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We discuss how four-lepton decays of the Z boson probe currently unconstrained flat directions in the
parameter space of the standard model effective field theory (SMEFT). We derive the constraints from these
decays on four-lepton operators in the SMEFT and show how the LHC data for this process complements
probes from neutrino-trident production. Future differential measurements with high-luminosity data can
strongly constrain four-lepton operators and remove all flat directions in the four-muon sector of the
SMEFT. We comment briefly on the possibility of using rare Z-decays to τ-leptons to probe untested
directions in the SMEFT parameter space.
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I. INTRODUCTION

The search for physics beyond the Standard Model (SM)
at the Large Hadron Collider (LHC) and other experiments
has so far yielded no new particles. This lack of evidence
for new electroweak-scale physics suggests that there is a
mass gap between the SM and the next energy scale at
which new particles appear. Although the search for new
particles will continue in the future at the high-luminosity
LHC, it is becoming increasingly important to search for
potentially small and subtle indirect signatures of new
physics, and to understand the constraints imposed by cur-
rent data on high-scale new physics. A systematic frame-
work for characterizing deviations from the SM in the
presence of no new electroweak-scale particle is the SM
effective field theory (SMEFT). The SMEFT is constructed
by allowing higher-dimensional operators containing only
SM fields that respect the SM gauge symmetries. These
operators are suppressed by an energy scale Λ at which the
effective theory breaks down and new fields must be added
to the Lagrangian. The leading lepton-number conserving
dimension-6 operators characterizing deviations from the
SM have been classified [1–3].
Significant effort has been devoted to performing global

analyses of the available data within the SMEFT frame-
work with varying assumptions [4–18]. Since the general
dimension-6 SMEFT Lagrangian contains 2499 parameters
for three generations assuming baryon-number conserva-
tion, quite often additional flavor symmetries such as

minimal flavor violation (MFV) are assumed in order to
reduce the number of Wilson coefficients. Assuming MFV
implies that the flavor structure of the SMEFT Wilson
coefficients are carried by combinations of Yukawa matri-
ces. This leads to several familiar intuitions [19,20]: for
example, that the coefficients of scalar and dipole operators
are suppressed by small fermion masses for the lighter
generations, and that vector four-fermion interactions are
generation-independent. Flavor assumptions such as MFV
lead to several advantages. In general fits without such flavor
assumptions, flat directions exist since current experimental
constraints cannot access all possible Wilson coefficients.
MFValso effectively suppresses strongly constrained flavor-
violating effects.
Despite these advantages it remains important to extend

fits within the SMEFT framework beyond the MFV
assumption. Going beyond MFV allows global fits to
encompass a broader range of ultraviolet completions.
For example, models which attempt to explain discrepan-
cies in rare B-meson decays have a structure that violates
lepton flavor universality [21]. Allowing for flavor struc-
ture in the SMEFT requires addressing and removing the
flat directions between Wilson coefficients that appear. The
removal of flat directions in fits to SMEFT Wilson
coefficients require the use of additional processes and
experiments [22]. In this work we point out that the rare Z
boson decays to four-leptons offer the potential to probe
combinations of four-fermion Wilson coefficients not
accessible in other measurements. In particular, only a
single combination of four-muon Wilson coefficients is
currently constrained in global fits by the neutrino-trident
production process γ�νμ → νμμ

þμ− [13,23]. Four-muon Z
boson decays at the LHC probe orthogonal combinations
of these Wilson coefficients, allowing for a complete
determination of the four-muon operators in the SMEFT.
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The potential of four-lepton decay modes to constrain
physics beyond the SM has been investigated previously,
particularly in the context of Z0 models [23,24]. We study
the constraints imposed by current LHC data, as well
as potential future constraints at a high-luminosity LHC.
Current measurements of this mode consider only the total
rate. We point out that differential measurements can
completely determine all four-muon Wilson coefficients,
which motivates their study with future high-luminosity
data. Although we focus here on the four-muon mode as
experimental searches for Z → 4μ exist, other channels
such as Z → 2τ2μ and Z → 4τ may provide probes of
completely untested parameters in the SMEFT. We com-
ment briefly on this possibility in our conclusions.
Our paper is organized as follows. We review aspects of

the SMEFT needed for our analysis in Sec. II. In Sec. III we
study the constraints imposed by inclusive LHC measure-
ments of the Z → 4μ decay rate on the SMEFT four-muon
operators. We also discuss their complementarity with
constraints from neutrino-trident production. We discuss
what can be learned from future differential LHC mea-
surements in Sec. IV. Finally, we conclude in Sec. V.

II. REVIEW OF THE SMEFT

We review in this section aspects of the SMEFT relevant
for our analysis of four-muon decays of the Z boson. The
SMEFT is an extension of the SM Lagrangian to include
terms suppressed by an energy scale Λ at which the
ultraviolet completion becomes important and new par-
ticles beyond the SM appear. Truncating the expansion in
1=Λ at dimension-6, and ignoring operators of odd-dimen-
sion which violate lepton number, we have

L ¼ LSM þ 1

Λ2

X
i

CiOi þ � � � ; ð1Þ

where the ellipsis denotes operators of higher dimensions.
The Wilson coefficients Ci defined above are dimension-
less. When computing the Z boson decay width we
consider only the leading interference of the SM amplitude
with the dimension-6 contribution. This is consistent with
our truncation of the SMEFT expansion above, since the
dimension-6 squared contributions are formally the same
order in the 1=Λ expansion as the dimension-8 terms which
we neglect. The Wilson coefficients are renormalization-
scheme dependent quantities. In an MS scheme they
become scale-dependent and run with energy. As we
perform only a leading-order analysis in this manuscript
we neglect this running.
Corrections to the Z → 4l decay widths come from two

sources: shifts of the Zl̄l and γl̄l vertices that scale as v2=Λ2

where v is the Higgs vev, and four-fermion operators which
scale as E2=Λ2 where E is the characteristic energy scale of
the process. Note that the γl̄l vertex is shifted from the SM
expression in the ðGμ;MW;MZÞ input parameter scheme

[25] adopted here since the electromagnetic coupling is
shifted. We summarize in Table I the dimension-6 operators
that shift the decay width at leading-order in its perturbative
expansion. Here, l denotes a Dirac lepton, ϕ the Higgs
boson, and W and B the field-strength tensors of the
SUð3Þ × Uð1Þ gauge bosons. p; r; s; t denote generation
indices. We have introduced explicit projection operators
PL;R to denote the projections onto left-handed doublets
and right-handed singlets. All operators containing the
Higgs field ϕ only shift the Zl̄l and γl̄l vertices and can be
combined into shift constants δgLZ, δgRZ , δgLγ and δgRγ
respectively. We note that δgRγ ¼ δgLγ ¼ δgγ. Explicit
expressions for these shifts are given in Appendix A.
There are potentially additional dimension-6 contribu-

tions from operators modifying the total Z boson decay
width that appear in the denominator of the branching ratio.
To study these effects we express each Z boson partial
width in terms of its dimension-4 and dimension-6 con-
tribution:

Γi ¼ Γð4Þ
i þ Γð6Þ

i ; ð2Þ

where the dimension-6 contribution is assumed to be small.
The branching ratio for Z → 4μ can then be written as

BRðZ → 4μÞ ¼ ΓðZ → 4μÞP
iΓi

≈
Γð4ÞðZ → 4μÞP

iΓ
ð4Þ
i

×

"
1þ Γð6ÞðZ → 4μÞ

Γð4ÞðZ → 4μÞ −
P

iΓ
ð6Þ
iP

iΓ
ð4Þ
i

#
ð3Þ

where the sum over i includes all Z boson decay modes and
we have expanded to linear order in the dimension-6
corrections. The second term in the square bracket above
comes from the dimension-6 corrections to the total decay

width. Since
P

i Γ
ð4Þ
i ≫ Γð4ÞðZ → 4μÞ, the only significant

corrections from this last term come from the large Z partial
decay widths. We assume that the dominant corrections

TABLE I. Dimension-6 operators contributing to the decay
Z → 4l. The last five operators only lead to overall shifts of the
SM Zl̄l and γl̄l vertices.

O ll
pr st

ðl̄pγμPLlrÞðl̄sγμPLltÞ
O ee

pr st
ðl̄pγμPRlrÞðl̄sγμPRltÞ

OϕD ðϕ†DμϕÞ�ðϕ†DμϕÞ
Oð1Þ

ϕl
rs

iðϕ†D
↔

μϕÞðl̄rγμPLlsÞ
O le

pr st
ðl̄pγμPLlrÞðl̄sγμPRltÞ

OϕWB ϕ†τIϕWI
μνBμν

Oϕe
rs iðϕ†D

↔

μϕÞðl̄rγμPRlsÞ
Oð3Þ

ϕl
rs

iðϕ†D
↔I

μϕÞðl̄rτIγμPLlsÞ
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come from the Z → f̄f decay widths. The corrections to
these widths come from shifts in the left and right-handed
couplings of the Z boson to the different fermions, and are
analogous to the operators leading to the shifts of the
leptonic vertices in Table I above. We will study the effects
from shifts to the Z → f̄f decays and absorb them into
global shift factors δgL;RZf for each fermion species.
Finally, we note that dipole operators that can potentially

contribute vanish for massless fermions upon truncation of
the EFT expansion to dimension-6, which we assume here.
The explicit expressions for all decay widths in terms of the
SMEFT coefficients can be found in Appendix A.

III. CONSTRAINING THE FOUR-LEPTON
OPERATORS

The coefficients parameterizing the SMEFT contribu-
tions to the decay Z → 4μ depend on the matrix elements
describing the process and the imposed experimental cuts.
We evaluate them numerically at leading-order using the
MADGRAPH package SMEFTsim [25]. The UV scale Λ is set
to the Higgs vacuum expectation value v ¼ 246 GeV for
comparison with previous results in the literature [13].
Explicit expressions for the four-lepton decay widths are
given in Appendix B. We express the deviation for the four-
muon decay mode in terms of the normalized branching
ratio:

BRðZ → 4μÞ
BRSM

¼ 1þ allC ll
2222

þ aleC le
2222

þ aeeC ee
2222

þ aLZlδg
L
Zl

þ aRZlδg
R
Zl þ aγμδgγμ þ aLZνδg

L
Zν þ aLZuδg

L
Zu

þ aRZuδg
R
Zu þ aLdδg

L
Zd þ aRdδg

R
Zd; ð4Þ

where we assume lepton and quark flavor universality for
the vertex shift operators for clarity of this argument. We
note from the expression above that this decay is directly
sensitive to the four-muon couplings in the SMEFT,
making it of interest for accessing these operators.
We discuss next how well measurements of the inclusive

Z → 4μ decay width can constrain the four-muon SMEFT
operators defined in the previous section. We first show that
after accounting for the strong constraints on the vertex
shifts from Z → 2f decays at LEP and other experiments,
measurements of the Z → 4l decay are primarily sensitive
to leptonic four-fermion operators, which are not as
strongly bounded yet. The relevant comparison to establish
whether Z vertex shifts or four-fermion terms dominate the

SMEFT correction is the size of aiCi for each term defined
in Eq. (4). We evaluate the branching ratio imposing
80 GeV<m4l < 100 GeV and mll > 4 GeV for all fer-
mion pairs, consistent with experimental analyses, and
obtain the results for the ai shown in Table II. The lepton
vertex-shift aL;RZl factors are in general two orders of
magnitude larger than the four-muon a coefficients for
the relevant experimental cuts. However, the δgL;RZl are
strongly constrained by Z-pole data. After accounting for
these constraints the allowed deviations on the Z → 4μ
branching ratio from vertex shifts are negligibly small. To
demonstrate this we begin with the bounds on the SMEFT
Wilson coefficients from Z-pole data, taken from [26],
where flavor universality is assumed and Λ ¼ 246 GeV.
These are summarized in Table III. We then use the
formulae compiled in Appendix A to translate these
Wilson coefficient bounds into allowed shifts of the
leptonic Zll and γll vertices:

jδgLZlj<0.0025; jδgRZlj<0.0050; jδgγlj<0.0036: ð5Þ

The largest of these effects leads to a shift in BRðZ → 4μÞ
of 1%, which is far smaller than the deviation allowed by
the experimental bound and also much smaller than any
effect we consider arising from four-fermion interactions.
The hadronic vertex shifts that enter the branching fraction
through the total width are similarly constrained by the
available LEP data. Following the same procedure as the
leptonic case we find the constraints:

TABLE II. Results for the ai coefficients given the cuts 80 GeV <m4l < 100 GeV and mll > 4 GeV. For
comparison with the available Z-pole bounds we assume flavor universality for the vertex-shift operators.

all aee ale aLZl aRZl aγμ aLZν aLZu aRZu aLZd aRZd

0.025 0.016 0.009 4.2 −3.3 4.0 −0.40 −0.39 −0.071 −0.87 −0.027

TABLE III. 68% confidence-level (C.L.) bounds for a single
Wilson coefficient fron Z-pole data. The UV scale is set to
Λ ¼ 246 GeV. The bounds are derived assuming flavor univer-
sality. These numbers are taken from Ref. [26].

jCϕDj <0.0012
jCϕWBj <0.0017
jCllj <0.0006

jCð1Þ
ϕq j <0.0023

jCϕuj <0.0073

jCð1Þ
ϕl j <0.0006

jCð3Þ
ϕl j <0.0029

jCϕej <0.0003

jCð3Þ
ϕq j <0.0005

jCϕdj <0.014
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jδgLZuj< 0.0047; jδgRZuj< 0.0250;

jδgLZdj< 0.0041; jδgRZdj< 0.0943: ð6Þ

The shift factors aL;RZu;d are small, and these corrections lead
to even smaller effects on BRðZ → 4μÞ than in the leptonic
case. This shows that the effects of vertex shifts can be
safely neglected in our analysis, and we do so in what
follows.

A. Single Wilson-coefficient constraints from
inclusive LHC measurements

Both ATLAS and CMS have performed measurements
of the Z → 4l branching ratios [27–30]. These experiments
are summarized in Ref. [24], where a combination of
existing results is also given. The combined measurement
of the Z → 4l branching ratio is

BRðZ → 4lÞ ¼ ð4.58� 0.26Þ × 10−6: ð7Þ

The measurements are scaled via a Monte-Carlo simulation
to the following common phase-space region:

80 GeV<m4l < 100 GeV; mlþl− > 4 GeV ð8Þ

wheremlþl− refers to the invariant mass of any combination
of oppositely charged leptons. As our interest is in the four-
muon mode, we convert this combination to a result for
BRðZ → 4μÞ as follows. For each of the experimental
measurements in Table 1 of Ref. [24] we scale the central
value by the leading-order ratio ΓðZ → 4μÞ=ΓðZ → 4lÞ
computed using MADGRAPH, and the statistical uncertainty
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓðZ → 4lÞ=ΓðZ → 4μÞp

. Combining the results yields

BRðZ → 4μÞ ¼ ð1.21� 0.41Þ × 10−6: ð9Þ

We have checked that including the correlation coefficients
listed in Table 2 of Ref. [24] does not significantly change
this result. We estimate the expected constraints from an
inclusive measurement at a high-luminosity LHC by
assuming that both statistical and systematic errors scale
as 1=

ffiffiffiffi
L

p
, where L is the integrated luminosity. We show

the current constraints and those from a HL-LHC assuming
3000 fb−1 below in Table IV for each four-muon Wilson
coefficient turned on separately. The current constraints on
the Wilson coefficients from the inclusive branching ratio
measurement are quite weak. They become much stronger
with the full HL-LHC dataset. We note that the choice of
the phase-space constraint mlþl− was not optimized for
SMEFT studies. However, the effect of increasing this cut
does not lead to stronger constraints with the current LHC
data. We estimate this by using MADGRAPH to compute the
change in branching ratio and consequently statistical error
that occurs by increasing the cut on mlþl− . Although
increasing the cut increases the size of the SMEFT-induced

deviation since it grows with energy, the corresponding
increase in the statistical error overwhelms this growth and
leads to weaker bounds.

B. Complementarity with neutrino
trident production

Another constraint on four-muon operators comes from
the neutrino-trident production process νμγ

� → νμμ
þμ−

which occurs in the Coulomb field of a heavy nucleus.
Formulas for the deviation of this process from SM
predictions within the SMEFT framework are given in
Ref. [13]. We reproduce this deviation below:

σtrident
σSMtrident

¼ 1þ 2

ð1þ 4s2W þ 8s4WÞ
v2

Λ2

× fðC ll
1221

−C ll
2222

Þð1þ 2s2WÞ− 2s2WC le
2222

þ 2ðδgLWμ

þ δgLZμ − δgLZνμ þ 2s2Wδg
L
Wμ þ 2δgLZμs

2
W þ 2s2Wδg

R
Zμ

þ 8s4Wδg
L
Zνμ

− ð1þ 2s2WÞδgLWeÞg ð10Þ

where δgLWμ is the shift to the Wμνμ vertex. Its explicit
expression in terms of standard SMEFT operators is given
in Appendix A. We see that the deviation depends on the
following combination of four-muon Wilson coefficients:

Ĉ
ll

2222 ¼ C ll
2222

þ 2s2W
1þ 2s2W

C le
2222

: ð11Þ

From this we see that this measurement is proportional
to only a single combination of C ll

2222
and C le

2222
, and is

insensitive to C ee
2222

. The Z → 4μ decay is sensitive to all
three operators in a different combination than neutrino-
trident production. Once differential measurements are
made with higher luminosities, all three four-muon
Wilson coefficients can be separately determined from a
combination of neutrino-trident production and LHC data.
To demonstrate what can be learned from a combination

of neutrino-trident production and inclusive Z → 4μ mea-
surements at the LHC we perform fits to the inclusive LHC
measurement and neutrino-trident production data from the

TABLE IV. Single parameter constraints on the Wilson coef-
ficients of the four-μ operators at 68% CL for both the current
LHC data and a projection based on the HL-LHC with a
luminosity of 3 ab−1. For the projection of the uncertainties at
the HL-LHC, we assume that all uncertainties scale as 1ffiffiffi

N
p .

Current (Z → 4μ) HL-LHC (Z → 4μ)

jC ll
2222

j <10.5 <1.0
jC ee

2222
j <16.9 <1.6

jC le
2222

j <28.8 <2.7
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experiments CCFR [31] and CHARM-II [32]. We consider
two different choices of Wilson coefficients:
(1) C ll

2222
and C ee

2222
nonzero;

(2) C le
2222

and C ee
2222

nonzero.
The results of these fits are shown in Figs. 1 and 2. The
solid bands refer to the constraints from neutrino trident
production. We see that this data is not sensitive to C ee

2222
.

The ellipses refer to current LHC constraints, and projec-
tions for 300 fb−1 and 3000 fb−1 of integrated luminosity.
Including the LHC data removes the flat direction that
occurs due to the insensitivity of neutrino-trident produc-
tion to C ee

2222
. We note that the constraints from neutrino

trident production on C ll
2222

and C le
2222

are stronger than the
current LHC bounds, with these coefficients constrained to
be less than unity while current LHC data only requires
C ee

2222
≲ 20. The power of the LHC measurement increases

with higher luminosities. With 3000 fb−1 the constraints on
C ee

2222
approach the level of the neutrino-trident production

bounds on C ll
2222

and C le
2222

.

IV. DIFFERENTIAL MEASUREMENTS WITH
FUTURE LHC DATA

The fits in the previous section to the inclusive Z → 4μ
measurement and neutrino-trident production probe two
independent combinations of the three four-muon Wilson
coefficients. With differential measurements of Z → 4μ, all
three coefficients can be determined. Enough Z → 4μ
events will be available to allow for differential measure-
ments with high-luminosity LHC data. Four-lepton final
states are defined by five angles [33]: θ1, θ2, θ�, Φ1, and Φ.
We illustrate their definitions in Fig. 3. When defining
these angles we have several choices of pairing each muon
with an antimuon. Labeling the muon momenta as p1, p2

with pTðp1Þ > pTðp2Þ, and the antimuons as p3, p4 with
pTðp3Þ > pTðp4Þ, we find that if we look at single-
differential distributions, the pairing that gives the most
discrimination between SMEFT-induced deviations and the
SM is p1 with p4 and p2 with p3. To demonstrate that this
is the optimal pairing we perform simple one-dimensional
fits between the SM and the SMEFT with a single Wilson
coefficient turned on. We define the following test statistic:

χ2 ≡ X#of bins
i¼1

ðNSMEFT
i − NSM

i Þ2
ðσSMi Þ2 ð12Þ

where the number of bins is set to 10 and NSM
i ðNSMEFT

i Þ
stands for the number of SM (SMEFT) events in the ith bin.
σSMi ¼

ffiffiffiffiffiffiffiffiffi
NSM

i

p
represents the standard deviation of the ith

FIG. 1. 68% C.L. bounds on the combination of inclusive LHC
Z → 4μ data and neutrino trident production assuming nonzero
C
2222

ll and C
2222
ee

FIG. 2. 68% C.L. bounds on the combination of inclusive LHC
Z → 4μ data and neutrino trident production assuming nonzero
C
2222

le and C
2222
ee

FIG. 3. Illustration of the angles characterizing the decay Z →
4μ in the rest frame of the Z boson. The nomenclature is adapted
from [33]. Z0 denotes the direction of the boost of the highest pT
muon-system. Not shown is the angle Φ1 which is between the
normal vectors of the planes spanned by the Z axis and Z0 as well
as the one spanned by the highest pT muons.
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bin. For each of the four-muon Wilson coefficients we use
this test statistic to probe the sensitivity of each variable to
deviations for each pairing. The results are shown in
Tables V and VI, where we have highlighted the three
most discriminating cases for each pairing. We see that the
p1 − p4 pairing is generally more sensitive, and that the
most discriminating variables are θ1 and θ2.
To determine the sensitivity of the future LHC data to

four-muon Wilson coefficients, and its complementarity
with neutrino-trident production, we perform fits to both
datasets. We study both 300 fb−1 and 3000 fb−1 to mimic
future LHC datasets. We construct a two-dimensional
differential distribution based on the variables θ1 and θ2,
which were found above to be the most sensitive to
SMEFT-induced deviations. While a more sophisticated
multi-variate analysis could potentially improve the results
found here, we believe that our approach captures the
essence of what can be learned from differential measure-
ments. We define a χ2 function as follows:

χ2 ≡ X
i¼# of bins

ðNtheo
i − Nexp

i Þ2
ðσexpi Þ2 þ

X
j

ðftheoj − fexpj Þ2
ðσexpj Þ2 ð13Þ

where the first term accounts for predicted future LHC data
for Z → 4μ: i ranges from 1 to the number of bins of a
given differential distribution. In constructing our binning
we impose the requirement Ni > 10 so that we can assume
Gaussian errors. The cuts used in Ref. [29] are applied.
We conservatively use the systematic uncertainty from
Ref. [29], neglecting possible improvements with future
LHC data, and assume that it is constant and uncorrelated
for all bins. We stress that this is only a simple estimate of
the LHC potential, and is meant to motivate more detailed

future experimental studies. The statistical uncertainty of
the ith bin is assumed to be

ffiffiffiffiffi
Ni

p
. The second term in

Eq. (13) accounts for the neutrino-trident experimental
measurements discussed in Section III B. ftheoj denotes the
theoretical prediction for the neutrino-trident cross section
given in Eq. (10), while the fexpj are the experimental
measurements from CCFR and CHARM-II. The σexpj in the
denominator denote the experimental errors.
To permit simple two-dimensional representations of our

results we allowC ll
2222

and C le
2222

to be non-zero. Only a single
combination of these parameters can be determined from
neutrino-trident production, so this example will study how
well differential LHC measurements can help break the
remaining degeneracy between Wilson coefficients that
occurs given only the inclusive branching ratio measure-
ment. For comparison we also fit to the inclusive LHC
measurement. The results assuming differential LHC mea-
surements are shown in Fig. 4. For comparison the result
assuming only an inclusive branching ratio measurement
with 3000 fb−1 is shown as well. The improvement going
from inclusive to differential measurements at the LHC is
significant, with bounds on C le

2222
improving from Oð10Þ to

Oð1Þ. This strong improvement is in large part due to the
sign of the SMEFT deviations changing in different regions
of ðθ1; θ2Þ space, which is partially averaged out in the
inclusive analysis, while the differential analysis resolves
the opposite-sign contributions. The flat direction in the
C le

2222
versus C ll

2222
plane present with just neutrino trident

production leads to the elongated shape of the constraint
ellipse in this figure. This is removed by the high-
luminosity LHC data.

TABLE V. χ2 values for the five single-differential distribution.
l1 and l3 (l2 and l4) are grouped together in the same decay plane.
The three largest χ2 values are highlighted.

(l1, l3) cos θ� cos θ1 cos θ2 Φ1 Φ

C ll
2222

39.8 73.3 18.1 9.7 15.2
C ee

2222
37.3 41.6 14.0 17.0 16.9

C le
2222

16.0 51.0 18.7 10.2 76.3

TABLE VI. χ2 values for the five single-differential distribu-
tion. l1 and l4 (l2 and l3) are grouped together in the same decay
plane here. The three largest χ2 values are highlighted.

(l1, l4) cos θ� cos θ1 cos θ2 Φ1 Φ

C ll
2222

24.6 77.8 61.6 24.1 65.3
C

22
2222 11.6 44.9 102.1 21.0 69.6

C le
2222

6.6 375.2 335.5 25.5 48.7
FIG. 4. 68% C.L. bounds on the combination of differential
LHC Z → 4μ data and neutrino trident production assuming
nonzero C

2222
ll and C

2222
le
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V. CONCLUSIONS

In this paper we have studied what can be learned about
four-muon operators in the SMEFT from rare Z → 4μ
decays at the LHC. Measurements of this decay mode
constrain linear combinations of Wilson coefficients not
accessible in other processes. We determined the con-
straints imposed on these coefficients from current mea-
surements of the inclusive branching ratio, and showed
their complementarity with existing constraints from neu-
trino-trident production. Future differential measurements
of Z → 4μ have the potential to completely determine the
four-muon Wilson coefficients in SMEFT. We show that
strong bounds on all four-muon interactions can be
obtained assuming 3000 fb−1 of integrated luminosity at
the LHC.
We have focused in this paper on the Z → 4μ decay since

experimental searches for this channel exist. However,
measurements of the decay Z → 2μ2τ would probe
SMEFT Wilson coefficients such as C

2332
ll , C

2332
le , and

C
2332
ee , while Z → 4τ would probe C

3333
ll , C

3333
le , and

C
3333
ee . Only C

2332
le is weakly constrained by τ-decays.

The remaining coefficients are completely untested. The
suggested rare Z-decays would provide the first tests of this
unknown sector of the SMEFT. To our knowledge these
rare Z-decays into τ-leptons have not been considered.
However, searches for Higgs bosons into these final states
have been performed at the LHC [34,35]. We encourage the

ATLAS and CMS collaborations to perform these searches
with future data.
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APPENDIX A: VERTEX SHIFTS

We present here the vertex shift factors. Our conventions
for the Zff vertices are such that

Vμ
SMEFTPL=R ¼ Vμ

SMPL=R

�
1þ v2

Λ2
δgL=RV

�
: ðA1Þ

The Higgs vev can be expressed in term of input parameters
as

v2 ¼ 1ffiffiffi
2

p
Gμ

: ðA2Þ

The shift factors that appear in the dimension-6 correc-
tions to the Z → 4μ decay width in the ðGμ;MW;MZÞ input
scheme are

δgγli ¼
1

4s2W

n�
C
1221

ll þ C
2112

ll − Cð3Þ
11
ϕl − Cð3Þ

22
ϕl

�
s2W − CϕDc2W − 4cWsWCϕWB

o
;

δgLZli ¼
1

4ð1 − 2s2WÞ
n�

C
1221

ll þ C
2112

ll − 2Cð3Þ
22
ϕl

�
ð1 − 2s2WÞ þ ð1þ 2c2WÞCϕD þ 8cWsWCϕWBþ4Cð1Þ

ii
ϕl þ 2ð1þ 2s2WÞCð3Þ

ii
ϕl

o
;

δgRZli ¼
1

4s2W

n�
C
1221

ll þ C
2112

ll − 2Cð3Þ
11
ϕl − 2Cð3Þ

22
ϕl

�
s2W − ð1þ c2WÞCϕD − 4cWsWCϕWB − 2C

ii
ϕe

o
;

δgLZνi ¼
1

4

n
C
1221

ll þ C
2112

ll − 2Cð3Þ
11
ϕl − 2Cð3Þ

22
ϕl − CϕD þ 4Cð1Þ

ii
ϕl − 4Cð3Þ

ii
ϕl

o
;

δgLZui ¼
1

4ð4s2W − 3Þ
n
ð1 − 4c2WÞ

�
C
1221

ll þ C
2112

ll − 2
�
Cð3Þ
11
ϕl þ Cð3Þ

22
ϕl

�
− ð1þ 4c2WÞCϕD−16cWsWCϕWB þ 12Cð1Þ

ii
ϕq − 12Cð3Þ

ii
ϕq

o
;

δgRZui ¼
1

4s2W

n
s2WðC

1221
ll þ C

2112
ll − 2

�
Cð3Þ
11
ϕl þ Cð3Þ

22
ϕl

��
− ð1þ c2WÞCϕD − 4cWsWCϕWB þ 3C

ii
ϕu

o
;

δgLZdi ¼
1

4ð1þ 2c2WÞsW
n
ð1þ 2c2WÞ

�
C
1221

ll þ C
2112

ll − 2
�
Cð3Þ
11
ϕl þ Cð3Þ

22
ϕq

��
sW

þ8cWs2WCϕWB þ ð2c2W − 1ÞsWCϕD þ 12
�
Cð1Þ

ii
ϕq þ Cð3Þ

ii
ϕq

�
sW

o
;

δgRZdi ¼
1

4s2W

n
s2W

�
C
1221

ll þ C
2112

ll − 2
�
Cð3Þ
11
ϕl þ Cð3Þ

22
ϕl

��
− ð1þ c2WÞCϕD − 4cWsWCϕWB − 6C

ii
ϕd

o
;

δgLWli
¼ 1

4

n
C
1221

ll þ C
2112

ll − 2Cð3Þ
11
ϕl − 2Cð3Þ

22
ϕl þ 4Cð3Þ

ii
ϕl

o
: ðA3Þ
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We have made use of the on-shell definition of the weak mixing angle

s2W ¼ 1 −
M2

W

M2
Z
¼ 1 − c2W: ðA4Þ

APPENDIX B: Z DECAY WIDTHS AT LEADING ORDER

We summarize here all leading-order SMEFT contributions to the Z-decay widths that have been used in this paper. Our
conventions are such that

ΓSMEFTðZ → ff̄Þ ¼ ΓSM
ff̄

þM2
Z

Λ2
δΓff̄ ðB1Þ

with the following analytic expressions for the SMEFT contributions:

δΓνiνi ¼
MZ

12π
δgLZνi ;

δΓlili ¼
MZ

12π
fð1 − 2c2WÞ2δgLZli þ 4s4Wδg

R
Zli
g;

δΓuiui ¼
NcMZ

108π
f16s4WδgRZui þ ð3 − 4s2WÞ2δgLZuig;

δΓbb ¼
NcMZ

108π

n
2s2Wð2s2W − β2bð9 − 4s2WÞÞδgRZb þ ð3 − 2s2WÞð3 − 2s2W

− β2bð3þ 4s2WÞÞδgLZb − 9
ffiffiffi
2

p
βbð3 − 4s2WÞ

�
sWC

33
dB þ cWC

33
dW

�o ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4β2b

q
: ðB2Þ

We have assumed a nonvanishing bottom mass, appearing as

βb ¼
mb

MZ
: ðB3Þ

The remaining two down-type partial widths can be found by setting βb ¼ 0 and appropriately changing the generational
indices of the f3; 3gWilson coefficients. We give below the numerical expressions for the SMEFT dependence of the decay
width for the process Z → 4μ, obtained with MADGRAPH:

ΓLOðZ → 4μÞ ¼ ΓLO
SMðZ → 4μÞ þ v2

Λ2

n
0.0260C

2222
le þ 0.0711C

2222
ll þ 0.0444C

2222
ee

þ 15.0C
1221

ll þ 24.0CϕWB þ 6.08CϕD − 0.0062Cð1Þ
11
ϕl þ 12.0Cð1Þ

22
ϕl − 2.14Cð3Þ

11
ϕl

þ 0.445Cð3Þ
22
ϕl þ 0.733C

22
ϕe

o
× 10−6 GeV: ðB4Þ

For completeness we also give the result for the process Z → 2μ2e below:

ΓLOðZ → 2μ2eÞ ¼ ΓLO
SMðZ → 2μ2eÞ þ v2

Λ2

n
29.9C

1221
ll þ 0.0752C

1212
ll þ 0.180C

1122
ee

þ 0.0840C
1212
ee þ 0.108C

1122
le þ 0.0769C

1221
le

þ 0.0740C
1212
le þ 0.108C

2211
le þ 46.9CϕWB

þ 12.1CϕD þ 12.1Cð1Þ
11
ϕl þ 12.1Cð1Þ

22
ϕl

− 1.50Cð3Þ
11
ϕl − 1.50Cð3Þ

22
ϕl þ 0.927C

11
ϕe

þ 0.921C
22
ϕe

o
× 10−6 GeV: ðB5Þ
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The leading-order SM results are

ΓLO
SMðZ → 4μÞ ¼ 2.86 × 10−6 GeV and ΓLO

SMðZ → 2μ2eÞ ¼ 5.62 × 10−6 GeV: ðB6Þ
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