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The effective-Lagrangian description of Lorentz-invariance violation provided by the so-called Standard
Model extension covers all the sectors of the Standard Model, allowing for model-independent studies of
high-energy phenomena that might leave traces at relatively low energies. In this context, the quantification
of the large set of parameters characterizing Lorentz-violating effects is well motivated. In the present work,
effects from the Lorentz-nonconserving Yukawa sector on the electromagnetic moments of charged leptons
are calculated, estimated, and discussed. Following a perturbative approach, explicit expressions of leading
contributions are derived, and upper bounds on Lorentz violation are estimated from current data on
electromagnetic moments. Scenarios regarding the coefficients of Lorentz violation are considered. In a
scenario of two-point insertions preserving lepton flavor, the bound on the electron electric dipole moment
yields limits as stringent as 10−27, whereas muon and tau-lepton electromagnetic moments determine
bounds as restrictive as 10−14 and 10−5, respectively. Another scenario defined by the assumption that
Lorentz-violating Yukawa couplings are Hermitian leads to less stringent bounds provided by the muon
anomalous magnetic moment, which turn out to be as restrictive as 10−14.
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I. INTRODUCTION

It has been half a century since its formulation [1–3], and
yet the Standard Model (SM) remains our best theoretical
description of fundamental physics [4]. Even so, the SM is
nowadays considered by the scientific community to be a
low-energy manifestation of an underlying theory operat-
ing at some very-high-energy scale, perhaps of the order of
the Planck scale. In general, the two main ingredients
behind the definition of field theories are their dynamic
variables and symmetries [5]. Regarding the latter aspect,
invariance under spacetime and gauge transformations have
traditionally received much attention in model building.
While Lorentz symmetry is a conventional assumption in
beyond-SM contexts, Planck-scale physical formulations,
such as string theory and noncommutative field theory, are
able to spontaneously brake it [6–9], thus yielding Lorentz-
nonconserving physical phenomena which, at current
experimental sensitivity, may manifest as measurable tiny

effects. Since no compelling evidence of Lorentz violation
has been ever observed [10], thus leaving us blind as to
which place is the best to introduce this kind of new
physics, the effective-Lagrangian approach [5,11], distin-
guished for being model independent, seems to be suitable.
A couple of decades ago, an effective-Lagrangian

description of Lorentz-symmetry nonconservation known
as the Lorentz- and CPT-violating SM extension (SME)
was devised [12,13]. The SME has since become a useful
tool to comprehensively study this sort of new physics,1

which induces unconventional phenomena such as vacuum
birefringence [15,16], vacuum Čerenkov radiation [17–22],
oscillations of massless neutrinos [23–26], exotic electro-
magnetic properties of SM particles [27,28], and violations
of standard theorems [29,30]. The dynamic variables of the
SME and its gauge-symmetry group are the same as those
of the sole SM, the key element being a large set of
coefficients characterized by fully contracted spacetime
indices within Lagrangian terms and which transform as
tensors under observer Lorentz transformations [12,13],
thus implying that Lorentz-violating physics is observer
independent. Nonetheless, these tensor coefficients, which
define preferred directions in spacetime, are invariant under
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particle Lorentz transformations [12,13], so they do not
preserve Lorentz symmetry. The estimation of the quite vast
set of SME coefficients has become the main objective of
several phenomenological investigations of Lorentz viola-
tion. The present paper is one of such works. A compre-
hensive catalog of SME-coefficients constraints is provided
in Ref. [10], which, moreover, is updated every year.
Lorentz-violating Lagrangian terms constituting the SME
are classified into two types, according to whether they are
power-counting renormalizable or not [16,27,28,30–35].
The full set of renormalizable SME terms define the
so-called minimal SME (MSME). Within the framework
of the MSME, the present paper is a phenomenological
investigation of effects of Lorentz violation of the anoma-
lous magnetic moments (AMMs) aA and electric dipole
moments (EDMs) dA of charged leptons lA, with A¼e, μ, τ
labeling lepton flavors. The emergence of contributions to
these electromagnetic moments as by-products of Lorentz-
invariance nonconservation has been addressed by the
authors of Refs. [27,28,36–41]. Under the assumption of
Lorentz invariance, contributions to AMMs and EDMs are
identified from the well-known parametrization of the
electromagnetic vertex AμlAlA given by uAðp0ÞΓμuAðpÞ,
with uA the momentum-space Dirac spinor for a charged
lepton lA with mass mA, and Γμ given by [42–44]

Γμ ¼ ie

�
γμðfVA − fAAγ5Þ − σμνqν

�
i
fmA
2mA

−
fdA
e
γ5

��
; ð1Þ

for on-shell external fermions and off-shell photon field, in
which case all form factors, particularly the magnetic form
factor faAðq2Þ and the electric form factor fdAðq2Þ, are
functions of squared transferred momentum q2 only. The
on-shell-photon case, in which q2 ¼ 0, defines the AMM
and the EDM by aA ≡ faAðq2 ¼ 0Þ and dA ≡ fdAðq2 ¼ 0Þ,
respectively. While in the presence of Lorentz violation the
structure of the corresponding electromagnetic interaction
parametrization is expected to be far richer [27,28], AMMs
and EDMs are still identified from the aforementioned
Lorentz-preserving parametrization. Therefore, AMMs and
EDMs from Lorentz violation necessarily originate in
second-order SME-coefficients contributions, since in such
a case form-factor contributions with fully contracted
spacetime indices may emerge.
Lorentz-violating effects addressed in the present work

emerge from the Yukawa sector of leptons in the MSME,
where both flavor and spacetime indices characterize
Yukawa-like Lorentz-violating constants. Lorentz violation
from these interactions is introduced in the Feynman-
diagrams approach through three-point vertices and from
two-point insertions as well, with both elements including
lepton-flavor change. We emphasize, though, that transition
electromagnetic moments [43,44] are not within the scope
of the present work, so external fermion lines are always
taken to preserve lepton flavor. Leading contributions to the

electromagnetic form factors of interest are generated by
Feynman diagrams with a virtual-photon line, which
dominate over contributions from diagrams in which either
Higgs or Z bosons participate. In this context, current
AMMs and EDMs data are utilized to estimate upper
bounds on SME coefficients. Since the resulting contribu-
tions involve a plethora of Lorentz-violation parameters,
assumptions aiming at the reduction of the number of SME
quantities are made, for which two scenarios are consid-
ered. In one of these scenarios, some SME parameters
introduced by lepton-flavor-nonconserving two-point
insertions are assumed to be quite small, thus being dis-
regarded and then leaving appropriate conditions to bound
Lorentz-violation coefficients to be as small as 10−27, from
the electric dipole moment of the electron, and limits as
restrictive as 10−14 and 10−5 if constraints on the muon
and the tau-lepton electromagnetic moments, respectively,
are taken into account. Another scenario, relying on the
assumption that Yukawa-like-related couplings are
Hermitian, also gives rise to bounds on SME coefficients.
In this scenario, the analysis of MSME contributions and
their comparison with current bounds on electromagnetic
moments of charged leptons determine upper limits on the
impact of Lorentz-violating coefficients as stringent as
10−15, which, specifically, are imposed by the anomalous
magnetic moment of the muon. In the same scenario, SME
contributions to electric dipole moments are absent. A table
summarizing these bounds is provided in this section.
The remainder of the paper has been organized as

follows. In Sec. II, a brief discussion on the theoretical
framework necessary for the phenomenological calculation
is performed. We present in Sec. III the analytical calcu-
lation of the electromagnetic vertex AμlAlA at one loop.
Numerical estimations and a discussion on our results are
provided in Sec. IV. Finally, we give a summary of the
present investigation in Sec. V.

II. LORENTZ VIOLATION IN THE
YUKAWA SECTOR

Since the MSME is an effective field theory parametriz-
ing heavy physics at SM energy scales, its Lagrangian
terms are exclusively defined in terms of the fields of
such a low-energy description. In this context, Lorentz-
nonconserving interactions are introduced in all the SM
sectors, among which we consider, for the phenomeno-
logical objectives of the present investigation, Lagrangian
terms from the Yukawa sector. Meanwhile, SUð3ÞC ×
SUð2ÞL × Uð1ÞY gauge symmetry is still assumed and
then spontaneously broken through implementation of
the Brout-Englert-Higgs mechanism [45–47] as usual, in
order to define the full set of mass eigenfields within the
theory governed by the electromagnetic gauge group
[48–52]. Of course, this procedure affects Lorentz-violating
interactions, for which a discussion on the resultant terms
of the MSME Yukawa sector is pertinent.
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In the MSME, the Yukawa sector is CPT even and is
given by [13]

LY¼−ðYLÞABL̄AϕRB−
1

2
ðHLÞABμν L̄Aϕσ

μνRB

− ðYUÞABQ̄Aϕ̃UB−
1

2
ðHUÞABμν Q̄Aϕ̃σ

μνUB

− ðYDÞABQ̄AϕDB−
1

2
ðHDÞABμν Q̄Aϕσ

μνDBþH:c: ð2Þ

Here, ϕ is the Higgs doublet. Moreover, LA and RA are the
SM SUð2ÞL left-handed lepton doublets and right-handed
lepton singlets, respectively. QA, on the other hand, are the
right-handed quark doublets, whereas UA are the u-type
quark singlets, and DA are the d-type quark singlets, both
right-handed. In all cases, capital letter indices A, B label
fermion flavor. The matrices with entries ðHLÞABμν , ðHUÞABμν ,
ðHDÞABμν are dimensionless, but, as it happens with the SM
Yukawa matrices YL, YU, YD, they are not restricted to
be Hermitian in flavor space. This opens a window to look
for flavor-violation effects mediated by the Higgs boson.
A thorough discussion on this Lorentz-violating Yukawa
sector, which includes its application to the photon propa-
gator within the scheme of nonlinear covariant gauges
[53–56], was recently carried out in Ref. [57]. Notation and
conventions utilized in the present paper have been taken
from that reference.
After spontaneous symmetry breaking, and once imple-

mentation of the standard unitary transformations to pass
from the gauge basis to the basis of mass eigenstates has
been performed, the Lagrangian given in Eq. (2) can be
written in the unitary gauge as

LY ¼ −
X
A

�
mfA þ

gmfA

2mW
H

�
f̄AfA

−
1

2

X
A;B

ðvþHÞf̄AðVAB
αβ þ ABA�

αβ γ5ÞσαβfB; ð3Þ

where

VAB
αβ ¼ 1

2
ðYAB

αβ þ YBA�
αβ Þ; ð4Þ

AAB
αβ ¼ 1

2
ðYAB

αβ − YBA�
αβ Þ: ð5Þ

In the above expressions, Yαβ ¼ V†
LHαβVR, with VL and

VR the unitary matrices connecting the gauge and mass-
eigenfields bases of chiral spinors. Though not explicitly
indicated by the notation of matrices Yαβ, three types of
fermions correspond to each of them, namely, YL

αβ, Y
D
αβ, and

YU
αβ, which stand for charged leptons, u-type quarks, and

d-type quarks, respectively. With respect to flavor space,
matrices Vαβ are Hermitian, whereas matrices Aαβ are

anti-Hermitian. On the other hand, matrices VAB and AAB

given in spacetime group are both antisymmetric.
In the perturbative approach, which is adopted here,
these Lorentz-violating Yukawa couplings yield two
types of physical couplings: the bilinear insertion
−ðv=2Þf̄AðVAB

αβ þABA�
αβ γ5ÞσαβfB and the trilinear vertex

−ð1=2ÞHf̄AðVAB
αβ þ ABA�

αβ γ5ÞσαβfB. For instance, the one-
loop contribution from this sort of Lorentz violation to the
photon propagator is determined by the bilinear term,
whose Feynman rule is −iðv=2ÞðVAB

αβ þ ABA�
αβ γ5Þσαβ [57].

Note that from Eq. (5), Aαβ vanishes for Hermitian matrix
Y†
αβ ¼ Yαβ, whereas the anti-Hermitian-matrix condition

Y†
αβ ¼ −Yαβ eliminates Vαβ.

III. ONE-LOOP CONTRIBUTIONS TO LEPTON
ELECTROMAGNETIC INTERACTIONS

Next we calculate the contributions from Lorentz
violation in the Yukawa sector LY, Eq. (3), to the
electromagnetic vertex AμfAfA. To execute this task, we
follow a perturbative approach, in which the effects from
Lorentz-violating Lagrangian terms that are quadratic in
fields are taken into account by placing two-point vertex
insertions in propagator lines of Feynman diagrams. This
modus operandi has been of profit in previous phenom-
enological investigations [27–30,36,37,57–61].
As explicitly shown in Refs. [27,28], electromagnetic

interactions at the loop level are modified by the occurrence
of Lorentz violation, resulting in a larger number of
electromagnetic form factors than those in Eq. (1), con-
structed under the assumption of Lorentz invariance
[42–44]. Nevertheless, even if Lorentz symmetry is vio-
lated, the form factors defining the AMM and the EDM are
to be identified from the Lorentz-invariant contributions
of Eq. (1), where Lorentz-violating background fields
can only be contracted with themselves. According to
Eq. (3), the coefficients VAB

μν and AAB
μν are antisymmetric

with respect to spacetime indices, so they are traceless in
this sense. Consequently, any first-order contribution to
AMMs and EDMs vanishes. But note that nonzero Lorentz-
invariant contributions may emerge as long as diagrams at
the second order in VAB

μν or AAB
μν are considered.

A. Contributing Feynman diagrams

With the previous discussion in mind, we consider the
contributions to the electromagnetic vertex AμfAfA pro-
duced by the sum of the Feynman diagrams shown in
Figs. 1 and 2, in which either two two-point insertions or
two three-point vertices or simultaneously one two-point
insertion and one three-point vertex appear, thus resulting
in second-order contributions of MSME coefficients. The
full set of contributing diagrams can be classified into
three types: diagrams with a virtual Z-boson line, diagrams
with a virtual-photon line, and diagrams with a virtual
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Higgs-boson line. Neutrinos are assumed to be massless, so
no couplings among them and the Higgs field arise, with
the consequence that no contributing diagrams with virtual
W-boson lines exist. Double lines in the loops of diagrams
of Fig. 1 generically represent virtual-field lines which can
be associated with either a Z boson, a photon, or a Higgs
boson. This figure displays the whole set of Feynman
diagrams in which a virtual Z boson or a virtual photon
participate. VerticesHfAfB involving the coefficients VAB

μν

and AAB
μν emerge from Eq. (3), thus giving rise to the

diagrams of Fig. 2, which add together with diagrams
comprising bilinear insertions, comprehended by Fig. 1,
to give the full set of diagrams with Higgs-boson loop
lines. We find it worth emphasizing that both two-point
insertions and three-point vertices generated by Eq. (3) are

flavor changing, which enlarges the number of contrib-
uting diagrams. Also notice that the calculation is
performed in the unitary gauge, so no diagrams with
pseudo-Goldstone bosons exist.
We have performed all the calculations by following the

Passarino-Veltman tensor-reduction method [62], for which
the software Mathematica, by Wolfram, has been utilized,
together with the packages FeynCalc [63] and Package-X
[64]. After carrying out these calculations and organizing
the resulting expressions, we identified the contributions
from each set of diagrams in Figs. 1 and 2 to AMMs and
EDMs. The occurrence of two-point insertions in contrib-
uting Feynman diagrams comes along with technical
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FIG. 1. Feynman diagrams AμfAfA contributing to magnetic
and electric form factors, with Lorentz-nonconservation effects
entering exclusively through bilinear insertions lAlB, where either
A ¼ B or A ≠ B. Virtual double lines in loops stand for a Z boson,
a photon, or a Higgs boson.
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FIG. 2. Feynman diagrams AμfAfA contributing to magnetic
and electric form factors, with Lorentz-nonconservation effects
entering through both bilinear insertions lAlB and three-point
vertices HfAfB, where either A ¼ B or A ≠ B. These diagrams
require the presence of a virtual Higgs-boson line in order
to exist.
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complications. The presence of Lorentz-violating coeffi-
cients, which cannot be simplified by on-shell conditions,
diversifies the set of different Lorentz structures partici-
pating in the loop contributions. For the same reason, the
expressions for the generated form factors are quite large,
even though this is an on-shell calculation performed in a
specific gauge. Under such circumstances, for us it made
no sense to provide the explicit expressions of the AMMs
and EDMs contributions. Nonetheless, using Package-X,
we were able to numerically check the consistent can-
cellation of ultraviolet (UV) divergences in all the con-
tributions. Another practical complication arises because
each bilinear insertion introduces an extra loop denom-
inator, so loop integrals involve several propagator
denominators, for which calculation strategies were real-
ized and implemented.

B. Dominant contributions to
electromagnetic moments

The calculation of the electromagnetic vertex AμlAlA is
carried out by taking both external fermions on shell, but
keeping the photon field off shell, so that q2 ≠ 0 (see
Figs. 1 and 2 for notation). We classify contributing
diagrams into two sets: (1) diagrams where bilinear
insertions or three-point vertices involve change of lepton
flavor, that is with A ≠ B, which we refer to as the case of
virtual-lepton-flavor change, and (2) diagrams in which no
lepton-flavor change occurs due to two-point insertions or
three-point vertices, that is A ¼ B, which we call the case of
virtual-lepton-flavor conservation. The leading contribu-
tions to AMMs and EDMs are produced by diagrams with a
virtual-photon line provided in Fig. 1. Quantitatively, the
difference between such dominant contributions and those
arising from other diagrams is 10 orders of magnitude at
least. While all diagrams, of all sorts, have been calculated
and their contributions estimated, we explain the tech-
niques involved in the calculations by specifically discus-
sing the aforementioned leading contributions in some
detail.
Virtual-photon diagrams come along with infrared (IR)

divergences, which motivates us to introduce a fictitious
photon mass, mγ [48,52]. An aspect worth commenting
on is that diagrams with two two-point insertions on a
single virtual-fermion line generate IR divergences,
whereas diagrams in which propagators involve exactly
one such insertion are IR finite. For a moment, consider
in the context of the Lorentz-invariant SM, the electro-
magnetic vertex AμlAlA at one loop. The contributions
from quantum electrodynamics to this vertex are para-
metrized as

ð6Þ

where the form factor F1ðq2Þ involves UV divergences as
well as IR divergences, whereas the magnetic form factor
F2ðq2Þ is finite in both senses. IR divergences are not
eliminated directly from the amplitude of this contribution,
but they are rather eradicated at the cross-section level. For
instance, consider the quantum-electrodynamics contribu-
tions to the process lþA l

−
A → lþB l

−
B. The corresponding

amplitude can be written as M2→2 ¼ Mtree
2→2 þMloop

2→2,
where Mtree

2→2 and Mloop
2→2 are the tree-level contribution

and the loop contributions, respectively. We conveniently
express the loop-amplitude contribution as Mloop

2→2 ¼
MγlAlA

2→2 þ � � �, with

ð7Þ

The second diagram in Eq. (7), standing for the counterterm
for the first one, is introduced as part of the procedure
of renormalization. The differential-cross-section contribu-
tion dσinterf:2→2 ∝

P
spin½ðMtree

2→2Þ�MγlAlA
2→2 þMtree

2→2ðMγlAlA
2→2 Þ��

of interference terms still bears IR divergences, so this
quantity is not observable. On the other hand, think
of the bremsstrahlung process lþA l

−
A → γlþB l

−
B under the

assumption that the final-state photon is soft. The tree-level
amplitude is expressed as Mtree

2→3 ¼ MγlAlA
2→3 þ � � �, where

ð8Þ

The corresponding differential cross section dσ2→3 ¼
dσγlAlA2→3 þ � � � with dσγlAlA2→3 ∝

P
spin jMγlAlA

2→3 j2 turns out to

be IR divergent. At the end of the day, the sum dσinterf:2→2 þ
dσγlAlA2→3 with the assumption of soft photon emission in
lAlA → γlBlB yields an IR finite contribution. In otherwords,
IR divergences that originated in the amplitudes given by
Eqs. (7) and (8) cancel each other when taking the two cross
sections together. It is important to emphasize that the
bremsstrahlung diagrams of Eq. (8) are constructed by
insertion of the electromagnetic vertex, only proportional
to γμ, in a external line of some tree-level diagram
lAlA → lBlB. Such a Dirac matrix is just the one appearing
in the IR-divergent form factorF1ðq2Þ in Eq. (6). In the case
of the MSME contributions considered for the present
investigation, IR divergences arise in the magnetic and in
the electric form factors proportional to 4 × 4 matrices σμν
and σμνγ5, respectively, defined in the space of Dirac
matrices. This means that such from factors are not meas-
urable quantities. We argue that, analogous to the Lorentz-
conserving case, such IR divergences should vanish at the
level of cross section, with the complicity of bremsstrahlung
diagrams involving Lorentz-violating bilinear insertions.
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To illustrate this, consider the one-loop Lorentz-violating
amplitude of lAlA → lBlB, which, among the whole set of
contributing Feynman diagrams, receives contributions
from the IR-divergent sum

ð9Þ

At tree level, the bremsstrahlung diagrams

ð10Þ

bearing effects of violation of Lorentz invariance induced by
SME bilinear insertions, contribute to lAlA → γlBlB. A soft
final-state photon is assumed here as well. Both sums of
diagrams being IR divergent and proportional to matrices
σμν and σμνγ5 are expected to produce contributions to
differential cross sections which, summed together, should
cancel all IR divergences, thus resulting in a finite total cross
section. The proof of this statement is beyond the scope of
the present paper, while it is left for a future ongoing
investigation.
For a variety of models, analytic expressions of triangle

diagrams written in the unitary gauge bear three propa-
gator denominators. Nonetheless, the use of two-point
insertions in the present calculation yields expressions
with up to five such denominators. We have executed this
calculation by following two different paths, and we have
verified that the results obtained through both approaches
coincide with each other. One such approach consists of a
direct calculation in which four- and five-point Passarino-
Veltman scalar functions [62] emerge. In the other
method, which we discuss in detail next, the number of
propagator denominators in loop integrals is reduced to
just three by implementing a trick involving squared-mass
derivatives. Consider the first, third, and fourth diagrams
of Fig. 1 in the case of the virtual-photon line. These
diagrams, which have been identified to produce the
leading contributions among the whole set of virtual-
photon diagrams, have Lorentz-violating two-point
insertions in loop lines exclusively. After defining Δγ ¼
k2 −m2

γ and ΔjðpÞ¼ðkþpÞ2−m2
j , and implementing the

Feynman parameters technique [48,65], we write the
analytical expressions of these diagrams as

ΓAB
1μ ¼ i

ð4πÞ2
ð2πμÞ4−D

iπ

Z
dDk

×
Z

1

0

dxdy
∂2

∂m2
j∂m2

k

N1μðmA;mBÞ
ΔγΔjðlÞΔkðl0Þ

����mj¼mA
mk¼mB

; ð11Þ

ΓAB
2μ ¼ i

ð4πÞ2
ð2πμÞ4−D

iπ

Z
dDk

×
Z

1

0

dx
∂2

∂ðm2
jÞ2

xN2μðmA;mBÞ
ΔγΔjðlÞΔBðpÞ

����
mj¼mA

; ð12Þ

ΓAB
3μ ¼ i

ð4πÞ2
ð2πμÞ4−D

iπ

Z
dDk

×
Z

1

0

dx
∂2

∂ðm2
jÞ2

ð1 − xÞN3μðmA;mBÞ
ΔγΔjðlÞΔBðp0Þ

����
mj¼mA

; ð13Þ

where l ¼ xpþ ð1 − xÞp0 and l0 ¼ ypþ ð1 − yÞp0 have
been defined. Keep in mind that the cases in which virtual-
lepton flavor is conserved and changed are both compre-
hended by Eqs. (11)–(13). The regularization of loop
integrals in these equations is carried out within the
approach of dimensional regularization [48,66], in which
case μ is a quantity with units ½μ� ¼ mass introduced to
correct mass dimensions of amplitudes. In Eqs. (11)–(13),
the factors Njμ ¼ NjμðmA;mBÞ, depending on charged-
lepton masses and not affected by squared-mass deriva-
tives, read

N1μ ¼ −
e3v2

4
γνð=kþ =p0 þmAÞðABA�

αβ γ5 þ VAB
αβ Þ

× σαβð=kþ =p0 þmBÞγμð=kþ =pþmBÞ
× ðABA�

ρλ γ5 þ VAB
ρλ Þσρλð=kþ =pþmAÞγν; ð14Þ

N2μ ¼ −
e3v2

4
γνð=kþ =p0 þmAÞγμð=kþ =pþmAÞ

× ðABA�
αβ γ5 þ VAB

αβ Þσαβð=kþ =pþmBÞ
× ðABA�

ρλ γ5 þ VAB
ρλ Þσρλð=kþ =pþmAÞγν; ð15Þ

N3μ ¼ −
e3v2

4
γνð=kþ =p0 þmAÞðABA�

αβ γ5 þ VAB
αβ Þ

× σαβð=kþ =p0 þmBÞðABA�
ρλ γ5 þ VAB

ρλ Þσρλ
× ð=kþ =p0 þmAÞγμð=kþ =pþmAÞγν: ð16Þ

We add all the individual loop-diagram analytic expres-
sions to get the total contribution ΓA

μ ¼ P
B¼e;μ;τðΓAB

1μ þ
ΓAB
2μ þ ΓAB

3μ Þ. Through algebraic manipulations, we write
this as

ΓA
μ ¼ e

2mA
fmAσμνq

ν þ ifdAσμνq
νγ5 þ � � � ; ð17Þ

where fmA and fdA are functions of field masses, squared
photon momentum q2, and Lorentz-violating tensor coef-
ficients VAB

αβ and AAB
αβ . We emphasize that fmA and fdA, which

from Eq. (1) are recognized as magnetic and electric form
factors, respectively, are invariant under particle Lorentz
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transformations. So, contributions to the AMM and
to the EDM of the charged-lepton lA can be straightfor-
wardly extracted from such coefficients. The ellipsis in
Eq. (17) represents a large set of terms, most of which
involve violations of invariance under particle Lorentz
transformations.
We define in the space of matrix representations of

Lorentz transformations, the 4 × 4 matrices κAB1 , κAB2 , and
κAB3 , with entries

ðκAB1 Þαβ ¼ VAB
αν VABνβ; ð18Þ

ðκAB2 Þαβ ¼ ABA�
αν ABAνβ�; ð19Þ

ðκAB3 Þαβ ¼ VAB
αν ABAνβ�: ð20Þ

Since A; B ¼ e, μ, τ, there are, in principle, 27 of these
complex matrices, each of them bearing 32 parameters,
thus yielding a grand total of 864 parameters, which,
however, are not independent. In particular, the following
relations hold: ðκAB1 Þαβ ¼ ðκAB1 Þβα and ðκAB1 Þαβ ¼ ðκBA1 Þ�αβ;
ðκAB2 Þαβ ¼ ðκAB2 Þβα and ðκAB2 Þαβ ¼ ðκBA2 Þ�αβ; ðκAB3 Þαβ ¼
−ðκBA3 Þ�αβ. As ðκABj Þαβ ¼ �ðκBAj Þ�αβ, for any fixed j, there
are nine real matrices, say, RefκABj g and ImfκABj g, so the
whole set of matrices comprises 27 elements with 16 real
entries per matrix. Nonetheless, notice that in the
cases j ¼ 1, 2 a further reduction occurs due to symmetry
in the space of matrix Lorentz representations. The
numbers of parameters resulting from the complex quan-
tities ðκABj Þαβ, for each j ¼ 1, 2, 3 and after taking these
relations into account, are given in Table I, from which a
total of 324 parameters are counted. However, the
Lorentz-violating contributions to AMMs and EDMs
under consideration do not carry information on all these
parameters. A major reason motivating the definitions
given in Eqs. (18)–(20) is that, as we show below, all
Lorentz-violating contributions from the Yukawa sector
to AMMs and EDMs emerge as linear combinations of
traces tr κABj ¼ ðκABj Þαα, which are the SME quantities to
be bounded.
The total contributions from the Lorentz-violating

Yukawa sector, Eq. (3), to fA-lepton magnetic and electric
form factors fmA and fdA are expressed as

fmA ¼ f̂mA þ
X
B≠A

f̃mAB; ð21Þ

fdA ¼ f̂dA þ
X
B≠A

f̃dAB; ð22Þ

where f̂mA and f̂dA are virtual-lepton-flavor conserving,
whereas f̃mAB and f̃dAB, with A ≠ B, come from Feynman
diagrams with virtual-lepton-flavor change. In terms
of the kappa notation defined by Eqs. (18)–(20), we write

the magnetic- and electric-form-factor contributions
from Feynman diagrams that preserve virtual-lepton fla-
vor, that is A ¼ B, as f̂mA ¼ −trfκAA1 ha;1 þ κAA2 ha;2g and
f̂dA ¼ −trfκAA3 hd;1g, where the symbol “tr” denotes, as
before, a trace operating on 4 × 4 matrices in the space
of matrix representations of Lorentz transformations.
The explicit expressions for the coefficients ha;1, ha;2,
and hd;1 are quite large and intricate functions of masses,
with no practical use for the reader, sowe have not included
them in the present paper. UV divergences introduced
by each contributing loop diagram lie exclusively
within two-point scalar functions B0. Any such function
can be expressed, after dimensional regularization, as
B0 ¼ ΔUV þ ðfinite termsÞ, where ΔUV ¼ 1=ð4 −DÞ −
γE þ logð4π=μ2Þ diverges as D → 4 [67]. All B0 functions
share the same UV-divergent term ΔUV, so any difference
of the formBj

0 − Bk
0, withB

j
0 andB

k
0 denoting different two-

point scalar functions, is free of UV divergences. We have
been able to establish that all B0 functions in both f̂mA and
f̂dA appear in differences like this, sowe conclude that every
UV divergence is canceled from the contributions with
A ¼ B. In the next step, we perform derivatives with
respect to squared masses, as indicated in Eqs. (11)–
(13). Then, parametric integrals also shown in such
equations are carried out, and the on-shell condition
q2 → 0, which defines the AMM and EDM contributions,
is implemented. The resulting virtual-lepton-flavor-
conserving expressions are

âfAA ¼ e3v2

4π2m2
A
tr
�
−κAA1

�
ΔIRþ log

μ2

m2
A

�
þ3

8
ðκAA2 −5κAA1 Þ

�
;

ð23Þ

d̂fAA ¼ ie3v2

16π2m3
A

tr

�
−2κAA3

�
ΔIRþ log

μ2

m2
A

�
þ3κAA3

�
: ð24Þ

The already anticipated presence of IR divergences in the
electromagnetic form factors is explicitly given by the
factorΔIR þ logðμ2=m2

AÞ, so these quantities do not qualify
as observables. Nevertheless, we previously discussed that
such divergences are expected to vanish from some cross
section. With this in mind, we aim at an estimation of the
effects of the finite parts of these quantities on some

TABLE I. The number of parameters associated with Lorentz-
violating factors ðκABj Þαβ for each j ¼ 1, 2, 3. Keep in mind that
coefficients ðκABj Þαβ are complex quantities, so the numbers
shown in this table take into account both independent real
and imaginary parts.

Parameters ðκAB1 Þαβ ðκAB2 Þαβ ðκAB3 Þαβ
Number 90 90 144
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physical observable instead, for which we omit the
divergent terms in what follows. For diagrams with
virtual-lepton-flavor change, the same steps are followed.
The corresponding contributions to AMMs are free of both

UVand IR divergences, whereas the resulting EDMs turn
out to be IR divergent. Once such IR divergences have been
removed, the virtual-lepton-flavor-changing contributions
to AMMs and EDMs are expressed as

ãfAB ¼ e3v2

192π2m6
Aðm2

A −m2
BÞ2

tr

�
ðκAB1 − κAB2 Þ

�
34m8

A log
m2

A

m2
B
þ ðm2

A −m2
BÞ
�
−13m4

Am
2
B þ 18m2

Am
4
B

þ 2ð−19m4
Am

2
B þ 11m2

Am
4
B þ 17m6

A − 9m6
BÞ log

m2
B

m2
B −m2

A
− 39m6

A

��
þ 24m3

AmBðκAB1 þ κAB2 Þ

×

�
m4

A log
m2

A

m2
B
þ ðm2

A −m2
BÞ
�
2ðm2

A −m2
BÞ log

m2
B

m2
B −m2

A
−m2

A

���
; ð25Þ

d̃fAB ¼ ie3v2m3
B

4π2m4
Aðm2

A −m2
BÞ

log
m2

B

m2
B −m2

A
tr κAB3 : ð26Þ

IV. ESTIMATION OF EFFECTS AND DISCUSSION

Known to exist since the realization of the Stern-Gerlach
experiment [68] and the ulterior theoretical explanation
provided by Uhlenbeck and Goudsmit [69,70], intrinsic
magnetic moments of elementary particles, which gave
birth to the concept of spin, receive quantum corrections
dubbed AMMs [71]. In the cases of the electron and the
muon, the corresponding SM predictions have been calcu-
lated and estimated with remarkable precision [72,73],
whereas experimental studies have reached exceptional
sensitivity [74–76]. The disparity among the SM contri-
bution to the AMM of some fermion f, aSMf , and the current
best experimental measurement aexpf is conventionally
characterized by the quantity Δaf ¼ aexpf − aSMf . For the
electron AMM,

Δae ¼ −1.06ð082Þ × 10−12 ð27Þ
has been reported [72] and

Δaμ ¼ 249ð87Þ × 10−11 ð28Þ

is the current value for the case of the muon [73]. These
discrepancies being so tiny can be interpreted as suitable
places to look for suppressed new physics beyond the SM.
The much-less-known tau-lepton AMM was investigated
by the authors of Ref. [77], who performed an analysis of
collider data and then established the model-independent
limits

−0.007 < aNPτ < 0.005 ð29Þ
on new-physics contributions to this quantity.
While theoretically plausible and phenomenologically

relevant, the EDMs of elementary particles have not been
measured ever, so our best experimental knowledge on the

matter consists of bounds. Investigations of EDMs of
elementary particles have found much motivation in
their connection to the phenomenon of CP violation,
an essential ingredient behind baryonic asymmetry [78].
Limits on the electron EDM de are particularly stringent.
Experiments with thallium atoms and ytterbium fluoride
molecules achieved high sensitivities, thus yielding
upper bounds of order 10−27 e · cm on jdej [79–81].
Furthermore, the ACME Collaboration reported the
improved upper limit [82]

jdej < 8.7 × 10−29 e · cm ð30Þ
at 90% C.L. The SM prediction lies about 15 orders of
magnitude below current experimental sensitivity [83], thus
rendering the search for newphysics presumably originating
EDMs a promising task. Three analyses aimed at the
observation of the muon EDMwere performed and reported
in Ref. [84] by the Muon g − 2 Collaboration. This group
concluded that the lack of any signal yields the bound [84]

jdμj < 1.8 × 10−19 e · cm ð31Þ
at 95% C.L. An experimental investigation carried out
by the Belle Collaboration searched for CP violation
induced by the tau-lepton EDM, determining at 95% C.L.
the limits [85]

−2.2×10−17 e · cm<ReðdτÞ< 4.5×10−17 e · cm; ð32Þ

−2.5×10−17 e · cm< ImðdτÞ< 0.8×10−17 e · cm: ð33Þ

An estimation of bounds on SME coefficients from the
Yukawa sector given in Eq. (3) is the main objective of the
present section. Being an effective field theory character-
ized by coefficients with Lorentz indices, this Lagrangian
sector bears a large number of parameters. Aiming at the
reduction of the number of such parameters, we consider
scenarios defined by specific assumptions on Lorentz-
nonconserving coefficients. This matter is addressed
below in a concrete manner. Moreover, the implementation
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of on-shell conditions on Eqs. (21) and (22) defines
the MSME Yukawa leading contributions to AMMs as
fmA ðq2 ¼ 0Þ ¼ aSME

A , and EDMs as fdAðq2 ¼ 0Þ ¼ dSME
A .

Then, using Eqs. (23)–(26), the resulting electromagnetic
factors contributions can be rearranged as

aSME
A ¼

X2
j¼1

X
B¼e;μ;τ

aABj tr κABj ; ð34Þ

dSME
A ¼

X
B¼e;μ;τ

dAB3 tr κAB3 ; ð35Þ

which is convenient in order to determine bounds.
Following Ref. [57], we assume that matrices Vαβ and
Aαβ are symmetric in flavor space. Since these matrices are
Hermitian and anti-Hermitian, respectively, Vαβ are real
and Aαβ are imaginary. Therefore, according to Eqs. (18)–
(20), traces tr κAB1 and tr κAB2 are real quantities, but tr κAB3
is imaginary. Furthermore, these assumptions ensure that
virtual-lepton-flavor-conserving contributions âfAA and d̂fAA
given by Eqs. (23) and (24), respectively, are real.
Consider, in general, some sort of new physics generat-

ing contributions to magnetic and/or electric form factors of
fermions. The resulting set of magnetic and electric form
factors can be classified into [43,44] diagonal electromag-
netic form factors, in which external fermions coincide with
each other, and transition electromagnetic form factors
characterized by different external fermions. If transitions
connecting leptons to quarks are forbidden, each of these
fermion types yields nine magnetic moments and nine
electric moments, with each set arranged as a 3 × 3 matrix.
All such matrices, whose diagonal entries are the diagonal
moments and with the transition moments playing the
roles of nondiagonal components, are conventionally
assumed to be Hermitian, meaning that diagonal moments
are real, whereas transition moments might be complex.
Notice, however, that working with the vertex AμfAfA off
shell may introduce thresholds, beyond which imaginary
parts of diagonal moments might be induced. It turns out
that, even though AMMs and EDMs are on-shell quan-
tities, electromagnetic moments of unstable particles may
have imaginary parts. This issue was addressed by the
authors of Ref. [86], who asseverated that AMMs and
EDMs are ensured to be real only as long as calculations
are performed in the context of Lorentz-conserving
quantum electrodynamics and suggested that ad hoc
definitions of these electromagnetic properties should
be given in more general situations. Their discussion
included a two-loop calculation, which showed that even
the SM produces complex AMMs and EDMs. The
emergence of complex electromagnetic moments has been
pointed out in Refs. [87,88] as well.
From the explicit expressions provided in Eqs. (25) and

(26), notice that Lorentz-nonconserving contributions to
charged-lepton AMMs and EDMs are complex, even

though these electromagnetic moments are not transition-
like, but diagonal moments instead, and even though they
have been calculated on shell. In a general context,
analogous imaginary parts of one-loop amplitudes, if
present, usually emerge when some external field is
connected to loop lines corresponding to particles which
together are lighter than the external particle. In the case of
the Lorentz-violating theory considered in the present
investigation, the insertion of bilinear vertices connecting
some external-field line to a lighter virtual-field line
produces a like effect, which can be appreciated in

Eqs. (25) and (26), where logarithmic factors log m2
B

m2
B−m

2
A

are real or imaginary depending on whether mB > mA or
mA > mB holds. This is illustrated by the graphs in Figs. 3
and 4, which display the behavior of the real and imaginary
parts of coefficients aABj and dAB3 defined by Eqs. (34) and
(35), as functions of the virtual-lepton massmB for the case
A ¼ μ corresponding to external muons. The upper graph

FIG. 3. Factors of traces in afμ , Eq. (34), as functions of the
virtual-lepton mass mB. The first graph displays aμB1 , the
coefficient of trκμB1 , while aμB2 , the coefficient of trκμB2 , is shown
in the second graph. Short-dashed plots stand for real parts of the
factors, whereas long-dashed curves display imaginary parts of
them. Vertical solid lines indicate where the threshold value
mB ¼ mμ lies.
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of Fig. 3 corresponds to aμB1 , whereas the lower graph of
this figure represents aμB2 , both quantities being factors
within the muon AMM contribution. In these graphs, short-
dashed curves represent the real parts of coefficients aμBj ,
while long-dashed plots depict imaginary parts of such
quantities. Moreover, horizontal solid lines represent the
values aμBj ¼ 0. Vertical solid lines located at value of the
muon mass mμ correspond to a mB threshold, beyond

which factors aμBj are either complex or real quantities.
Both graphs make it evident that the values of lB mass such
that mB < mμ yield imaginary-part contributions, but these
contributions are real as long as mB > mμ. Just as in Fig. 3,
the short-dashed plot represents the real part of the factor
dμB3 in the graph of Fig. 4, whereas the long-dashed curve is
associated with its imaginary part. In this graph, the real
part of dμB3 vanishes for mB > mμ, but its imaginary part

remains nonzero. This is correct, since the trace tr κμB3 is
purely imaginary, so a global imaginary factor from this
trace should get things right. We have made sure that an
analogous behavior occurs if external leptons fτ are
considered.
Now consider the 3 × 3 matrices

X j ¼

0
BB@

Xee
j X eμ

j Xeτ
j

Xμe
j Xμμ

j Xμτ
j

X τe
j X τμ

j X ττ
j

1
CCA≡

0
BB@

tr κeej tr κeμj tr κeτj

tr κμej tr κμμj tr κμτj

tr κτej tr κτμj tr κττj

1
CCA:

ð36Þ

Keep in mind that these matrices are not, by any
means, related to transition electromagnetic moments, in
which external fermions have different flavors. They
exclusively correspond to diagonal electromagnetic
moments, and rather characterize the terms of such
quantities in which virtual-lepton flavor is preserved or
changed. For instance, from Eq. (34), the contribution from
Lorentz violation to the tau AMM is expressed as
aSME
τ ¼ P

2
j¼1ðaτej X τe

j þ aτμj X
τμ
j þ aττj X

ττ
j Þ. Then notice

that the third rows of matrices X1 and X2 comprise all
the SME traces X τB

j ¼ tr κτBj necessary to determine this

AMM contribution. In general,X†
j ¼ X j holds for j ¼ 1, 2,

while X†
3 ¼ −X3, so not all the traces defining the entries

of matrices X j are independent. Moreover, our previous
assumption that VAB

αβ ¼ VBA
αβ and AAB

αβ ¼ ABA
αβ ensures that

X1 and X 2 are symmetric and real, whereas X3 is
symmetric and imaginary. Thus, each matrix X j is deter-
mined by six independent parameters XAB

j yielding a total
of 18 independent parameters. Since AMM contributions
are given exclusively in terms of X1 and X 2, these
quantities are determined by 12 real traces, whereas
EDMs expressed in terms of X3 involve six independent
traces in total. With these definitions at hand, we now
consider scenarios distinguished by textures of X j.

A. Quasidiagonal textures

The scenario of quasidiagonal textures is defined by the
assumption that the diagonal entries of X j are by far
dominant, whereas off-diagonal components of such matri-
ces practically equal zero, namely, XAB

j ≈ 0 for A ≠ B.
Then, X j matrices look like

X j ≈

0
BB@

Xe
j 0 0

0 Xμ
j 0

0 0 X τ
j

1
CCA; ð37Þ

where we have denoted XAA
j ¼ XA

j . So, Eqs. (34) and (35)
are expressed as

aSME
A ≈ aAA1 XA

1 þ aAA2 XA
2 ; ð38Þ

dSME
A ≈ dAA3 XA

3 ; ð39Þ

where repeated flavor indices do not indicate sums.
As shown by Eq. (38), the assumption of quasidegen-

erate textures yields for each lepton flavor A a MSME
contribution to AMM aSME

A determined by only two
parameters. We provide Figs. 5–7, which show parameter
regions in ðXA

1 ;X
A
2 Þ spaces allowed by current constraints

from beyond-SM physics on AMM given in Eqs. (27)–
(29). Figure 5 displays the allowed region for the
case of SME contributions to the electron AMM within

K3
B

2

FIG. 4. Factors of traces in dfμ , Eq. (34), as functions of the
virtual-lepton mass mB. The first graph displays dμB3 , the
coefficient of trκμB3 , while dμB4 , the coefficient of trκμB4 , is shown
in the second graph, and dμB5 , the coefficient of trκμB5 , is depicted
by the third graph. Short-dashed plots stand for real parts of the
factors, whereas long-dashed curves display imaginary parts of
them. Vertical solid lines indicate where the threshold value
mB ¼ mμ lies.
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jXe
1j < 1.5 × 10−21 and jXe

2j < 1.5 × 10−21. Aiming at a
cleaner representation, the graph has been suitably
rescaled by a factor of 1021. An examination of this figure
makes it clear that the Lorentz-violation coefficient Xe

1 is
more restricted than Xe

2. For any value of Xe
2, the trace

Xe
1 lies within a narrow interval of width ≈8.1×10−22.

Furthermore, as long as Lorentz-violation traces of order

≲10−21 are assumed, the value of Xe
1 is more likely to be

negative. Similar explanations for Figs. 6 and 7 apply, but
with the corresponding graphs rescaled by factors of 1014

and 104, respectively. From Fig. 6, Xμ
1 > 0 if muon-flavor

traces of Lorentz-violating matrices are of order ≲10−14.
To better illustrate the values of the parameters XA

1 and
XA

2 considered for the realization of Figs. 5–7, we refer
the reader to Table II which carries data for lepton
flavors A ¼ e, μ, τ. The first rows of these tables display
the minimum (“bottom” column) and maximum (“top”
column) XA

2 values considered for the graphs of Figs. 5–7.
The same rows include intervals of XA

1 values within the
allowed regions in the graphs determined by the fixed upper
and lower values of parameters XA

2 .
The determination of the bounds in the case of lepton

EDMs is simpler. From Eq. (39), each new-physics con-
tribution dSME

A is expressed in terms of only one trace if

2

FIG. 5. For quasidegenerate texture, the allowed region within
the parameter space ðX e

1;X
e
2Þ × 1021, for jX e

1j < 1.5 × 10−21 and
jX e

2j < 1.5 × 10−21, in accordance with the AMM constraint
displayed in Eq. (27).

2

FIG. 6. For quasidegenerate texture, the allowed region within
the parameter space ðX μ

1;X
μ
2Þ × 1014, for jXμ

1j < 9 × 10−14

and jXμ
2j < 9 × 10−14, in accordance with the AMM constraint

displayed in Eq. (28).

2

FIG. 7. For quasidegenerate texture, the allowed region within
the parameter space ðX τ

1;X
τ
2Þ × 104, for jX τ

1j < 1.5 × 10−4 and
jX τ

2j < 1.5 × 10−4, in accordance with the AMM constraint
displayed in Eq. (29).

TABLE II. Values of Lorentz-violation parameters XA
1 and XA

2 ,
with A ¼ e, μ, τ from lepton AMMs constraints. Fixed param-
eters XA

j , in each row correspond to either the bottom (second
column) or top (third column) values of a graph in Figs. 5–7.

Bottom Top

X e
2 fixed −15 × 10−22 þ15 × 10−22

⇒ X e
1 −8.25ð405Þ × 10−22 −2.25ð405Þ × 10−22

Xμ
2 fixed −9 × 10−14 þ9 × 10−14

⇒ Xμ
1 3.46ð184Þ × 10−14 7.06ð184Þ × 10−14

X τ
2 fixed −9 × 10−5 þ9 × 10−5

⇒ X τ
1 −2.39ð358Þ × 10−5 1.20ð358Þ × 10−5
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quasidegenerate textures are assumed. From the current
limits on lepton EDMs displayed in Eqs. (30)–(32), the
following bounds are derived:

jχe3j < 5.58 × 10−27; ð40Þ

jχμ3j < 1.02 × 10−10; ð41Þ

−5.95 × 10−5 < −iχτ3 < 1.21 × 10−4: ð42Þ

B. Hermitian matrices Yαβ

Consider a scenario in which Y†
αβ ¼ Yαβ holds. As

previously pointed out, this assumption yields, according
to Eqs. (4) and (5), an exact cancellation of Lorentz-
violating coefficients AAB

αβ while leaving nonzero factors
VAB
αβ . Under such circumstances, only the matrix X1

remains nonzero, so the whole set of AMM contributions
is written in terms of six X 1 parameters, whereas no
contributions to EDMs exist. To discuss the AMM con-
tributions, we define the factors

ΔH
1 ¼ Xeμ

1

X τe
1

; ΔH
2 ¼ X τe

1

Xμτ
1

ð43Þ

in terms of which the new-physics contributions are
written as

aSME
e ¼ aee1 Xe

1 þ ΔH
2 ðaeμ1 ΔH

1 þ aeτ1 ÞXμτ
1 ; ð44Þ

aSME
μ ¼ aμμ1 Xμ

1 þ ðaμe1 ΔH
1ΔH

2 þ aμτ1 ÞXμτ
1 ; ð45Þ

aSME
τ ¼ aττ1 X

τ
1 þ ðaτe1 ΔH

2 þ aτμ1 ÞXμτ
1 : ð46Þ

In this manner, each contribution corresponding to any
lepton flavor A is expressed in terms of four parameters. For
any flavor A, three such quantities are the factors ΔH

1 , ΔH
2 ,

and the trace Xμτ
1 , while the parameter XA

1 , which is the
only one distinguishing the specific A-flavor contribution,
defines the expression as well. The fact that Eqs. (44)–(46)
share three Lorentz-violation parameters is a feature to bear
in mind, for the contributions aSME

e , aSME
μ , aSME

τ are in part
simultaneously determined by such parameters. To provide
a qualitative description of the SME contributions aSME

A in
this scenario, the graphs of Figs. 8–11 have been plotted.
The two graphs of Fig. 8 displaying the allowed regions

in the space of parameters ðXe
1;X

μτ
1 Þ and determined by the

bounds on contributions from new physics to the electron
AMM, Eq. (27), have been realized within jXe

1j < 1.5 and
jXμτ

1 j < 5 after a proper rescaling by the factor 1021. Two
graphs have been included in order to compare the allowed
regions for scenarios characterized by different choices of
the parameter ΔH

1 . The values ΔH
1 ¼ 10 in the upper graph

and ΔH
1 ¼ 102 in the lower graph have been considered,

whereas for each graph the values ΔH
2 ¼ 0.1, 0.2, 0.3 have

been taken into account. The three allowed regions shown
by each graph are straight strips whose widths are similar to

4

2

0

2

4

4

2

0

2

4

FIG. 8. Allowed regions in the parameter space ðX e
1;X

μτ
1 Þ,

within jX e
1j < 1.5 × 10−26 and jX μτ

1 j < 5 × 10−26, with both
graphs rescaled by 1026. We consider values ΔH

1 ¼ 10 (upper
graph) and ΔH

1 ¼ 102 (lower graph), whereas ΔH
2 ¼ 0.1, 0.2, 0.3

are used in both cases.
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each other for each considered ΔH
2 value. In the case

ΔH
1 ¼ 10, the allowed regions are barely distinguished from

each other, whereas the shapes of the regions seem to be
more sensitive to changes in ΔH

2 as long as the value
ΔH

1 ¼ 102, larger by 1 order of magnitude, is considered.
These graphs illustrate how orientations of allowed regions
are, in general, different for different values of ΔH

2 with
fixed ΔH

1 . In this context, the SME trace Xe
1 is more

stringently constrained than Xμτ
1 in both scenarios.

Nonetheless, the last statement realized for particular
choices of factors ΔH

1 and ΔH
2 should not be understood

to be valid in general. To illustrate this, we provide Fig. 9,
which has been realized within the same parameter region
ðXe

1;X
μτ
1 Þ as that of the graphs of Fig. 8, and with the same

rescaling as well. In this case, the values ΔH
2 ¼ 0.3 and

ΔH
1 ¼ 15, 150, 1500 have been utilized. Then notice that

the largest value of ΔH
1 , among those considered for the

realization of this graph, yields an allowed-region strip
which, in comparison with the allowed regions of Fig. 8, is
narrower with a clockwise-rotated orientation, thus corre-
sponding to a parameter Xμτ

1 more stringently restricted
than Xe

1, as opposite to the allowed regions of Fig. 8.
Regarding the contributions from the SME to the AMM

of the muon, the graphs of Fig. 10 provide a depiction of the
allowed regions in the parameter space ðXμ

1;X
μτ
1 Þ, with a

4

2

0

2

4

FIG. 9. Allowed regions in the parameter space ðX e
1;X

μτ
1 Þ,

within jX e
1j < 1.5 × 10−26 and jXμτ

1 j < 5 × 10−26, with the graph
rescaled by 1026. We consider values ΔH

1 ¼ 15, 150, 1500,
whereas ΔH

2 ¼ 0.3 is taken.

FIG. 10. Allowed regions in the parameter space ðXμ
1;X

μτ
1 Þ,

within jXμ
1j < 8 × 10−14 and either jXμτ

1 j < 6 × 10−14 (upper
graph) or jXμτ

1 j < 0.6 × 10−14 (lower graph), with both graphs
rescaled by 1014. We consider values ΔH

1 ¼ 10 (upper graph) and
ΔH

1 ¼ 102 (lower graph), whereas ΔH
2 ¼ 0.1, 0.2, 0.3 are used in

both cases. Pairs of dashed horizontal lines define Xμτ
1 -allowed

intervals around Xμτ
1 ¼ 0.
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convenient rescaling by a factor 1014 implemented in the
two graphs. In the present scenario, the contribution aSME

μ is
complex valued, so its modulus, jaSME

μ j has been rather
considered to compare it with the bound from new physics
on the muon AMM, Eq. (28), which corresponds to an
interval of positive values. Thus, the allowed regions shown
in Fig. 10 are not straight strips, but rings instead. The
values of the factors ΔH

1 and ΔH
2 utilized to plot the graphs

of Fig. 10 are the same as those of Fig. 8; that is, ΔH
1 ¼ 10

and ΔH
1 ¼ 102, respectively, were used to plot the upper

graph and the lower graph of Fig. 10, whereas the values
ΔH

2 ¼ 0.1, 0.2, 0.3 were all considered in both graphs. With
this in mind, notice that for fixed ΔH

1 , increasing the values
of the parameter ΔH

2 flattens the ring along the Xμτ
1 axis, in

which case larger values of ΔH
2 correspond to more

restricted allowed regions. While values within jXμ
1j <

8 × 10−14 have been considered for both graphs, vertical
axes range along different intervals: The upper-graph
vertical axis runs over jXμτ

1 j < 6 × 10−14; the lower graph,
on the other hand, displays values of the vertical axis within
jXμτ

1 j < 0.6 × 10−14. So, notice that the choice ΔH
1 ¼ 102

for the lower graph yields more constrained regions than
those corresponding to ΔH

1 ¼ 10.
Next we focus on the SME contributions to the tau

AMM, which we illustrate by means of Fig. 11. This figure
displays one sole graph plotted within jX τ

1j < 0.35 × 10−4

and jXμτ
1 j < 2.6 × 10−4, and normalized by the factor 104.

Notice from Eq. (46) that aSME
τ is ΔH

1 independent, so there

is no need to include more graphs to compare regions
associated with different values of the factor ΔH

1 . As it
occurred in the case A ¼ μ, previously discussed, the SME
contribution aSME

τ to the tau AMM is a complex-valued
quantity. Thus, the modulus jaSME

τ j was considered, and
since the bounds on this AMM define an interval which
includes both positive and negative values, the resulting
allowed regions do not involve holes. Again, the plotted
allowed regions correspond to the values ΔH

2 ¼ 0.1, 0.2,
0.3. This graph shows that the larger the value of ΔH

2 , the
flattest the ellipse along the Xμτ

1 axis and, thus, the smaller
the allowed region in the parameter space ðX τ

1;X
μτ
1 Þ.

Among the three MSME AMM contributions, the most
stringent constraints on Xμτ

1 of orders 10−15 to 10−14 are set
by jaSME

μ j. The corresponding allowed intervals are dis-
played in the graphs of Fig. 10 through pairs of horizontal
dashed lines which are equidistant from the horizontal axes.
Each graph then shows three such intervals. The precise
numerical values of these limits are given in the fourth
column of Table III.

V. SUMMARY

The present investigation has been performed in the
context established by the Lorentz- and CPT-violating
Standard Model extension, an effective field theory which
sets a quite general framework to quantify, at relatively
low energies, the effects to be expected from a higher-
energy formulation incorporating violation of Lorentz
invariance. While this model of new physics extends
every sector of the Standard Model, by the inclusion of
both renormalizable and nonrenormalizable Lagrangian
terms, our discussion has been restricted to couplings
occurring in the Yukawa sector of the renormalizable part
of the Standard Model extension. This sort of Lorentz
nonconservation is characterized by Yukawa-like cou-
plings endowed with spacetime Lorentz indices, which
come along with noninvariance under particle transfor-
mations, even though observer transformations remain a
symmetry of the theory.

FIG. 11. Allowed regions in the parameter space ðX τ
1;X

μτ
1 Þ,

within jX τ
1j < 0.35 × 10−4 and jXμτ

1 j < 2.6 × 10−4, with the
graph rescaled by 104. We consider values ΔH

2 ¼ 0.1, 0.2, 0.3,
for any ΔH

1 .

TABLE III. Allowed intervals of Xμτ
1 values for different

choices of parameters ΔH
1 and ΔH

2 and determined from lepton
AMMs bounds on new-physics effects, implemented on the
MSME Yukawa-sector contributions aSME

A in the scenario of
Hermitian matrices Yαβ.

ΔH
1 ΔH

2 jX μτ
1 j <

aSME
A

10 0.1 5.93 × 10−14

10 0.2 2.96 × 10−14

10 0.3 1.98 × 10−14

102 0.1 0.59 × 10−14

102 0.2 0.29 × 10−14

102 0.3 0.19 × 10−14
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In a perturbative approach, the Lorentz-violating inter-
actions resulting from this extended Yukawa sector, after
implementation of the Brout-Englert-Higgs mechanism,
yield two-point insertions and three-point vertices which
induce one-loop corrections to the electromagnetic vertex
AμlAlA. In the presence of Lorentz nonpreservation, AμlAlA
is characterized by a tensor structure with several form
factors adding to those already known to define the
ordinary Lorentz-invariant parametrization of such inter-
actions. In this context, the aforementioned loop correc-
tions involve contributions to both magnetic and electric
form factors. For these quantities to consistently be Lorentz
invariant, the contributions from this new physics have
been argued to emerge for the first time at the second order
in Lorentz-violating coefficients. With this in mind, leading
contributions from Lorentz violation to anomalous mag-
netic moments and electric dipole moments have been
identified, with the corresponding expressions being quan-
tified by flavor-mixing coefficients tr κAB1 ¼ VAB

αν VABνα,
tr κAB2 ¼ ABA�

αν ABAνα�, and tr κAB3 ¼ VAB
αν ABAνα�. The result-

ing contributions from Lorentz-violation to anomalous
magnetic moments and electric dipole moments have been
found to be ultraviolet finite. Nonetheless, the contributions
bear infrared divergences that cannot be removed from
amplitudes, so these electromagnetic moments contribu-
tions are not measurable. Even so, since such divergences
are expected to vanish at the cross-section level, the infrared-
divergent terms have been removed from the contributions in
order to estimate the impact of these interactions on some
physical process. Imaginary parts of the muon and tau-
lepton electromagnetic moments emerge, even though the
calculation has been carried out on shell and has included
only diagonal moments. This happens in the perturbative
approach, followed here, because bilinear insertions allow
for Feynman diagrams in which external lines connect to
virtual lines associated with lighter particles, thus defining
thresholdswhich are surpassed by the contributions after on-
shell conditions are implemented.

Defining 3 × 3 matrices X j with lepton-flavor compo-
nentsXAB

j ¼ tr κABj , where j ¼ 1, 2, 3 and where the trace tr
operates on 4 × 4 matrices κABj given in the space of matrix
representations of the Lorentz group, we have considered
and explored two scenarios. One of them, which we have
named “scenario of quasidiagonal textures,” is defined by
the conditions XAB

j ≈ 0 for A ≠ B. In this context, each
electromagneticmoment is determined byLorentz-violation
parameters not shared by any other moment, so the com-
parison between each electromagnetic moment contribution
and its corresponding bound, as taken from the literature, has
been carried out independently of any other contribution.
Moreover, in this scenario all the contributions fromLorentz
violation are real. A summary of the bounds determined in
this scenario is provided in Table IV, where constraints
derived within this scenario can be found in rows including
the assumption “QDT,” which is an acronym for quasidiag-
onal textures. From this table, note that the most stringent
bounds restricting SME coefficients tr κeej are established by
the electron EDM, whereas the most stringent bound given
by AMMs limits on new-physics effects of order 10−22 also
correspond to the case of the electron. As expected, for both
electromagnetic moment Lorentz-violation contributions,
theweakest constraints are determined by the restrictions on
the tau-lepton electromagnetic moments. A scenario of
Hermitian Yukawa matrices, which in Table IV has been
referred to by the acronym “HYM,” is defined by the
condition Y†

μν ¼ Yμν, which yields the exact cancellation
of coefficients ABA�

μν , so no contributions to electric dipole
moments are generated. In this scenario, the Lorentz-
violation contributions to the anomalous magnetic moments
of the muon and the tau lepton, which are unstable particles,
have turned out to be complex quantities. The comparison of
SME contributions with current bounds on such electro-
magnetic moments and the corresponding analysis is more
intricate than the one executed in the other scenario, the
reason being that all the anomalous-magnetic-moment

TABLE IV. Bounds on SME coefficients from the Lorentz-violating Yukawa sector.

Assumptions EMMs Combinations Bounds

QDT, trκee2 ¼ �1.5 × 10−21 aSME
e trκee1 −2.25ð405Þ × 10−22

−8.25ð405Þ × 10−22

QDT, trκμμ2 ¼ �5.0 × 10−10 aSME
μ trκμμ1 þ7.06ð184Þ × 10−14

þ3.46ð184Þ × 10−14

QDT, trκττ2 ¼ �9.0 × 10−5 aSME
τ trκττ1 þ1.20ð358Þ × 10−5

−2.39ð358Þ × 10−5

QDT dSME
e jtrκee3 j <5.58 × 10−27

QDT dSME
e jtrκμμ3 j <1.02 × 10−10

QDT dSME
τ −itrκee3 >−5.95 × 10−5

<1.21 × 10−4

HYM, ΔH
1 ¼ 10, ΔH

2 ¼ 0.3 jaSME
μ j jtrκμτ1 j <1.98 × 10−14

HYM, ΔH
1 ¼ 102, ΔH

2 ¼ 0.3 jaSME
μ j jtrκμτ1 j <0.19 × 10−14
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contributions share SME parameters, together with the fact
that bounds on these quantities are quite different from each
other. Under such circumstances, the parameter jtr κμτ1 j is the
one which has been bounded. The most restrictive limits
constraining jtr κμτ1 j are as stringent as 10−15.
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