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The Xð3872Þ resonance has been conjectured to be a JPC ¼ 1þþ charm meson-antimeson two-body
molecule. Meanwhile, there is no experimental evidence for larger, few-body compounds of multiple
charm meson-antimeson pairs which would resemble larger molecules or nuclei. Here, we investigate such
multimeson states to the extent of what can be deduced theoretically from essentials of the interaction
between unchargedD0 and D�0 mesons. From a molecular Xð3872Þ, we predict a 4X (4þþ) octamer with a
binding energy B4X > 2.08 MeV, assuming a D�0D̄0 system close to the unitary limit [as suggested by the
mass of the Xð3872Þ]. If we consider heavy-quark spin symmetry explicitly, the D�0D̄�0 (2þþ) system is
close to unitarity, too. In this case, we predict a bound 3X (3þþ) hexamer with B3X > 2.29 MeV and a more
deeply bound 4X octamer with B4X > 11.21 MeV. These results exemplify with hadronic molecules a
more general phenomenon of equal-mass two-species Bose systems composed of equal number of either
type: the emergence of unbound four- and six-boson clusters in the limit of a short-range two-body
interaction which acts only between bosons of different species. Finally, we also study the conditions under
which a 2X (2þþ) tetramer might form.
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I. INTRODUCTION

Systems of particles with a two-body scattering length a
significantly larger than the interaction range R (a ≫ R)
share a series of common/universal properties, which encom-
pass a multitude of phenomena in atomic, nuclear, and
particle physics [1]. This invariance with respect to a
continuous scale transformation, however, holds strictly only
in the two-body sector. In the few-body spectrum,
this continuous scale invariance survives only partially
in a discrete version. An example of this is the Efimov effect
[2], i.e., the appearance of a geometric bound-state spectrum
of three-boson systems in the unitary limit (a=R → ∞). This
effectwas found for the first time a decade ago in experiments
with caesium atoms [3], and it is now known to extend to
systems of nonidentical particles [4] as well as systems of
more than three particles [5,6]. In nuclear physics, theEfimov
effect plays a role in the description of the triton [7,8] and 4He

[9], halo nuclei [10–14], and the Hoyle state [15,16]. In
bosonic systems with more than three particles, the same
effect realizes stable clusters (see e.g., [17] where up to 60
bosons where analyzed).
Compared with atoms and nucleons, it is more difficult

to find instances of universality in hadronic physics where
the Xð3872Þ resonance [18] might qualify as a hadronic
system close to the unitary limit. The X has been con-
jectured to be a hadronic molecule [19,20], more precisely,
a relatively shallow bound state of two hadrons because of
its proximity to the D�0D̄0 threshold (∼0.01 MeV) and its
narrow width. This shallowness, in particular, is a signature
of universal behavior [21]. To explore the consequences of
universality, we will describe X and multi-X systems with a
contact-range theory [21] and use D (D̄) mesons (anti-
mesons) as fundamental degrees of freedom. With this
approach, we aim to expose characteristic features of
composite systems with the minimal assumptions and data
on the constituents. Alternative descriptions may improve
on accuracy if the coupling to other channels, meson
exchanges, etc., [22–26] is considered. The bulk properties
of the systems we analyze below, however, will not be
affected by these refinements.
The identification of universal properties in systems

composed of more than two charm mesons is an intriguing
open question because charm meson-antimeson inter-
actions produce qualitatively new features that are absent
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in systems of identical particles. For instance, both three-
body systems D0D0D̄�0 and D�0D�0D̄0 do neither form
trimers nor do they display the Efimov effect [27]. Along
with heavy-quark spin symmetry (HQSS) [28,29] and the
associated, more tightly constrained charm meson-antime-
son potential enters new features. In the two-body sector,
we expect from HQSS the interaction in the D�0D̄0

(JPC ¼ 1þþ) X-channel identical to the one in the
D�0D̄�0 (2þþ) channel, suggesting the existence of a
partner molecule of the X [30,31]. Like the Xð3872Þ, this
partner is expected to be shallow but its survival as a bound
or virtual state, or as a resonance depends on a number of
uncertainties [31–33]. HQSS challenges the original
expectation of an unbound D�0D�0D̄0 J ¼ 2 three-body
system and could thus facilitate the Efimov effect [34].
In four-meson systems and beyond, we expect to find new

universal phenomena different from the ones known to
emerge in atomic and nuclear composites [17,35]. We will
consider, in particular, systems of N ¼ 2, 3, 4 D0D̄�0 pairs
with maximum spin, i.e., J ¼ 2, 3, 4, respectively. Bound
“polymers” of this kind exhibit a characteristic scaling
inversely proportional to the square of the interaction range,
i.e., B2N ∝ 1=R2. We infer from this scaling the Thomas
collapse [36] of these systems alongwith the implied Efimov
effect. This collapse is eventually avoided owing to short-
range effects, e.g., the finite interaction range. Conversely,
the Efimov effect is impaired by long-range deviations from
unitarity, i.e., a finite scattering length. Specifically,D�0D̄�0

pairs can decay strongly to Dð�Þ0D̄0=Dð�ÞþD̄− via a short-
rangeD-wave operator [37] inducing such a finite interaction
width. Using data on theX in support of the assumption of an
infinite D�0D̄0 scattering length (zero binding energy of the
X molecule) and disregarding HQSS, we predict a bound
state of fourX’s: an octamer. As the tetramer and the hexamer
are unbound under these circumstances, this octamer resem-
bles a so-called Brunnian [38,39] state: a generalization of a
Borromean structure. Finally, we predict that a D�0D̄�0
interaction close to the unitary limit, will stabilize the
hexamer and thus induce the transition from a Brunnian to
aBorromean system (a still unbound tetramerwith a hexamer
resembling a Borromean bound state of X’s).

II. THEORY AND CALCULATION METHOD

We treat the above-mentioned polymers as a nonrela-
tivistic few-body problem. The charm meson and anti-
mesons comprising these polymers have a ground (D=D̄)
and excited (D�=D̄�) state. Their isospin I ¼ 1=2 discrim-
inates between neutral and charged states. Because of their
mass difference, we will only consider the neutral mesons
which dominate the X wave function tail. In the unitary
limit, we have to consider only resonant1 two-body

interactions. Mass and quantum numbers of the X from
the molecular perspective hint toward such a resonant
behavior in the D�0D̄0 (1þþ) channel (i.e., the X channel)
[20,21], while HQSS lets us expect the D�0D̄�0 (2þþ)
channel to be resonant, too [30,31]. All other combinations
are assumed to be nonresonant and set to zero. Nonresonant
interaction pairs would increase the total binding of the
systems slightly. Thus, they do not alter our conclusions.
To describe the resonant pairs, we employ a contact two-

body potential

Vðr;RcÞ ¼ CðRcÞδð3Þðr;RcÞ; ð1Þ
regularized with the Gaussian cutoff function

δð3Þðr;RcÞ ¼
e−ðr=RcÞ2

π3=2R3
c
:

The cutoff radius Rc and coupling constant CðRcÞ are
calibrated (renormalized) to the mass of the Xð3872Þ,

MX ¼ mðD0Þ þmðD�0Þ − BX: ð2Þ
Here, mðD0Þ, mðD�0Þ denote the masses of D0 and D�0
mesons, respectively, and the binding energy BX is positive
for a stable state. As we are interested in the universal
properties of charmed meson clusters, wewill set BX ¼ 0 in
accordance with the current experimental value BX ¼
−0.01� 0.18 MeV putting it slightly above threshold
[40]. The potential underlying this threshold state is
attractive, i.e., CðRcÞ < 0, and would bind the system if
increased by an infinitesimal amount. The contact-range
potential is visualized in Fig. 1 for Rc ¼ 1.0; 1.5; 2.0 fm,
where the relation between an interaction of shorter range
with a larger coupling (i.e., a deeper potential), as to ensure
that the D�0D̄0 bound state is always at threshold, is
apparent. When solving the Schrödinger equation with
this potential (1), we will consider all the mesons to have an
identical mass of m ¼ 1933.29 MeV, i.e., twice the
reduced mass of the D�0D̄0 pair within the X because it
is the most important resonant interaction in the multi-X
systems [see derivation of (4)–(12) below]. Corrections are
deemed to be subleading and without impact on the
qualitative description of the many-particle states.
Renormalized predictions, in principle, require that

observables are cutoff independent. We will show below
that hexamer and octamer binding energies do not conform
with this demand as they Thomas collapse if Rc → 0. In
few-body systems, this type of divergence can be renor-
malized via an additional three-boson datum [7,8] which,
as of now, is unavailable in the few-X sector.
Despite this obstacle, we can obtain information about

the existence of bound states and estimates of their binding
energies. To this end, we choose a cutoff range near the
theory’s breakdown scale which is determined by the
longest omitted short-range component of the interaction.

1Two particles interact resonantly if their S-wave scattering
length diverges and a two-body bound state with zero energy at
threshold exists.
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This missing component is in case of the X the charged
channel,2 i.e., the D�þD− component of the X wave
function [23,24]. The characteristic momentum scale of
the charged channel is Mch ≃ 125 MeV. It is sensible to
expect a cutoff in the vicinity of MchRc ∼ 1 for which the
three-body counterterm vanishes, and that it remains
numerically small within some interval around it. This
smallness suffices to foresee that their inclusion would have
no effect on the character of a state: bound will remain
bound, resonance will remain resonance, etc. Hence, a
bound state found within a cutoff range around MchRc ∼ 1
(specifically, we chose Rc ¼ 1.0–2.0 fm) can reliably be
considered a renormalized prediction which will not
change character even with the proper calibration of a
collapse-preventing counterterm.

III. INTERACTION BETWEEN MESON PAIRS

We exemplify the few-X calculations with a detailed
discussion of the four-body, i.e., two-X problem. First, we

treat the X as a pure D�0D̄0 two-body system. This
approximation disregards the shorter-range D�þD̄− com-
ponent and assumes the X wave function to be

ΨX ¼ ϕXðrÞ
1ffiffiffi
2

p ½jD0D̄�0i þ jD�0D̄0i�; ð3Þ

with the spatial two-body wave function ϕXðrÞ. The charm
meson-antimeson potential in the X channel is defined
for the linear combination D�0D̄0 þD0D̄�0 (the positive
C-parity combination). It is practical to use a Fock
representation of the potential,

VXðr;RcÞ ¼
VDðr;RcÞ

2
½jD0D̄�0ihD0D̄�0j

þ jD�0D̄0ihD�0D̄0j�

þ VEðr;RcÞ
2

½jD0D̄�0ihD�0D̄0j
þ jD�0D̄0ihD0D̄�0j�; ð4Þ

with a direct (VD) and an exchange term (VE) which
combine to the potential in the X channel, VX ¼ VD þ VE.
As no negative C-parity partner of the X has been found
yet, we assume jVD þ VEj ≫ jVD − VEj. Moreover, the
isospin-breaking decays of the X [23,24] allow access to
VE and corroborate this inequality [42]. Hence, we use the
approximation VD ¼ VE ¼ 1

2
V and

VX ¼ V
2
½jD0D̄�0i þ jD�0D̄0i�½hD0D̄�0j þ hD�0D̄0j�; ð5Þ

where the ðr⃗; RcÞ dependence of the potential has been
dropped to improve readability.
The two-X tetramer contains in principle the six possible

permutations of the jD0D0D̄�0D̄�0i state that result from
exchanging ground- and excited-state mesons (we assume
the spins of all the D�0=D̄�0 mesons/antimesons to point in
the same direction). However, these permutations are
further constrained by symmetries, as we require (i) positive
C-parity (i.e., invariance with respect to the exchange of
particles and antiparticles) and (ii)D0 andD�0 to obey Bose
statistics which we realize with symmetric internal and
spatial wave function components as they are expected to
provide the majority of the attraction (i.e., symmetric
combinations of D0D�0 and D�0D03). This reduces the
number of relevant states from six to two,

FIG. 1. Regularized contact-range D̄ −D� potential (1) with
strengths CðRcÞ renormalized to a X molecule at threshold for
cutoff radii Rc ¼ 1.0; 1.5; 2.0 fm (solid, dashed, dotted blue
lines), i.e., the depth is determined by the coupling strength
(1) and changes with Rc in order to generate the same diverging
two-body scattering length independent of Rc. The effective
meson-antimeson interactions for Rc ¼ 1.0 fm in the four-body
2X system [see (10)] are shown in red for comparison. The
enhancement of the potential due to HQSS is shown in green [see
(15)]. In these two cases, the effective interaction is a factor of
0.75 and 0.854 weaker to that of the D̄ −D� potential owing to
the existence of noninteracting meson-antimeson pairs in the
multimeson wave functions [see (6)–(15)].

2Pion effects are naïvely expected to enter perturbatively at
subleading orders [41], suggesting leading-order predictions
which are indistinguishable in pionfull and pionless treatments.
Analogous to the conjectured effect of the charged components of
the D’s, the inclusion of pions is expected to change the
breakdown scale of the theory and generates a finite-range
interaction which adds to the attraction in larger clusters instead
of their disintegration.

3Antisymmetric combinations—the nuclear analog are proton-
proton or neutron-neutron spin-1 contributions to, e.g., 4He—
demand an odd angular momentum with a perturbatively small
effect in the leading-order framework employed in this work.

TRIPLE-X AND BEYOND: HADRONIC SYSTEMS OF THREE … PHYS. REV. D 103, 056001 (2021)

056001-3



j1i ¼ jD0D�0D̄�0D̄0i þ jD�0D0D̄0D̄�0iffiffiffi
2

p ; ð6Þ

j2i ¼ jD0D�0i þ jD�0D0iffiffiffi
2

p jD̄�0D̄0i þ jD̄0D̄�0iffiffiffi
2

p : ð7Þ

In this basis, the potential reads [insert (6) and (7) in (5)]

X
ij

VXðrij;RcÞ
� j1i
j2i

�
¼

�
2V̄

ffiffiffi
2

p
V̄ffiffiffi

2
p

V̄ V̄

�� j1i
j2i

�
; ð8Þ

where V̄ represents the average of the potential for all
resonant pairs. Considering that VX involves particle-
antiparticle interactions only and the same ordering as in
j1i and j2i (i.e., indexing particles before antiparticles),

V̄ ¼ 1

4
½Vðr13Þ þ Vðr14Þ þ Vðr23Þ þ Vðr24Þ�: ð9Þ

The diagonalization of (8) yields

X
ij

VXðrij;RcÞjX2i ¼ 3V̄jX2i; ð10Þ

as the most attractive configuration, with jX2i ¼
ffiffi
2
3

q
j1i þffiffi

1
3

q
j2i being a four-meson eigenstate of

P
VX. The

original coupled-channel problem has thereby been recast
into a single-channel form.
The steps detailed above for the tetramer can be

straightforwardly applied to the hexamer and octamer.
The six-body case comprises, in principle, 20 possible
permutations of the jD0D0D0D̄�0D̄�0D̄�0i state, which are
reduced to two states by symmetry constraints. In the eight-
body case, there are 70 possible permutations of the
jD0D0D0D0D̄�0D̄�0D̄�0D̄�0i state, which are reduced to
three symmetric ones. The potential can be diagonalized, as
before in the four-body case, leading to a series of
eigenvalues and eigenvectors of which the most attractive
configurations are

X
ij

VXðr;RcÞjX3i ¼ 6V̄jX3i; ð11Þ

X
ij

VXðr;RcÞjX4i ¼ 10V̄jX4i: ð12Þ

Again, V̄ represents the average of the potential experi-
enced by the interacting pairs, while jX3i, jX4i are the
eigenvectors in the internal space of the interaction that
correspond to the most attractive configuration.
In order to analyze the effect of HQSS on our predic-

tions, we modify the above-derived interaction. First, we
infer from HQSS a potential in the D�0D̄�0 (2þþ) channel
identical to that in the X channel. Note the approximate

character of this symmetry and the resulting hypothetical
nature of the 2þþ partner of the X. The HQSS extension of
the two-body potential VX of (5) is

VHQSS
X ¼ VX þ VjD�0D̄�0ihD�0D̄�0j: ð13Þ

Coupling between the 1þþ and the 2þþ channels is precluded
in the two-body sector but, nevertheless, these transitions
become possible in the few-X sector, where these states
appear as intermediate structures in the wave function.
We use the four-body case once again to exemplify how

the additional interaction term leads to more attraction than
expected earlier. In the basis (6), (7), the potential (13) now
reads

X
ij

VHQSS
X ðr;RcÞ

� j1i
j2i

�
¼

�
2V̄

ffiffiffi
2

p
V̄ffiffiffi

2
p

V̄ 2V̄

�� j1i
j2i

�
; ð14Þ

whose diagonalization gives

X
ij

VHQSS
X ðr;RcÞjX0

2i ¼ ð2þ
ffiffiffi
2

p
ÞV̄jX0

2i; ð15Þ

with the more attractive eigenvalue ð2þ ffiffiffi
2

p ÞV̄ and eigen-
vector jX0

2i ¼ ðj1i þ j2iÞ= ffiffiffi
2

p
. For the six- and eight-body

systems, the same assumptions and symmetries result in

X
ij

VHQSS
X ðr;RcÞjX0

3i ¼
1

2
ð11þ

ffiffiffiffiffi
13

p
ÞV̄jX0

3i; ð16Þ

X
ij

VHQSS
X ðr;RcÞjX0

4i ¼ ð8þ
ffiffiffiffiffi
22

p
ÞV̄jX0

4i; ð17Þ

with eigenvectors jX0
3i and jX0

4i corresponding to configu-
rations in which the potential is most attractive.
In both cases, with and without HQSS, the spectrum of a

system composed of N=2 X particles is given by the
Schrödinger equation

�
−
XN
i<j

ℏ2

2m
ð∇ijÞ2 þ η

X
1≤i≤N=2

ðN=2þ1Þ≤j≤N

VðrijÞ
�
ϕNðrÞ

¼ EϕNðrÞ; ð18Þ

with ϕNðrÞ¼hr1;r2;…;rN jðN=2ÞXi, η the eigenvalues of (8)
(η ¼ f3=4; 6=9; 10=16g, respectively, for 2X, 3X, and 4X),
rij ¼ ri − rj with the index i(j) representing a charm meson
(antimeson), where we have indexed the particles first and
then the antiparticles, and with m being twice the reduced
mass of the D0D�0 system, i.e., m ≈ 1933 MeV. Finally,
E refers to the energy of the N-body system, where we are
interested in bound states (B ¼ −E > 0).
In practice, we solve the Schrödinger equation with the

Stochastic-Variational Method [43]. In our implementation,
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this method expands the wave function in correlated
Gaussian functions [ðN − 1Þ × ðN − 1Þ relative Jacobi
coordinates], with a nonzero interaction between the
relevant pairs (meson-antimeson). We abstain from an
explicit symmetrization of the spatial wave function, i.e.,
we do not project onto L ¼ 0 and assume that the central
and parity-preserving character of the potential will pro-
duce the energetically favorable symmetric ground states in
the course of the variational optimization.

IV. RESULTS AND CONCLUSIONS

Assuming the charm meson-antimeson interaction in the
X-channel to dominate, i.e., with the average interactions
(10)–(12),we find solutions to (18) of the four-body (2X) and
six-body (3X) systems to be unbound. Adding anotherX, we
predict the eight-body (4X) system bound with B4X >
2.08 MeV. Including the attraction induced by HQSS,
i.e., the interactions in (15)–(17), the eight-body binding
energy increases to BHQSS

4X > 11.21 MeV. Furthermore, the
six-body system becomes bound with B3X > 2.29 MeV.
These results represent sensible lower bounds for the binding
energies of the respective systemsobtained at a regularization
scale of about 2 fm, a value deemed soft enough for an
attractive three-body counterterm. Furthermore, any attrac-
tion from the nonresonantmesonic interactions (set to zero in
our calculations) is expected to increase binding energies.
As alluded to in the Introduction, this appearance of few-

body clusters bound by a few MeVas a result of a resonant
two-body system with close-to zero binding energy is not
unprecedented. In comparison with those universal A ¼ 4,
5, 6 bosonic clusters found [44,45] attached to A ¼ 3
Efimov states, the constraint of a resonant interaction in the
X-channel, only, amounts to an N-body problem with each
particle interacting only with N=2 particles. Furthermore,
the strength of this interaction is reduced and is no longer
resonant. To be explicit, instead of 6(28) resonant inter-
action pairs in a system of 4(8) bosons, the limitation to
resonant interaction only in the 1þþ channel yields a 4(8)
equal-mass boson problem with 4(16) nonresonant inter-
action pairs. Multi-X boundstates are thus not expected to
expose molecular-X behavior. Therefore, they should be
approached, as done in this study, as multi-D=D̄ systems.
We also notice that three X bosons do not show an Efimov
spectrum.
In Fig. 2, we show the regulator dependence of the

binding energies as a signature of the Thomas collapse.
Originally, this collapse is expected for one-channel sys-
tems of identical particles in the zero-range limit [36]. Here,
we demonstrate the occurrence of the collapse for a more
complex system with more than one channel and where a
certain number of interaction pairs have been removed.
A range of cutoffs over which the effect of the unenforced
renormalization condition (e.g., the canonical three-body
counterterm) is expected to vanish is marked in the figure
(gray area).

Another effect of the reduction of resonantly interacting
pairs found here is the cutoff-independent ratio between 4X
and 3X energies, B4=B3 ∼ 4.9. Compared with the ratio
found in [46,47], B4=B3 ∼ 4.6, we conclude that reducing
the number of interacting pairs widens the gap between the
energy of N- and (N þ 1)-boson systems. However, a
single counterterm should still suffice to renormalize both
systems. Interpreted more generally, this study hints toward
new universal systems in which part of the resonant
interactions are amplified by the presence of more two-
body channels or totally removed by symmetry effects.
Consequences of deviations from universality and the effect
of multiple open two-body channels on universal ratios are
problems beyond the scope of this work.
Finally, we revisit the X2 and assess the conditions for its

binding. The heavy-quark content of the X2 is ccc̄c̄, a
double charm-anticharm content which was first observed
when detecting Ξþþ

cc [48] and more recently the fully charm
tetraquark [49]. These measurements indicate a possible X2

discovery in the near future. In this regard, it is interesting
to notice that the D0D̄0 interaction has been theorized to be
attractive and strong enough as to even support a bound
state [31,50,51]. As this interaction is not connected to the
VX potential via HQSS, its strength is unknown. Its
structure, however, can be included it our framework by
refining (13) as follows:

ṼHQSS
X ¼ VHQSS

X þ λVjD0D̄0ihD0D̄0j: ð19Þ

FIG. 2. Cutoff-radius dependence of the ground-state binding
energies of few-X systems. With a resonant meson-antimeson
interaction in the X channel and the JPC ¼ 2þþ partner channel,
3X0—a 6-meson state—(red square, dotted) and 4X0—an eight-
meson state—(blue square, dotted) clusters are bound. Solely
with a resonant X-channel interaction, only the 4X (blue circle,
dashed) is bound. The binding energies are proportional to 1=R2

c
(dashed/dotted lines) and indicate a Thomas collapse of the
systems. The ensuing counterterm(s) are expected to vanish
within the gray shaded area, while the total Rc range spans from
the typical hadron size up to a scale set by the expected charged
components of the X.
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Here, λ parametrizes the relative strength of the interaction
in the D0D̄0 (0þþ) channel with respect to the X. The
diagonalization of this modified potential [see (10)] is

X
ij

ṼHQSS
X ðr;RcÞjX00

2i ¼
�
2þ λ

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ λ2

4

r �
V̄jX00

2i

¼ 4ηðλÞV̄jX00
2i: ð20Þ

Compared with (18), the strength of the potential η is now a
function of the additional attraction parameter λ. We find
numerically that if η ≥ η� ¼ 0.876ð1Þ the four-body (2X)
system binds (see Fig. 3). This critical strength is approx-
imately constant for all considered cutoffs Rc ¼ 1.0; 1.5;
2.0 fm. An analysis and explanation of this phenomenon
remain beyond this paper. The condition η ≥ η� is equivalent
to λ ≥ λ� ¼ 0.174ð8Þ, i.e., the 2X will bind if an additional

ð>20%ÞD0D̄0 attraction is provided. As bound states of the
D0D̄0 system are a conceivable scenario [31,50–53], the
enhanced attraction and the ensuing bound 2X tetramer are
plausible.
In summary, we have shown how the substructure of a

unitary dimer—the X—affects the spectrum of its cluster
states. This spectrum differs from the one predicted for
pointlike bosons in the unitary limit [47] in an intriguing
aspect. Namely, under certain assumptions about the
meson-antimeson interaction, the X cluster states realize
a novel generalization of Borromean/Brunnian systems.
Regardless of the enormous practical difficulties which
hamper an experimental (or numerical, in the lattice)
verification of our conjectures (double charm-anticharm
production has only been recently achieved [48,49]), we
deem the exposition of the mechanism which “delays” the
formation of bound structures—the onset of binding with
4X and 3X, but not necessarily with 2X under the
assumptions we made—as a noteworthy result of the
above. Yet, in this later case, the 2X tetramer will bind
provided we include a weakly attractive D0D̄0 interaction
in our calculations of about 20% the strength of the
X-channel potential. In view of previous conjectures about
a possible D0D̄0 molecule [31,50,51], this condition might
very well be met in the real world. If this is to be the case,
the 2X tetramer will be experimentally accessible in the
near future.
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