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The low-energy effective theory (∼TeV) of the little Higgs model with SUð6Þ=Spð6Þ, as proposed by
Low, Skiba, and Smith (LSS), exhibits a two-Higgs-doublet model (2HDM) structure. The symmetry
dictates interesting Yukawa patterns, translating to nontrivial fermion couplings with both of the Higgs
doublets. The couplings of the scalars with the fermions can induce flavor-changing neutral currents
(FCNC), which get constraints from flavor physics observables such as BRðB → XsγÞ, Bs − B̄s mixing,
etc. The precision measurement of the Zbb̄ vertex, the top and Higgs masses along with other Higgs
coupling measurements at the Large Hadron Collider (LHC) also enforce severe restrictions on the LSS
model. Direct LHC search results of beyond-the-Standard-Model (BSM) particles also impose bounds on
the masses. We probe the LSS model in view of the above constraints through a random scan in the
multidimensional parameter space. We observe, contrary to the general 2HDM scenario, that the emergent
2HDM from the LSS model is less constrained from the flavor data and the Zbb̄ measurement but is
severely constrained from the electroweak (EW) searches at the LHC. From the flavor data and Zbb̄,
we find that the charged Higgs mass is relaxed, with tan β being restricted to 0.5–5, whereas the charged
Higgs mass is pushed to larger than 1 TeV along with tan β being further restricted to < 3 when the LHC
bounds are incorporated.
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I. INTRODUCTION

Even if the Standard Model (SM) is the favorite
candidate to explain all the results obtained at the Large
Hadron Collider (LHC), models with extended symmetries
beyond the SM are of great interest due to their elegant UV
completion along with the power of stabilizing the scalars
against radiative corrections—i.e., solving the gauge hier-
archy problem [1]. There are different broad classes of
models with enhanced symmetries. First, there are models
where the space-time symmetry is enhanced to incorporate
the spin, and also to have symmetries that even relate the
bosons and the fermions; these are called supersymmetric
models [2]. Another set of models also possess enhanced
gauge symmetries which are systematically broken, some-
times in multiple steps, in order for the Higgs to emerge as a
pseudo-Nambu-Goldstone boson (pNGB). In these models,
such as the little Higgs [3] and composite Higgs [4]

scenarios, the extended scalar sector manifests from the
Goldstone bosons, and unbroken symmetry does contain
the SM electroweak group SUð2Þ ×Uð1Þ. These sets of
models, where the Higgs boson emerges as a “little” part of
a bigger representation and where some global symmetry is
broken by the interplay between two or more coupling
constants, are termed little Higgs (LH) models [3], and
many different variations of these models have been
proposed in literature [5–8]. This collective symmetry
breaking is the essential ingredient in the little Higgs
theories in order to free the Higgs mass squared from
quadratic divergences at one loop. On the other hand, some
models, where the enlarged global symmetry is broken by
some strong dynamics and the Higgs emerges as the
pseudo-Nambu-Goldstone boson of that enlarged global
symmetry, are termed composite Higgs models [9–12].
Here, one has to assume partial compositeness [13] of the
SM fermions in order to generate their masses.
Due to the presence of the Nambu-Goldstone bosons

(NGB) in the little Higgs theories [14,15] and the
composite Higgs models [16–19], it is natural that they
can usher in an extended scalar sector at the TeV scale.
Some scenarios among these models represent an effective
two-Higgs-doublet model (2HDM) [20] framework at the
lower energy scale (∼TeV). We take particular interest in
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studying the case where the global symmetry SUð6Þ is
broken to Spð6Þ to provide an extended LH group structure
SUð6Þ=Spð6Þ, which is one variation of the little Higgs
scenario developed by Low, Skiba, and Smith (LSS model)
[21]. Similarly, there are composite Higgs models based on
the same group structure SUð6Þ=Spð6Þ [16,17], where,
similarly to the little Higgs model, the low-energy effective
theory exhibits a 2HDM structure, and in addition, beyond-
Standard-Model (BSM) particles exist. Even though the
structures of these two models are alike, there are some
differences between these two sets of models. The gauged
subgroup in the SUð6Þ=Spð6Þ little Higgs model is more
extended than the electroweak (EW) subgroup, and the
additional gauge generators are obtained via symmetry
breaking at the condensation scale (f). Also, the technical
difference in the little Higgs and composite Higgs scenarios
is the generation of the scalar potential terms with different
quartic terms due to the nonidentical Yukawa structures of
these two models. Hence, the dependencies of the emergent
2HDM scalar potential coefficients on different sets of
model parameters are not similar in both cases. In this
work, we choose to explore the LSS model with an
emergent 2HDM structure at low energy in the view of
recent flavor and LHC data.
In addition to the extended scalar sector, the BSM sector

of the LSS model includes new fermions, such as one
vectorlike quark doublet and two vectorlike quark singlets
along with new gauge bosons. Natural realization of the
LSS model in the low-energy effective theory can be
executed through the alignment limit of the emergent
2HDM [21,22]. In the familiar 2HDM [20], the Yukawa
sector is organized arbitrarily using the Z2 symmetry
according to the phenomenological requirements, whereas
in the little Higgs models, a larger symmetry dictates it.
On the other hand, in the LSS scenario, the Yukawa sector,
which is initially arranged in terms of the fermionic
multiplets aka sextets, directs the pattern of the Yukawa
sector in emergent 2HDM after the symmetry breaking.
Moreover, ultraviolet completion of the 2HDM is possible
through the LSS model with an extended gauge sector
SUð6Þ=Spð6Þ. Therefore, a study of this model can reveal
effects of larger symmetry on the experimental observables
that are unlikely to manifest in ad hoc generic 2HDM.
A comprehensive phenomenological analysis of the LSS
model is shown in Ref. [22], considering 8 TeV LHC
results. But the extended scalar sector of the LSS model
demands a detailed study of collider phenomenology as well
as the effects of BSM scalars in flavor physics observables.
In this paper, we discuss the effective 2HDM emerging from
the LSS model at low energy in the context of flavor and
electroweak (EW) observables, along with constraints from
13 TeV LHC.
In light of the significant tension between the SM and

experimental measurements of lepton-flavor universality
(LFU) observables [23], it is worthwhile to look for a

New Physics (NP) model, capable of explaining the
discrepancies. In the LH models, the presence of new
particles with possible nontrivial flavor structure can
potentially address the challenges in the flavor sector.
The flavor structure of different little Higgs models had
been studied in the literature through multiple variants [24–
26], along with some phenomenological studies [27]. The
major focus of these models had been to probe the effects of
vectorlike fermions and the gauge bosons, significantly
modifying the flavor observables. The SM extensions with
two Higgs doublets, such as in Refs. [28,29] and various
other scalar extensions of the SM [30,31], can also address
the flavor anomalies with the presence of the extra scalars
in the theory. This motivates us to particularly investigate
the effect of the additional scalars of the LSS model in the
flavor sector. It is worthwhile to study how the neutral and
the charged BSM scalars can modify the flavor and other
EW observables, and therefore impose constraints on the
emergent 2HDM parameters derived from the LSS little
Higgs model. At first, we assess the impact of different
flavor observables and the Zbb̄ vertex correction. Among
all BSM scalars present, we take particular interest in
studying the couplings of the charged Higgs to the third-
generation quarks to estimate the modifications in specific
flavor observables. We observe that the B-meson mixing,
B-meson decays, and correction to the Zbb̄ vertex impose
important constraints on the model parameter space.
In the LSS little Higgs model, the lightest CP-even

neutral state is identified with 125 GeV Higgs particles,
observed at the LHC. Precise measurements of the top and
bottom masses along with other measurements in the Higgs
sector place nontrivial constraints on the model parameter
space. Nonobservation of new states at the LHC [32,33]
and the EW precision tests (EWPT) [34] place strong limits
on the BSM sector, and hence also constrain the LSS
model. We determine the allowed regions of tan β and
charged Higgs mass in the emergent 2HDM structure of the
LSS model as compared to a generic 2HDM and study
the crucial phenomenological differences. In contrast to the
generic 2HDM with specific Yukawa structure (type-I,
type-II, type-III 2HDM, etc.), where the flavor constraints
play a major role in ruling out a large parameter space, in
the emergent 2HDM of the LSS model, constraints from
EW searches at the LHC are found to be more severe than
those coming from the flavor and Zbb̄. This is due to the
predictive nature of the Yukawa sector in the LSS model
that shrinks the parameter space mainly to fix the Higgs
mass, top quark mass, and top quark Yukawa coupling.
In Sec. II, we describe the Yukawa interaction in the LSS

model to obtain the couplings of the scalar to the SM and
BSM fermions. Then we show how an effective 2HDM
framework can be worked out in the LSS model, connect-
ing the strong sector parameters of the LSS model to the
entities of the emergent 2HDM. We also show how
different Yukawa structures can be arranged in some limits
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of the bottom-quark Yukawa couplings. In Sec. III, we
focus on the different constraints from flavor and EW
observables in the 2HDM framework of the LSS model.
First, we consider all the relevant flavor and EW observ-
ables, discussing their possible origin and effects. Then, we
scan over the entire model parameter space of the LSS
model, curving out the region favored by the flavor and EW
observables. Next, we bring in the LHC measurements and
discuss their superconstraining effects on the parameter
space, which is already constrained from flavor and EW
data. Finally, in Sec. IV, we chart out the relative impor-
tance of our results in comparison to a generic 2HDM.

II. LOW-SKIBA-SMITH (LSS)
LITTLE HIGGS MODEL

The little Higgs model proposed by Low, Skiba, and
Smith—i.e., the LSS model [21]—exhibits a larger sym-
metry SUð6Þ in the unbroken form, which is broken to a
residual symmetry Spð6Þ by the field condensates. The
number of massless Goldstone bosons that are expected to
appear due to the symmetry breaking is equal to the
difference in the number of generators—i.e., 35−21¼14.
The NGBs (πa) are contained in Σ ¼ e½iπaXa=f�hΣi, where
hΣi is the antisymmetric condensate and Xa’s are the broken
generators, as given in Ref. [21]. These Goldstone bosons
obtain relatively small masses from the radiative corrections
and therefore can be termed as pseudo-Nambu-Goldstone
bosons (pNGBs). Eight of these pNGBs form two scalar

doublets (ϕ1 and ϕ2), which, at the TeV scale, are similar
to the scalar doublets of general 2HDM by construction.
One major difference between a general 2HDM and the
emergent 2HDM in the LSS model is the appearance of the
vectorlike fermions and gauge bosons in the LSS model.
These BSM particles, along with the 2HDM structure in the
LSS model, can significantly alter the BSM scalar phenom-
enology, as shown in earlier works [22,35]. In the following,
we discuss the Yukawa couplings of the scalars and their
effective 2HDM analysis. For a detailed description of the
model, we refer to Refs. [21,22].

A. Yukawa sector: Diagonalization of mass matrices

The diverse nature of the Yukawa sector in the LSS
model requires special attention, as it has immense poten-
tial to churn out intricacies of flavor and other EW physics.
Here, construction of the Yukawa sector involves an
extension beyond the SM electroweak symmetry breaking.
In the LSS model, the SUð6Þ symmetry is broken explicitly
by the gauge and Yukawa couplings in multiple steps,
termed as collective symmetry breaking. In the fermion
sector, this is ensured by a special structure of the Yukawa
couplings [21]. In this model, we mainly focus on the
couplings of the scalars with the third generation of
fermions. Also, in this study we have adopted a different
nomenclature for the fields compared to Ref. [22], and
hence we show the following steps for clarity. The Yukawa
Lagrangian is

LYuk ¼ y1fðQ0 t00 ðiσ2QÞT 0 ÞðΣÞ�
�
0

tc

�
þ y2fð 0 0 QT 0 ÞðΣÞ

0
BBB@

iσ2Q0c

t00c

0

b00c

1
CCCA

− iy1bfð 0 0 QT 0 ÞðΣÞ

0
BBB@

0

0

0

bc

1
CCCAþ iy2bfð 0 0 ðiσ2QÞT 0 ÞðΣÞ�

0
BBB@

0

bc

0

0

1
CCCAþ H:c: ð1Þ

The new fermions are one vectorlike quark doublet Weyl-fermion pair Q0 ¼ ðt0; b0ÞT, Q0c ¼ ð−b0c; t0cÞT with Y ¼ 1=6 and
EM charge 2=3, one vectorlike up-type quark singlet t00, t00c with EM charge �2=3, and one vectorlike down-type quark
singlet b00, b00c with EM charge∓1=3. Q ¼ ðt; bÞT is the SM SU(2) doublet. yi and yib (for i ¼ 1, 2) are the dimensionless
couplings in the top and bottom sectors, respectively. Expanding the SU(2) structure of the Yukawa couplings and including
the vectorlike fermion masses, we get

LmassþYuk ⊃ −y1ðft00tc − iQ0Tϕ�
2t

c − iQT · ϕ1tcÞ þ y2ðfQT ·Q0c þ iQTϕ�
1b

00c þ iQTϕ�
2t

00cÞ
þ y3fðQ0T ·Q0cÞ þ y4fðt00ct00Þ þ y5fðb00cb00Þ þ y1bðQTϕ�

1b
cÞ − y2bðQT:ϕ2bcÞ þ H:c: ð2Þ

Here y3, y4, and y5 are also dimensionless constants. From Eq. (2), we can infer the fermion mass matrices after
electroweak symmetry breaking (EWSB). The fermion mass matrices with EM charges þ2=3 and −1=3 appear in the
Lagrangian as
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L ⊃ ð t t0 t00 Þ

0
BB@

iy1
v1ffiffi
2

p y2f iy2
v2ffiffi
2

p

iy1
v2ffiffi
2

p y3f 0

−y1f 0 y4f

1
CCA
0
B@

tc

t0c

t00c

1
CAþ ð b b0 b00 Þ

0
BB@

yib
viffiffi
2

p y2f iy2
v1ffiffi
2

p

0 y3f 0

0 0 y5f

1
CCA
0
B@

bc

b0c

b00c

1
CAþ H:c:; ð3Þ

where vi ¼ fv1; v2g are the vacuum expectation values (VEVs) of ϕ1 and ϕ2, respectively. After diagonalizing Eq. (3), we
get couplings of the scalars to the fermions for the top sector, in their mass basis. We implement a two-step diagonalization,
where first the f-dependent terms are diagonalized analytically, and then the v1;2-dependent terms (which appear after
EWSB) are diagonalized. We define the rotations that diagonalize the f-dependent terms as

0
B@

t

t0

t00

1
CA ¼

0
B@

c23 −s23 0

s23 c23 0

0 0 1

1
CA
0
B@

t0
t1
t2

1
CA;

0
B@

tc

t0c

t00c

1
CA ¼

0
B@

c14 0 −s14
0 1 0

s14 0 c14

1
CA
0
B@

tc0
tc1
tc2

1
CA;

0
B@

b

b0

b00

1
CA ¼

0
B@

c23 −s23 0

s23 c23 0

0 0 1

1
CA
0
B@

b0
b1
b2

1
CA; ð4Þ

with s23 ≡ sin θ23 ¼ y2=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y22 þ y23

p
Þ, c23 ≡ cos θ23 ¼ −y3=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y22 þ y23

p
Þ, and s14 ≡ sin θ14 ¼ y1=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y24

p
Þ. After these

rotations, some field redefinitions are performed to make the mass matrix entries real and positive.1 For brevity of notation,
tildes on the fields are dropped, and we denote the field χ̃i simply as χi in the following. Hence, the mass matrices in the
Lagrangian take the form

Lmass ⊃ ð t0 t1 t2 Þ

0
B@

Mt
11 0 Mt

13

Mt
21 Mt

22 Mt
23

0 0 −Mt
33

1
CA
0
B@

tc0
tc1
tc2

1
CAþ ð b0 b1 b2 Þ

0
B@

Mb
11 0 Mb

13

Mb
21 Mb

22 Mb
23

0 0 Mb
33

1
CA
0
B@

bc0
bc1
bc2

1
CAþ H:c: ð5Þ

After the field redefinitions, the new mass matrix entries Mt;b
ij are

Mt
11 ¼

y1ðy3y4v1 þ y2y3v2 − y2y4v2Þffiffiffi
y

p
14

ffiffiffi
y

p
23

ffiffiffi
2

p ; Mt
13 ¼

ðy21y3v1 − y2y3y4v2 − y21y2v2Þffiffiffi
y

p
14

ffiffiffi
y

p
23

ffiffiffi
2

p ;

Mt
21 ¼

y1ðy2y4v1 þ y22v2 þ y3y4v2Þffiffiffi
y

p
14

ffiffiffi
y

p
23

ffiffiffi
2

p ; Mt
23 ¼

ðy21y2v1 − y22y4v2 þ y21y3v2Þffiffiffi
y

p
14

ffiffiffi
y

p
23

ffiffiffi
2

p ;

Mt
33 ¼ −f

ffiffiffi
y

p
14; Mt

22 ¼ f
ffiffiffi
y

p
23;

Mb
11 ¼ c23yib

viffiffiffi
2

p ; Mb
13 ¼ y2

v1ffiffiffi
2

p ; Mb
33 ¼ y5f;

Mb
21 ¼ yib

viffiffiffi
2

p s23; Mb
23 ¼ −y2

v2ffiffiffi
2

p s23; Mb
22 ¼

ffiffiffi
y

p
23f; ð6Þ

where
ffiffiffi
y

p
14
≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y21 þ y24
p

,
ffiffiffi
y

p
23
≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y22 þ y23
p

.
In the next step, we diagonalize the v1;2-dependent terms of the matrix Mt

ij, where the entries of M
t
ij are functions of

intrinsic parameters of the SUð6Þ=Spð6Þ LSS model. This is achieved through carrying out a biorthogonal transformation,
constructing left and right orthogonal matrices RL and RR, such that

RLMt
ijR

T
R ≡ ðMt

ijÞD; ð7Þ

where ðMt
ijÞD is the diagonal matrix in the mass basis. Instead of showing explicit dependences of RL, RR, we perform the

diagonalization along with the parameter space scan, where for each set of input parameters the diagonalization process is
being performed. This process is iterated multiple times, keeping the parameter dependence of these matrices. The
transformations of the fields are defined as

ð t0 t1 t2 ÞT ¼ RT
LðT2 T1 t ÞT; ð tc0 tc1 tc2 ÞT ¼ RT

RðTc
2 Tc

1 tc ÞT; ð8Þ

1The field redefinitions are used, following the notation in Ref. [22]: tc0 ¼ it̃c0, t
c
1 ¼ −it̃c1, t0c ¼ −t̃0c, ψ1 ¼ iψ̃1, with b1 ¼ −b̃1,

ψc
2 ¼ −iψ̃c

2, and ψ2 ¼ iψ̃2.
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where Ti, t and Tc
i , t

c are the mass eigenstates in the top
sector. We identify ðt; tcÞ as the observed top-quark (t) mass
eigenstates, and the others correspond to the mass eigen-
states of the vectorlike top partners (T1, T2). In the bottom
sector, the off-diagonal terms proportional to vi’s are
numerically insignificant due to the smallness of yib, and
hence we do not perform the mass diagonalization. We
identify ðb0; bc0Þ as the observed bottom quark (b), and the
others correspond to vectorlike bottom partners (B1, B2).
We also identify the mass eigenvalues as mt, MT1

, MT2
in

the top sector, and mb, MB1
, MB2

in the bottom sector. In
order to identify the eigenvalues corresponding to mt,MT1

,
MT2

andmb,MB1
,MB2

, it is ensured thatmt < MT1
< MT2

and mb < MB1
< MB2

.

B. Yukawa couplings of the scalars

In this section, we are mainly interested in couplings of
the SM-like Higgs h and the charged Higgs H� to the
fermions, because those couplings affect the flavor and EW
observables the most, as far as the model parameter space
of the LSS model is concerned. We will discuss this further
at the end of this section. In the following, we present
the structure of the relevant Yukawa couplings—i.e., the
couplings of h and H�—in detail.
Before the mass diagonalization, the top-quark Yukawa

coupling with a Higgs-like scalar (h) in the flavor basis can
be written as

Lhtt ¼
ihffiffiffi
2

p ð t ψ1 t0 Þ

0
B@

y1cα −y2sα 0

0 0 0

−y1sα 0 0

1
CA
0
B@

tc

ψc
1

t0c

1
CAþH:c:

ð9Þ

Then we rewrite the Lagrangian in the basis where the f
terms are diagonal.2 Also, we implement the field redefi-
nitions as stated previously to render the real fermion mass
matrix. Hence, the Yukawa coupling of h on an inter-
mediate basis now takes the form

LYuk
h ⊃

hffiffiffi
2

p ½y00t0tc0 þ y01t0tc1 þ y10t1tc0 þ y11t1tc1� þ H:c:;

ð10Þ

with y00 ≡ ð−y1cαc14c23 þ y1sαc14s23 þ y2sαs14c23Þ,
y01 ≡ ð−y1cαs14c23 þ y1sαs14s23 − y2sαc14c23Þ, y10≡
ðy1cαc14s23 þ y1sαc14c23 − y2sαs14s23Þ, and y11≡
ðy1cαs14s23þy1sαs14c23þy2sαc14s23Þ. Yukawa couplings

after the biorthogonal rotations to the mass basis, as defined
in Eq. (8), take the form

yhtt ¼ ½y00ðRLÞ31ðRRÞ31 þ y01ðRLÞ31ðRRÞ32
þ y10ðRLÞ32ðRRÞ31 þ y11ðRLÞ32ðRRÞ32�; ð11Þ

where ðRLÞij and ðRRÞij, with i;j¼f1;2;3g, are the ði; jÞth
entries of the rotation matrices RL and RR, respectively. We
define the deviation of htt from its SM value as

ktth ≡ yhtt=ySMhtt ; ð12Þ

where ySMhtt ¼ mt=v. Similarly, Yukawa couplings of the
CP-even neutral scalar (H) can be obtained from Eq. (10)
by making the change cα → sα and sα → −cα. For the
couplings of the pseudoscalar (A), we refer to Ref. [22].
The Yukawa coupling of the b quark with h and the mass

of the b quark can be derived from Eq. (2) as

Lhbb⊃
c23ffiffiffi
2

p ½vðy1bsβþy2bcβÞþhðy1bcα−y2bsαÞ�b0bcþH:c:

ð13Þ

The coupling and the mass are thus identified to be

mb ≡ vðy1bsβ þ y2bcβÞ=
ffiffiffi
2

p
; yhbb ∼mb=v: ð14Þ

Analogous mass and coupling expressions hold for the
third-generation lepton (τ) with the replacement yb → yτ.
Similarly, couplings of the charged Higgs with the third-

generation quarks can be obtained as

LYuk
H� ⊃ Hþðyþ00b0tc0 þ yþ01b0t

c
1 þ yþ10b1t

c
0 þ yþ11b1t

c
1Þ

þH−ðy−00t0bc þ y−10t1b
c þ y−02t0ψ

c
2 þ y−12t1ψ

c
2Þ

þ H:c:; ð15Þ

where

yþ00 ¼ ðy1sβs23c14 − y1cβc23c14 þ y2sβc23s14Þ;
yþ01 ¼ ðy1sβs23s14 − y1cβc23s14 − y2sβc23c14Þ;
yþ10 ¼ ð−y1sβc23c14 − y1cβs23c14 þ y2sβs23s14Þ;
yþ11 ¼ ð−y1sβc23s14 − y1cβs23s14 − y2sβs23c14Þ;
y−00 ¼ ½ð−y1bcβ þ y2bsβÞc23�; y−10 ¼ ½ðy1bcβ − y2bsβÞs23�;
y−02 ¼ ð−y2cβc23Þ; y−12 ¼ ðy2cβs23Þ:

After the numerical computation of the rotation matrices
(RL, RR) that diagonalize the off-diagonal terms propor-
tional to v1;2, we obtain the Lagrangian involving the
charged Higgs couplings with top and bottom quarks as

2In our convention, we define the top-quark Yukawa coupling
yhtt as Lhtt ¼ ðh= ffiffiffi

2
p Þyhttt̂0 t̂c0 þ H:c: We define this with a

positive sign here, since our field redefinitions make the fermion
mass terms positive.

EMERGENT 2HDM IN THE LOW-SKIBA-SMITH LITTLE … PHYS. REV. D 103, 055011 (2021)

055011-5



LH�tb ⊃ Vtb
1

v
Hþ t̄ðyH�tLbRmtPR þ yH�tRbLmbPLÞbþ H:c:;

ð16Þ

where the charged Higgs Yukawa couplings are given by

yH�tLbR ¼ ½y−00ðRLÞ31 þ y−10ðRLÞ32�;
yH�tRbL ¼ ½yþ00ðRRÞ31 þ yþ01ðRRÞ32�: ð17Þ

The relevant Lagrangian involving the coupling of top and
strange quarks with the charged Higgs can be obtained in a
similar way:

LH�ts ⊃ Vts
1

v
Hþ t̄ðyH�tLsRmtPR þ yH�tRsLmsPLÞsþ H:c:;

ð18Þ
where yH�tLsR , yH�tRsL can be derived from Eq. (16) with
the replacement of y1b → y1s, y2b → y2s and then used
analogously to the y−00, y

−
10 terms in Eq. (17). Note that the

first parts of both the couplings are similar, and being
proportional tomt, they are the dominant terms. The second
parts of the Lagrangian, being proportional to mb or ms,
are not significant due to the smallness of the masses.
Moreover, the couplings are of the same order—i.e.,
y1b ∼ y1s, y2b ∼ y2s. The coupling involving the down
quark, H�td, will also hold to a similar expression, but
the coupling is relatively small due to the smallness of Vtd.
Overall,3 the couplings H�td and H�ts will be smaller
compared to H�tb.
Among the other couplings of the charged Higgs, the

H�cs and H�τν couplings can be obtained as

LYuk ⊃ ðy1ccβ − y2csβÞHþscc þ ð−y1scβ þ y2ssβÞH−csc

þ ð−y1τcβ þ y2τsβÞH−ντc þ H:c: ð19Þ
The charged Higgs decays dominantly through the
H� → tb mode for most of the parameter space, unless
there is an abrupt cancellation between different contribu-
tions of Eq. (16) [22]. Otherwise, the second most
prominent decay mode, H� → cs, takes over. The leptonic
decay mode H� → τ�ν is not found to be very significant.
Hence, the tree-level charged-current contributions from
the diagrams containing H� are negligible in this model.
The couplings of the neutral pseudoscalar (A) and the

heavy scalar (H) are studied in detail in Ref. [22], which
shows that H and A couple to third-generation quarks
strongly. Their couplings to the leptons, as well as to the
first and second generations of quarks, are negligible.
Hence, tree-level FCNC processes in meson decays, neutral

meson mixing, and other lepton-flavor-violating decays are
suppressed in this model. We discuss different structures of
the Yukawa couplings in an effective 2HDM framework
and their effects on FCNCs in the next section.

C. Effective 2HDM framework of LSS model

If the radiative corrections due to the presence of extra
heavier gauge bosons, vectorlike quarks, and the singlet
scalars are included in the LSS model, an effective scalar
potential at the TeV scale mimics that of the 2HDM,
albeit with the absence of a number of scalar field
combinations. The scalar potential generated at one loop
in the LSS model [21] is

VLSS ¼ m2
1jϕ1j2 þm2

2jϕ2j2 þ ðb2ϕT
1 · ϕ2 þ H:c:Þ

þ λ05jϕT
1 · ϕ2j2; ð20Þ

where ϕ1 and ϕ2 are the SUð2Þ scalar doublets with
hypercharges þ1=2 and −1=2, respectively, and ϕT

1 :ϕ2 ¼
ϕT
1 iσ

2ϕ2 is the antisymmetric product of the fields. Similar
to the 2HDM case, the ratio of the VEVs of the scalar
doublets ϕ1;2 is presented in terms of

tan β≡ v1=v2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2=m
2
1

q
; ð21Þ

which is a function of the LSS scalar potential parameters
m2

i . The physical masses of the scalars that constitute the
2HDM structure can be expressed as

m2
A ¼ 2b2=sin ð2βÞ; m2

H� ¼ m2
A − λ05v

2=2;

m2
H;h ¼

1

2

h
m2

A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

A − 4ðm2
A −m2

H�Þm2
H�sin2ð2βÞ

q i
:

ð22Þ
The parameters m2

1, m
2
2, b

2, and λ05 are functions of the
SUð6Þ=Spð6Þ-model Lagrangian parameters and can be
expressed as

λ05 ¼
cg21½g22 þ ðc0=cÞy22�Þ
g21 þ g22 þ ðc0=cÞy22

;

b2 ¼ 3f2

8π2
y21y2ðy3 − y4Þ log

Λ2

M2
f

;

m2
1f ¼ 3f2

8π2
ðy21 − y22Þðy23 − y24Þ log

Λ2

M2
f

;

m2
2f ¼ 3f2

8π2
ðy21y22 þ y22y

2
5 − y22y

2
3 − y21y

2
4Þ log

Λ2

M2
f

;

m2
1g ¼ m2

2g ¼
3

64π2

�
3g2M2

g log
Λ2

M2
g
þ g02M2

g0 log
Λ2

M2
g0

�
;

m2
1s ¼ m2

2s ¼
λ05

16π2
M2

s log
Λ2

M2
S
: ð23Þ

3The couplings with lighter fermions that we neglect here
appear in squares in the flavor observables, and their effect is
much smaller compared to the anomalies present in the flavor
observables.
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λ05 gets gauge (proportional to g1 and g2) as well as
fermionic (proportional to y2) contributions, whereas b2

receives only the fermionic contribution (proportional to
yi). In Eq. (23), m2

1 and m2
2 get contributions from

the scalars (s), gauge bosons (g), and fermions (f) in the
loop. The degrees of constructive or destructive
interference depend on the signs of the coefficients. Λ is
the cutoff, which is taken to be 4πf, where f is the
energy scale associated with SUð6Þ=Spð6Þ breaking.
Mf is the heavy vectorlike fermion mass scale. The heavy

gauge boson masses are Mg ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg21 þ g22Þ=2

p
and

Mg0 ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg021 þ g022 Þ=2

p
. The singlet scalar mass is

Ms ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðg21 þ g22Þ þ c0y22

p
, where c and c0 are Oð1Þ

parameters that depend on the details of UV completion,
as explained in Ref. [22].
How the two scalar doublets ϕ1 and ϕ2 couple to

other lighter fermions (lighter than the top) in the
2HDM determines the presence or absence of FCNCs in
the theory. As tree-level FCNCs are tightly bound by
experimental absence, they can place stringent constraints
on the model. The tree-level FCNCs are absent in this
emergent 2HDM from the LSS model, if the Z2 symmetry
is not broken. Symmetries in the LSS model compel the top
quark to couple to both ϕ1 and ϕ2 [see Eq. (1)], which
breaks the Z2 symmetry of the 2HDM in the top sector.
This type of model, with Type III 2HDM flavor structure,
results in nontrivial FCNCs in the third generation.
In the light fermionic Yukawa sector, Z2 symmetry

can be enforced—i.e., either ϕ1 or ϕ2 couples to the
fermions. With the Yukawa interactions y1ðb;τ;cÞ ≠ 0 and
y2ðb;τ;cÞ ¼ 0—i.e., light down-type fermions being coupled
only to ϕ1—stringent constraints from the LHC such as
h → bb̄; ττ̄ measurements become important. The alternate
possibility is y1ðb;τ;cÞ ¼ 0 and y2ðb;τ;cÞ ≠ 0, which relaxes
the earlier constraints. If this Yukawa structure is adopted
for the up-type light fermions as well, this will resemble a
Type I 2HDM framework in the light fermion sector,
while the top sector will break it. The earlier framework,
y1ðb;τ;cÞ ≠ 0 and y2ðb;τ;cÞ ¼ 0, along with the up-type cou-
pling with ϕ1, is also a Type I framework for the light
fermions, but that is not so tenable from the LHC constraints.
On the other hand, an alternative Yukawa pattern can be

explored where y1 ≠ 0 for the up-type light fermions, with
them being coupled only to ϕ1 and the down-type fermions
only coupled to ϕ2—i.e., y2 ≠ 0 for the down type. The
light fermion sector in this scenario will look like a Type II
2HDM setup. If the top couples to both ϕ1 and ϕ2, it breaks
the Type II structure, as seen earlier. The constraints from
the h → bb̄, ττ̄ at the LHC are relaxed in this scenario.
Hence, these types of peculiarity in the flavor structure are
potentially ripe for nontrivial implications in the flavor
physics sector. A detailed analysis of the impact of a few
hitherto important flavor observables in the 2HDM sector is
the core of this work.

III. CONSTRAINTS FROM FLAVOR AND
ELECTROWEAK PHYSICS

The LSS model can exhibit different Yukawa patterns,
leading to different 2HDM-like scenarios. Depending on
the flavor structure of the Yukawa couplings, flavor-
changing neutral currents can place important constraints
on the model. We study the FCNCs involving different
quarks, among which the third-generation ones are in
particular nontrivial. In this model, the top quark couples
to both ϕ1 and ϕ2. The Yukawa coupling involving the
bottom quark depends on the model parameters y1b and y2b,
which play a major role in the calculation of the flavor
observables. The choice of y1b ≠ 0, y2b ≠ 0 reflects the
Type III 2HDM-like scenario. We have also considered
alternative scenarios where y1b ¼ 0, y2b ≠ 0 or y1b ¼ 0,
y2b ≠ 0, which can lead to different 2HDM scenarios, as
mentioned in Sec. II C.4 Hence, in the LSS model we study
three cases: Case I:

Case I∶ y1b ≠ 0; y2b ≠ 0:

Case II∶ y1b ¼ 0; y2b ≠ 0:

Case III∶ y1b ≠ 0; y2b ¼ 0:

A. Flavor observables and Zbb̄

As reflected in the previous section, the effect of the
Yukawa couplings involving the third-generation quarks
has its dominant contribution in flavor and EWobservables.
Also, as mentioned earlier, the contribution of the tree-level
FCNC can be avoided in a large model parameter space of
the LSS model. Hence, while discussing the FCNCs, we
will be focusing only on the loop-level FCNCs in the
following text. Note that the vectorlike fermions also have
significant impact on the flavor and EW observables [37],
but in this article we focus on the scalar sector of the
effective 2HDM in the LSS model. We also include
constraints from Zbb̄ measurement, while the S and T
parameters are kept well within the limit by keeping the
new gauge degrees of freedom on the heavier side [22]. We
discuss different flavor observables, dividing them into a
few broad categories.

1. Radiative B-meson decays

In the context of the 2HDM, the most stringent constraint
comes from the radiative B-meson decays, B → Xsγ
(B → Xdγ). The latest experimental value and the theoreti-
cal value of BRðB → Xsγ) show discrepancy, as indicated
in Table I. In the SM, the quark-level transition is mediated
by W-boson and t-quark exchange via an electromagnetic
penguin diagram. The matrix element for this process at the

4For a detailed study of the flavor structure of general 2HDM
models, one might look at Ref. [36].
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electroweak scale is governed by the dipole operator. The
effective Hamiltonian for this process is given by

Heff ¼ −
4GFffiffiffi

2
p V�

tsVtb

X8
i¼1

CiðμÞOiðμÞ: ð24Þ

Here, Vij represents the relevant Cabibbo-Kobayashi-
Maskawa (CKM) factors. The Oi’s are a complete set of
renormalized dimension-six operators. They consist of six
four-quark operators, O1–6, the electromagnetic dipole
operator, O7, and the chromomagnetic dipole operator,
O8. These operators are evolved from the electroweak
scale down to the bottom mass scale using renormalization
group equations (RGEs). The partial decay width of the
quark-level transition is given by

Γðb → sγÞ ¼ αG2
Fm

5
b

128π4
jV�

tsVtbC7ðμbÞj2: ð25Þ

The deviation in the observable is proportional to δC7ðμbÞ,
which can be expressed in terms of the effective Wilson
coefficients at the matching scale ðμWÞ, given as δC7ðμWÞ
and δC8ðμWÞ. The explicit expressions for C7;8 can be
found in the literature [42]. In 2HDM-like scenarios, such
as in the LSS model, an additional contribution comes from
the charged Higgs coupling to the quarks, given by

L ¼
ffiffiffi
2

p

v
Hþt̄½Vijmuiλ

i
uPLdj þ Vijmdjλ

j
dPRdj� þ H:c:

ð26Þ

Now, the contribution of the charged Higgs in δC7;8 can be
expressed as δC7ðxÞ and δC8ðxÞ, computed as [38,43]

δC7;8 ¼
�
λ2t
3
Fð1Þ
7;8ðxÞ − λtλbF

ð2Þ
7;8ðxÞ

�
; ð27Þ

where x ¼ m̄2
t ðμWÞ
m2

H�
, λt ≡ yH�tLbR , and λb ≡ yH�tRbL , as given

in Eq. (17). In the following text, we choose a simpler
notation and denote these effective Yukawa couplings as
yHtLbR and yHtRbL . The detailed expression of the function F
is given in Refs. [28,44].
The B → Xsγ branching ratio receives large contribu-

tions from the charged Higgs couplings with the top
and bottom quarks. We impose the limits on the Wilson

coefficient to be in the range −0.063 ≤ δC7 þ 0.242,
δC8 ≤ 0.073. The theoretical and experimental uncertain-
ties are combined in a quadrature while deriving the limits.
It is interesting to note that the relative minus sign between
the two contributions (from W and H� in the loop) in the
general 2HDM model creates destructive interference for
some values of the model parameters [28]. However, in the
LSS model, the coefficients (λt;b) depend on the parameters
of the strong sector, and both destructive and constructive
interference are possible depending on the values of the
LSS model parameters. This is true for the other observ-
ables as well. Charged Higgs also contributes to b → dγ
decay in the same manner. The coupling of the charged
Higgs to the top and down quarks is also similar to Eq. (16),
but this coupling is suppressed in this model as Vts ≫ Vtd.

2. Neutral meson mixing

In the SM, neutral meson mixing occurs due to the box
diagrams with two W exchanges in the loop level. In the
case of Bd and Bs mesons, the hierarchical structure of the
CKM matrix and the large mass of the top quark imply that
the mixing is dominated by the diagrams involving the top
quarks. In 2HDM-like scenarios, the observables related to
the neutral-meson mixing receive charged Higgs contribu-
tions [45]. Additional diagrams are included by replacing
the W lines with charged Higgs ones, yielding the con-
tribution to the mixing as

Δmq ¼
G2

F

24π2
ðVtqV�

tbÞ2ηBmBmtf2BqItotðxW; xH; xHÞ; ð28Þ

Itot ¼ IWWðxWÞ þ A4
t IHHðxH; xHÞ þ 2A2

t IWHðxW; xHÞ;
ð29Þ

where xW ¼ m̄2
t =m2

W , xH ¼ m̄2
t =m2

H. IWW , IHH, and IWH
indicate the internal bosonic lines of the corresponding
diagrams with an external light quark q ¼ d, s. For details
of these Inami-Lim functions and other parameters, we
refer to Refs. [28,46]. We consider the charged Higgs
contributions to the B0

s − B̄0
s mixing only, as the constraints

are stronger than B0
d − B̄0

d mixing [23]. Also, as mentioned
earlier, the charged Higgs couplings to the top (t) and down
(d) quarks are suppressed in our model. Both experimental
measurements and the SM predictions for B0

s − B̄0
s mixing

are given in Table I. We obtain the total contributions to the

TABLE I. Standard model vs experimental values of the flavor observables.

Observables SM value Experimental value

BrðB → XsγÞ ð3.36� 0.23Þ × 10−4 [23] ð3.32� 0.16Þ × 10−4 [38]
ΔmBs

ð17.757� 0.021Þ ps−1 [23] ð18.3� 2.7Þ ps−1 [23]
Rb 0.21581� 0.00011 [39] 0.21629� 0.00066 [34]
Bs → μμ ð3.65� 0.23Þ × 109 [40] ð3.0� 0.6þ0.3

−0.2 Þ × 109 [41]
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mass splitting from the W� bosons, Goldstones, and the
charged Higgs boson (H�) through the box graphs.
Normalizing ΔmBs

with respect to its SM prediction, we

obtain the allowed range at 2σ to be 0.675 ≤ ΔmBs

ΔmSM
Bs

≤ 1.265.

3. Z → bb̄ vertex (Rb)

The Z → bb̄ vertex has provided opportunities to search
for new physics contributions, due to the heavy masses
involved in the loop. The radiative corrections at the vertex
might imply charged Higgs exchanges in addition to the
standardW-boson coupling with top and bottom. Precision
measurement of the electroweak precision observable
Z → bb̄ branching ratio is measured as

Rb ¼
ΓðZ → bb̄Þ

ΓðZ → hadronsÞ : ð30Þ

The modifications in Rb due to the charged Higgs con-
tributions at one loop is given by [30,47]

δRb ≃ −0.7785δgLnew: ð31Þ

Here δgLnew is the modification in the ZbLb̄L coupling,
calculated from a combination of triangle graphs whereH�
and the charged Goldstones float inside the loop. We
neglect the modification in the ZbRb̄R coupling because
it is proportional to m2

b, compared to ZbLb̄L coupling,
which is proportional to m2

t [30]. We constrain δRb in the
2σ range: −0.00086 ≤ δRb ≤ 0.00182.

4. Other flavor observables

The flavor observables such as Bs → μμ and Bd → μμ
can also show sizable effects in generic 2HDM. But
these observables will have low impact in the LSS
model, as H�lν coupling is small, resulting in very tiny
BRðH� → lνÞ, as discussed in the previous section. In
general, standard 2HDM scenarios require very large values
of the Hþlν couplings with small charged Higgs masses
[36] in order to explain the current experimental values
(Table I) of Bs;d → μμ. This is very unlikely to happen in
the LSS model. The other robust predictions from flavor
observables such as RD, RD� , RK , RK� , and meson decays
depend on BSM scalar couplings H�lν, HþH−ðZ=γÞ,
ðH0=h=A0Þlþl− (l ¼ μ, τ) in both tree-level and loop-level
contributions. These couplings, being small in the LSS
scenario, give no effective contribution to the aforemen-
tioned flavor observables. Hence, the constraining power of
these observables is weaker, and we do not include them in
our study.

B. Constraints from flavor physics and Rb (Scan A)

The flavor and electroweak observables depend on the
following LSS model parameters:

y1; y2; y3; y4; y5; c; c0; g1; g01; y1b; y2b; f; andM:

The values of the top-sector Yukawa couplings yi; i ¼
1; 2…5 are taken to be of the order of unity, which is a
natural choice, as they, as a combination, provide the top-
quark mass with VEVs v1, v2 ∼ 100 GeV. Three cases of
the LSS model (Cases I, II, and III) have different bottom
Yukawa structures, depending on the values of the Yukawa
couplings y1b, y2b. The Yukawa couplings in the bottom
sector, y1b and y2b, are responsible for the bottom-quark
mass. To generate the bottom mass, which is 2 orders of
magnitude smaller than the top mass, y1b and y2b are varied
in an optimum range, much smaller than the other Yukawa
couplings. y1b and y2b are varied over a range jyibj ≤ 0.10.
The intermediate Yukawa couplings y−00, y

−
10 have combi-

nations of the form y1b cos β − y2b sin β, which chart out
relative contributions of the y1b, y2b. The rest of the
parameters—c, c1, g1, and g01—are considered to be Oð1Þ.
We have used the relation M ¼ 1.5 × f, where f takes

values up to 2 TeV, and we have fixed the VEVat 246 GeV.
Hence, we perform a random multiparameter scan in 12-
parameter space. As noted in Ref. [21], to prevent the
VEVs from running away to ∞, sufficient conditions are
imposed, given as m2

1;2 > 0 and ðm2
1m

2
2 − b4Þ < 0, where

b2 is real. We have implemented these criteria in the
multiparameter scan as well. As the flavor constraints
are expected to be overwhelmed by the LHC constraints,
we work in a more relaxed framework in terms of LHC
parameters in order to emphasize the flavor intricacies of
this type of setup. The top and Higgs masses are fixed in the
scan within a liberal window of 20 GeV and 10 GeV,
respectively.5 In order to see the effects emanating from the
flavor sector, the flavor observables are kept within their
current allowed limits, as listed in Table I. Along with that,
the bottom mass is also varied within 3–5 GeV. We list the
values of the parameters and constraints in the first scan,
Scan A, in Table II.

TABLE II. Values of the parameters and constraints from flavor
observables used in the multiparameter Scan A.

Parameter Value

yiði ¼ 1…5Þ, c, c1, g1, g01 Oð1Þ
y1b, y2b ≤ 0.10
f ≤ 2 TeV
M ≤ 3 TeV
VEV 246 GeV
δC7 þ 0.242δC8 (−0.063, 0.073)
ΔmBs

ΔmSM
Bs

(0.675,1.265)

δRb (−0.00086, 0.00182)

5Note that we impose a much stronger constraint on these
parameters in the next scan, Scan B.
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In the following, we present Figs. 1 and 2 for three
different cases, as specified earlier. In Fig. 1, we plot Case I
in the top panel and Cases II (left) and III (right) in the
bottom panel. In Fig. 2, we plot Cases I, II, and III in the first,
second, and third columns, respectively. In these figures, the
yellow points are generated by the model parameter space
that is allowed after the imposition of constraints on them, as
given in the top part of Table II. With further imposition of
constraints from the flavor and EW observables, green and
red points depict the projections of the allowed parameter
regions that satisfy the constraints (Table II) from Rb and
Bs − B̄s mixing together and B → Xsγ, respectively. It is
found thatRb andBs − B̄s satisfy almost the same parameter
space. Hence, we choose to impose combined constraints in
the plots. The flavor bound fromB → Xsγ decay is found to
be the most constraining for the LSS model. Hence, in the
following discussion about the model parameter space
constrained from flavor observables, we shall refer mainly
to the strongest constraint that comes from B → Xsγ.

We show the variation of the Yukawa parameters with
tan β in Figs. 1 and 2. In this model, both m2

1 and m2
2

get contributions of the same order of magnitude,
through some combinations of the Yukawa couplings, yi,
i ¼ 1; 2…5, which are of the same order. Hence, tan β in
the LSS model, being written in terms of the ratio ofm2

1 and
m2

2, is expected to lie in the vicinity of unity. It is reflected
from the plots that overall small tan β values are preferred.
As tan β values gradually increase from <1 to >1, up to
tan β ∼ 5, the relative dominances of the sin β- and cos β-
dependent terms in Eqs. (16) and (17) increase and
decrease, respectively. In Fig. 1, in the Case I scenario,
where both yib ≠ 0, flavor constraints seem to rule out the
higher tan β region for higher y1b values along with the
lower tan β region for higher y2b values. This happens as
the contributions to y1b cos β − y2b sin β do not exactly
cancel each other, thus paving the way for increased
contribution to the observables (B→Xsγ, etc.), constrained
by experimental bounds.

FIG. 1. ScanA—Variation of tan β as a function of y1b and y2b in three cases: Case I (upper panel), Case II (lower panel left), and Case
III (lower panel right), after imposing constraints from Rb and Bs − B̄s combined (green) and B → Xsγ (red).
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From Fig. 1, it is clear that the maximum value of tan β
can be 5.0 for Case II, whereas for Case III, tan β up to 6 is
mostly preferred by the flavor constraints.6 In Case II, for
y1b ¼ 0, the λt values in Eq. (27) remain significant only for
larger y2b and sin β, which is related to tan β. Only with

large y2b and sin β does λt become larger, which is
paramount to fitting the flavor data. Similarly, for
Case III with y2b ¼ 0, after a certain y1bð≥0.02Þ, smaller
values of tan β are preferred with increasing y1b, as cos β
becomes significant in that range and fails to provide the
required values of λt to satisfy the flavor constraints.
Moreover, in Case III, tan β cannot obtain a very small
value; the tan β < 0.5 region is disfavored from the flavor
observables. Therefore, Case II with y1b ¼ 0 differs

FIG. 2. Scan A—Variation of tan β with the effective Yukawa couplings and ktth in three cases: Case I (left column),
Case II (middle column), and Case III (right column), after imposing constraints from Rb and Bs − B̄s combined (green) and
B → Xsγ (red).

6We do not show the region for tan β ≥ 6, as this region is less
favored by the LSS model, as well as the flavor observables,
resulting in very few points in the plot.
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significantly from Case I with all Yukawas nonzero,
whereas Case III with y2b ¼ 0 remains relatively
unaffected.
The effective Yukawa pattern subsequently reveals the

dominance of either y1b or y2b through their contributions
in Eq. (17). From Fig. 2, we can see different ranges of
yHtRbL and yHtLbR . The allowed yHtRbL values are 1 order
of magnitude higher than yHtLbR values, up to Oð1.0Þ, as
opposed to Oð10−1Þ. This is due to the fact that yHtRbL and
yHtLbR are primarily dominated by the top- and bottom-
sector Yukawa couplings (yi; i ¼ 1, 2 vs yib, i ¼ 1; 2),
respectively. They are also functions of the left and right
top-sector mixing elements in RL and RR, which are of
similar orders of magnitude, being functions of yi ’s
(i ¼ 1; 2…5). The effective Yukawa coupling yHtRbL is a
combination of top-sector Yukawas, and there is no direct
y1b, y2b contribution. Hence, yHtRbL almost produces
similar allowed regions after flavor constraints in three
different cases. This is reflected in the top row of Fig. 2,
where we plot yHtRbL vs tan β. The flavor-allowed regions in
Case III are somewhat similar to those of Case I, but Case II
stands apart, where relatively larger values of tan β (>4.5)
are not allowed.
The middle row of Fig. 2 shows the allowed regions

of the effective Yukawa coupling yHtLbR with tan β for
three cases. Large values of yHtLbR (∼0.1) are allowed for
tan β < 1.5 in Case I. Larger values of tan β (∼4–5) are
favored in the region where yHtLbR is >0.02 in Case II;
whereas in Case III, tan β ≤ 1 is favored. In Case III,
smaller values of y1b (<0.02) prefer a large tan β. Another
interesting feature of Case III is that a very small value of
tan β (<0.2) is disfavored by B → Xsγ, as shown in all the
plots in the right column of Fig. 2.
We also plot the tan β dependence of ktth in Fig. 2. It is

found that, in the experimentally allowed window of
0.7 < ktth < 1.4, tan β is strongly preferred within the
range 0.2–4.0 in Cases I and III, but values of tan β larger
than 4 are also allowed by B → Xsγ. In Case II, the upper
limit on tan β is 4.0. The allowed values of the charged
Higgs mass are almost the same in these three cases. In the
next section, we discuss the LHC constraints, starting from
combined flavor constraints on the charged Higgs mass.

C. Constraints from the LHC (Scan B)

At the LHC, properties of the Higgs boson are measured
in several channels [48], which indicates that the couplings
of the 125 GeV Higgs to the gauge bosons (hVV) and to
the fermions (hff̄) are consistent with the SM prediction
[20,49–51], even though some mismatches are still there in
the fermionic coupling measurements. These measure-
ments are found to be in favor of the alignment limit
[52,53] in a 2HDM-like setup i.e., j sinðβ − αÞj ∼ 1.
The nonobservation of anomalous nature of the hVV
coupling strongly indicates that any BSM contribution is

suppressed in the Higgs–gauge boson interaction, implying
j cosðβ − αÞj ∼ 0 [54,55]. Hence, the hVV coupling in the
LSS model, which exhibits a 2HDM-like structure, is
suppressed. Among the fermionic couplings, we only
constrain the Higgs coupling to the third generation of
quarks. We allow both positive and negative hVV and htt̄
couplings leading to both constructive and destructive
interference in the Higgs observables. ATLAS and CMS
experiments have imposed bounds on the couplings of the
SM Higgs [48] by looking at different production and
decay modes of the Higgs boson. The current limit on htt
coupling is dependent on different assumptions held
during the statistical fit, as shown in Ref. [48]. After
inspecting the limits carefully, we perform our search in
the window of 0.70 < ktth < 1.4, where ktth is defined as
the ratio of the measured htt coupling compared to its
SM value [see Eq. (12)]. In the alignment limit, the hbb̄
coupling is ∼mb=v, which is maintained throughout the
multiparameter scan.
We derive the masses of the SM and BSM particles in

terms of the model parameters. We calculate the top mass
in the MS scheme [56,57] and constrain it in the range
156–170 GeV around mtðMSÞ ¼ 163 GeV. The Higgs
mass [58,59] is considered in the range 123–127 GeV.
The LEP experiment excludes the charged Higgs masses
below 80 GeV [60]. At the LHC, searches for the charged
Higgs have been performed through various decay chan-
nels, H� → cs [61,62], tb [63,64], and ντ� [65], and most
of these searches exclude m�

H < mt. However, the exper-
imental searches [66] in the H� → tb channel are favored
at higher masses of H�, as predicted in other BSM
models—for example, in supersymmetric scenarios [67].
Incidentally, also in the LSS model we get BRðH� →
tb ∼ 1Þ, satisfying a large parameter space of the model.
Electroweak precision measurements [34,39] require the
charged Higgs mass to be close to the mass of one the
neutral Higgses, which is also satisfied in our model (also
shown in Ref. [22]). Different searches at the LHC have
imposed limits on the masses of the vector like quarks as
well, and typically they are within the range of 1 to 1.4 TeV
[32]. We list the values of all the constraining observables
of the second Scan B in Table III. The model parameters
follow the same values as given in Table II.
In Fig. 3, the magenta region shows the model parameter

space allowed by combination of the flavor constraints
and the Rb (allowed points of Scan A). We constrain the
magenta region further with observables of the Scan B as
given in Table III. The result of ScanB is shown by the blue
points. The first row of Fig. 3 shows the allowed parameter
space of the Yukawa couplings, which contributes to the
couplings of charged Higgs to the third generation quarks.
Interestingly, after both the scans, we get very distinct
patterns for the three cases. Parameter space that satisfies
all the constraints (blue points) is uniformly distributed in
Case I. In Case II, negative values of yHtRbL are more
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preferred, and in Case III, very small values of yHtLbR are
not allowed after the imposition of LHC constraints.
In the second row of Fig. 3, we show the plot of tan β vs

the mass of the charged Higgs boson. Mass of the charged
Higgs is a function of tan β, λ05, and b2, which depend
intrinsically on other model parameters. The most impor-
tant constraint form the LHC is on the htt coupling, which
again depends on the same set of model parameters. The
parameter space that survives after Scan B, predicts such
ranges of m�

H as shown by blue points in Fig 3. The
preferred values of charged Higgs mass stay well above

FIG. 3. Scan B—LSS model parameter space after imposing constraints from flavor observables and Rb (magenta) and further
imposition of LHC observables (blue) in three cases: Case I (left column), Case II (middle column), and Case III (right column).

TABLE III. The experimental constraints used in the multi-
parameter Scan B.

Quantity Constraints

jsinðβ − αÞj ∼1
ktth 0.7–1.4
mt (156, 170) GeV
mh (123, 127) GeV
mb (3, 5) GeV
m�

H >mt
mB, mT >1.4 TeV
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1 TeV, the smallest allowed value being ∼1.3 TeV, from
Scan B. Case I shows more preference towards smaller
values of m�

H compared to Case II. Overall, the plots in the
first and second row reflect mainly the correlation among
the flavor physics observables, Rb and the Higgs Yukawa
measurements at the LHC, in the allowed LSS model
parameter space.
The bottom row confirms that the toplike VLQ partners

are well above 1.3 TeVafter Scan B, and the allowed region
is almost the same in the three cases. Our results also predict
that a similar inference is true for the bottomlike VLQs. In
general, we find that the limits on VLQ masses and the
charged Higgs mass are more stringent after the imposition
of the LHC bounds—i.e, Scan B—specifically due to the
alignment condition. A similar conclusion can be made for
the extra neutral and charged gauge bosons, such as B0 and
W0, where the allowed masses are pushed to even higher
values, ≥2.2 TeV. This also takes care of the constraints
coming from electroweak precision tests (EWPT) [22].

IV. CONCLUSION

We reintroduce the LSS little Higgs model that acts as an
UV-complete model to produce an effective 2HDM at the
EW scale, along with other BSM species, such as vectorlike
fermions, extra gauge bosons, and scalars. Compared to the
generic 2HDM, emergent 2HDM from the LSS model will
be predictive in nature, as the Yukawa structure here will be
dictated by a bigger symmetry. In this work, emergent
2HDM from the LSS model is discussed from the view-
point of standard 2HDM to determine the crucial phenom-
enological differences. We bring out both flavor and LHC
constraints together from the arsenal, ably aided by EW
precision observable Rb to pin down the allowed parameter
space of the LSS model. In the context of an emergent
2HDM, the qualitative features of an SUð6Þ=Spð6Þ
composite Higgs model are expected to be similar to those
for the LSS model, albeit with obvious differences in
parametric dependences.
In the flavor sector, variants of models are constructed

from the bottom Yukawa perspective, and we have found
that the case with both yib ≠ 0 is relatively less constrained
compared to the cases with either of them set to zero. We
deploy different flavor observables, potentially important
to the charged Higgs sector. Among them, the B → Xsγ
branching ratio is found to be the most constraining, while
Bs − B̄s mixing and EWPT observable Rb constraints are
relatively liberate, though they are not widely off. While the
flavor constraints keep the charged Higgs fairly relaxed,
the tan β gets more restricted (≤5) compared to the usual
2HDM. The effective charged Higgs Yukawas, yHtLbR and
yHtRbL , show very distinct tan β dependences in different

cases (Cases I, II, and III), manifesting different flavor
patterns.
With respect to the combined flavor and LHC con-

straints, charged Higgs mass (m�
H) and tan β are bound

more tightly in the emergent 2HDM from the LSS model
than in the usual 2HDM. Even when some of the con-
strained 2HDM scenarios rule out the charged Higgs only
in the sub-TeV region, here in the LSS model, combined
flavor and LHC bounds push the charged Higgs mass lower
bound to 1.3 TeV. Similarly, tan β is spread over a wider
range in general 2HDM as opposed to a narrow range of
(0.5–3) in the different LSS scenarios. This is a reflection of
the predictive nature of the Yukawa sector in the LSS
model, where the Higgs mass, top mass and top Yukawa
couplings are fixed in terms of strong sector parameters of
the LSS model; whereas these quantities were easily
arranged in the construction of the general 2HDM through
the enforcement of a Z2 symmetry.
These types of LH models with a large number of

parameters are often very fine-tuned, as multiple param-
eters contribute to a single observable, such as the Higgs
mass, which is very precisely known. It is worthwhile to
know in the future how the three different flavor scenarios,
as discussed above, can have an impact on the charged
Higgs phenomenology. In general, we find that the
charged Higgs, along with other neutral BSM particles,
is placed at a mass well above 1 TeV. Hence, their decay
products are expected to be highly energetic, such that one
can use them to improvise different LHC search tech-
niques. In one of the earlier LHC searches [68], a heavy
charged Higgs similar to this scenario, which dominantly
decays through the tb mode, was probed in all jet final
states, using boosted properties of top andW. These kinds
of searches will have better prospects at the advanced run
of the LHC with enhanced luminosity and energy.
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