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We reassess employing the holographic technique to the description of a 4D minimal composite Higgs
model with SOð5Þ → SOð4Þ global symmetry breaking pattern. This particular 5D bottom-up holographic
treatment is inspired by previous work in the context of QCD and it allows us to study spin one and spin
zero resonances. The resulting spectrum consists of the states transforming under the unbroken SOð4Þ
subgroup and those with quantum numbers in the SOð5Þ=SOð4Þ coset. The spin one states are arranged in
linear radial trajectories, and the states from the broken subgroup are generally heavier. The spin zero
states from the coset space correspond to the four massless Goldstone bosons in 4D. One of them takes the
role of the Higgs boson. Restrictions derived from the experimental constraints (Higgs couplings,
S parameter, etc.) are then implemented and we conclude that the model is able to accommodate new vector
resonances with masses in the range 2 TeV to 3 TeV without encountering phenomenological difficulties.
The couplings governing the production of these new states in the processes of the Standard Model gauge
boson scattering are also estimated. The method can be extended to other breaking patterns.

DOI: 10.1103/PhysRevD.103.055006

I. INTRODUCTION

Most of the LHC data gathered so far seems to indicate
that the minimal version of the Standard Model (SM) with
a doublet of complex scalar fields is compatible with
the experimental results. However, many of the possible
extensions involve a strongly interacting sector where
perturbation theory cannot be trusted and nonperturba-
tive methods are needed to make predictions. The extra-
dimensional holographic framework is a valid option to
investigate strongly coupled theories of various types and
make meaningful comparisons with experiments.
The original AdS=CFT correspondence [1–3] between

string theory on AdS5 × S5 and N ¼ 4 super Yang-Mills
gauge theory on ∂AdS5 relates very particular theories on
both sides. Here, we follow the bottom-up approach to
holography—a conjectured phenomenological sprout
of AdS=CFT that inherits several key concepts of the
latter, but retains enough flexibility. It is also known as
AdS=QCD due to being tried at and proven successful in
describing several facets of the SM theory of strong
interactions.

In the AdS=QCD models the spacetime is described by a
five-dimensional anti-de Sitter (AdS) metric with the
additional dimension labeled as z. The value z ¼ 0 corre-
sponds to the ultraviolet (UV) brane, where the theory is
assumed to be described by a conformal field theory (CFT)
as befits QCD at short distances. In the infrared (IR) the
conformality of the metric must be broken to reproduce the
confining property of QCD. This could be done either
via introducing an IR brane at some finite distance in the
z-direction, or making a smooth cutoff instead. The former
is known as the hard wall (HW) proposal [4,5], and the
latter is called the soft wall (SW) model [6] in contrast. The
SW framework is of particular phenomenological interest
as it results in strongly-coupled resonances lying on linear
Regge trajectories.
A viable possibility for an extended electroweak sym-

metry breaking sector (EWSBS) is the misaligned com-
posite Higgs (CH) models [7]. Characteristic to these
models is the breaking of the global symmetry group G
to a subgroup H due to some nonperturbative mechanism
(like the condensation of the fundamental hyperfermions
constructing the Higgs boson and the new resonances) at
the scale ΛCH ≃ 4πfCH. The lightness of the Higgs boson is
guaranteed by the identification to the Nambu–Goldstone
bosons emerging after the symmetry breaking. The coset
space should have capacity for at least four degrees of
freedom of the Higgs doublet.
The subgroup H should necessarily contain SUð2Þ×

Uð1Þ. However, the SM gauge group itself lies inH0 which
is rotated with respect toH by a certain angle θ around one
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of the broken directions. Vacuum misalignment, gener-
ated by a nonzero angle θ, is the mechanism responsible
for the electroweak (EW) breaking. Furthermore, the
misalignment angle θ sets the hierarchy between ΛCH
and the weak scale 4πv. It is common to assume
v ¼ fCH sin θ. One would expect sin θ to be small but
not too much, because a large scale separation may lead
to a relevant amount of fine-tuning in order to keep light
the states that should remain in the low energy part of the
spectrum. Moreover, in order to naturally satisfy the
constraint on the oblique parameter T, H should accom-
modate the group of custodial symmetry.
The minimal composite Higgs model (MCHM) of

Ref. [8] provides the most economical way to incarnate
these demands. It features the groups G ¼ SOð5Þ and
H ¼ SOð4Þ ≃ SUð2Þ × SUð2Þ. Unfortunately, not much
is known about the dynamics and the spectrum of this
theory. The global symmetry SOð5Þ cannot be realized with
fermions at the microscopic level. Yet it is often implicitly
assumed that a lot of qualitative features in CH phenom-
enology are similar to the ones of QCD.
There exists a substantial bibliography on the appli-

cation of the holographic methods in CH scenarios. One
way is to construct a Randall-Sundrum model on a slice
of AdS ½zUV; zIR�. In this way, the minimal composite
Higgs scenario was first realized in Ref. [8] (and
followed in Refs. [9,10], etc.). The first example of
the technique was proposed for the simplest case of the
SUð3Þ → SUð2Þ breaking pattern in Ref. [11]. Other
authors used flat 5D models with the z dimension being
an orbifold S1=Z2, i.e., restricted to a finite interval as
well (see Refs. [12–14]).
The models inspired by Ref. [8] have the following

characteristics. The gauge symmetry of the SM is gener-
alized to that of SOð5Þ and extended into the 5D bulk,
where the two branes are introduced, similar to the HW
option in AdS=QCD. The choice of the boundary con-
ditions to be imposed on the 5D fields on these branes
determines the symmetry breaking pattern. The Higgs
boson is fully associated with the fifth component of the
gauge field in the direction of the broken gauge symmetry
(an idea first realized in Ref. [15]). An effective Higgs
potential is absent at the tree-level, and its Coleman-
Weinberg generation by the quantum loop corrections
(dominated by the top quark contribution) breaks the
EW symmetry. Emphasis is made on the way one embeds
the SM quarks into the 5D model and their impact on the
said potential. EW observables (S; T; Z → bb̄) are also
estimated [8,9].
CH studies have not been much elaborated in the SW

framework after the initial proposal in Ref. [16]. Motivated
by the much better description of QCD phenomenology
that SW models provide, we would like to revisit CH
models and provide an in-depth analysis of several relevant
observables. We would like to put accent on the realization

of the global symmetry breaking pattern and the description
of spin zero fields, the fulfillment of the expected current
algebra properties, such as Weinberg sum rules, and the
operator product expansion.
Unlike the HW-like holographic CH setups where the

SOð5Þ → SOð4Þ breaking takes part on the IR brane, in
the present SW description the breaking is due to the
structure of the scalar sector of the bulk Lagrangian. The
skeleton is similar to generalized sigma models used for
QCD at long distances [17]. The Goldstone bosons are
introduced explicitly in the scalar 5D Lagrangian, but
they also appear due to the gauge choice in the fifth
component of the broken gauge field. The latter entry
could be thought of as analogous to the gauge-Higgs
construction of HW-like models, while the former is a
particular feature of the SW framework. Altogether, this
is reminiscent to what was proposed in Ref. [16].
However, quite differently from that paper, in our
approach the dynamics responsible for the SOð5Þ →
SOð4Þ breaking is entirely “decoupled” from the SM
gauge fields, no SOð5Þ bulk gauge symmetry is assumed
for the EW sector, and only strongly interacting
composite states propagate in the bulk. It is not the case
that certain boundary conditions lead to the emergence of
an SUð2Þ ×Uð1Þ subgroup on the UV brane, but rather
the gauge bosons are introduced exclusively on the
boundary as external sources with the quantum numbers
of SUð2Þ × Uð1Þ. They do not participate in the strong
dynamics (except eventually through mixing of fields
with identical quantum numbers) and, hence, are entirely
z independent.
We believe these premises to be well justified after what

has been learned from holographic QCD over the last years.
At least, it is worthy to take another look at CH models
considering the amount of accumulated knowledge. To
specify, our treatment is substantiated by the bottom-up
holographic realizations of QCD given in Refs. [4–6,18–
21], but several aspects of the 5D dynamics are quite
distinct for the sake of accommodating the CH physics.
As we said, we concentrate on the dynamics of the

strongly interacting EWSBS and its interaction with the
EW sector, and no new insight into the naturalness problem
or the origin of the hierarchies is provided. SM fermion
introduction will be omitted in this study, though if
presented they should belong exclusively to the UV brane
as the EW gauge bosons do. That simultaneously closes to
us the option of explaining the origin of the fermion mass
hierarchy by their different placements in the bulk. It is also
true that the SM fermions provide an important contribu-
tion to the radiative Higgs potential, which in its turn yields
the values of sin θ, Higgs mass, and Higgs self-couplings,
among other things [22,23]. We do, however, adopt the
point of view that the Higgs potential, being of perturbative
origin, is not the primary benefactor of the holographic
analysis.
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II. HOLOGRAPHIC COMPOSITE HIGGS
FRAMEWORK

A. Misalignment and operators of the strongly
interacting sector

We will consider a theory where in addition to the SM
LSM there is a new strongly interacting sector Lstr:int:,
presumed to be conformal in the UV. A global symmetry of
this sector is spontaneously broken following the pattern
G → H. There are Goldstone bosons in the coset space
G=H, and some of them have the quantum numbers of the
Higgs doublet. As the SUð2ÞL ×Uð1Þ global group is
necessarily included in H we can couple the EW sector of
the SM to the composite sector

L ¼ L̃str:int: þ LSM þ J̃α μL Wα
μ þ J̃Y μBμ: ð1Þ

JαμL and JYμ are the conserved currents of the strongly
interacting sector with the generators of the EW group, and
only they appear in the mixing terms. Moreover, we have to
denote the misalignment between the H subgroup of the
new sector and the actualH0 containing theWα

μ and Bμ EW
gauge bosons. In Eq. (1), everything related to the new
composite sector is marked with tildes. Let us specify the
case of MCHM, where the global symmetry breaking
pattern is SOð5Þ → SOð4Þ and there are exactly four
Goldstones. We denote by TA; A ¼ 1;…; 10 the generators
of SOð5Þ, represented by 5 × 5 matrices, which are trace-
less TrTA ¼ 0 and are normalized as TrðTATBÞ ¼ δAB.
They separate naturally into two groups:

(i) The unbroken generators, in the case of MCHM
those of SOð4Þ ⋍ SUð2ÞL × SUð2ÞR, we will call
Ta, a ¼ 1;…; 6. They are specified as

Tα
L ¼

�
tαL 0

0 0

�
; Tα

R ¼
�
tαR 0

0 0

�
; α¼ 1;2;3;

ð2Þ

where tαL, t
α
R are 4 × 4 matrices given by ðtαL=RÞjk ¼

− i
2
ðεαβγδβjδγk � ðδαjδ4k − δαkδ

4
jÞÞ, j; k ¼ 1;…; 4.

(ii) The broken generators, corresponding to the coset
SOð5Þ=SOð4Þ, are labeled as T̂i, i ¼ 1, 2, 3, 4 and
are defined as follows:

T̂i
IJ ¼ −

iffiffiffi
2

p ðδiIδ5J − δiJδ
5
I Þ; I; J ¼ 1;…; 5: ð3Þ

A quantity parametrizing the vacuum misalignment and
responsible for the EW symmetry breaking is the rotation
angle θ that relates the linearly-realized global group H ¼
SOð4Þ and the gauged group H0 ¼ SOð4Þ0. It is natural to
assign the value θ ¼ 0 to the SM, hence we denote the
generators of SOð5Þ → SOð4Þ0 as fTað0Þ; T̂ið0Þg and
those of SOð5Þ → SOð4Þ as fTaðθÞ; T̂iðθÞg. We choose

a preferred direction for the misalignment and the following
connection between the generators holds

TαðθÞ ¼ rðθÞTαð0Þr−1ðθÞ; with

rðθÞ ¼

0
B@

13×3 0 0

0 cos θ sin θ

0 − sin θ cos θ

1
CA: ð4Þ

Compositeness implies that some fundamental degrees
of freedom are bound together by the new “color” force
(“hypercolor” is usually used in the CH framework).
MCHM does not admit complex Dirac fermions as funda-
mental fields at the microscopic level due to the nature of
the global “flavor” symmetry group. The anomaly-free UV
complete fundamental fermion theory should have G
equivalent to SUðn1Þ ×… × SUðnpÞ ×Uð1Þp−1, where
ni is the number of fermions in a given irreducible
representation and p counts the actual number of irreduc-
ible representations [24]. The simplest UV-completable
theory will be the next-to-minimal CH boson with
SOð6Þ → SOð5Þ, featuring five Goldstone bosons (other
next-to-minimal patterns are mentioned, for instance, in
Ref. [25]). Nevertheless, we choose to work with MCHM
because of its simplicity that serves to illustrate the general
procedure.
If one chooses to avoid the particularities of the micro-

scopic structure of the new composite states (that seems
advisable on the grounds of being as general as possible), it
is impossible to treat the holographic MCHM completely in
the AdS=QCD fashion of Ref. [4,6]. The reason is that,
when constructing holographic QCD, one usually has the
information on the form of the interpolating composite
operators, specifically, on their scaling dimension Δ.
Knowing Δ is crucial to finding the particular entry in
the so-called holographic dictionary [3,26] that, in its turn,
gives one the recipe for filling the AdS bulk with the field
content. To some extent, due to affecting Δ directly, the
microscopic substructure sets the prescriptions for the bulk
masses and UV boundary conditions, which in their turn
influence all other holographic derivations (see more on
this in Sec. II C). In our holographic model describing the
minimal CH, we only use a single simple entry from this
list of field-operator correspondences:

AA
μ ðx; z ¼ εÞ ¼ 1 · ϕA

μ ðxÞ ↔ OA
μ ðxÞ with Δ ¼ 3; ð5Þ

where OA
μ ðxÞ are the unspecified conserved currents of the

fundamental theory containing SOð5Þ generators TA, and
AA
μ ðx; zÞ are dual 5D fields restricted to provide the sources

ϕA
μ ðxÞ for the corresponding operators on the UV brane (ε is

an UV regulator). We take Δ ¼ 3 (and zero bulk mass of
the vector fields) as a universal feature for the conserved
vector currents, because it should be so in both the case of
fermionic (Ψ̄γμTAΨ) and bosonic (∂μs⊤TAs) fundamental
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degrees of freedom. The introduction of the scalar operator
is indispensable in order to generate the breaking towards
SOð4Þ. However, following a line similar to the vector case
would mean inferring too much on the nature of the
fundamental theory. Hence, we intend to construct the
model so that this part of duality is realized in an
alternative way.
The operators OA

μ ðxÞ define the currents of Eq. (1):
(i) for A ¼ α (left): gffiffi

2
p Oα

LμðxÞ ¼ gVJαLμ;

(ii) for hypercharge realized as Y ¼ T3
R:

g0ffiffi
2

p O3
RμðxÞ ¼

gVJYμ .
The coupling coefficients are not fully established because
the operators are taken with an abstract normalization gV
that will be determined to provide agreement with the
common MCHM notations. The introduction of gV is also
substantiated by the discussion in Ref. [21], where it is
argued that a degree of arbitrariness in the field-operator
holographic correspondence is a necessary piece of
AdS=QCD constructions.

B. 5D model Lagrangian

In this subsection we put forward the details of the
holographic 5D model, realizing the 4D MCHM concept.
We settle upon the idea that there are two composite
operators, a vector and a scalar one, that define the theory,
and hence we have spin one and spin zero fields on the 5D
side. These fields live in the 5D AdS bulk with a metric
given by

gMNdxMdxN ¼ R2

z2
ðημνdxμdxν − d2zÞ;

ημν ¼ diagð1;−1;−1;−1Þ: ð6Þ

Holography prescribes that every global symmetry of the
4D model comes as a gauge symmetry of its 5D dual. Thus,
the field dynamics is governed by the following SOð5Þ
gauge invariant action:

S5D ¼ 1

4g25

Z
d5x

ffiffiffiffiffiffi
−g

p
e−ΦðzÞTrFMNFKLgMKgLN

þ 1

ks

Z
d5x

ffiffiffiffiffiffi
−g

p
e−ΦðzÞ

× ½TrgMNðDMHÞ⊤ðDNHÞ −M2
HTrHH⊤�: ð7Þ

This 5D effective action includes matrix-valued scalar and
vector fields and, as mentioned, is inspired by generalized
sigma models used in the context of strong interactions. A
similar starting action was used in the AdS=QCD study of
Ref. [21]. The dimensionality of the normalization con-
stants g25 and ks is set to compensate that of the additional
dimension: ½g25� ¼ ½ks� ¼ E−1. To have the gravitational
background of a smoothly capped off AdS spacetime we

introduce a SW dilaton function ΦðzÞ ¼ κ2z2 in the
common inverse exponent factor.
The matrix-valued fieldH plays a cornerstone role in our

construction: it collects the scalar degrees of freedom and is
responsible for generating the breaking of the bulk gauge
symmetries. Thus, it provides a dual description for the
components of the Higgs doublet and for the global
symmetry breaking on the 4D side. Let us specify its
structure by putting forward elements with particular group
transformations under the action of g ∈ SOð5Þ and
h ∈ SOð4Þ. The matrix ξ of the Goldstone boson fields
πi transforms under SOð5Þ as: ξ → ξ0 ¼ gξh⊤. The other
scalar degrees of freedom with the quantum numbers of
SOð4Þ are collected in the matrix Σ, transforming as
Σ → Σ0 ¼ hΣh⊤. The breaking from SOð5Þ to SOð4Þ also
appears in Σ and will be parametrized by the function fðzÞ.
From these components we can construct a proper combi-
nation leading to H → H0 ¼ gHg⊤,

H ¼ ξΣξ⊤; Σ ¼
�
04×4 0

0 fðzÞ

�
þ σaðx; zÞTa;

ξ ¼ exp

�
iπiðx; zÞT̂i

χπ

�
; ð8Þ

where ½χπ� ¼ ½fðzÞ� ¼ E1. The minutiae of the scalar fields,
introduced in Σ as σa, will be further omitted in this study. It
follows then that in the representation H ¼ H⊤, the
TrHH⊤ quadratic piece of Eq. (7) brings no field inter-
actions, and the value of M2

H is of no consequence.
To make the Lagrangian invariant under the gauge

transformation AM → A0
M ¼ gAMg−1 þ ig∂Mg−1, the

covariant derivative is introduced in the 5D action (7),
defined as

DMH ¼ ∂MH þ ½AM;H�; DMH → gDMHg−1: ð9Þ

The field strength tensor that produces the vector field
kinetic term in Eq. (7) is

FMN ¼ ∂MAN − ∂NAM þ ½AM; AN �: ð10Þ

Generally, we take AM ¼ −iAA
MT

A, where the upper
index runs through both broken and unbroken indices
Aa
MT

a þ Ai
MT̂

i. These 5D vector fields are connected to the
composite spin one particles in 4D, as we will see below,
and Aa

μ are generally unrelated to the Wα
μ or Bμ gauge

bosons of the EW interactions (but for their eventual
mixing).
The AA

μ fields are connected by duality to the OA
μ vector

composite operators with the same generators and have the
boundary condition (5). For the fifth component of the
vector field we assume that
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AA
z ðx; εÞ ¼ 0; ð11Þ

because there is no 4D source for it to couple to. The
common AdS=QCD gauge AA

z ≡ 0 fulfills this condition
trivially, but this is not the only possibility.
In the holographic CH models, since the study of

Ref. [11], Ai
z is frequently associated with the Goldstone

bosons πi including the Higgs boson for i ¼ 4 (the so-
called gauge-Higgs scenario). In the following, we are to
introduce the gauge-Higgs analogue as a consequence of
the gauge choice for Ai

z, thus augmenting the Goldstone
modes that necessarily appear in H. Eventually, we are to
discover that both sources of Goldstones are necessary for a
consistent model. Though, according to the logic presented
in the end of the previous subsection, the holographic
dictionary entry for the fieldH remains unspecified, and the
near-boundary behavior of πiðx; zÞ would be determined
with the help of the mentioned gauge-Higgs structure.

C. Extraction of 4D-relevant physics

The basic principle of AdS=CFT correspondence states
that the partition function of the 4D theory and the on-shell
action of its 5D holographic dual coincide in the following
sense [2,3]:

Z4D½ϕ� ¼ ExpiSon-shell5D jϕðx;zÞ→ϕðx;z¼εÞ: ð12Þ

Essentially, all bulk fields ϕðx; zÞ are set to their boundary
values ϕðx; z ¼ εÞ, which could be identified with the
sources ϕðxÞ as in the case of Eq. (5).
The dynamics of holographic fields is governed by a

set of second order equations of motion (EOMs). Thus, a
5D field can be attributed with two solutions. According
to the usual AdS=CFT dogma, the leading mode at small
z corresponds to the bulk-to-boundary propagator. It
connects a source at the boundary and a value of a field
in the bulk and should exhibit enough decreasing behavior
in the IR region to render the right-hand side of Eq. (12)
finite. The subleading mode represents an infinite series of
normalizable solutions, known as the Kaluza-Klein (KK)
decomposition. There, the 4D and z dependencies are
separated; the z independent functions are identified with
a tower of physical states at the 4D boundary that are
further promoted into the bulk with the z-dependent
profiles.
From consideration of the KK solutions one gets knowl-

edge about the spectra of the composite 4D resonances
while from Eq. (7), evaluated on the bulk-to-boundary
solutions, one can extract the n-point correlation functions
of the composite operators [2,3,27]. The 4D partition
function is given by the functional integral over the
fundamental fields φ contained in the selected operators
(e.g., OA

μ ) and in the fundamental Lagrangian Lstr:int:,

Z4D½ϕ� ¼
Z

½Dφ�Expi

×
Z

d4x½Lstr:int:ðxÞ þ ϕA
μ ðxÞOAμðxÞ þ…�

¼ Exp
X
q

1

q!

Z Yq
k¼1

d4xkhO1ðx1Þ…OqðxqÞi

× iϕ1ðx1Þ…iϕqðxqÞ: ð13Þ

From the schematic definition in Eq. (13) and the
correspondence postulate (12), it is clear that the
Green’s functions can be obtained by the variation of
the 5D effective action with respect to the sources.
Diagrammatically we can represent the correlation func-
tions by the left panel of Fig. 1, where in general the
number of legs could be equal to the number n of operators
in the correlator. At the same time, couplings involving just
the composite resonances can be estimated by taking the
proper term in the 5D Lagrangian, inserting the KK modes
for the interacting 5D fields, and integrating over the z-
dimension. Due to lnZ4D ¼ iSeff4D, a calculation of this kind
brings an effective vertex.
Interaction of a given composite state with the SM gauge

bosons happens through the mixing of the latter with other
composite particles. Due to the misalignment the EW
bosons couple to a variety of resonances. The correspond-
ing rotated currents J̃αμ overlap with different types of
vectorial currents that are holographically connected to
vector composite fields. Besides, all radial excitations in a
KK tower should generally be included in the internal
propagation. The procedure in this case is the following:
calculate the n-point correlation function, build the effec-
tive 4D Lagrangian via attaching Wα

μ or Bμ fields as
physical external sources, and reduce the legs where the
composite resonances become physical and put on-shell
(substituted with their KK modes). This is shown in the
right panel of Fig. 1.

III. EQUATIONS OF MOTION AND
THEIR SOLUTIONS

In this section we study the EOMs of the 5D fields. They
are derived from the 5D action at the quadratic level,

W/B

W/B

on-shell
resonance

FIG. 1. Diagrams describing (left) three-point correlation
function, (right) effective triple couplings between two SM gauge
bosons and a composite resonance.
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Sð2Þ5D ¼
Z

d5xe−ΦðzÞ
�
−

1

4g25

R
z
FA
μνFAμν

þ 1

2g25

R
z
ð∂zAA

μ − ∂μAA
z Þð∂zAAμ − ∂μAA

z Þ

þ f2ðzÞ
ks

R3

z3

��
Ai
μ − ∂μ

πi

χπ

�
2

−
�
Ai
z − ∂z

πi

χπ

�
2
��

:

ð14Þ

The sum over coincident indices is assumed for A ¼
fa; ig ¼ 1;…; 10 in the first line, and just over broken
indices i ¼ 1;…; 4 in the second. The Ansätze functions
areΦðzÞ ¼ κ2z2 and fðzÞ ∼ z. The choice for the symmetry
breaking function fðzÞ is justified by the analyticity of the
solution in the broken vector sector; the argumentation is
similar to that of Ref. [21].

A. Equations of motion for the unbroken generators

In the unbroken sector with a ¼ 1;…; 6 the EOMs are

∂z
e−ΦðzÞ

z
∂zAa

μ −
e−ΦðzÞ

z
□Aa

μ − ∂z
e−ΦðzÞ

z
∂μAa

z ¼ 0; ð15Þ

□Aa
z ¼ ∂μ∂zAa

μ: ð16Þ

Acting with ∂μ on the first equation and substituting □Aa
z

from the second one, we get the third term equal to the first
one. Then, the result is

□∂μAa
μ ¼ 0; ð17Þ

which implies the separation of solutions on transverse,
∂μAa

μ ¼ 0, and longitudinal, q2
Ak ¼ 0, i.e.,

Aa
μ ¼ Aa⊥

μ þ Aak
μ ; ð18Þ

with Aa⊥
μ ¼PμνAaν, Pμν ¼ ðημν− qμqν

q2 Þ, and Aak
μ ¼ qμqν

q2 Aaν.

The condition (17) modifies the second equation in the
system into

□
2Aa

z ¼ 0: ð19Þ

While acting with □
2 on Eq. (15), and taking into account

q2A⊥ ≠ 0, we get the following equation for the transversal
mode:

∂z
e−ΦðzÞ

z
∂zAa⊥

μ −
e−ΦðzÞ

z
□Aa⊥

μ ¼ 0: ð20Þ

However, the result for the longitudinal mode with q2
Ak ¼ 0

turns out to be trivial, meaning that the remaining system

for Aak
μ and Aa

z is underdefined. We choose to work in a
class of solutions where Eq. (19) is fulfilled with the gauge

Aa
z ðx; zÞ≡ 0: ð21Þ

As a result, the EOM for the longitudinal mode simpli-
fies to

∂zA
ak
μ ¼ 0: ð22Þ

The following boundary terms are left in the on-shell
action (14):

1

2g25

Z
d4xe−ΦðzÞ R

z
Aaμð∂zAa

μ − ∂μAa
z Þ
				∞
ε

¼ −
1

2g25

Z
d4x

R
z
Aa⊥μ∂zAa⊥

μ

				
z¼ε

: ð23Þ

Only the transversal term remains, giving rise to the two-
point function studied in Sec. IVA.
Let us perform a 4D Fourier transform Aa

μðx; zÞ ¼R
d4qeiqxAa

μðq; zÞ and focus on finding solutions of the
EOMs. First, the transverse bulk-to-boundary propagator,
which we denote Vðq; zÞ, is defined by

Aa⊥
μ ðq; zÞ ¼ ϕa⊥

μ ðqÞ · Vðq; zÞ; Vðq; εÞ ¼ 1; ð24Þ

where ϕa⊥
μ should be understood as a projection of the

original source ϕA⊥
μ ¼ Pμνϕ

Aν. The analogous longitudinal

projection will be denoted by ϕAk
μ .

Changing the variable in Eq. (20) to y ¼ κ2z2, we arrive
at the following EOM:

yV 00ðq; yÞ − yV 0ðq; yÞ þ q2

4κ2
Vðq; yÞ ¼ 0: ð25Þ

It is a particular case of the confluent hypergeometric
equation (see Appendix A for a review of the properties and
solutions of this equation), and the dominant mode at small
z is

Vðq; zÞ ¼ Γ
�
−

q2

4κ2
þ 1

�
Ψ
�
−

q2

4κ2
; 0; κ2z2

�
: ð26Þ

The subdominant solution [see Eq. (A3)] gives us the
tower of massive states, identified with vector composite
resonances at the boundary. Normalizable solutions can
only be found for discrete values of the 4D momentum
q2 ¼ M2

VðnÞ, and we may identify Vðq; zÞjq2¼M2
V ðnÞ ¼

VnðzÞ. The KK decomposition is set as follows:

Aa⊥
μ ðq; zÞ ¼

X∞
n¼0

VnðzÞAa⊥
μðnÞðqÞ: ð27Þ

The z profile and the spectrum can be expressed using the
discrete parameter n ¼ 0; 1; 2;…, and

DOMÈNEC ESPRIU and ALISA KATANAEVA PHYS. REV. D 103, 055006 (2021)

055006-6



VnðzÞ ¼ κ2z2
ffiffiffiffiffi
g25
R

r ffiffiffiffiffiffiffiffiffiffiffi
2

nþ 1

r
L1
nðκ2z2Þ;

M2
VðnÞ ¼ 4κ2ðnþ 1Þ; ð28Þ

where Lm
n ðxÞ are the generalized Laguerre polynomials.

The profiles VnðzÞ are subject to the Dirichlet boundary
condition and are normalized to fulfill the orthogonality
relation

R
g25

Z
∞

0

dze−κ
2z2z−1VnðzÞVkðzÞ ¼ δnk: ð29Þ

For the longitudinal mode, Aak
μ ðq; zÞ, the bulk-to-boun-

dary solution is similarly defined. Its EOM (22), however,
admits only a trivial continuation into the bulk

Aak
μ ðq; zÞ ¼ ϕak

μ ðqÞ · Vkðq; zÞ; Vkðq; zÞ ¼ 1: ð30Þ

The previous results are well known. Let us now see the
equivalent derivation in the broken sector.

B. Equations of motion for the broken generators

The EOMs for the broken sector with i ¼ 1;…; 4 are
more complicated due to the appearance of mixing with πi:

∂z
e−ΦðzÞ

z
ð∂zAi

μ − ∂μAi
zÞ −

e−ΦðzÞ

z
□Ai

μ

−
2g25f

2ðzÞR2

ks

e−ΦðzÞ

z3

�
Ai
μ −

∂μπ
i

χπ

�
¼ 0; ð31Þ

e−ΦðzÞ

z
ð∂μ∂zAi

μ −□Ai
zÞ −

2g25f
2ðzÞR2

ks

e−ΦðzÞ

z3

�
Ai
z − ∂z

πi

χπ

�
¼ 0; ð32Þ

∂z
f2ðzÞR2e−ΦðzÞ

z3

�
Ai
z − ∂z

πi

χπ

�

−
f2ðzÞR2e−ΦðzÞ

z3

�
∂μAi

μ −□
πi

χπ

�
¼ 0: ð33Þ

Combining ∂μ× (31) with the other two equations we arrive
again at the condition

□∂μAi
μ ¼ 0; ð34Þ

with the same options ∂μAi
μ ¼ 0 and q2

Ak ¼ 0, as in the
unbroken case. The condition on Ai

z is different, though,

∂z
e−ΦðzÞ

z
□

2Ai
z −

2g25f
2ðzÞR2e−ΦðzÞ

ksz3
□

2
πi

χπ
¼ 0: ð35Þ

The system of equations obeyed by Aik
μ , Ai

z, and πi is
insufficient to determine them and we can only solve the
problem with the help of an appropriate gauge condition.
There are various possibilities, but we find the option
explained below most useful for the physics we aspire to
describe. We impose

Ai
zðx; zÞ ¼ ξ∂z

πiðx; zÞ
χ

; ð36Þ

where the parameter ξ is arbitrary. That is reminiscent to the
gauge-Higgs constructions.
The fact that πiðx; zÞ appears both in the scalar part of the

model Lagrangian and in this gauge condition makes it
distinct from other 5D fields in the model. To analyze the
Goldstone solution we assume that the corresponding EOM
defines the z-profile πðx; zÞ that couples to the physical
mode πiðxÞ on the boundary. The Neumann boundary
condition, ∂zπðx; zÞjz¼ε ¼ 0, is imposed due to Eq. (11).
Now both parts of Eq. (35) have the same x-dependence,

and □
2 can be taken out of the bracket. It results in the

following equation on πðx; zÞ:

∂z
e−ΦðzÞ

z
∂zπðx; zÞ −

2g25f
2ðzÞR2

ξks

e−ΦðzÞ

z3
πðx; zÞ ¼ 0: ð37Þ

At the same time it allows us to get rid of Ai
z and ∂μ

πi

χπ
in

Eq. (31). Then,

∂z
e−ΦðzÞ

z
∂zAi⊥

μ −
e−ΦðzÞ

z
□Ai⊥

μ −
2g25f

2ðzÞR2

ks

e−ΦðzÞ

z3
Ai⊥
μ ¼ 0;

ð38Þ

∂z
e−ΦðzÞ

z
∂zA

ik
μ −

2g25f
2ðzÞR2

ks

e−ΦðzÞ

z3
Aik
μ ¼ 0: ð39Þ

At the boundary, we have the following terms in the
effective 4D action:

Z
d4x

�
e−ΦðzÞ R

z
1

2g25
Aiμð∂zAi

μ − ∂μAi
zÞ þ e−ΦðzÞ f

2ðzÞR2

z3
R
ks

πi

χπ

�
Ai
z − ∂z

πi

χπ

��				∞
0

ð40Þ

⟶
ξ¼1

−
1

2g25

Z
d4x

R
z

�
Ai⊥μ∂zAi⊥

μ þ Aikμ∂zA
ik
μ − Aiμ∂μ∂z

πi

χπ

�				
z¼ε

: ð41Þ
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The two-point function of the longitudinal mode is nonzero
and that is the crucial difference from the previous sector.
The choice ξ ¼ 1 is explained below. For now, we observe

that it makes identical the bulk EOMs for πi and Aik
μ and

eliminates the Goldstone mass term from the boundary. For
ξ ¼ 1, all the Goldstones (including the component asso-
ciated to the Higgs boson) are massless. It is also instructive
to justify the system of EOMs [Eqs. (37)–(39)] by deriving
them in the model where ξ ¼ 1 is set from the start in
Eq. (36). That exercise is worked out in Appendix B.
As in the unbroken case, we perform the 4D Fourier

transform and establish the propagation between the source
and the bulk for the transverse solution,

A⊥
μ ðq; zÞ ¼ ϕi⊥

μ ðqÞ · Aðq; zÞ; Aðq; εÞ ¼ 1: ð42Þ

Changing the variables to y ¼ κ2z2, we arrive at the
following EOM:

yA00ðq; yÞ − yA0ðq; yÞ þ
�
q2

4κ2
−
g25ðfðyÞRÞ2

2yks

�
Aðq; yÞ ¼ 0:

ð43Þ
An analytical solution of this EOM exists either for f2ðyÞ ∼
y or f2ðyÞ ∼ const. The last option, taken together with the
boundary condition on Aðq; zÞ, leads to the implausible
conclusion: fðyÞ ¼ 0. Therefore we turn to the linear
Ansatz,

fðzÞ ¼ f · κz; ð44Þ

where the constant f has the dimension of mass. We also
introduce a convenient parameter,

a ¼ g25ðfRÞ2
2ks

: ð45Þ

The bulk-to-boundary mode of the confluent hypergeo-
metric equation above is specified as

Aðq; κ2z2Þ ¼ Γ
�
−

q2

4κ2
þ 1þ a

�
Ψ
�
−

q2

4κ2
þ a; 0; κ2z2

�
:

ð46Þ

The other mode for the discrete values of q2 and
Aðq; zÞjq2¼M2

AðnÞ ¼ AnðzÞ gives the z-profiles and the eigen-
state masses

AnðzÞ ¼ κ2z2
ffiffiffiffiffi
g25
R

r ffiffiffiffiffiffiffiffiffiffiffi
2

nþ 1

r
L1
nðκ2z2Þ;

M2
AðnÞ ¼ 4κ2ðnþ 1þ aÞ; n ¼ 0; 1; 2…: ð47Þ

The orthogonality relation is completely equivalent to that
of Eq. (29). In fact, the only difference is that the intercept

of the Regge trajectory is larger than in the unbroken case,
though the pattern is identical. These states are heavier than
their unbroken counterparts, just as QCD axial vector
mesons are heavier than the vector ones.
The bulk-to-boundary solution of the longitudinal

EOM (39) is

Aik
μ ðq; zÞ ¼ ϕik

μ ðqÞ · Akðq; zÞ;
Akðq; zÞ ¼ Γð1þ aÞΨða; 0; κ2z2Þ: ð48Þ

Unlike the unbroken case, this expression is not trivial but
equivalent to the transverse propagator of Eq. (46)
with q2 ¼ 0.
The Goldstone EOM (37) is the same as in Eq. (39).

However, 1
2
ð∂μπ

iðxÞÞ2 is the correct normalization of the
Goldstone kinetic term in the 4D effective Lagrangian
appearing after the integration over the z-dimension, and
that fixes the constant factor differently:

πðx; zÞ ¼ F−1χπΓð1þ aÞΨða; 0; κ2z2Þ; ð49Þ

where

F2 ¼ −
2Rκ2a
g25

ðln κ2ε2 þ 2γE þ ψð1þ aÞÞ: ð50Þ

In Sec. IVA we will find the same F2 in the residue of
the massless pole of the broken vector correlator. The
exact accordance is only possible for ξ ¼ 1. Furthermore,
solution (49) fixes the due boundary interaction:

Z
d4xð−FÞ∂μπiðxÞϕi

μðxÞ: ð51Þ

As a result ofWα
μ and Bμ couplings in Eq. (1) the mixing

in Eq. (51) for i ¼ 1, 2, 3 implies that the three Goldstones
would be eaten by the SM gauge bosons to provide them
masses proportional to F. Naturally, there is no physical
source to mix with the fourth Goldstone; it remains in the
model as the physical Higgs particle π4ðxÞ ¼ hðxÞ. The
phenomenological discussion of its properties are post-
poned to a latter section.
To end this section, we introduce a convenient expres-

sion for the bulk-to-boundary propagators as the sums over
the resonances [one should utilize Eqs. (A4) and (A6)

Vðq;zÞ¼
X∞
n¼0

FVðnÞVnðzÞ
−q2þM2

VðnÞ
; Aðq;zÞ¼

X∞
n¼0

FAðnÞAnðzÞ
−q2þM2

AðnÞ
;

ð52Þ

F2
AðnÞ ¼ F2

VðnÞ ¼
8Rκ4

g25
ðnþ 1Þ: ð53Þ
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Here, FV=AðnÞ are the decay constants related to the states
with the corresponding quantum numbers. The longitudinal
broken and Goldstone solutions could be represented by
infinite sums, too.

IV. TWO–POINT CORRELATION FUNCTIONS

A. Unbroken and broken correlators

The holographic prescriptions given in Eqs. (13) and
(12) allow us to define the two-point correlation function as

hOa=i
μ ðqÞOb=j

ν ðpÞi ¼ δðpþ qÞ
Z

d4xeiqxhOa=i
μ ðxÞOb=j

ν ð0Þi

¼ δ2iS5Dboundary

δiϕa=i
μ ðqÞδiϕb=j

ν ðpÞ
; ð54Þ

where the boundary remainders of the on-shell action were
established in Eqs. (23) and (41). We further define the
correlators:

i
Z

d4xeiqxhOa=i
μ ðxÞOb=j

ν ð0Þi⊥

¼ δab=ij
�
qμqν
q2

− ημν

�
Πunbr=brðq2Þ; ð55Þ

i
Z

d4xeiqxhOi
μðxÞOj

νð0Þik ¼ δij
qμqν
q2

Πk
brðq2Þ; ð56Þ

it should be taken into account that Πunbr=brðq2Þ are subject
to short distance ambiguities of the form C0 þ C1q2 (see,
e.g., Refs. [28,29]).
Performing the due variation in Eq. (23) we find

Πunbrðq2Þ to be

Πunbrðq2Þ ¼
R
g25

�
e−ΦðzÞVðq; zÞ∂zVðq; zÞ

z

�				
z¼ε

: ð57Þ

Let us substitute the propagator from Eq. (26), then

Πunbrðq2Þ ¼ −
R
2g25

q2
�
ln κ2ε2 þ 2γE þ ψ

�
−

q2

4κ2
þ 1

��
;

ð58Þ

where γE is the Euler–Mascheroni constant and ψ is the
digamma function.
To separate the short distance ambiguities we perform a

decomposition of the digamma function [see Eq. (C2)] in
Eq. (58),

Πunbrðq2Þ ¼ −
R
2g25

ðln κ2ε2 þ γEÞq2

−
2κ2R
g25

X∞
n¼0

q4

M2
VðnÞðq2 −M2

VðnÞÞ
: ð59Þ

The first term would correspond to the ambiguity para-
metrizing constant C1, while the second term is a well
convergent sum over the resonances.
An alternative procedure, introducing the resonances at

an earlier stage with the use of the bulk-to-boundary
propagator (52) should result in the same two-point
function. Taking into account the orthogonality relation
(29) we get from Eq. (57),

Πunbrðq2Þ ¼
X∞
n¼0

F2
VðnÞ

−q2 þM2
VðnÞ

: ð60Þ

The ambiguities appear as follows:

Πunbrðq2Þ ¼ −
2κ2R
g25

X
n

q4

M2
VðnÞðq2 −M2

VðnÞÞ

þ q2
X
n

2κ2R=g25
M2

VðnÞ
þ
X
n

2κ2R
g25

: ð61Þ

After the proper subtractions, we are left with the first sum
of Eq. (61). This is the part relevant for the resonance
description of the two-point function that coincides with the
sum in Eq. (59). Hence, the convergent correlator is

Π̂unbrðq2Þ ¼
X∞
n¼0

q4F2
VðnÞ

M4
VðnÞð−q2 þM2

VðnÞÞ
: ð62Þ

Concerning the subtractions, it is not surprising that they
differ for the correlators derived in two different ways. It is
fundamental that they are limited to the form C0 þ C1q2,
but any reordering of the manipulations may affect the
results, as this is a divergent and ill defined at short
distances quantity. However, it is interesting to match
the two expressions of C1 in the proportional to q2 terms
of Eqs. (61) and (59). To do that we need to introduce a
regulator in the “resonance” representation—a finite num-
ber of terms in the sum, a bound at some Nmax. Then, a
connection between the maximum number of resonances,
Nmax, and the UV regulator ε is

logNmax ¼ −2γE − log κ2ε2: ð63Þ

This relation is meaningful only at the leading order (i.e.,
the constant nonlogarithmic part cannot be determined by
this type of heuristic argument). Finally, the last sum in
Eq. (61) behaves as ∼N2

max if we sum up a finite number of
resonances, and actually corresponds to a potentially
subleading logarithmic divergence. Therefore, it can be
eliminated by setting the subtraction constant C0.
In the broken vector sector the situation is very similar.

For the transverse modes, the variation of Eq. (41) results in
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Πbrðq2Þ ¼
R
g25

�
e−ΦðzÞAðq; zÞ∂zAðq; zÞ

z

�				
z¼ε

: ð64Þ

Substituting the propagator from Eq. (46) leads to

Πbrðq2Þ ¼ −
R
2g25

q2
�
1 −

4κ2a
q2

�

×

�
ln κ2ε2 þ 2γE þ ψ

�
−

q2

4κ2
þ 1þ a

��
:

ð65Þ

An alternative expression for the two-point correlator is

Πbrðq2Þ ¼
X∞
n¼0

F2
AðnÞ

−q2 þM2
AðnÞ

: ð66Þ

In both cases the subtraction of short distance ambiguities
leads to

Π̂brðq2Þ ¼
X
n

q4F2
AðnÞ

M4
AðnÞð−q2 þM2

AðnÞÞ
− F2: ð67Þ

Here, we observe a massless pole accompanied by the
decay constant F anticipated in Eq. (50) and derived there
from a completely different argument. Following that line,

we can connect the pole to the presence of the massless
Goldstone Higgs states and call it a “pion” pole, noticing
the similarity to the q2 ¼ 0 pole of the axial-vector QCD
correlator. It could also be expressed in the form of an
infinite series,

F2 ¼ 2Rκ2a
g25

X
n

1

nþ 1þ a
: ð68Þ

Variation over the longitudinal modes in Eq. (41) also
brings this constant:

Πk
brðq2Þ ¼ F2: ð69Þ

Once more, fulfilling relation (63) makes an accordance
between the order-q2 subtractions. This demonstrates the
ultraviolet origin of the renormalization ambiguity involved
in the constant C1 because the outcome is independent on
whether we treat the broken or unbroken symmetries. The
same could be implied aboutC0. Then, the determination of
F2 in (68) is straightforward as soon as we subtract the
“quadratic” term

P
n
2κ2R
g2
5

.

In the end, these correlation functions appear in the 4D
effective Lagrangian as

Leff ⊃
1

2
ϕa
μ

�
qμqν
q2

− ημν

�
Πunbrϕ

a
ν þ

1

2
ϕi
μ

��
qμqν
q2

− ημν

�
Πbr þ

F2qμqν

q2

�
ϕi
ν: ð70Þ

B. Vacuum polarization amplitudes of the gauge fields

We started the discussion about the holographic CH model assuming that the SM gauge fields couple to the currents of
the strongly interacting sector J̃αLμ and J̃3Rμ as in Eq. (1). These currents are proportional to the ones dual to the 5D fields,

Oa=i
μ , with the EW couplings g and g0 necessarily appearing. We introduced the factor gV to modulate that proportionality.

The misalignment should also be taken into account. In the notation of Eq. (4), a rotated operator can be given in terms of
the original ones as (α, i ¼ 1, 2, 3 here)

Õα
L=Rμ ¼

1� cos θ
2

Oα
Lμ þ

1 ∓ cos θ
2

Oα
Rμ ∓ sin θffiffiffi

2
p Oi

μ: ð71Þ

The two-point correlators of physical interest are

i
Z

d4xeiqxhJ̃αLμðxÞJ̃βLνð0Þi ¼ δαβ
g2

2

��
qμqν
q2

− ημν

�
ΠLLðq2Þ þ

qμqν
q2

Πk
LLðq2Þ

�
; ð72Þ

i
Z

d4xeiqxhJ̃αRμðxÞJ̃βRνð0Þi ¼ δαβ
g02

2

��
qμqν
q2

− ημν

�
ΠRRðq2Þ þ

qμqν
q2

Πk
RRðq2Þ

�
; ð73Þ

2i
Z

d4xeiqxhJ̃αLμðxÞJ̃βRνð0Þi ¼ δαβ
gg0

2

��
qμqν
q2

− ημν

�
ΠLRðq2Þ þ

qμqν
q2

Πk
LRðq2Þ

�
; ð74Þ
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where we defined the quantities

ΠLLðq2Þ ¼ ΠRRðq2Þ ¼
1þ cos2θ

2g2V
Πunbrðq2Þ þ

sin2θ
2g2V

Πbrðq2Þ≡ Πdiagðq2Þ; ð75Þ

ΠLRðq2Þ ¼
sin2 θ
g2V

ðΠunbrðq2Þ − Πbrðq2ÞÞ; ð76Þ

Πk
LLðq2Þ ¼ Πk

RRðq2Þ ¼
sin2θ
2g2V

F2; Πk
LRðq2Þ ¼ −

sin2θ
g2V

F2: ð77Þ

The relevant quadratic contribution of the gauge bosons to the 4D partition function is

Leff ⊃
�
qμqν

q2
− ημν

�
1

4
Πdiagðq2Þðg2Wα

μWα
ν þ g02BμBνÞ

þ F2sin2θ
8g2V

qμqν

q2
ðg2Wα

μWα
ν þ g02BμBνÞ

þ
�
qμqν

q2
− ημν

�
1

4
ΠLRðq2Þgg0W3

μBν −
qμqν

q2
F2sin2θ
4g2V

gg0W3
μBν: ð78Þ

The mass terms in the effective Lagrangian can be determined from the lowest order in q2. Both for the longitudinal and
transverse W and Z gauge bosons we get

M2
W ¼ g2

4

sin2θ
g2V

F2; M2
Z ¼ g2 þ g02

4

sin2θ
g2V

F2; ð79Þ

while the photon stays massless. Evidently, the formation
of masses proportional to F2 follows the EW symmetry
breaking scheme and is due to the SOð5Þ symmetry
breaking in the original H field (8) and the misalign-
ment (4).

C. Left–right correlator and sum rules

The vacuum polarization amplitudes receive contribu-
tions from the new physics (new massive resonances in the
loops). To quantify deviations with respect to SM, the EW
“oblique” precision parameters were introduced [30,31].
The most relevant for the discussion of the CH models are
the S and T parameters of Peskin and Takeuchi [31]. As we
already mentioned, a particular feature of MCHM is that
due to the custodial symmetry of the strongly interacting
sector, the tree-level correction to the T parameter vanishes.
Bearing in mind that the holographic description is meant
to be valid only in the large Nhc limit, loop corrections are
not easily tractable. Thus, we focus on the S parameter
connected to the ΠLRðq2Þ as follows:

S ¼ −4πΠLR
0ð0Þ

¼ 2πR
g25

sin2θ
g2V

½γE þ ψð1þ aÞ þ aψ1ð1þ aÞ�: ð80Þ

Alternatively, it could be expressed through masses and
decay constants:

S ¼ 4π
sin2θ
g2V

�X
n

F2
VðnÞ

M4
VðnÞ

−
X
n

F2
AðnÞ

M4
AðnÞ

�
: ð81Þ

The experimental bounds on the S parameter are essential
for the numerical analysis of Sec. VI.
Further, we would like to investigate the validity of the

equivalent of the Weinberg sum rules (WSR) that relate the
imaginary part of ΠLRðq2Þ to masses and decay constants
of vector resonances in the broken and unbroken channels,
respectively. We start with the subtracted correlators Π̂unbr

and Π̂br of Eqs. (62) and (67), then select a suitable
integration circuit and formally obtain

1

π

Z
∞

0

dt
t
ImΠunbrðtÞ ¼

X
n

F2
VðnÞ

M2
VðnÞ

; ð82Þ

1

π

Z
∞

0

dt
t
ImΠbrðtÞ ¼

X
n

F2
AðnÞ

M2
AðnÞ

þ F2: ð83Þ

However, these expressions are ill defined; the external
contour does not vanish, and the imaginary part of the poles
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should have been specified. The latter can be done
following Vainshtein, i.e., replacing M2

VðnÞ in Eq. (62)
with M2

VðnÞð1 − iϵÞ. This prescription reproduces the
correct residues. Additionally, the left-hand sides are
generically divergent while the sum over resonances
possesses an essential singularity on the real axis when
the number of resonances Nmax encircled in the contour
tends to infinity.
We expect to see the convergence properties of the

integrals on the left-hand side of (82) and (83) improved
when they are gathered in the left-right combination.
For the uniformity of notation we introduce the sum
F2 ¼ P

n<Nmax
F2ðnÞ [from Eqn. (68)]. Then,

1

π

Z
M2ðNmaxÞ

0

dt
t
ImΠLRðtÞ

¼ sin2 θ
g2V

X
n<Nmax

�
F2
VðnÞ

M2
VðnÞ

−
F2
AðnÞ

M2
AðnÞ

− F2ðnÞ
�
: ð84Þ

In QCD ΠLR decays fast enough so that the external
contour contribution is negligible when enough resonances
are encircled, and this integral vanishes. The equality of
Eq. (84) to zero is the first WSR for QCD, and the same
arguments allow one to derive the second WSR,

1

π

Z
M2ðNmaxÞ

0

dtImΠLRðtÞ

¼ sin2θ
g2V

X
n<Nmax

ðF2
VðnÞ − F2

AðnÞÞ ¼ 0: ð85Þ

In fact, it is well known that in QCD, including just the first
resonances in the sum provides a fair agreement with
phenomenology [32]. In any case, the convergence of the
dispersion relation (no subtraction is needed) indicates that
the limit Nmax → ∞ could be taken in QCD.
To understand whether the situation is indeed analogous

to QCD we should address these two questions: (a) Can the
contour integral be neglected? (b) If so, is the integral on
the left-hand side converging?
To answer the first question, we considerΠLRðQ2Þ, given

explicitly in Eq. (C1) with the Euclidean momenta
Q2 ¼ −q2, and expand it for large Q2 (we make use of
Stirling’s expansion of the ψ function):

g2VΠLRðQ2Þ
Q2

¼ sin2 θ
2κ2a
Q2

R
g25

�
ln

Q2

4κ2
þ ln κ2ε2 −

2κ2a
Q2

�

þO
�

1

Q6

�
: ð86Þ

This limit is constrained to the (unphysical) region of
j argQ2j < π, while the value on the physical axis
(0< Req2 ¼ −ReQ2) stays ill defined (it needs a

prescription, such as the one discussed above). However,
we are now in the position to discuss the convergence of the
outer part of the circuit in Eqs. (84) and (85). Due to the
presence of the lnQ2=Q2 and 1=Q2 terms, the correlator
does not vanish fast enough to make the issue similar to the
QCD case. Therefore, the corresponding dispersion relation
requires one subtraction constant c to parametrize the part
of ΠLRðQ2Þ not determined by its imaginary component,

ΠLRðQ2Þ
Q2

¼
Z

∞

0

dt
tþQ2 − iϵ

1

π

ImΠLRðtÞ
t

þ c: ð87Þ

In the deep Euclidean region one could use an expansion,

1

tþQ2
¼ 1

Q2
−

1

Q2
t
1

Q2
þ � � � ; ð88Þ

and then the dispersion relation in the large Q2 limit looks
as

ΠLRðQ2Þ
Q2

¼ cþ 1

Q2

1

π

Z
∞

0

dt
t
ImΠLRðtÞ

−
1

Q4

1

π

Z
∞

0

dtImΠLRðtÞ þ…: ð89Þ

The next step is to encircle a large, but finite, number of
resonances. That is, we take Nmax <∞ connected to the
UV cutoff via the relation (63). The dispersion relation still
holds and Eq. (89) can be compared order-by-order with
the large Q2 expansion given in Appendix C. Holding to
the assumptions made there, we obtain

Z
M2ðNmaxÞ

0

dt
t
ImΠLRðtÞ ¼ 0; ð90Þ

which establishes the formal validity of the first WSR:

X
n<Nmax

�
F2
VðnÞ

M2
VðnÞ

−
F2
AðnÞ

M2
AðnÞ

− F2ðnÞ
�

¼ 0: ð91Þ

We further stress that the situation is rather unsimilar to the
one of real QCD, essentially because F2 is logarithmically
dependent on the cutoff. On the other hand, the situation in
the holographic CH scenario is quite analogous to the
holographic QCD model of Ref. [21]. We just proved that

the sum over vector resonances
P

n<Nmax
ðF2

VðnÞ
M2

VðnÞ
− F2

AðnÞ
M2

AðnÞ
Þ is

itself cutoff dependent for Nmax → ∞. This implies that
symmetry restoration takes place very slowly in the UVand
saturation with the ground state resonance is questionable
both in holographic CH and holographic QCD. It seems fair
to conclude that these peculiarities represent a pitfall of
holography rather than a characteristic of the CH model.
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Finally, the nullification of the 1
Q4 term in (C6) leads to

1

π

Z
M2ðNmaxÞ

0

dtImΠLRðtÞ ¼ 0; ð92Þ

which formally proves the second WSR of Eq. (85). Again,
a cutoff should be imposed to guarantee convergence of

both the integral of the imaginary part over the real axis and
of the sum over resonances.

V. HIGHER ORDER CORRELATORS
AND COUPLINGS

Let us write down several 5D interactions of phenom-
enological interest. At the three-point level they are:

Sð3Þ5D ⊃ i
R
g25

Z
d5xe−κ

2z2z−1ð∂μAA
νABμACνTrTA½TB; TC� − ∂zAA

μAi
zABμTrTA½Ti; TB�

þ ∂μAi
zA

j
zAAμTrTi½Tj; TA�Þ þ ðfRÞ2κ2 R

ks

Z
d5xe−κ

2z2z−1
h
χπ

ðAL − ARÞαμAαμ
br : ð93Þ

To prevent misunderstanding, we specify the left, right, or broken origin of the vector field Aμðx; zÞ where it is needed (they
go with α ¼ 1, 2, 3). Otherwise, the fields with i, j ¼ 1, 2, 3, 4 are from the broken sector, and the A; B;C ¼ 1;…; 10 fields
encompass all options. The fourth Goldstone boson field π4ðx; zÞ is denoted as hðx; zÞ henceforth. At the four-point level we
have

Sð4Þ5D ⊃
R
4g25

Z
d5xe−κ

2z2z−1ðAA
μAB

νACμADνTr½TA; TB�½TC; TD� − 2Ai
zAA

μA
j
zABμTr½Ti; TA�½Tj; TB�Þ

þ ðfRÞ2κ2 R
4ks

Z
d5x

e−κ
2z2

z
h2

χ2π
ððAα

Lμ − Aα
RμÞ2 − 2Aα2

brμÞ: ð94Þ

The commutators there can be simplified with the Lie algebra of SOð5Þ,

½Tα
L; T

β
L� ¼ iεαβδTδ

L; ½Tα
R; T

β
R� ¼ iεαβδTδ

R; ½Tα
L; T

β
R� ¼ 0; α; β; δ ¼ 1; 2; 3;

½Ta; T̂i� ¼ T̂jðtaÞji; ½T̂i; T̂j� ¼ ðtaÞjiTa; a ¼ 1;…; 6; i ¼ 1;…; 4:

Here ta ¼ ftαL; tαRg [see the definition after Eq. (2)].

The expressions for Sð3Þ5D and Sð4Þ5D are already simplified with the gauge choice Aa
z ¼ 0 in the unbroken channel. The

Higgs-related terms proportional to the SOð5Þ breaking ðfRÞ2 come from the square of the covariant derivative in Eq. (7).

Taking into account that in the broken sector imposed with ξ ¼ 1 we also had the gauge-Higgs bosons from Ai
z ¼ ∂zπi

χπ
, we

reveal the following interactions involving the Higgs boson from the F2
MN term:

R
2g25

Z
d5x

e−κ
2z2

z

�∂zh
χπ

ðAL − ARÞαμ∂zA
αμ
br þ

1

4

�∂zh
χπ

�
2

ððAα
Lμ − Aα

RμÞ2 þ Aα2
brμÞ

�
: ð95Þ

We are interested in triple and quartic couplings between the Higgs boson and the SM gauge bosons. In the standard
MCHM picture these interactions have a given parametrization in the coordinate space

gSMhWW cos θWþ
μ W−μhþ gSMhZZ cos θ

1

2
ZμZμhþ cos 2θ

4

�
g2Wþ

μ W−μ þ g2 þ g02

2
ZμZμ

�
hh; ð96Þ

gSMhWW ¼ gMW; gSMhZZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
MZ; ð97Þ

with W�
μ ¼ W1

μ∓iW2
μffiffi

2
p ; Zμ ¼ 1ffiffiffiffiffiffiffiffiffiffi

g2þg02
p ðgW3

μ − g0BμÞ.
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In our 5D model, the effective couplings for hWW and hhWW originate from

Leff ⊃ i
g2

4g2V
hðqÞWα μðk1ÞWβ νðk2ÞhhðqÞjÕα

Lμðk1ÞÕβ
Lνðk2Þj0i ð98Þ

þ i
g2

4g2V
hðq1Þhðq2ÞWα μðk1ÞWβ νðk2Þhhðq1Þhðq2ÞjÕα

Lμðk1ÞÕβ
Lνðk2Þj0i: ð99Þ

Z boson couplings can be taken into consideration after addition of the terms generated by Õ3
LμÕ

3
Rν, Õ

3
RμÕ

3
Lν, and Õ

3
RμÕ

3
Rν

operator combinations. Their derivation follows closely that of the WþW−, so we just include them in the final result.
Particularities of calculating the matrix elements in (98) and (99) can be found in Appendix D. The couplings to the EW

gauge bosons appear in the effective Lagrangian as

Leff ⊃
gSMhWW cos θffiffiffi

2
p

gV
·
1

2
ðWþμðk2ÞW−

μ ðk1Þ þW−μðk2ÞWþ
μ ðk1ÞÞhðqÞ ð100Þ

þ g2 cos 2θ
8g2V

·
1

2
ðWþ

μ ðk1ÞW−μðk2Þ þW−
μ ðk1ÞWþμðk2ÞÞhðq1Þhðq2Þ ð101Þ

þ gSMhZZ cos θffiffiffi
2

p
gV

·
1

2
Zμðk2ÞZμðk1ÞhðqÞ ð102Þ

þ ðg2 þ g02Þ cos 2θ
8g2V

·
1

2
Zμðk1ÞZμðk2Þhðq1Þhðq2Þ; ð103Þ

gSMhWW ¼ g2F sin θ
2gV

; gSMhZZ ¼ ðg2 þ g02ÞF sin θ
2gV

; ð104Þ

where the factors in the last line indeed correspond to the
SM notation of Eq. (97) due to the definition of masses in
Eq. (79). The only thing missing to have the exact MCHM
factors of Eq. (96) is the proper choice of the so-far free
parameter

gV ¼ 1ffiffiffi
2

p : ð105Þ

Note that this value is obtained in the approximation
M2

W ≪ 4κ2 assumed in the calculations of Appendix D.
Let us now turn to the part of Eq. (93) independent of Az

and the Higgs modes

i
R
g25

Z
d5xe−κ

2z2z−1∂μAA
νABμACνTrTA½TB; TC�: ð106Þ

The trace is proportional to the epsilon-tensor if none of the
three fields is A4

br; in the opposite case we obtain a
Kronecker delta.

There is an interaction between the three vector 5D fields
in Eq. (106). In order to procure a coupling of a vector
resonance to two EW gauge bosons one of the fields should
be taken in its KK representation, while the other two
should be given by their bulk-to-boundary propagators
coupled later to the corresponding gauge field sources. The
details of these calculations are presented in Appendix E.
Here, we limit ourselves to listing just the interactions
between the EW bosons and the ground states of the
composite resonances

Leff ⊃
1

2
Wα

μ2ðq2ÞWβ
μ3ðq3ÞLorμ1μ2μ3ðq1; q2; q3Þð−iεαβδÞ

× ðAL δ
μ1 ðq1ÞgLWW þ AR δ

μ1 ðq1ÞgRWW

− ABr δ
μ1 ðq1ÞgBrWWÞ ð107Þ

þWα
μ2ðq2ÞBμ3ðq3ÞLorμ1μ2μ3ðq1;q2;q3Þð−iεα3δÞ ð108Þ

× ðAL δ
μ1 ðq1ÞgLWB þ AR δ

μ1 ðq1ÞgRWBÞ; ð109Þ
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where the notation Lorμ1μ2μ3ðq1; q2; q3Þ was given in
Appendix E, and we introduced

gL=RWW ¼ g2

4g2V

ffiffiffiffiffiffiffi
R
2g25

s
½1� cosθþa sin2θðaψ1ð1þaÞ− 1Þ�;

ð110Þ

gBrWW ¼ g2

4g2V

ffiffiffiffiffi
R
g25

s
sin θ
1þ a

; ð111Þ

gLWB ¼ gRWB ¼ gg0

4g2V

ffiffiffiffiffiffiffi
R
2g25

s
a sin2θ½1 − aψ1ð1þ aÞ�:

ð112Þ

The numerical values of these couplings will be estimated
in the next section.

VI. NUMERICAL RESULTS FOR MASSES
AND COUPLINGS

A very stringent limit on any new physics contribution
comes from the experimental bounds on the S parameter,
calculated using 5D techniques in Eq. (80) or (81). Recent
EW precision data (see Ref. [33]) constrains it to the region

S ¼ −0.01� 0.10: ð113Þ

There are four model parameters in our expression for S.
The parameter gV is assumed to be fixed as in Eq. (105),
while the other three (sin θ, a, and R

g2
5

) at this moment remain

unconstrained by the theoretical construction but for their
inherent positivity. We recall that a is related to the SOð5Þ
symmetry breaking parametrized inH as fðzÞ [see Eq. (8)];
at a ¼ 0 there is no breaking, the unbroken and broken
vector modes have the same mass. R

g2
5

could be evaluated, in

principle, by comparing holographic two-point function to
the perturbative calculation of the Feynman diagram (e.g.,
of a hyperfermion loop) at the leading order in large Q2

momenta, as it is usually done in the holographic realiza-
tions of QCD. As we would expect to get the hypercolor
trace in the loop, it could be estimated that there is a
proportionality R

g2
5

∝ Np
hc (power p depends on the particular

representation). However, we deliberately made no hypoth-
esis on the fundamental substructure, and could only expect
that very large values of R

g2
5

correspond to the large-Nhc

limit. To have an idea of the scale of this quantity, we recall
that for Nc ¼ 3, QCD one has R

g2
5

∼ 0.3 [21].

We present the effect of the current S-constraint on the
ðsin θ; a; R=g25Þ plane in Fig. 2. The larger the value of sin θ,
the smaller the allowed region for a and R=g25. We only
consider sin θ ≤ 0.34 due to the present bounds on the
misalignment in MCHM [34] [for the SM fermions in the
spinoral representation of SOð5Þ]. That bound is valid
under the assumption that the coupling of the Higgs boson
to gauge bosons is κV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2 θ

p
, and it was demon-

strated in Sec. V that this is the case of our holographic
model, too. Otherwise, we can take a more model inde-
pendent estimation from the latest ATLAS and CMS
combined measurements with the LHC Run 1 dataset
[33] that leads to κV ¼ 1.04� 0.05 at one standard
deviation. Taken at two standard deviations, it results once
again in sin θ ≤ 0.34. Nevertheless, stricter (lower) bounds
could also be encountered in the literature (Run 2 analyses
[35,36], for instance).
No information on the mass scale κ could be retrieved

from the EW precision data. However, we can relate it to
the low-energy observables through the definition of theW
boson mass in Eq. (79). It is connected to the EWSB scale
v ¼ 246 GeV and we can equate

M2
W ¼ g2v2

4
¼ g2F2 sin2 θ

4g2V
: ð114Þ

With F given in Eq. (50), the following condition on κ is
valid:

0.0 0.5 1.0 1.5 2.0
a0.0

0.2

0.4

0.6

0.8

1.0

R
g 5

2

Constraints from the S parameter

sin =0.34
sin =0.2
sin =0.1

FIG. 2. The ðsin θ; a; R=g25Þ parameter region allowed by the S
parameter restraints.
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g2Vv
2

sin2θ
þ 2κ2R

g25
aðln κ2ε2 þ 2γE þ ψð1þ aÞÞ ¼ 0: ð115Þ

Let us further set

ε ¼ 1

Λcut-off
≃

1

4πfCH
¼ sin θ

4πv
: ð116Þ

Here Λcut−off ¼ ΛCH ≃ 4πfCH is the range of validity of the
effective theory of the composite resonances, which could
be postulated as a natural cutoff in the present bottom-up
model. We can also rework the connection between the
number of resonances cutoffs Nmax and ε:

Nmax ¼ 16π2
v2

κ2sin2θ
e−2γE : ð117Þ

Setting gV ¼ 1ffiffi
2

p , we collect the results in Table I. There,

we substitute the estimation of κ with that of the character-
istic mass M� ¼

ffiffiffiffiffiffiffi
4κ2

p
, equal to the mass of the ground

vector state—the lightest massive state in our spectrum. We
take the values of a saturating the S-bound, thus, these are
the minimal estimations forM�. Should it be found that S is
p times smaller, our evaluations for M� become roughly p
times larger. For a given set of R

g2
5

and sin θ lower values of a

are permitted and result in larger M�. In addition, larger a
leads to larger splitting between vector fields aligned in
different (unbroken and broken) directions. It is evident
from Table I that the splitting almost disappears starting
from R

g2
5

¼ 10 for the demonstrated values of sin θ. We also

notice that the effective “Nhc-infinity” is heralded by the
degenerate vector masses in the unbroken and broken
sectors and starts rather early because the R

g2
5

¼ 10 fit brings

similar results to, say, R
g2
5

¼ 1000. It is an interesting

observation, because in the original AdS=CFT conjecture
the strongly coupled Yang-Mills theory on the 4D side of
the correspondence should be in the limit Nc ≫ 1. Of
course, in phenomenological AdS=QCDmodels the duality
is commonly extended for the finite values of Nc, so we
take into consideration a set of smaller R

g2
5

as well.

In Fig. 3 we depict a broader range of M� values. The
dependencies on the model parameters could be easily
traced from there. In the parameter space ðsin θ; a; Rg2

5

Þ we
can fix any two values, then the growth of the third
parameter results in lower M� (as long as it does not
appear in the prohibited zone). Pursuing a higher degree of
breaking a results in unlikely small masses in the areas that
are not well-restrained by the S parameter. We speak of
masses below 2 TeV at smaller values of R

g2
5

and sin θ (a

concrete reference could be seen in the first line of Table I).
Higher values of other two parameters are more efficiently
cut off by the S bound. In general, 2.0–4.0 TeV states are
expected. We also recollect that in a tower of resonances
of one type we have a square root growth with the number
of a resonance. Thus, for rather low value of M� there is a
tower with several comparatively low-lying states. For
instance, for the input set ðsinθ;a;R=g25Þ ¼ ð0.1;2.2;0.3Þ
we have M� ¼ 1.3 TeV and the tower masses are
MVðnÞ ¼ f1.3; 1.8; 2.3; 2.6;…g TeV.
In Fig. 4 we present the numerical analysis resulting

from Eqs. (110), (111), and (112), showing the possible
values of the couplings between the left, right, and broken
resonances and aWþW− orW3B-pair. It is clear that the left
resonances couple more strongly than the right ones thanks
to the dampening the latter get with cos θ being rather close
to 1. All the WW couplings exhibit a logarithmic growth
with R

g2
5

. The parameter a was taken to be saturating the

S-bound of Fig. 2 and is rendered quite close to zero at
higher values of R=g25 especially for larger sin θ. The
coupling including the B gauge boson is rather small in
comparison to the WW ones due to the direct proportion-
ality to a, and it vanishes exactly for a ¼ 0.
In order to show the impact of a on WW couplings in

more detail we provide the same computation in Fig. 5,
imposing a ¼ 0 by hand for the fit with sin θ ¼ 0.1 (the
most illustrative case). The saturation now is reached
sooner than in the top panel of Fig. 4, but at the major
part of the R=g25 axis the scale of SOð5Þ breaking is of little
consequence for the couplings discussed. This only
becomes more prominent at larger values of sin θ. It is
also noticeable, however, that in the region R=g25 ≲ 0.5,
where the effect of the S constraint on a is largely
decreased, the change is rather substantial. At the same

TABLE I. Different predictions of the minimal vector masses
for sin θ ¼ 0.1, 0.2, and 0.34.

sin θ R
g2
5

a M� ¼ MVð0Þ, TeV MAð0Þ, TeV ∼Nmax

0.1 0.1 266.3 0.22 3.68 >20 k
0.1 0.3 2.212 1.28 2.29 740
0.1 1 0.283 1.88 2.13 340
0.1 10 0.022 2.10 2.12 270
0.2 0.1 1.176 1.79 2.64 93
0.2 0.3 0.225 2.28 2.52 58
0.2 1 0.058 2.43 2.50 50
0.2 10 0.006 2.49 2.50 48
0.34 0.1 0.225 2.84 3.14 12
0.34 0.3 0.065 3.00 3.09 11
0.34 1 0.019 3.05 3.08 10
0.34 10 0.002 3.07 3.08 10
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time, this area turns out relevant if we assume that the CH
value is close to the QCD one, or if we take into account the
estimations of these couplings made in other studies.
It is not easy to make a comparison of the values of the

couplings obtained here with the possible experimental
bounds on them because in the analyses of the LHC
experimental data on resonances decaying into WW or

WZ pairs some benchmark signal models are normally
used (Kaluza-Klein graviton in extra dimension, extended
gauge model of W0 and Z0, and others). However, in the
more model independent framework of Ref. [37] we find
that the characteristic scale for the couplings is of order
0.001 ÷ 0.010. gBrWW and especially gLWW tend to be much
larger unless computed at very small R=g25 (we would put a

FIG. 3. The density plots of M� for different values of R=g25. The colored curves represent the lines of constant M�: the red one,
M� ¼ 2 TeV; the green one,M� ¼ 3 TeV; the blue one,M� ¼ 4 TeV; and successive black curves for higher integer values. The white
area represents the sector prohibited by the S bound.
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threshold at R=g25 ≃ 0.1). We can only speculate about the
effect of including quantum corrections in our calculation.
Barring large corrections, the comparison with Ref. [37]
really indicates lower values for R=g25.

VII. CONCLUSIONS

In this study we used the bottom-up holographic
approach to have a fresh look at nonperturbative aspects
of CH models with a global breaking pattern SOð5Þ →
SOð4Þ and a gauge group misaligned with the unbroken
group. With the purpose of being as close as possible to the
characteristics of a confining theory (presumed to be
underlying the EWSBS) we chose to work in a 5D SW
framework inspired by effective models of QCD and
consisting of a generalized sigma model coupled to both
the composite resonances and the SM gauge bosons. The
5D model is similar to that of the successful AdS=QCD
constructions, specifically to our earlier work [21], and
depends on the two Ansätze functions: the SW dilaton
profile ΦðzÞ and the symmetry-breaking fðzÞ. The micro-
scopic nature of the breaking, besides being triggered by
some new strong interactions with a hypercolor group, is
factored out and every effort has been taken to make
predictions as independent of it as possible.
We investigated the dynamics of ten vector (unbroken

and broken) and four Goldstone boson (one of them related
to the Higgs boson) 5D fields. Though for the unbroken
vectors the situation is rather similar to a generic
AdS=QCD model, in the broken sector we have addition-
ally adopted a gauge that relates the Goldstone fields to the
fifth component of the bulk vector field Ai

z. That is not just
a gauge-Higgs construction because there are also definite
independent Goldstone modes in the bulk scalar field H,
the structure of which provides the SOð5Þ breaking. The
resulting Goldstone description is quite different from
that of the vector fields, for instance, their UV boundary
conditions are set following the gauge-Higgs implementa-
tion. In the end, the proposed procedure is ratified by the
agreement of the hWW and hhWW characteristic couplings
to those of the general MCHM. The Higgs boson remains
massless as long as we do not take into account the
quantum corrections.
In the paper we lay emphasis on the following issues of

phenomenological interest:
(i) derivation of the spectra of the new states in the

broken and unbroken channels;
(ii) connection to the EW sector (masses of the gauge

bosons and the electroweak precision observables);
(iii) triple couplings of the new heavy resonances to

WþW− and W�B;
(iv) in-depth analysis of the realization of the first and

second Weinberg sum rules and the study of their
convergence.

The holographic effective theory describes the composite
resonances; their maximum number Nmax is found to be
related to the theory natural UV cutoff ε. Adhering to one of
these cutoffs is necessary to derive relations involving
resonance decay constants and masses. The latter stay
cutoff independent as befits physical observables. The only,
but very significant exception, is the “pion” decay constant

FIG. 4. Couplings of the left, right, and broken composite
resonances to the WþW− and W�B pairs.

FIG. 5. Example of the couplings estimated for a completely
vanishing value of a.
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F. We made a hypothesis that ε can be taken as being
related to the characteristic range of the CH effective
theory, and provided numerical estimations for the value
of Nmax. Moreover, the two Weinberg sum rules hold their
validity just in a formal sense as the sum over resonances
has to be cut off. The sum rules are logarithmically
divergent, and this implies that they are not saturated at
all by just the first resonance. We believe it to be a common
feature of AdS=CFT models, detached from the particu-
larities of our setup, as it is also present in holographic
QCD. We can regard it as a general serious flaw of the
bottom-up holographic models, and hence a realistic CH
theory could also have the sum rules more similar to those
of actual QCD.
The minimal set of input parameters in our model is: sin θ,

a, and
g2
5

R . There are constraints coming from theWmass (EW
scale), the S parameter and the existing experimental bounds
on κV (sin θ). Their consideration allows us to estimate the
masses for the composite resonances. It is not difficult to find
areas in the parameter space where a resonance between 2
and 3 TeV is easily accommodated. The presented technique
offers the possibility of deriving trilinear couplings of a type
WW, WB–new composite resonance. They are of interest
because the SM gauge boson scattering is regarded as the
process for the new vector resonance production in collider
experiments.
It is compelling to extend the proposed framework to

other nonminimal symmetry breaking patterns, especially
the ones that could be supported by a nonexotic theory at
the microscopic level. Then, it would be reasonable to
include more quantities of physical interest into the
analysis. Also, it would be more interesting to develop
the connection to the SM fermions. Despite the fact that the
idea behind our framework prohibits them from entering
into the bulk, their mixing with the new fundamental
constituents of the strongly interacting sector is possible
and could be explored in more detail.
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APPENDIX A: CONFLUENT HYPERGEOMETRIC
EQUATION AND ITS SOLUTIONS

The confluent hypergeometric equation is given as

yφ00ðyÞ þ ðc − yÞφ0ðyÞ − aφðyÞ ¼ 0: ðA1Þ
The values of parameters a and c define the types of
solution one would get [38]. We abstain from considering
solutions whose IR asymptotics tend to explode.
For the positive integer values c ¼ 1; 2; 3;… we have

φðyÞ ¼ C1 1F1ða; c; yÞ þ C2Ψða; c; yÞ; ðA2Þ

where 1F1ða; c; yÞ is called the Kummer function and
Ψða; c; yÞ is the Tricomi function.
However, in the paper we frequently meet the cases of

nonpositive integer c. 1F1ða; c; yÞ has poles at
c ¼ 0;−1;−2;…, while the Tricomi function can generally
be analytically continued to any integer value of c. In that
situation we can choose another two solutions from the
fundamental system of solutions:

φðyÞ ¼ C1y1−c1F1ða − cþ 1; 2 − c; yÞ þ C2Ψða; c; yÞ:
ðA3Þ

Let us discuss several properties of these confluent
hypergeometric functions [38]:

(i) The Tricomi functions with different arguments are
related via

Ψða; c; yÞ ¼ y1−cΨða − cþ 1; 2 − c; yÞ: ðA4Þ
(ii) The Tricomi function exhibits a logarithmic behav-

ior for all integer values of c. Specifically, for the
case c ¼ 1 − n, n ¼ 0; 1; 2;…, one has

Ψða; 1 − n; yÞ ¼ ðn − 1Þ!
Γðaþ nÞ

Xn−1
r¼0

ðaÞryr
ð1 − nÞrr!

þ ð−1Þn−1
n!ΓðaÞ

�
1F1ðaþ n; nþ 1; xÞyn ln y

þ
X∞
r¼0

ðaþ nÞr
ðnþ 1Þr

½ψðaþ nþ rÞ − ψð1þ rÞ − ψð1þ nþ rÞ� y
nþr

r!

�
; ðA5Þ

here the Pochhammer symbol is ðaÞn ¼ 1 · a · ðaþ 1Þ…ðaþ n − 1Þ ¼ Γðaþ nÞ=ΓðaÞ, ψðaÞ is the digamma
function, and the first sum is absent for the case n ¼ 0.
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(iii) The Tricomi function has an infinite sum repre-
sentation involving the generalized Laguerre
polynomials

ΓðaÞΨða; 1þm; yÞ ¼
X∞
n¼0

Lm
n ðyÞ

nþ a
: ðA6Þ

(iv) The Kummer function is a (finite) series solution,

1F1ða; c; yÞ ¼
P∞

n¼0
ðaÞn
ðcÞn

yn

n!, that has a natural con-

nection with the generalized Laguerre polynomials
(for integer n > 0, m> 0)

Lm
n ðyÞ ¼

ðmþ 1Þn
n! 1F1ð−n;mþ 1; yÞ: ðA7Þ

APPENDIX B: DERIVATION OF THE EOM IN
THE BROKEN SECTOR WITH ξ = 1

Let us assume Ai
z ¼ ∂zπi

χπ
directly in Eqs. (31)–(33). Then,

the system on Ai
μ and πi simplifies to

∂z
e−ΦðzÞ

z
∂zAi

μ −
e−ΦðzÞ

z
□Ai

μ −
2g25f

2ðzÞR2

ks

e−ΦðzÞ

z3
Ai
μ

− ∂μ

�
∂z

e−ΦðzÞ

z
∂z

πi

χπ
−
2g25f

2ðzÞR2

ks

e−ΦðzÞ

z3
πi

χπ

�
¼ 0;

ðB1Þ

∂μAi
μ ¼ □

πi

χπ
: ðB2Þ

The condition of Eq. (34) holds, and together with Eq. (B2)
it implies that

□
2
πi

χπ
¼ 0: ðB3Þ

With the use of the identity Aik
μ ¼ ∂μ∂ν

□
Ai
ν ¼ ∂μ

πi

χπ
, the

longitudinal part in Eq. (B1) transforms into

∂z
e−ΦðzÞ

z
∂zA

ik
μ −

2g25f
2ðzÞR2

ks

e−ΦðzÞ

z3
Aik
μ

− ∂μ

�
∂z

e−ΦðzÞ

z
∂z

πi

χπ
þ e−ΦðzÞ

z
□
πi

χπ
−
2g25f

2ðzÞR2

ks

e−ΦðzÞ

z3
πi

χπ

�
¼ 0: ðB4Þ

All things considered, one of the possible solutions is this
set of simultaneously fulfilled equations:

∂z
e−ΦðzÞ

z
∂zA

ik
μ −

2g25f
2ðzÞR2

ks

e−ΦðzÞ

z3
Aik
μ ¼ 0; ðB5Þ

∂z
e−ΦðzÞ

z
∂z

πi

χπ
−
2g25f

2ðzÞR2

ks

e−ΦðzÞ

z3
πi

χπ
¼ 0; ðB6Þ

□
πi

χπ
¼ 0; ðB7Þ

while the transverse mode keeps being described
by Eq. (38).
With this exercise we intend to be reassured that the

masslessness of the Goldstones agrees with EOMs (37),
(38), and (39) given in the main body of the paper.

APPENDIX C: LARGE Q2 EXPANSION OF THE
CORRELATOR ΠLR

Here we perform the largeQ2 expansion ofΠLR given by

g2VΠLRðQ2Þ

¼ R
2g25

Q2sin2θ

�
ψ

�
1þ Q2

4κ2

�
− ψ

�
1þ Q2

4κ2
þ a

�

−
4κ2

Q2
a

�
ln κ2ε2 þ 2γE þ ψ

�
1þ Q2

4κ2
þ a

���
; ðC1Þ

by means of using the infinite series representation of the
digamma function. From the series representation of the Γ-
function it could be derived [38] that

ψð1þ zÞ ¼ −γE þ
X∞
n¼1

z
nðnþ zÞ ; ðC2Þ

and that is valid for z ≠ −1;−2;…. For the particular ψ’s of
Eq. (C1) we have

lim
Q2→∞

ψ

�
Q2

4κ2
þ 1

�
¼ −γE þ

X∞
n¼0

1

nþ 1

X∞
k¼0

�
−M2

VðnÞ
Q2

�
k

;

lim
Q2→∞

ψ

�
Q2

4κ2
þ 1þ ðg5RfÞ2

2ks

�
¼ −γE þ

�
1þ 2κ2ðg5RfÞ2

ksQ2

�X∞
n¼0

1

nþ 1

X∞
k¼0

�
−M2

AðnÞ
Q2

�
k

; ðC3Þ
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where for k ¼ 0 we have limN→∞
P

N
n¼1

1
n ¼ lnN þ γE þOð1=NÞ.

Substitution of the series expansions yields order by order for g2VΠLRðQ2Þ=Q2,

�
1

Q2

�
0

∶ sin2 θ
R
2g25

�X∞
n¼0

1

nþ 1
−
X∞
n¼0

1

nþ 1

�
; ðC4Þ

�
1

Q2

�
1

∶4κ2 sin2 θ
R
2g25

X∞
n¼0

ð1 − 1Þ − sin2 θκ2a
2R
g25

�
ln ε2κ2 þ γE þ

X∞
n¼0

1

nþ 1

�
; ðC5Þ

�
1

Q2

�
2

∶4κ4 sin2 θa
2R
g25

X∞
n¼0

ð1 − 1Þ: ðC6Þ

Considering that 1 and −1, as well as the fractions in the difference between harmonic sums, appear together for any fixed n
we can set these terms to zero (certainly 0 for a finite sum). The remaining at 1=Q2 order parentheses cancel due to Eq. (63),
when the infinite sum is replaced with the one up to Nmax. Thus, we show that the terms 1=Q2 and 1=Q4 are absent as long
as Nmax <∞.

APPENDIX D: CALCULATIONS RELATED TO THE COUPLINGS OF HIGGS TO EW BOSONS

We can factorize the misalignment in Eqs. (98) and (99), and come to the following equation:

Leff ⊃
g2

g2V

sin 2θ

8
ffiffiffi
2

p hðqÞWα
μðk1ÞWβ

νðk2Þ
�

δ2Sð3Þ5D

δϕα
Lμðk1Þδϕβ

brνðk2ÞhðqÞ
þ δ2Sð3Þ5D

δϕα
brμðk1Þδϕβ

Lνðk2ÞhðqÞ

�
ðD1Þ

þ g2

4g2V
hðq1Þhðq2ÞWα

μðk1ÞWβ
νðk2Þ

�
cos2θ

δ2Sð4Þ5D

δϕα
Lμðk1Þδϕβ

Lνðk2Þhðq1Þhðq2Þ
ðD2Þ

þ sin2θ
2

δ2Sð4Þ5D

δϕα
brμðk1Þδϕβ

brνðk2Þhðq1Þhðq2Þ

�
: ðD3Þ

We have made use of the symmetry of the Lagrangian permitting to substitute hhjOα
L μO

β
br νj0i ¼ −hhjOα

R μO
β
br νj0i

and hhhjOα
L μO

β
L νj0i ¼ hhhjOi

R μO
β
R νj0i ¼ −hhhjOα

L μO
β
R νj0i.

Let us explore the triple coupling first. The 5D action provides two types of contributions

δ2Sð3Þ5D

δϕα
Lμðk1Þδϕβ

brνðk2ÞhðqÞ
¼ δαβημν

R
g25

�
aκ2

Z
dy

e−y

y
πðyÞ=χπVðk1; yÞAðk2; yÞ

þ 1

4

Z
dy

e−y

y
∂zπðyÞ=χπVðk1; yÞ∂zAðk2; yÞ

�
; ðD4Þ

and the second variation in (D1) evaluates the same but for
exchange k1 ↔ k2.
Further, wewould like to integrate analytically over y. As

we substitute the Goldstone profile and the longitudinal
vector propagators, all dependence on momenta disappears
and the calculation can be performed. For the transverse
modes we put the propagators on-shell with k21 ¼ k22 ¼ M2

W
and consider the limit M2

W ≪ 4κ2. Indeed, we naturally
expect the composite resonances to have rather large
masses and that limit is substantiated numerically in

Sec. VI. Essentially, we set k21 ¼ k22 ¼ 0, and the outcome
integral is analogous to the expression with the longitudinal
propagators.
In the calculation it is convenient to use the definitions in

terms of the resonance sums,

Að0; zÞ ¼ FπðzÞ=χπ ¼ Γð1þ aÞΨða; 0; κ2z2Þ

¼
X
n

κ2z2L1
nðκ2z2Þ

nþ 1þ a
;
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∂zAð0; zÞ ¼ F∂zπðzÞ=χπ ¼ 2κ2zð−aÞΓð1þ aÞΨðaþ 1; 1; κ2z2Þ ¼ −2κ2za
X
n

Lnðκ2z2Þ
nþ 1þ a

:

Then, the variation (D4) could be estimated quite easily due to the orthogonality of the Laguerre polynomials,

κ2aF−1 R
g25

X
n1;n2

R
dye−yyL1

n1ðyÞL1
n2ðyÞ þ a

R
dye−yLn1ðyÞLn2ðyÞ

ðn1 þ aþ 1Þðn2 þ aþ 1Þ ðD5Þ

¼ 1

2F
2Rκ2a
g25

X
n1;n2

δn1n2
n1 þ 1þ a

ðn1 þ aþ 1Þðn2 þ aþ 1Þ ¼
F
2
: ðD6Þ

Here we used for F2 the definition of Eq. (68).
We follow the same lines for the quartic couplings. Let us start with the variation in (D2):

δ2Sð4Þ5D

δϕα
Lμðk1Þδϕβ

Lνðk2Þhðq1Þhðq2Þ
¼ 2δαβημν

R
4g25

�
aκ2

Z
dy

e−y

y
ðπðyÞ=χπÞ2Vðk1; yÞVðk2; yÞ

þ 1

4

Z
dy

e−y

y
ð∂zπðyÞ=χπÞ2Vðk1; yÞVðk2; yÞ

�
ðD7Þ

¼ 1

4
δαβημνF−2 2R

g25
aκ2

X
n

nþ 1þ a
ðnþ 1þ aÞ2 ¼

1

4
δαβημν: ðD8Þ

Unfortunately, the situation becomes more involved with the variation over the broken sources in (D3) because the integrals
there are quartic in Laguerre polynomials:

δ2Sð4Þ5D

δϕα
brμðk1Þδϕβ

brνðk2Þhðq1Þhðq2Þ
¼ δαβημνF−2 R

g25
aκ2

×
X
n1;n2

R
dye−yA2ð0; yÞ½a=2Ln1ðyÞLn2ðyÞ − yL1

n1ðyÞL1
n2ðyÞ�

ðn1 þ aþ 1Þðn2 þ aþ 1Þ ðD9Þ

We can make a calculation at a ¼ 0, with the result
δ2Sð4Þ

5D

δϕα
brμðk1Þδϕβ

brνðk2Þhðq1Þhðq2Þ
¼ − 1

2
δαβημν. We extrapolate this estimation to

the case of general a when we present the quartic coupling in the effective Lagrangian.

APPENDIX E: CALCULATIONS RELATED TO THE COUPLINGS
OF VECTOR RESONANCES TO EW BOSONS

Here we calculate the relevant three-point functions first. Diagrammatically, we obtain a vertex and three propagators
with their residues attached to it. In the body of the paper we report the effective vertex proceeding from connecting two legs
to the physical sources and reducing the third one via putting an n-th resonance on-shell.
There are not that many different types of three-point functions that can be extracted from Eq. (106);

hOα
Lμ1

ðq1ÞOβ
Lμ2

ðq2ÞOγ
Lμ3

ðq3Þi ¼ hOα
Rμ1

ðq1ÞOβ
Rμ2

ðq2ÞOγ
Rμ3

ðq3Þi
¼ iεαβγLorμ1μ2μ3δðq1 þ q2 þ q3ÞT3Vðq1; q2; q3Þ; ðE1Þ

hOα
Lμ1

ðq1ÞOβ
brμ2

ðq2ÞOγ
brμ3

ðq3Þi ¼ hOα
Rμ1

ðq1ÞOβ
brμ2

ðq2ÞOγ
brμ3

ðq3Þi

¼ iεαβγLorμ1μ2μ3δðq1 þ q2 þ q3Þ
1

2
TV2Aðq1; q2; q3Þ; ðE2Þ
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hO4
brμ1

ðq1ÞOα
brμ2

ðq2ÞOβ
Rμ3

ðq3Þi ¼ −hO4
brμ1

ðq1ÞOα
brμ2

ðq2ÞOβ
Lμ3

ðq3Þi

¼ iδαβLorμ1μ2μ3δðq1 þ q2 þ q3Þ
1

2
TV2Aðq3; q1; q2Þ: ðE3Þ

There, the Lorentz structure of the correlators is collected into

Lorμ1μ2μ3ðq1; q2; q3Þ ¼ ημ1μ2ðq1 − q2Þμ3 þ ημ1μ3ðq3 − q1Þμ2 þ ημ2μ3ðq2 − q3Þμ1 ;

and we defined the form factors as follows:

T3Vðq1; q2; q3Þ ¼
R
g25

Z
dze−κ

2z2z−1Vðq1; zÞVðq2; zÞVðq3; zÞ; ðE4Þ

TV2Aðq1; q2; q3Þ ¼
R
g25

Z
dze−κ

2z2z−1Vðq1; zÞAðq2; zÞAðq3; zÞ: ðE5Þ

Now, to consider the possible interactions with W and B bosons we write down the relevant three-point functions:

hOα
L=Rμ1

ðq1ÞJ̃βLμ2ðq2ÞJ̃
γ
Lμ3

ðq3Þi ¼
g2

8g2V
iεαβγLorμ1μ2μ3ðq1; q2; q3Þδðq1 þ q2 þ q3Þ

× ½ð1� cos θÞ2T3Vðq1; q2; q3Þ þ sin2θTV2Aðq1; q2; q3Þ�; ðE6Þ

hOα
L=Rμ1

ðq1ÞJ̃βLμ2ðq2ÞJ̃3Rμ3ðq3Þi ¼ hOα
L=Rμ1

ðq1ÞJ̃3Rμ2ðq2ÞJ̃
β
Lμ3

ðq3Þi

¼ gg0

8g2V
iεαβ3Lorμ1μ2μ3ðq1; q2; q3Þδðq1 þ q2 þ q3Þ

× ½ð1 − cos2θÞT3Vðq1; q2; q3Þ − sin2θTV2Aðq1; q2; q3Þ�; ðE7Þ

hOα
brμ1

ðq1ÞJ̃βLμ2ðq2ÞJ̃
γ
Lμ3

ðq3Þi ¼ −
g2

2g2V

sin θffiffiffi
2

p iεαβγLorμ1μ2μ3ðq1; q2; q3Þδðq1 þ q2 þ q3Þ

× ½TV2Aðq2; q1; q3Þ þ TV2Aðq3; q2; q1Þ�; ðE8Þ

hOα
brμ1

ðq1ÞJ̃βLμ2ðq2ÞJ̃3Rμ3ðq3Þi ¼
gg0

2g2V

sin θffiffiffi
2

p iεαβ3Lorμ1μ2μ3ðq1; q2; q3Þδðq1 þ q2 þ q3Þ

× ½TV2Aðq2; q1; q3Þ − TV2Aðq3; q2; q1Þ�; ðE9Þ

hO4
brμ1

ðq1ÞJ̃αLμ2ðq2ÞJ̃
β
Lμ3

ðq3Þi ¼
g2 sin 2θ

8
ffiffiffi
2

p
g2V

δαβLorμ1μ2μ3ðq1; q2; q3Þδðq1 þ q2 þ q3Þ

× ½TV2Aðq3; q1; q2Þ − TV2Aðq2; q1; q3Þ�; ðE10Þ

hO4
brμ1

ðq1ÞJ̃3Rμ2ðq2ÞJ̃3Rμ3ðq3Þi ¼
g02 sin 2θ
8

ffiffiffi
2

p
g2V

Lorμ1μ2μ3ðq1; q2; q3Þδðq1 þ q2 þ q3Þ

× ½TV2Aðq3; q1; q2Þ − TV2Aðq2; q1; q3Þ�; ðE11Þ

hO4
brμ1

ðq1ÞJ̃3Lμ2ðq2ÞJ̃3Rμ3ðq3Þi ¼
gg0 sin 2θ
8

ffiffiffi
2

p
g2V

Lorμ1μ2μ3ðq1; q2; q3Þδðq1 þ q2 þ q3Þ

× ½TV2Aðq3; q1; q2Þ − TV2Aðq2; q1; q3Þ�: ðE12Þ

Only a few BB–resonance interactions are possible due to the epsilon-tensor on the right-hand side of the holographic three-
point functions.
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Further, we reduce the leg corresponding to q1 momentum and consider the limit q22;3 ≪ 4κ2 for other two momenta. For
the n-th excitation of the left/right resonances in the unbroken sector, this means

T3Vðq1; q2; q3Þ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
2g25ðnþ 1Þ

s Z
dye−yL1

nðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
2g25ðnþ 1Þ

s
; ðE13Þ

TV2Aðq1; q2; q3Þ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
2g25ðnþ 1Þ

s Z
dye−yL1

nðyÞΓ2ð1þ aÞΨ2ða; 0; yÞ; ðE14Þ

where the latter integral can be calculated for a given n. For n ¼ 0: 1 − 2aþ 2a2ψ1ð1þ aÞ.
For the n-th excitation of the resonances from the broken sector one of the broken legs should be reduced, and we get

TV2Aðq2; q1; q3Þ or TV2Aðq3; q2; q1Þ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
2g25ðnþ 1Þ

s X
n0

R
dye−yL1

nðyÞL1
n0 ðyÞ

n0 þ 1þ a

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðnþ 1Þ

2g25

s
1

nþ 1þ a
: ðE15Þ

Some triple couplings will not be included in the effective Lagrangian. These are: A4
brW

αWα, A4
brBB, A

4
brW

3B, Aα
brW

βB.
The reason for this is that in the corresponding three-point functions the leading term in the limit q22;3 ≪ 4κ2 is zero due to

the subtraction of the form factors. The first contribution is ∼M2
W

4κ2
and, thus, is strongly suppressed. We abstain from

considering observables of this order in this work.
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