in the non-Abelian case in (2.18) takes a nonlocal expression in the position space
and generates infinite series of gauge fields in coupling constant. It starts contributing already at the first order in
perturbation theory. We have a result in E(V(r,) similar to that in the Abelian case, replacing the fermionic intermediate
states by the bosonic ones. Again, we have omitted presenting our calculation.

The interaction energy in the twisted box L3 up to g reads

90‘1142

xd")wﬁ[l + 958510 (1) + 8 (1)) 3o (nx2). (4.6)

”12

nez3 (@)
n#0

The case of the periodic sector can be read off from this expression by setting A¥ = 0. The presence of 8, (n) from the
contribution E()(r,) is a unique feature of non-Abelian gauge theory responsible for the asymptotic freedom.

A. Derivative expansion

To evaluate the above result, we expand the quantum corrections &, (n) + 5w (n) in n' as in the Abelian case:

14(m - n)? 1 66(m-n) 57(m-n)?
5/ 5// — P B
A(a)( n)+ 2a 3271.3 Z Z [2! (|m|3 ‘m|5|n|2 > * 3! < |m|5 * |m|7|n|2

c#a mez3ale
m#0

1< 150|n|> 822(m-n)> 714(m-n)*

m[’ m| - m[’ ]2 ) + (higher orders of n’)] (4.7)

In the twisted sectors, namely A # 0, we can not use the cubic symmetry to evaluate the parts involving m - n in the box L3.
Here we consider the case of the periodic box, namely the A = 0 case only. Due to the cubic symmetry, the quantum
corrections reduce to

) ) = 1 3 = G+ 0| 8)

We obtain the interaction energy at the periodic box:
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9091492 >
DI e I 012,,24,zz|mp]

a nez?
90‘1 19547 47 1
83 (x; —x, +nL) ——
e (4r)? 3 Z 1 =Xy +nL) z; |m|5
mme#o
+ (higher orders in the derivative expansion). (4.9)

For large L, the static force potential is evaluated as follows up to the second order in perturbation theory,

1 1
E(ryy) Z qqu 2<1 + 153 In(AL) ) goqlqz 2<1 (AL)2>6(3)(x1 —x,), (4.10)

where A is the UV cutoff. The first term of (4.10) derives the negative f-function with the correct numerical coefficient’ and
the second term is nothing but the Uehling potential.
Also, by defining the renormalized coupling constant g; as

11
0 1 In(AL
7 =R (14 G (AL ).

we can also write E(r,) as

a a 4 a,a
919 919149547 1 3
E(riy) = d —gi — d 4(47[)2 %Lz <1 - (AL? 5(3)(x1 —X,), (4.11)

at the order g}.

B. Expansion at short-distance

Let us carry out the short-distance expansion as in the abelian case. Taking L — oo limit, we obtain

1
Br) = SO [ L e+ 510) +6'(0)] (4.12)
P'P
where
3 1 (p+k),Pk)p;
Sp)=-s— | Phk—-—"=- 4.13
) 8ﬂ3p-p/ p + k[*|K| 1)
1 1 —|p—k\)?Pk);;P(p—k);;
167°p - p k| +lp -kl [kllp — K|
Using the polar coordinates, we obtain
1 A ™ 2(1 — cos?
5(p) = iz—/ dk/ d6)sin 621 = €050)
4z°p-p 0 p°+ k*+2pkcosf
3 1 ™
=——— [ dfsin0I'(A, p,0), 4.15
iz [ dosinor(a.p.0) (@15

*We regard this as support for the validity of the use of momentum cutoff to one-loop order. See [24] for further discussion on
renormalization and renormalization group in this treatment.
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k

o :———/ / dfsin 0
) 8z°p-p k+\/p?+ k* —2pkcos 6

(k—/p* + k* = 2pkcos 6)? (k— pcosf)?
X - 1+ 5 5
\/p2—|—k2—2pkcos9 p°+ k*—2pkcos@
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We note that the 1/p*-term is written as

/ d*zG(x1]z)G(z|x,) = / @p L opin) (4.20)
1 ’ (27)* p* ’
which is nonsingular for the position at x; = x;:
-1\2 1 1
&G G(zlx')=(— & —_
/ 2G(x[z) Glel) (477.’) / ‘ezl
(4.21)

Here the integral in the right-hand side of (4.21) is
divergent in the large L limit, however the divergence
depends on the volume of the box L? only and, except this
divergence, there is no divergence. In terms of the Green
functions, the interaction energy E(r;,) is written as

1
E(ri) ——902611612[ (1 fx2) = P T3 BN

x / PG )G aley) + O |, (422)

As is stated in the introduction, the expansion begins with
the convolution of the two Coulomb Green functions and is
nonsingular at the short distance limit of the two external
sources X; = X,. Up to the same order in the expansion, this
term does not appear in QED.

V. CONCLUSION

In this paper, we revisited the non-Abelian static force
potential in the well-known Coulomb gauge at a finite
periodic/twisted box in perturbation theory. Exploiting the
finite box as an infrared cutoff, we have given both
derivative and short-distance expansions in position space.
The former expansion has given us a non-Abelian Uehling
potential in the next leading order. Also, we have written
the interaction energy E(ry,) (4.6) in the twisted box,
explicitly. As a result, the role of the twist on the Green
function has been clarified.
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APPENDIX: POISSON RESUMMATION
FORMULA

In this Appendix, we give the proof for the Poisson
resummation formula in three dimensions:

S fm) = 3 F(2am).

nez? meZz?

(A1)

where f is the Fourier transform of function f:
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7 = [ @rfet,
The proof exploits the formula

Zezﬂikn _ Z 63 (k —m),

nez’ mez’

and goes as

Zf("> = Z / (;Iﬂ])%f(k)eik'" :/(jﬂ];ﬂk) Zeik.n

nez? nez?

We can generalize (Al) by considering n € Z° + A
(A € R?) in the sum in the left-hand side:

Z p2rikn _ Z 56 (k _ m)eZm'l-m' (A3)
nez’>+i meZ?
This leads us to
D fm) =" Fam)eiim, (A4)

nez’+A mezZ?

which is exploited in the text.
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