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Composite Higgs models can be extended to the Planck scale by means of the partially unified partial
compositeness (PUPC) framework. We present in detail the Techni-Pati-Salam model, based on a
renormalizable gauge theory SUð8ÞPS × SUð2ÞL × SUð2ÞR. We demonstrate that masses and mixings for
all generations of standard model fermions can be obtained via partial compositeness at low energy, with
four-fermion operators mediated by either heavy gauge bosons or scalars. The strong dynamics is predicted
to be that of a confining Spð4ÞHC gauge group, with hyperfermions in the fundamental and two-index
antisymmetric representations, with fixed multiplicities. This is motivation for lattice studies of the infrared
near-conformal walking phase, with results that may validate or rule out the model. This is the first
complete and realistic attempt at providing an ultraviolet completion for composite Higgs models with top
partial compositeness. In the baryon-number conserving vacuum, the theory also predicts a dark matter
candidate, with a mass in the few TeV range, protected by semi-integer baryon number.
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I. INTRODUCTION

The Standard Model (SM) of particle physics [1–3] has
withstood all the attempts at discovering signs of new
physics, with most recently the null results from the LHC
experiments. The discovery of a Higgs-like boson [4,5] has
further confirmed the validity of the SM. The main
experimental confirmation has come from precise mea-
surements in the electroweak (EW) sector of the theory,
with the most prominent results obtained at LEP [6]. What
we know with a precision at the level of per mille is
that there exist three Goldstone bosons, i.e., the longi-
tudinal polarizations of the W� and Z gauge bosons, that
complement the gauge principle in the SM and provide
mass to the weak gauge bosons [7–10]. While all exper-
imental results seem to point toward a SM-like Higgs
boson, our knowledge of its properties is still far from the
precision achieved in the gauge sector; the couplings of the
Higgs boson are only known at best at the level of 10%
[11], and the precision will not improve greatly at the end of
the LHC program [12]. This experimental status leaves

open the question of the true nature of the discovered
Higgs boson.
One promising and attractive possibility consists in

generating both the Higgs boson and the EW Goldstone
bosons as composite bound states. We will briefly sum-
marize the state-of-the-art model building at the beginning
of next section; for now, we simply observe that the
majority of the results in the literature are based on effective
field theory (EFT) approaches. In this article, we want to
face the daring need for an ultraviolet (UV) completion for
composite Higgs models; this step is crucial in order to base
all we learned from EFT studies on more solid foundations
and to truly understand the origin of flavor physics. What
we aim at is to define a UV theory that reduces to a viable
composite Higgs theory at low energies, around the TeV
scale, while being complete and fundamental, i.e., defined
up to the Planck scale. Ideally, this should be a theory
containing a finite set of couplings closed under the
renormalization group equations in the absence of quantum
gravity effects (which are beyond our scope).
Several paths have already been opened in the literature,

so it’s useful to first review their main properties. Firstly,
the composite sector may be a low energy expression of a
conformal field theory (CFT) valid up to the Planck scale.
Thus, each composite state is associated to a conformal
operator, with specific scaling dimensions required from
phenomenological viability. However, the completeness of
the operators (with their dimensions) required by phenom-
enology has not been proven yet; thus, this scenario may
be incomplete and miss important low energy effects.
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Following the holographic principle, one may be tempted
to invoke extra dimensional theories as genuine UV
completions [13]. This path has proven extremely useful
in studying the properties of this class of theories [14–19],
including QCD [20–22], thanks to calculability; however,
these theories suffer from the same lack of completeness as
the CFT-based ones. In other words, there is no proof that
the limited set of bulk fields required for phenomenology
gives a complete picture of the UV physics. Additional
couplings and fields may be necessary, thus changing the
low energy properties of the model. In addition, some basic
requirements at the foundation of the original holographic
conjecture [23], like the presence of maximal supersym-
metry, are not satisfied in the minimal models studied so
far. Example of models based on more solid supersym-
metric dualities can be found in Refs. [24,25]; however,
these theories lack a complete theory of flavor. Finally, it is
not clear at all if extra dimensional theories are fundamental
because of the mass dimension carried by gauge couplings
themselves [26,27].
An attractive and time-honored route is offered by

microscopic gauge-fermion theories, similar to QCD for
mesons and hadrons, defined in terms of a renormalizable
and fundamental four-dimensional gauge theory (we refer
the reader to the recent review of this approach in [28]). In
Refs. [29–31], it has been shown that there exists a limited
number of models apt at describing top partial composite-
ness at low energies [32,33]. These models, however, do
not offer a complete picture of the UV physics: On one
hand, these models nicely describe the low energy spec-
trum but need to be extended in order to enter a near-
conformal dynamics above the condensation scale; on the
other hand, the couplings of the elementary top fields are
introduced as nonrenormalizable four-fermion interactions,
which may come together with other relevant and omitted
operators. Furthermore, the origin of light quark and lepton
masses is not addressed. Lattice studies of the low energy
properties for some of these theories are also available
[34–39]. Alternatively, (light) scalar fields charged under
the confining gauge symmetry have been introduced in
Refs. [40,41]; at the price of giving up naturalness, one
potentially obtains a complete and fundamental theory of
flavor [42]. We should also mention the possibility of
bosonic technicolor [43], where an elementary Higgs
doublet is reintroduced [44,45].
Trying to achieve a complete composite theory of flavor

based on gauge and fermion fields alone is a much more
daring task: This would be similar to the quest for extended
technicolor theories [46,47] that, despite intense efforts
[48–51], has not produced any fully realistic model so far.
More recently, large Nf asymptotic safety [52] has been
proposed as a route to the Planck scale for gauge-fermion
models [53], yet the four-fermion interactions leading to
SM fermion masses need to be generated by the mediation
of heavy scalars.

In the present work, we follow the route opened in
Ref. [54] within the partially unified partial compositeness
(PUPC) framework: The confining gauge symmetry is
partially unified with the SM ones, with the gauge
symmetry breaking due to high-scale scalars. In this sense,
this approach lies in between the early extended technicolor
approaches and theories with scalars while retaining the
ambition of achieving a complete theory of flavor in a
natural way, i.e., without large hierarchies between scalar
masses and the Planck scale. Our main goal will be to give a
proof of principle that such a theory can be constructed,
while leaving its final validation to lattice results in the
conformal window lying between the compositeness scale
and the Planck scale. While we show how flavorful
couplings for all SM quarks and leptons can be generated
as a combination of gauge and scalar mediation, we will not
attempt to prove that the theory can survive the severe
flavor bounds from experiments. In fact, without the input
of lattice on the anomalous dimensions of the composite
operators that couple to the SM fermions, an analysis based
on the EFT approach would be similar to results already
present in the literature [55–58]. Our construction offers the
benefit of providing a complete set of operators that couple
to the SM fields and the properties of the strongly coupled
gauge interactions that can be studied via first-principle
lattice calculations.
The general idea is described in Ref. [54]: Here, we focus

specifically on the Techni-Pati-Salam (TPS) model based
on a partially unified gauge symmetry,

GTPS ¼ SUð8ÞPS × SUð2ÞL × SUð2ÞR:

We will show how to construct a minimal model, which
also helps in predicting the properties of the microscopic
theory underlying the low energy composite dynamics (that
can be studied on the lattice) and the dynamics of the
walking phase. Analyzing how flavor structures arise can
help one better understand the low energy properties of
composite models: For instance, we can show that the
multiscale scenario of Ref. [57] cannot be achieved in this
framework and only top partners, i.e., lightish spin-1=2
resonances associated to the third generation, are possible.
The article is organized as follows. In Sec. II, we present

the general features of the PUPC framework and the
characteristics that lead us to focus on the TPS model
and its symmetry breaking pattern. In Sec. III, we discuss in
detail how the masses for the third generation of SM
fermions can be generated, starting from a fundamental
gauge-Yukawa theory at a high scale. In particular, we will
show how the mass hierarchy between the top, bottom, tau,
and neutrino can be achieved. In Sec. IV, we investigate the
possibility of extending the construction to the first and
second families; we identify the necessary and minimal
ingredients needed to generating all masses and non-
trivial Cabibbo-Kobayashi-Maskawa (CKM) [59,60] and
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Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [61] mixing
matrices. We also establish how baryon number conserva-
tion can be imposed to avoid proton decay, thus leading to
the existence of a potential dark matter candidate. We offer
our conclusion and the perspectives in Sec. V.

II. GENERAL CONSIDERATIONS

A. State of the art

On the model building side, the SM lacks two key
ingredients that play a crucial role in our understanding of
our Universe: gravitational interactions and a dark matter
candidate. This simple observation points toward the
existence of a new physical scale, ultimately the Planck
mass from gravity,1 thus keeping open the long standing
hierarchy problem between the EW scale and such UV
scale. The presence of an elementary scalar field in the
Higgs sector is particularly at odds with the observed
hierarchy, as a scalar mass receives quantum corrections
proportional to the new physical scale. The discovery of a
Higgs boson with a mass of 125 GeV can, therefore, be
considered a materialization of the so-called “naturalness”
problem. A time-honored possibility [62] is to replace the
elementary Higgs sector of the SM with a strong confining
dynamics; the EW scale would, therefore, be generated
dynamically, like the QCD scale, and the EW symmetry
breaking (EWSB) can be ascribed to a spontaneous chiral
symmetry breaking. While the first proposals were essen-
tially Higgless [46,47], it was soon realized that extending
the global symmetry of the theory allows the entire Higgs
doublet to arise as a pseudo-Nambu-Goldstone boson
(PNGB) of the condensing strong sector [63]. This new
approach kills two birds with one stone: It explains why the
Higgs boson is lighter than other composite states (in
agreement with the null results of new physics searches at
the LHC) and the 10 percent agreement of the composite
Higgs couplings to SM predictions, at the price of gen-
erating a “little hierarchy” [64] between the EW scale
v ¼ 246 GeV and the compositeness scale. The latter is
encoded in the PNGB decay constant f ≈Oð1Þ TeV.
The nemesis of this approach to the EWSB is the

generation of fermion masses [46,47]; as SM fermion
couplings to the strong sector typically arise via higher
dimension operators, generating large masses (i.e., the top
mass) is generically at odds with fulfilling constraints from
flavor changing neutral currents (FCNCs). Many palliatives
have been proposed: Among the most remarkable are the
presence of an IR conformal phase [65] and the mechanism
of fermion partial compositeness (PC) [66]. The former
relies on the property that the strong sector enters a
“walking” phase [67] right above the condensation scale,
where a large anomalous dimension of the composite Higgs

operator is generated, allowing it to push the flavor scale
high enough without suppressing the SM fermion mass
operators. In the latter, Yukawa-like couplings are replaced
by linear mixing of the SM fermion fields to fermionic
composite operators in such a way that the large anomalous
dimensions are associated to composite baryonic operators
instead of the Higgs one. This scenario has been revived in
the early 2000s thanks to the principle of holography [14],
which allowed one to relate a composite PNGB Higgs in a
nearly conformal theory to a gauge boson in a warped five-
dimensional theory. Composite Higgs models thus merged
with the Gauge-Higgs unification model building in
warped space [68], leading to the definition of a minimal
model based on the symmetry breaking SOð5Þ=SOð4Þ
[15,69], where only the Higgs doublet populates the
PNGB sector of the theory. A lot of work has been devoted
in the literature on this scenario, and we refer to the recent
reviews [17–19,28] and references therein. Yet, most of the
results in the literature rely on EFT analyses, both for
studying the phenomenology and for developing various
model building aspects of the composite Higgs paradigm.
In the case of the flavor issue [55–57], for instance, it has
been found that light top partners are allowed as soon as
flavor structures for light generations can be generated at a
higher scale separated from the condensation scale by a
near-conformal phase.

B. The PUPC proposal

The main goal of our PUPC approach [54] is to provide a
genuine UV completion for composite Higgs models with
top partial compositeness, which could explain the origin of
the partial compositeness couplings and flavor physics. The
theory also needs to be valid all the way up to the Planck
scale, where quantum gravity effects become relevant. To
achieve this goal, we require that the theory in the UV
consists of a renormalizable gauge-Yukawa theory. Scalars,
therefore, are added with a “natural” potential, in the sense
that all the dimension-of-mass parameters are not too far
from the Planck scale. We remind the reader that this
“naturalness” principle does not apply to fermion masses.
The low energy target is a composite Higgs model with, at
least, top partial compositeness. This implies that the UV
theory needs to provide both the couplings to achieve top
PC and an intermediate walking phase to enhance them at
low energy; the PUPC model, therefore, needs to pass
through several different dynamical phases at various
scales, as schematically depicted in Fig. 1. Here, we expect
the low energy dynamics, above the EW scale, to be that of
a confining theory with a typical scale ΛHC ≈ 10 TeV
(implying a Higgs PNGB decay constant f≈ΛHC

4π ≈1 TeV).
An IR walking phase thus occurs, separating the confine-
ment scale from the scale where flavor physics is generated,
ΛF. How large this scale needs to be depends on the flavor
bounds in a specific model; however, we expect it to be
close to the scale of gauge symmetry breaking of the UV

1The intrinsic scale of dark matter is not known; however, the
only direct evidences derive from gravitational effects.
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theory. The latter is achieved by giving vacuum expectation
values (VEVs) to the scalars in the theory, at a scale ΛPU,
which is allowed to be roughly one loop-factor below
MPlanck. Thus, typically, ΛF ≈ ΛPU ≈ 1016÷19 GeV.
In this section, we will present some general features of

PUPC models. The first issue is about choosing the gauge
groups. Then, we will show how the SM fermions can be
embedded into the PUPC theory and the scalar sector
needed for the symmetry breaking. Finally, we will discuss
the conditions under which a walking dynamics can be
achieved. In the following two sections, we will discuss
more gory details about the generation of masses for the
third generation first and then how to extend the theory to
the light generations and full flavor structures.
We will start this exploration from the IR end of the

spectrum. It has been shown that only a finite number of
gauge-fermion theories can lead to the desired low energy
phase [29–31], where both a PNGB Higgs and top PC are
achieved. The latter is due to the presence of light baryonic
(spin-1=2) resonances with the SM quantum numbers
matching the top field ones. These theories introduce a
new gauge symmetry, called hypercolor (HC), with one
or two representations for the new hyperfermions. The
strongest constraint on such models comes from the
requirement that the gauge dynamics lies outside of
the conformal window [70–73]; i.e., it condenses at low
energies and breaks the chiral symmetries in the fermion
sector. This requirement leaves only a handful of possibil-
ities [32], as it is a strong constraint on the number of
fermions and number of hypercolors. Following the
nomenclature of Ref. [33], 12 minimal models have been
identified, M1-M12, each characterized by its own gauge
group and hyperfermion representations. As mentioned,
such theories lie outside of the conformal window; in order
to enter the needed walking phase between ΛHC and ΛF,
additional hyperfermions can be added, with a mass ∼ΛHC.
This IR theory, then, needs to be embedded in the UV
PUPC theory, where the HC gauge group is partially
unified with the SM one. We will shortly see that this
step is nontrivial, and it has consequences for the low
energy dynamics, as it can be used to further select the
gauge theories in the confined phase. This selection is
crucial in particular for lattice studies.
The models that achieve the low energy dynamics

with top PC resort to HC groups SOðNÞHC, SUðNÞHC,
and SpðNÞHC, with hyperfermions in the fundamental,

spinorial, and two-index antisymmetric representations.
Following minimality, we decided to unify QCD and
HC groups; this is due to the fact that mediators for top
PC typically carry QCD charges. As a consequence, we
need to embed the hyperfermion representation and SUð3Þc
fundamentals in the same representation of the extended-
HC (EHC) group; this is easiest to do for models based on
SpðNÞHC, like model M8 [29,33]. The reason is that
SOðNÞHC models always contain the spinorial representa-
tion, which is hard to embed together with a fundamental of
QCD, while SUðNÞHC theories with fundamentals tend to
inherit the chiral spectrum of the SM in the hyperfermion
sector. While this analysis certainly does not exclude other
possibilities, we decided for simplicity to focus on M8 as a
template IR model for the first PUPC construction.
The low energy model, therefore, will consist on

Spð4ÞHC with four hyperfermions in the fundamental
representation: One pair forms a doublet of the gauged
SUð2ÞL while the other a doublet of the custodial SUð2ÞR
(the hypercharge corresponds to the diagonal generator).
This sector ensures that the PNGB Higgs arises at low
energy, and its effect preserves the custodial relation
between the W and Z masses. Furthermore, the model
needs to include hyperfermions in the two-index antisym-
metric representation in order to obtain top partners in the
form of hyper baryons. The HC and QCD gauge groups are
unified as diagonal subgroups of a SUð7ÞEHC. It is then
possible to show that quarks and hyperfermions in the
fundamental can be embedded in fundamentals of
SUð7ÞEHC, by suitably choosing the charges under a
Uð1ÞE, in order to fit the correct hypercharges and cancel
gauge anomalies. Leptons here remain as singlets of
SUð7ÞEHC; thus, they will not receive any contribution to
their coupling to hyperfermions from gauge mediation.
This feature, plus the cancellation of anomalies, points
toward a unification of quarks hyperfermions with leptons,
à la Pati-Salam [74]. Finally, the PUPC gauge group we
choose to work with is

GTPS ¼ SUð8ÞPS × SUð2ÞL × SUð2ÞR; ð1Þ

from which comes the name of the TPS model [54]. The
next two questions involve the choices of fermions in the
TPS model, which can accommodate for both the chiral SM
fermions and the nonchiral hyperfermions, as well as the

FIG. 1. Schematic representation of the dynamical phases of PUPC models.
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choice of scalars, which are responsible for breaking the
TPS group down to the SM plus HC gauge symmetries.

C. Fermion embedding

In the TPS model, both SM fermions and hyperfermions
need to be embedded into representations of the TPS group.
As we will see, the multiplicity and quantum numbers for
the hyperfermions are determined by this choice; thus,
while we use M8 as a template model, the details of the IR
dynamics will not necessarily be the same. To indicate the
representations, we will use the following notations:

fdPS;dL;dRg ⇒ GTPS; ð2Þ

where dX indicates the dimension of the representation
under the TPS group X, while for the IR quantum numbers,
we omit the SUð2ÞL (as it remains unbroken all the way
from the UV to the IR) and use

ðd4; d3ÞY ⇒ ðSpð4ÞHC; SUð3ÞcÞUð1ÞY : ð3Þ

Details on how the IR gauge groups are embedded in
the TPS; one in the UV will be presented in the next
subsection.
Firstly, for the SM fermions, we follow the hint from

Pati-Salam [74], and we embedded them in a fundamental
Ω and antifundamental ϒ of SUð8ÞPS, as follows:

Ω ¼ f8; 2; 1g ¼

0
B@

L

qL
lL

1
CA; ð4Þ

ϒ ¼ f8̄; 1; 2g ¼

0
B@

Ud Du

dcR ucR
ecR νcR

1
CA; ð5Þ

where all spinors are left-handed Weyl, and the two
columns in Eq. (5) explicitly show the two components
of the SUð2ÞR doublet. The rows follow the SUð8ÞPS
structure, where we embed the IR gauge groups in the
following block-diagonal form:

SUð8ÞPS ⇒

0
B@

Spð4ÞHC
SUð3Þc

1
CA: ð6Þ

One set of Ω and ϒ, therefore, contains a complete SM
generation,

qL ¼ð1;3Þ1=6; tcR¼ð1; 3̄Þ−2=3; bcR¼ð1; 3̄Þ1=3;
lL ¼ð1;1Þ−1=2; ecR ¼ð1;1Þ1; νcR¼ð1;1Þ0; ð7Þ

including a right-handed neutrino, and the four hyper-
fermions that generate the PNGB Higgs as a bound state
(as in M8),

L¼ð4;1Þ0; Ud ¼ð4;1Þ1=2; Du ¼ð4;1Þ−1=2: ð8Þ

Secondly, we need to embed the hyperfermions in
the two-index antisymmetric of Spð4ÞHC into the TPS
gauge symmetry. The minimal way is to employ antisym-
metric representations of SUð8ÞPS; we find it convenient
and minimal to use the four-index one, which is a
real representation. Other possibilities are discussed in
Appendix A. The new fermion decomposes as

Ξ ¼ f70; 1; 1g ¼
�
Ut χ ρ η ω

Db χ̃ ρ̃ η̃ ω̃

�
; ð9Þ

where the top row corresponds to fields belonging to a 35 of
SUð7ÞEHC and the ones in the bottom row to the conjugate
representation. Thus, fields in the same column have
conjugate quantum numbers. The components have the
following quantum numbers:

Ut ¼ ð4; 1Þ−1=2; χ ¼ ð5; 3Þ−1=3; η ¼ ð4; 3̄Þ−1=6;
ω ¼ ð1; 3Þ−1=3; ρ ¼ ð1; 1Þ0: ð10Þ

We see that the hyperfermions in the antisymmetric of
Spð4ÞHC have hypercharge−1=3, which does not match the
one of M8. As we will see, however, this model setup
allows one to construct top partners at low energy.
Furthermore, the multiplet Ξ contains two hyperfermions,
Ut and Db, with quantum numbers matching Du and Ud in
ϒ and a set of hyperfermions carrying QCD charges, η=η̃.
The multiplet also contains fermions that are not charged
under the HC group: a vectorlike partner of the right-
handed bottom, ω=ω̃, and a singlet, ρ=ρ̃. All these
components may play a role in giving masses to the SM
fermions, as we will discuss in the next section.
For now, this should be considered a minimal set of TPS

fermions that contain the key players for a correct IR
dynamics. The interesting point to remark now is that the
TPS embedding fixes the quantum numbers of the hyper-
fermions and their multiplicity: a set of Ω, ϒ, and Ξ
contains 12 Weyl spinors in the fundamental and six Weyl
spinors in the antisymmetric of the HC group. Additional
HC singlets are also predicted. As already mentioned,
alternative choices are presented in Appendix A.

D. Scalar sector and TPS symmetry breaking

Various scalar multiplets can accommodate the needed
breaking steps between the UV TPS theory and the IR
model. We identified two paths that are of interest for
phenomenology, summarized in Table I, as we will detail in
this subsection. We first remark that, besides the gauge
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symmetry breaking, scalar fields also play the crucial role
of generating masses for the hyperfermions and mediating
PC4F interactions for the SM fermions, and we will see
them in action in the next two sections. Here, we limit
ourselves to discuss the gauge symmetry breaking patterns.
The breaking of SUð8ÞPS and splitting of the leptons

from quarks and hyperfermions can be done in a similar
way to the standard Pati-Salam model by introducing

Φ ¼ f8; 1; 2g: ð11Þ

Once it develops a VEV, which can be aligned as follows,2

hΦi ¼ vΦPSffiffiffi
2

p

0
BBBBB@

0 0

..

. ..
.

0

1 0

1
CCCCCA; ð12Þ

it will break SUð8ÞPS × SUð2ÞR → SUð7ÞEHC ×Uð1ÞE
[75]. The unbroken Uð1ÞE charge can be expressed as

QE ¼ T3
R þ 2ffiffiffi

7
p T8

PS; ð13Þ

where T3
R is the diagonal generator of SUð2ÞR, and

T8
PS ¼

1

4
ffiffiffi
7

p
�
17×7

−7

�
: ð14Þ

The fermion multiplets introduced above decompose as

Ω ⇒ ½7; 2�1=14 ⊕ ½1; 2�−1=2; ð15Þ

ϒ ⇒½7̄; 1�−1=14�1=2 ⊕ ½1; 1�1=2�1=2; ð16Þ

Ξ ⇒½35; 1�−2=7 ⊕ ½35; 1�2=7; ð17Þ

where ½SUð7ÞEHC; SUð2ÞL�QE
.

The further breaking down to the IR model can follow
two paths, which we discuss below.

1. The Ψ�Θ path

The first path requires the following scalar multiplets:

Ψ ¼ f63; 1; 1g; ð18Þ

Θ ¼ f28; 1; 1g: ð19Þ

The adjoint Ψ is assumed to develop a VEV proportional
to [75,76]

hΨi ¼ vΨEHC
4

�
14×4

−14×4

�
; ð20Þ

which, once combined with the Φ VEV [77,78], breaks
SUð7ÞEHC → SUð4ÞCHC × SUð3Þc × Uð1ÞX. The group
SUð4ÞCHC, which we dub complex HC, contains
Spð4ÞHC, and the would-be hyperfermions transform as
complex representations under the CHC group (see
Appendix A for more details). The unbroken Uð1ÞX charge
corresponds to a diagonal generator of SUð7ÞEHC that can
be expressed in terms of SUð8ÞPS as

QX ¼ 1

42

0
B@

34×4

−43×3
0

1
CA: ð21Þ

Details about the decomposition of fermion, gauge, and
scalar multiplets after this step are reported in Appendix A.
The gauge couplings are matched to the TPS ones as

follows:

gCHC ¼ gc ¼ gPS; ð22Þ

gE ¼ 2
ffiffiffi
7

p
gRgPSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4g2R þ 7g2PS
p ; ð23Þ

gX ¼
ffiffiffiffiffi
21

2

r
gPS: ð24Þ

The breaking pattern will also produce massive gauge
bosons, among which, the most interesting ones are

Cμ ¼ ð4;1Þ1=2; Dμ ¼ ð1;3Þ2=3; Eμ ¼ ð4;3Þ1=6; ð25Þ

TABLE I. Gauge symmetry breaking steps from the UV TPS theory down to the IR HC composite Higgs model. The two paths
correspond to two different ways to give VEVs to the scalar fields.

Breaking pattern

Ψ–Θ path Δ path

PS breaking SUð8ÞPS × SUð2ÞR → SUð7ÞEHC ×Uð1ÞE
EHC breaking SUð7ÞEHC → SUð4ÞCHC × SUð3Þc × Uð1ÞX SUð7ÞEHC × Uð1ÞE → SUð4ÞCHC × SUð3Þc × Uð1ÞY
CHC breaking SUð4ÞCHC × Uð1ÞE ×Uð1ÞX → Spð4ÞHC ×Uð1ÞY SUð4ÞCHC → Spð4ÞHC

2The two columns correspond to components of SUð2ÞR.
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where the first two form a fundamental of SUð7ÞEHC. As we
will see, Eμ and Cμ play an important role in mediating
PC4F operators, while Dμ generates four-fermion inter-
actions between quarks and leptons, like in the standard
Pati-Salam. Their masses are given by

M2
E ¼ g2PS

4
ðvΨEHCÞ2; M2

C ¼ g2PS
4

ðvΨEHC þ vΦPSÞ2;

M2
D ¼ g2PS

4
ðvΦPSÞ2; ð26Þ

where we remark that MC > ME. For completeness, the
spectrum also contains one neutral and one charged singlet
deriving from the breaking of SUð2ÞR, with masses

M2
W�

R
¼ g2R

4
ðvΦPSÞ2; M2

ZΨ
¼ 4g2R þ 7g2PS

16
ðvΦPSÞ2: ð27Þ

The next step consists in breaking the CHC group
down to Spð4ÞHC so that the hyperfermions can transform
under a pseudo-real representation of the HC group. We
will pragmatically assume that this breaking may occur at
any energy betweenΛPS andΛHC. Some phenomenological
consideration on the relevance of this scale will be
presented in the next subsection. To achieve this step,
we need a field transforming as a two-index antisymmetric
of SUð4ÞCHC, which is naturally contained in Θ, also
carrying charges QE ¼ QX ¼ 1=7. A VEV in this compo-
nent would also break Uð1ÞE ×Uð1ÞX → Uð1ÞY , with

Y ¼ QE −QX; ð28Þ

and gauge coupling matching

gY ¼ gEgXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2E þ g2X

p ; gHC ¼ gCHC: ð29Þ

The spectrum will now contain two additional gauge
bosons, a singlet and Hμ

Θ ¼ ð5; 1Þ0, with masses

M2
HΘ

¼ g2CHC
4

ðvΘCHCÞ2; M2
ZΘ

¼ g2E þ g2X
4

ðvΘCHCÞ2: ð30Þ

2. The Δ path

A second possible path can be achieved by use of a three-
index antisymmetric representation,

Δ ¼ f56; 1; 2g; ð31Þ

whose VEV can break SUð8Þ → SUð3Þ × SUð5Þ [79,80].
As this VEV also breaks Uð1ÞE, it needs to transform
as an SUð2ÞR doublet, with the VEV aligned with the
T3
R ¼ −1=2 component in order to preserve the hyper-

charge. Thus, together with the Φ VEV, Δ can break
SUð7ÞEHC ×Uð1ÞE → SUð4ÞCHC × SUð3Þc ×Uð1ÞY .

The matching of the gauge couplings read

gCHC ¼ gc ¼ gPS; ð32Þ

gY ¼ gRgPSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2R þ g2R

5
21
þ g2PS

16
7

q : ð33Þ

The spectrum of massive gauge bosons will now read

M2
E¼

g2PS
4
ðvΔEHCÞ2; M2

C¼
g2PS
4
ðvΦPSÞ2;

M2
D¼ g2PS

4
ðvΦPSþvΔEHCÞ2; M2

W�
R
¼g2R

4
ðvΦPSþvΔEHCÞ2; ð34Þ

plus two massive singlets. We note that MC > ME

if vΦPS > vΔEHC.
Furthermore, the T3

R ¼ 1=2 component of Δ contains a
component transforming as the two-index antisymmetric of
SUð4ÞCHC with zero hypercharge; thus, it can be used to
break the CHC symmetry with a VEV vΔCHC < vΔEHC. This
breaking will simply leave one massive gauge boson,
Hμ

Δ ¼ ð5; 1Þ0, with mass,

M2
HΔ

¼ g2CHC
4

ðvΔCHCÞ2: ð35Þ

E. Hypercolor dynamics

A key ingredient for any composite Higgs model with
top partial compositeness is the presence of a near-
conformal “walking” dynamics above the condensation
scale ΛHC. This may ensure that the hyperbaryons that
couple to the top develop a large anomalous dimensions,
which, in turn, can enhance the top PC couplings at low
energy. For this mechanism to have any hope to work, the
theory in the walking phase should lie as closely as possible
to the lower edge of the conformal window, thus being in a
strongly coupled regime. Unfortunately, estimating the
location of the conformal edge in terms of the fermion
multiplicities is subject to many uncertainties due to the
strong coupling. In the following,wewill adopt twomethods
developed in the literature: the Pica-Sannino (PS) all order
beta function [81] and the Schwinger-Dyson (SD) equation
approach [82]. The former is based on a conjectured all-order
beta function that depends on the mass anomalous dimen-
sions of the fermions charged under the running gauge
coupling. In the conformal window, the beta function should
vanish, while the mass anomalous dimensions are expected
to be of order unity. Thus, this provides enough constraints to
fix the number of fermions, leading to

11C2ðGÞ −
X
r

TðrÞnr
�
3þ 7

11

C2ðGÞ
C2ðrÞ

�
¼ 0; ð36Þ

where C2 is the Casimir and T the dynkin index of the
representation (G indicates the adjoint), while nr is the
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number of Weyl fermions in the representation r. The SD
method uses the ladder approximation in the gap equation to
determine the critical value of the gauge coupling where
chiral symmetry is broken. This can be compared to the
zero of the beta function, which first appears at two loops,
leading to

α� ¼ −
4πβ0
β1

¼ π

3C2ðrÞ
: ð37Þ

As we have two different representations, we will consider
the onewhose anomalous dimension reaches unity first, i.e.,
the antisymmetric. Amore sophisticated method, based on a
scheme-independent determination of the mass anomalous
dimension, has been recently proposed in [83] and gives
results somewhat in between the ones obtained by the SD
and PS methods.
We first apply these methods to a Spð4ÞHC theory [71]

with N1 Weyl spinors in the fundamental and N2 Weyl
spinors in the antisymmetric. The result is shown in Fig. 2
by the red lines, where the dashed dotted lines correspond
to the PS (SD) method. This case is relevant for the TPS
model when the CHC breaking occurs at high scale, i.e.,
before the onset of the walking phase. The model we
presented in this section contains N2 ¼ 6 degrees of
freedom in the antisymmetric representation, coming from
the Ξmultiplet. For N2 ¼ 6, the PC method gives the lower
edge starting at N1 ¼ 5, while for SD, it starts at N1 ¼ 13
(while asymptotic freedom is lost for N1 ¼ 21). To com-
pare with a realistic scenario, we recall that one SM
generation (Ωþϒ) plus a Ξ contains N1 ¼ 12, which is
in between the two results (cf., red dot in Fig. 2) and very
close to the boundary according to the SD method. The
method from [83] gives N1 ¼ 10. Thus, the model has

good chances of being close to the edge and developing
large anomalous dimensions. We anticipate that extending
to three generations would minimally require one to add a
flavor index to Ω andϒ, raising the number of fundamental
hyperfermions to N1 ¼ 20, which is well too close to the
edge of asymptotic freedom loss, where the theory becomes
weakly coupled. This simple analysis shows that the
hyperfermions associated to the light generations should
not be light, a feature that we will exploit in the next
sections.
It is also interesting to consider the case where the CHC

symmetry is only broken at low energies, after the model
enters the walking phase. As the hyperfermions contained
in Ω and ϒ inherit the chiral structure of the SM fermions,
they cannot acquire a mass before CHC is broken. Thus, the
minimal model with three generations will have N1 ¼ 20.
The case of SUð4ÞCHC [72] is shown in Fig. 2 in blue, with
the same conventions as above; the conformal window
edge is expected at N1 ¼ 11 with the PS method, and
N1 ¼ 23 with SD (while the asymptotic freedom loss
occurs at N1 ¼ 32). The minimal model, represented by
the blue dot, is again close to the SD lower edge of the
conformal window. The case with low scale CHC breaking
is, therefore, also interesting. However, it can only occur if
a mechanism that generates a large hierarchy between the
VEVs of various scalars is understood. In the following, we
will focus on the case of high scale CHC breaking, leaving
the low scale case for further investigation.
The theory we consider in the following, therefore,

features the Spð4ÞHC dynamics in a walking regime
between ΛHC and ΛF. As a further consistency check, as
many fermions are present in this wide energy range, we
checked that the running of the SM gauge couplings, g3 for
QCD, g2 for SUð2ÞL, and gY for hypercharge, do not
develop a Landau pole before the ΛPU scale. We thus used
PyR@TE [84,85] to compute the running where only one
generation of hyperfermions is included (i.e., N1 ¼ 12).
The two-loop running is shown in Fig. 3, proving that the
gauge couplings remain under control. These results are
mainly qualitative, as the contribution of the HC gauge
coupling, which is strong, has not been included. There
might be concern that g3 ∼ 1 is too perturbative around
∼1016 GeV where it unifies with SUð4ÞCHC so that the
resulting Spð4ÞHC coupling might spend an unacceptably
long RG time in the perturbative regime. However, the
ignored HC correction might alter the evolution of g3 so
that SUð4ÞCHC and SUð3ÞC unify at some semiperturbative
value, which we will assume. Also, above the PU scale, the
two SUð2Þ gauge couplings keep growing as their beta
function has lost asymptotic freedom, including three
generations of Ω and ϒ, each of which has 3 × 8 Weyl
spinors. However, this may be a minor issue because the
Planck scale is close to ΛPU by construction, where
quantum gravity effects should start to be relevant and
may tame the growth of the gauge couplings [86].

FIG. 2. Conformal window as a function of the number of Weyl
spinors in the fundamental (N1) and antisymmetric (N2) for
Spð4ÞHC (red) and SUð4ÞCHC (blue). The solid line indicates
where asymptotic freedom is lost, while the dashed and dotted
lines indicate the expected lower edge using the PS or SD
methods, respectively.
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To determine whether the desired unification occurs and
whether the associated SM gauge couplings avoid hitting a
Landau pole at relatively low scales, it is necessary to
compute the HC correction to their RG evolution. This
problem is inherently nonperturbative, and there is no
mature computational framework that has been employed
to address such problems. One potential route, based on
solid field theory principles, is conformal perturbation
theory (cf., Sec. II of Ref. [87] and references therein).
Compared to ordinary perturbation theory, new terms in the
beta functions of the couplings emerge that depend on the
CFT data (i.e., coefficients of three-point functions) asso-
ciated with the conformal fixed point. If one can obtain the
CFT data from nonperturbative methods, such as lattice
computations, then one can solve the renormalization group
equation with the modified beta functions and determine
more realistically the evolution of SM gauge couplings.

III. TECHNI-PATI-SALAM FOR THE
THIRD FAMILY

In this section, we will first construct a model that
provides masses for one generation of SM fermions,
namely the third one, as this exercise allows one to better
illustrate the main properties of the model. Extension to
three generations will be presented in the next section. The
minimal field content is listed in Table II. We add all the
scalars discussed in the previous section in order to keep
open both paths of symmetry breaking and also, as we will
see, because they all play a crucial role in generating SM
fermion masses.

A. Lagrangian and gauge-mediated PC4F operators

The complete Lagrangian of the model, including only
renormalizable operators, can be decomposed as

LTPS3 ¼ LG þ LF þ LS þ LY þ LV; ð38Þ

where LG, LF, and LS denote the kinetic terms for gauge,
fermion, and scalar fields, respectively (including gauge
interactions), LY contains the fermion bare mass terms and
Yukawa interactions, while LV ¼ −VðΦ;Θ;Δ;ΨÞ is the
scalar potential term. For our purposes, the most relevant
part is LY , which is given explicitly by

LY ¼ −
1

2
μNNN −

1

2
μΞΞΞ −

1

2
λΨΞΨΞ − ðλΦϒΦN

þλΘLΩΘ�Ωþ λΘRϒΘϒþ λΔϒΔ�Ξþ H:c:Þ; ð39Þ

where the first three terms are self-hermitian. In principle,
the Yukawas λi (except λΨ) are complex parameters;
however, one can use arbitrary phase redefinitions of the
fermion and scalar fields to make all of them real, without
loss of generality. At this stage, therefore, physical phases
can only be contained in the scalar potential LV . The
interaction terms in LY (including the kinetic terms) also
leave a global Uð1ÞG unbroken, with charges defined in
Table II. Explicit Uð1ÞG-breaking terms may appear in the
scalar potential. We assume minimizing the scalar potential
leads to the desired VEV configuration that breaks the PS,
EHC, and CHC groups (see discussion in Sec. II D).
The gauge couplings relevant for generating PC4F

operators involve only two of the massive gauge bosons,
deriving from the PS and EHC breaking: Eμ ¼ ð4; 3Þ1=6
and Cμ ¼ ð4; 1Þ1=2. Their couplings read,3

LF ⊃
gPSffiffiffi
2

p CμJ
μ
C þ gEHCffiffiffi

2
p EμJ

μ
E þ H:c:; ð40Þ

where gPS and gEHC are the gauge couplings of SUð8ÞPS and
SUð7ÞEHC, respectively, with gEHC ≈ gPS if the breaking of
the two symmetries is happening at close-by scales. The
two currents read,

FIG. 3. Perturbative evolution of SM gauge couplings. Two-
loop effects from SM gauge interactions are taken into account,
while HC corrections are not included.

TABLE II. Scalar and (left-handed Weyl) fermion field content.
The last column indicates the global Uð1ÞG charges, with q ≠ 0
being an arbitrary normalization factor.

Field Spin SUð8ÞPS SUð2ÞL SUð2ÞR QG

Φ 0 8 1 2 q
Θ 0 28 1 1 2q
Δ 0 56 1 2 q
Ψ 0 63 1 1 0
N 1=2 1 1 1 0
Ω 1=2 8 2 1 q
ϒ 1=2 8̄ 1 2 −q
Ξ 1=2 70 1 1 0

3According to our normalization and sign convention, the
covariant derivative of a fermion ψ i in the fundamental of
SUð8ÞPS is written as Dμψ i ¼ ∂μψ i − i gPSffiffi

2
p Wj

μiψ j, with i, j being
SUð8Þ indices. The same convention is used for SUð7ÞEHC.
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JμE ¼ q̄Lσ̄μL3 − D̄3
uσ̄

μtcR − Ū3
dσ̄

μbcR þ
1

2
ðχ̄σ̄μUt − D̄bσ̄

μχ̃Þ

− ðη̄σ̄μχ − ¯̃χσ̄μη̃Þ− ðη̄σ̄μω− ¯̃ωσ̄μη̃Þ þ 1

2
ðρ̄σ̄μη− ¯̃ησ̄μρ̃Þ

þ 1

2
ðω̄σ̄μUt − D̄bσ̄

μω̃Þ; ð41Þ

JμC ¼ L̄3σ̄μlL − ν̄cτRσ̄
μD3

u − τ̄cRσ̄
μU3

d −
1

2
ð ¯̃ησ̄μχ þ ¯̃χσ̄μηÞ

−
1

2
ð ¯̃ησ̄μωþ ¯̃ωσ̄μηÞ − 1

6
ð ¯̃ρ σ̄Ut þ D̄bσ̄ρÞ: ð42Þ

By integrating out the two vector mediators, we obtain
the following four-fermion operators, linear in the SM
fields:

LPC4F ⊃ −
g2EHC
2M2

E
ðL̄3σ̄μqL − t̄cRσ̄

μD3
u − b̄cRσ̄

μU3
dÞ

×

�
1

2
χ̄σ̄μUt −

1

2
D̄bσ̄μχ̃ − η̄σ̄μχ þ ¯̃χσ̄μη̃

�

−
g2PS
2M2

C
ðL̄3σ̄μlL − ν̄cτRσ̄

μD3
u − τ̄cRσ̄

μU3
dÞ

×

�
−
1

2
χ̄σ̄μη̃ −

1

2
η̄σ̄μχ̃

�
: ð43Þ

The interesting property of Eq. (43) is that all quark
operators are mediated by Eμ ¼ ð4; 3Þ1=6, which becomes
massive from the EHC breaking, while all lepton operators
are mediated by Cμ ¼ ð4; 1Þ1=2, which becomes massive
from the PS breaking. The mass hierarchy between leptons
and quarks could, therefore, be explained by a hierarchy in
the masses of the mediators if MC > ME (see Sec. II D).
Furthermore, lepton operators always involve the QCD-
colored hyperfermions η–η̃, while the quark ones also
involve the QCD singlets Ut and Db.

It is remarkable that our PUPC approach allows one to
generate appropriate PC4F operators for all SM quarks
from gauge interactions; however, there is no distinction
between fermions in the same weak isospin multiplet. In
other words, the gauge interactions themselves cannot
distinguish between top and bottom, nor between tau
and neutrino. Such mass splittings, which need the viola-
tion of SUð2ÞR, naturally receive contributions in our
model: from scalar mediated PC4F operators, from the
masses of the involved hyperfermions, and, in the case of
the neutrino, from mixing with the singlet N via λΦ. These
effects are discussed in the following subsections.

B. Scalar mediated PC4F operators

The Yukawa couplings in LY , Eq. (39), allow for many
scalar components to mediate PC4F operators. All the
relevant combinations are listed in Table III, where we have
identified seven distinct mediators, whose quantum num-
bers are listed in the top row. The rows correspond to
different Yukawa couplings, while the left block “1 SM
field” contains fermion bilinears containing one SM field,
and the right one “0 SM field” bilinears involves only
hyperfermions. The PC4F operators can thus be con-
structed by coupling one fermion bilinear from the left
block with one from the right block if they have matching
quantum numbers. If they belong to different Yukawa
couplings, the resulting operator can only be generated if
the components in the two scalar multiplets mix. As an
example, the mediators φ4 ¼ ð5; 1Þ0 and φ5 ¼ ð5; 1Þ−1,
components of Δ, will generate the following PC4F
operators for right-handed top and bottom:

LPC4F ⊃ −
λ2Δ
M2

φ4

c4ðŪtŪ3
dÞðχbcRÞ

−
λ2Δ
M2

φ5

c5ðŪtD̄3
uÞðχtcRÞ; ð44Þ

TABLE III. Scalar mediators φi (quantum numbers listed in the top row), with the fermion bilinears they couple with. The rows
correspond to different Yukawa interactions from LY . The fermion bilinears in square bracket couple to the conjugate scalar, φ�

i .

1 SM field 0 SM field

φi
ð4; 1Þ−1

2
ð4; 3Þ1

6
ð4; 3Þ−5

6
ð5; 1Þ0 ð5; 1Þ−1 ð5; 3Þ2

3
ð5; 3Þ−1

3
ð4; 1Þ1

2
ð4; 3Þ1

6
ð4; 3Þ−5

6
ð5; 1Þ0 ð5; 1Þ−1 ð5; 3Þ2

3
ð5; 3Þ−1

3

ΩΘ�Ω ðL3lLÞ ðL3qLÞ � � � � � � � � � � � � � � � � � � � � � � � � ðL3L3Þ � � � � � � � � �
ϒΘϒ ½U3

dν
c
R� ½U3

dt
c
R� � � � � � � � � � � � � � � � � � � � � � � � � ðU3

dD
3
uÞ � � � � � � � � �

½D3
uτ

c
R� ½D3

ubcR� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

ΞΨΞ � � � � � � � � � � � � � � � � � � � � �
ðχDbÞ

� � �
ðUtDbÞ

� � � � � � � � �½Utχ̃�
ðχηÞ ðηχ̃Þ ðηη̃Þ½χ̃ η̃� ½χη̃�

ϒΔ�Ξ

ðUtν
c
RÞ ½DbtcR� ½DbbcR�

ðχbcRÞ ðχtcRÞ � � �
ðχU3

dÞ ðχD3
uÞ ðUtU3

dÞ ðUtD3
uÞ ðη̃U3

dÞ ðη̃D3
uÞ½Utτ

c
R�

ðη̃tcRÞ ðηbcRÞ ðηtcRÞ ðχ̃bcRÞ ðχ̃tcRÞ ½χ̃D3
u� ½χ̃U3

d�½η̃bcR� ½ηνcR� ½ητcR� ðχτcRÞ ðχνcRÞ
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where c4;5 are group theory factors. This example illustrates
how a mass splitting between top and bottom could arise if
the above couplings are dominant, and there exists a
significant mass difference between the two scalar medi-
ators. Scalar-mediated PC4F operators are subject to a
larger degree of arbitrariness compared to vector-mediated
PC4F operators, because their strengths are determined by
the nonuniversal Yukawa couplings and masses and mixing
of scalar components controlled by details of the scalar
potential. Nevertheless, they are also generated automati-
cally from the renormalizable Lagrangian, rather than being
put in by hand.
The main ingredients that determine the relevance of

scalar mediated PC4F operators are the following:
‐ the masses and mixing pattern of the scalars.
‐ the size of the Yukawa couplings. As we will see in the
next section, the masses of the hyperfermions also
depend on some of these Yukawas. To keep some
hyperfermions light, therefore, a number of Yukawas
needs to be small, thus also being ineffective in gen-
erating sizable PC4F operators.
In the next three subsections, we will discuss the impact

of the Yukawa couplings on the hyperfermion masses and
list the concrete ways the model allows one to generate the
top-bottom mass hierarchy and small neutrino masses.

C. Hyperfermion masses

Hyperfermion masses play an important role in deter-
mining the properties of the model. Firstly, the low-energy
global symmetry pattern is determined by the number of
hyperfermions that are lighter than the hypercolor con-
densation scale ΛHC ∼ 10 TeV. Secondly, whether the HC
dynamics enters a strongly coupled near-conformal regime
above ΛHC depends on the additional hyperfermions that
have a mass between ΛHC and ΛEHC, as discussed in
Sec. II E. Thirdly, the mass of the hyperfermions partici-
pating in the PC4F operators determines the masses of the
corresponding SM fermions; assuming that the dominant
contribution is coming from local insertions of the PC4F
operators, the SM fermion mass is proportional to the
corresponding Fourier-transformed two-point hyperbaryon
correlator at zero momentum [88]. When one of the
participating hyperfermions is heavier than ΛHC, the
correlator is expected to be suppressed by some power
of the hyperfermion mass, as it can be analyzed via the
Shifman-Vainshtein-Zakharov (SVZ) expansion [89,90].
Let’s start the discussion with the hyperfermions χ–χ̃ and

η–η̃: They enter in all PC4F operators for quarks and
leptons; thus, they cannot be too heavy. In particular, all
quark operators, both from gauge and scalar mediation,
contain χ or χ̃, while all fermion operators contain η or η̃; in
order to obtain a large enough top and tau masses, it would
be optimal to have Mχ ≤ ΛHC and Mη ≤ Oð10Þ × ΛHC.
Furthermore, a hierarchy Mχ < Mη could explain why
leptons are lighter than quarks. These hyperfermion masses

receive contributions only from the Ξ mass term and from
the Yukawa λΨ via the Ψ VEV, resulting in the following
terms:

LY ⊃ −μ0UtDb − ðμ0 − 5μ1Þðχ̃χ þ ω̃ωÞ
− ðμ0 þ 2μ1Þη̃η − μ0ρ̃ρþ H:c:; ð45Þ

where

μ0 ∝ μΞ; μ1 ∝ λΨvΨEHC: ð46Þ

Note that, as expected, μ0 is a universal term for all
components of Ξ, while μ1 only contributes to a subset
of them. Thus, we can identify

Mχ ¼ jμ0 − 5μ1j; Mη ¼ jμ0 þ 2μ1j; ð47Þ

while the masses of the other components receive addi-
tional contributions via mixing, as we will discuss below.
The desired hierarchy Mχ < Mη is thus achieved for
0 < μ1 < 2

3
μ0, where we have assumed μ0 > 0 without

loss of generality. The value of the parameter μ0, which
contributes to the mass of the singlet ρ–ρ̃ and of the
hyperfermions Ut–Db, is related to the two masses by the
inequality,

μ0 ≤
2

7
Mχ þ

5

7
Mη; ð48Þ

implying that it tends to be smaller than the two masses. An
important lesson we can take from this analysis is that,
barring fine cancellations, μ0; μ1 ≪ ΛEHC, which implies
that the Yukawa λΨ needs to be very small. This is
technically natural; however, it has an important conse-
quence on the scalar mediated PC4F operators: The ones
stemming from ΞΨΞ (see Table III) are highly suppressed.
We can now discuss the masses of the QCD-singlet

hyperfermions, L3, D3
u, U3

d, Ut, and Db, which are relevant
for generating the composite Higgs at low energy. The
PNGB Higgs, in fact, is a bound state of L3 and one of the
weak isosinglets; this implies that one needs L3 and one set
of the isosinglets to be much lighter that ΛHC. While the Ξ
components Ut–Db receive a mass from Eq. (45), the other
hyperfermions receive a mass via the Θ-VEV as follows:

LY ⊃ −μLL3L3 − μRU3
dD

3
u; ð49Þ

where

μL ¼ λΘLvΘCHC; μR ¼ λΘRvΘCHC: ð50Þ

For the isodoublet, this is the only contribution to the
mass so that ML ¼ μL. To keep this mass small, there are
three possibilities: (a) λΘL ≪ 1 and vΘCHC ≫ ΛHC; thus,
the scalar-mediated PC4F operators cannot receive
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contributions from ΩΘ�Ω; (b) λΘL ≲ 1 and vΘCHC ≥ ΛHC;
and (c) vΘCHC ¼ 0. In the last two cases, the Yukawa could
give sizable contributions to scalar-mediated PC4F oper-
ators. In the case of the isosinglets, mixing terms are also
generated in the presence of VEVs for Δ, in the form,

LY ⊃ −μΔ1ðD3
uDb − νcτRρÞ

− μΔ2ðU3
dUt þ

ffiffiffi
2

p
bcRωÞ þ H:c:; ð51Þ

where

μΔ1 ¼ λΔvΔEHC; μΔ2 ¼ λΔvΔCHC: ð52Þ

Note that these two terms also induce a mixing of ρwith the
neutrinos and of ω with the right-handed bottom. We will
come back to their effect in the next two subsections. In the
hyperfermion sector, this leads to the following mass
matrix:

LY ⊃ −ðU3
d Db Þ

�
μR μΔ2

μΔ1 μ0

��
D3

u

Ut

�
þ H:c:; ð53Þ

which has eigenvalues,

M2
R1;2 ¼

1

2

�
μ̃2 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃4 − 4ðμ0μR − μΔ1μΔ2Þ2

q �
;

with μ̃2 ¼ μ20 þ μ2R þ μ2Δ1 þ μ2Δ2: ð54Þ

We see that one can achieve at least one small mass
eigenvalue if either all μ’s are small, or

2ðμ0μR − μΔ1μΔ2Þ ≪ μ̃2: ð55Þ

Seeing the constraints on μ0 coming from the χ and η
masses, the latter condition may be achieved for

ðaÞ μR ≪ μ0; μΔ1μΔ2 ≪ μ20;

⇒ MR1≈
����μR −

μΔ1μΔ2
μ0

����; MR2 ≈ μ0; ð56Þ

or

ðbÞ μ0 ≪ μR; μΔ1μΔ2 ≪ μ2R;

⇒ MR1≈
����μ0 − μΔ1μΔ2

μR

����; MR2 ≈ μR: ð57Þ

In the latter case, if μR ≥ ΛHC, one could have that only one
mass eigenstate is below the condensation scale, while in
the former, typically both are light. One can see, therefore,
that the masses have a crucial impact on the low energy
dynamics of the theory by influencing the global coset that
determines the properties of the composite Higgs [91–93]:

MR2 ≥ ΛHC ⇔
SUð4Þ
Spð4Þ ;

MR2 ≪ ΛHC ⇔
SUð6Þ
Spð6Þ :

We also remark that, keeping μΔ1μΔ2 small would imply
either λΔ ≪ 1 or a large hierarchy between the VEVs,
vΔCHC ≪ vΔEHC, with the extreme case vΔCHC ¼ 0. These
various possibilities have an important impact on the scalar
PC4F sector by determining which terms can be sizable and
which ones are always suppressed. The implications for the
masses of leptons and quarks will be discussed in the
following two subsections.
We recall that the patterns of hyperfermion masses

depend crucially on the pattern of VEVs that break the
TPS group down to the low energy theory. In this
discussion, we work under the assumption that the desired
vacuum misalignment and EWSB can be achieved, leaving
a detailed study of the vacuum misalignment mechanism to
future work [94].
To conclude, we would like to recap the main findings in

two special cases of VEV patterns, following the discussion
in Sec. II D.
(A) hΔi ¼ 0. In this case, the EHC breaking is due

to vΨEHC, while vΘCHC breaks SUð4ÞCHC down to
Spð4ÞHC. The mixing terms between isosinglet
hyperfermions vanish so that we have a simple mass
pattern,

ML ¼ μL; MR1 ¼ minfμR; μ0g;
MR2 ¼ maxfμR; μ0g: ð58Þ

Furthermore, the HC-singlets ω and ρ do not mix
and have masses,

Mω ¼ Mχ ; Mρ ¼ μ0: ð59Þ

The only large Yukawa is, therefore, λΔ, which is
responsible for generating scalar PC4F operators
(one could also have sizable λΘL=R if vΘCHC ≈ ΛHC).
Note that keeping Mχ below ΛHC requires small μ1,
where the hierarchy Mχ < Mη can be kept for
0 < μ1 < 2=3μ0.

(B) hΘi ¼ hΨi ¼ 0. In this case, both EHC and CHC
breaking are due to VEVs of the field Δ. As
μ1 ¼ μL ¼ μR ¼ 0, we have

Mχ ¼ Mη ¼ μ0; ML ¼ 0; ð60Þ

while the isosinglet masses are given by Eq. (57)
with μR ¼ 0. At least one light eigenstate can be
achieved by keeping the mixing terms small, thus
requiring λΔ ≪ 1 (and the corresponding Yukawa
ineffective in generating scalar PC4F operators).
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D. Top-bottom mass splitting

The SM features a large hierarchy between top and
bottom masses, with mt=mb ∼ 60 at the weak scale. In the
TPS model, the top-bottom mass splitting must be traced
back to spontaneous SUð2ÞR breaking. We identified three
effects that may explain this feature, which we analyze in
detail below.
Firstly, we noted that gauge mediators as well as scalar

mediators from the ϒΘϒ Yukawa cannot be used as they
contain both bcR and tcR. However, scalar-mediated PC4F
operators constructed from ϒΔΞ involve mediators that
differ in type and properties for tcR and bcR, as it can be seen
in Table III. Thus, a split between top and bottom can
simply arise from a difference in mass between the two
mediators. One example shown in Eq. (44) involves φ4 ¼
ð5; 1Þ0 and φ5 ¼ ð5; 1Þ−1. Another example involves φ2 ¼
ð4; 3Þ1=6 and φ3 ¼ ð4; 3Þ−5=6. In both cases, the scalar mass
difference breaks SUð2ÞR, and a sizable coefficient can
arise from a large λΔ, allowed for vanishing Δ VEV.4

Another source of mass split lies in the fact that the
quantum number ð5; 1Þ0 has more ways of pairing com-
pared to ð5; 1Þ−1 since it also appears in Yukawa terms
other than ϒΔΞ. Note this is not incompatible with the fact
that the Yukawa Lagrangian explicitly preserves SUð2ÞR,
which is a gauge symmetry. The reason is that the required
mixing between scalar components with quantum number
ð5; 1Þ0 can only occur if there exists spontaneous SUð2ÞR
breaking from the scalar potential. Let us also note that this
mechanism does not lead to a prediction of the top-bottom
mass splitting nor a prediction of which quark is heavier
because these properties sensitively depend on details of
the scalar potential.
Secondly, a differentiation of top and bottom may come

from the mixing in the isosinglet hyperfermion sector,
given by Eq. (53). This opens the possibility that the top has
a larger coupling to the lighter mass eigenstate, while the
bottom dominantly couples to the heavier one, thus having
its mass suppressed. To be more specific, we can analyze
the case of dominant gauge mediation; from Eq. (41), we
see that tcR couples to D3

u, while bcR to U3
d. As the mixing

angles for the pairs D3
u–Ut and U3

d–Db are different if
μΔ1 ≠ μΔ2, one can easily generate hierarchical mixing
angles. For instance, for μR ¼ 0 (achieved if hΘi ¼ 0), the
mixing relevant for the top is proportional to μΔ2 while the
one for the bottom to μΔ1. As

μΔ1
μΔ2

∝
vΔEHC
vΔCHC

> 1; ð61Þ

a larger mixing angle for the bottom is assured. Another
interesting possibility is that both isosinglet hyperfermions

remain light, in which case, the theory features two Higgs
doublets in the IR, and the mass hierarchy may be due to
the distribution of the EWVEVon the two doublets [95], as
in traditional 2HDM [96].
Thirdly, the most interesting mechanism sprouts from the

mixing between bcR and ω; see Eq. (51). As no such term
exists for the top quark, this mixing leads to a suppression
of the bottom mass. The complete mass term reads,

LY ⊃ −ωððμ0 − 5μ1Þω̃þ
ffiffiffi
2

p
μΔ2bcRÞ þ H:c: ð62Þ

Thus, we can define mass eigenstates as

BL ¼ ω; Bc
R ¼ cos αbω̃þ sin αbbcR;

b̃cR ¼ cos αbbcR − sin αbω̃; ð63Þ

where

tan αb ¼ signðμ0 − 5μ1Þ
ffiffiffi
2

p
μΔ2

Mχ
; ð64Þ

MB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

χ þ 2μ2Δ2

q
≥ Mχ ; ð65Þ

while b̃cR can be identified with the (massless) right-handed
bottom. In the case of gauge mediation, the current in
Eq. (41) can be rewritten as

JμE ⊃
�
− cosðαbÞŪ3

d −
1

2
sinðαbÞD̄b

�
σ̄μb̃cR þ… ð66Þ

Combined with the mixing betweenU3
d–Db, this could lead

to a suppressed coupling of the right-handed bottom to the
PC4F operators.
It is also instructive to study a case where an effective

mass term for the bottom is induced in the form −μbbLbcR.
The mixing with ω will, therefore, appear as

Lbω ¼ −ð bL ω Þ
�
m11 0

m21 m22

��
bcR
ω̃

�
þ H:c:; ð67Þ

with

m22 ¼ μ0 − 5μ1; m21 ¼
ffiffiffi
2

p
μ3u; m11 ¼ μb: ð68Þ

A small bottom mass can be achieved if and only if

4jm11m22j ≪ ðm2
11 þm2

21 þm2
22Þ; ð69Þ

a condition that is compatible with having μb smaller than
the other mass terms. Within the approximation in Eq. (69),
for small μb, we obtain

4In a less minimal model, this effect could also arise in
presence of multiple Δ multiplets.
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mb

μb
≈

jμ0 − 5μ1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ0 − 5μ1Þ2 þ 2μ2Δ2

p ; ð70Þ

MB ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ0 − 5μ1Þ2 þ 2μ2Δ2

q
: ð71Þ

The suppression of the bottom mass with respect to μb is
thus related to the ratio of masses,

mb

μb
≈
Mχ

MB
; ð72Þ

which is again compatible with the requirement of a light χ.
Assuming that mb ≲ μb ≲mt, i.e., that the top mass is the
largest mass generated by partial compositeness, we obtain
the following range for MB:

Mχ ≲MB ≲ mt

mb
×Mχ ≲ mt

mb
× ΛHC; ð73Þ

which, in turn, implies

j
ffiffiffi
2

p
μΔ2j≲ mt

mb
× ΛHC: ð74Þ

Namely, jμΔ2j cannot be too large; otherwise, it leads to the
oversuppression of the bottom mass. It is also interesting to
note the presence of a vectorlike bottom quark B, with
charge 1=3, which is predicted to be heavier than the
hyperfermion χ. However, it cannot be much heavier; thus,
its mass will stay in the multi-TeV range, and B should be
discoverable at future high energy colliders.
Finally, let us note that when we evolve the PC4F

operators from high scale to low scale, radiative corrections
due to hypercharge interaction do not respect SUð2ÞR and
thus may also contribute to the top-bottom mass splitting.
However, the effect is expected to be small. A naive
estimate of the relative correction gives

g2Y
ð4πÞ2 ln

ΛEHC

vEW
≈ 0.05; ð75Þ

where ΛEHC ≳ 1016 GeV denotes the EHC breaking scale,
vEW ≈ 246 GeV, and gY is the hypercharge coupling
constant. So, we only expect correction at Oð10%Þ, which
is far from explaining the complete top-bottom mass
splitting.

E. Lepton masses

As it can be inferred from Eq. (43) and Table III, the τ
lepton mass can be generated via several gauge and scalar-
mediated PC4F operators. The model also naturally con-
tains mechanisms that can explain why leptons are lighter
than quarks. From gauge mediation, we saw that lepton
PC4Fs are generated by a different mediator than the quark
ones, with a mass that is naturally larger as it is associated

to the breaking of the PS symmetry. If the dominant effect
is due to scalar mediators, the masses of the scalars can be
arranged in order to suppress more the lepton operators. In
both cases, we also observed that lepton operators always
involve the hyperfermion η; if Mη > Mχ , therefore, the
leptons will be lighter as their mass is more suppressed. It
is, therefore, relatively easy to explain the lightness of the
tau with respect to the top.
For neutrinos, the situation is more critical, as they are

many orders of magnitude lighter than the corresponding
charged leptons. If we only consider the effects of PC4F
operators, it is possible to generate a neutrino mass that is
different (and suppressed) relative to the charged lepton
mass; however, it is hard to generate such a large difference
just using the mediator spectra. One possibility could be to
rely on the anomalous dimension of the operator associated
to neutrinos.
To make the situation easier, in analogy with the

Pati-Salam model, we introduced a singlet fermion N
[97]. The Yukawa Lagrangian contains the terms
−μNNN − λΦϒΦN þ H:c:, the latter of which generates
a mixing betweenN and the right-handed neutrino νcτR once
the scalar Φ generates the PS-breaking VEV. This mixing
can be used to implement an inverse seesaw mechanism in
the model [98]. To illustrate how this works, we will
assume that a large Dirac mass is generated for the
neutrinos, in the form −μννLνcR þ H:c:, where μν ≈mτ.
The singlet ρ also enters in the game via the mixing in
Eq. (51). All in all, the relevant mass matrix reads,

Lν ¼−
1

2
ðνL νcR N ρ ρ̃Þ

×

0
BBBBBB@

0 μν 0 0 0

μν 0 μΦ −μΔ1 0

0 μΦ μN 0 0

0 −μΔ1 0 0 μ0

0 0 0 μ0 0

1
CCCCCCA

0
BBBBBB@

νL

νcR
N

ρ

ρ̃

1
CCCCCCA

þH:c: ð76Þ

where

μΦ ∝ λΦvΦPS: ð77Þ

As explained in the previous sections, we expect μΔ1 to be
relatively small compared to the scalar VEV scales (it could
even vanish in the vacuum with vanishing Δ VEV); thus,
we can work in the approximation where ρ decouples from
the rest. The upper 3 × 3 block, therefore, exhibits the
inverse seesaw form discussed in Ref. [98], allowing for a
small neutrino mass for μN ≪ μΦ ≈ vΦPS. Other scenarios
giving realistic neutrino spectra may also be possible.
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F. Operator classification

In any composite Higgs model with fermion partial
compositeness, the onset of a near-conformal dynamics
above the condensation scale is crucial in order to generate
an enhanced coupling of the top quark fields. In the TPS
model, the transition between the conformal and confined
phases can be traced back to some of the hyperfermions
acquiring a mass of the order of ΛHC. Thus, the global
symmetries in the two phases are not the same. Identifying
the operators that couple to the top fields (and to other SM
fermions) is crucial in a twofold way: on one hand, to be
able to check if a sufficient anomalous dimension is
generated in the conformal phase and on the other hand,
to identify the hyperbaryons that mix with the SM fermions
at low energy. The latter has important consequences for
the low energy phenomenology of the model [19] and the
eventual collider signatures.
We will approach this analysis in the following way:

‐ In the conformal window, we identify the operators in
terms of the global symmetry GCFT and match them to
the PC4F operators. This allows us to identify the global
symmetry properties of each SM fermion partner. The
anomalous dimensions need to be computed on the
lattice.

‐ At ΛHC, some heavy fermions can be integrated out, and
the low energy theory can be characterized in terms of
“light” degrees of freedom, with a global symmetry
G=H. The SM fermions can now be embedded into
representations of G, while baryons (i.e., spin-1=2
resonances with a definite mass) are matched to the
respective operators and classified in terms of the
unbroken symmetry H.

‐ The low energy effective theory can thus be constructed
in terms of the light degrees of freedom, including light
baryon resonances [19,99,100].

We recall that some fermions, like leptons, may couple to
baryons containing a “heavy” fermion, i.e., a hyperfermion
with a mass larger than ΛHC. In such cases, techniques like
HQET [101,102], developed to study bound states con-
taining one bottom or charm quark in QCD, can be
deployed.
In the following, we outline the analysis of operator

classification according to their transformation properties
under the global symmetry. We simply focus on partners
of the left-handed top-bottom doublet, while the analysis
for the remaining quark and lepton partners can be carried
out in a similar manner. The relevant hyperfermions,
with their quantum numbers and collective notations, are
listed in Table IV. The isosinglet hyperfermions are indicated
in terms of the mass eigenstates, U1;2 ↔ fU3

d; Dbg and
D1;2 ↔ fD3

u; Utg, of the mass matrix in Eq. (53). For
simplicity, we consider that only four hyperfermions
in the fundamental of Spð4ÞHC are light, together with χ;
thus, they constitute the “light” degrees of freedom (the other
two isosinglets may also be light, without changing

qualitatively the discussion). The others have masses of
the order of ΛHC.
In the regime where the hypercolor theory exhibits its

strongly coupled near-conformal dynamics, all hyperfer-
mions listed in Table IV are active degrees of freedom. The
global symmetry of the composite sector is then

GCFT ¼ SUð12Þψ × SUð6Þχ ×Uð1Þ; ð78Þ

where Nψ ¼ 12 and Nχ ¼ 6 count the Weyl spinors in the
two species, and Uð1Þ is the anomaly-free abelian sym-
metry, with charges qψ ¼ −qχ ¼ 1. The spin-1=2 hyper-
baryon operators can be constructed with two spinors of
specie ψ and one χ. As to the contraction of spinor indices,
here, we note that hyperbaryon operators can be further
grouped into two types: hXYZi and hXȲZ̄i, where X, Y, Z
are three generic Weyl fermions of the hypercolor group.5 It
is understood that hXYZi contains two irreducible Lorentz
representations ð0; 1=2Þ and ð0; 1=2Þ0, while hXȲZ̄i con-
tains only one Lorentz representation ð0; 1=2Þ00 [103]. Note
that we focus here on left-handed operators, while right-
handed ones can be constructed by replacing each spinor
with its charge conjugate. Hyperbaryon operators with
definite transformation properties under the global sym-
metry group can be constructed schematically as follows:

OS ¼
1

2
hðψ i

αψ
j
β þ ψ j

αψ i
βÞχkβi ¼ ðS;FÞ1; ð79Þ

OA ¼ 1

2
hðψ i

αψ
j
β − ψ j

αψ i
βÞχkβi ¼ ðA;FÞ1; ð80Þ

OA0 ¼hψ i
βψ

j
βχ

k
αi ¼ ðA;FÞ1; ð81Þ

TABLE IV. Example of “light” hyperfermions in the minimal
model, classified in terms of their ðSpð4ÞHC; SUð3Þc; SUð2ÞLÞUð1ÞY
quantum numbers. The number of Weyl flavors is indicated in
square brackets in the “collective names” column.

Field
Quantum
numbers Mass Collective names

L ð4; 1; 2Þ0 ML ≪ ΛHC

ψ i
l½4�

ψα½12�

U1 ð4; 1; 1Þ1=2 MR1 ≪ ΛHC

D1 ð4; 1; 1Þ−1=2 MR1 ≪ ΛHC

U2 ð4; 1; 1Þ1=2 MR2

ψ j
h½8�

D2 ð4; 1; 1Þ−1=2 MR2

η ð4; 3̄; 1Þ−1=6 Mη > ΛHC

η̃ ð4; 3; 1Þ1=6 Mη > ΛHC

χ ð5; 3; 1Þ−1=3 Mχ ≲ ΛHC
χk½6�χ̃ ð5; 3̄; 1Þ1=3 Mχ ≲ ΛHC

5We recall that the bar indicates the charge conjugate (right-
handed) spinor.
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OĀ ¼ hψ̄ i
_β
ψ̄ j

_β
χkαi ¼ ðĀ;FÞ−3; ð82Þ

OAdj ¼ hψ̄ i
_β
χ̄k_βψ

j
αi ¼ ðAdj; F̄Þ1; ð83Þ

O0 ¼ hψ̄ l
_β
χ̄k_βψ

l
αi ¼ ð1; F̄Þ1; ð84Þ

where α; β; _α; _β are spinorial indices, and repeated β are
contracted with the usual antisymmetric tensor, while i, j, l
represent indices of SUð12Þψ and k of SUð6Þχ . The notation
ðS;FÞ1 means the operator transforms in the two-index
symmetric representation of SUð12Þψ , fundamental repre-
sentation of SUðNÞχ , and carries a Uð1Þ charge equal to
2qψ þ qχ ¼ 1. The meaning of the remaining quantum
number notations is self-explanatory. Note also that OA
andOA0 are the two irreducible Lorentz representations one
can build for this type of hyperbaryon operators, while the
symmetric OS can only be constructed with one. The
anomalous dimensions of these operatorsmust be computed
on the lattice; yet, as they only depend on the spin and
hypercolor structures, we can derive some interesting
relations. First, γA ¼ γS and γAdj ¼ γ0. Furthermore, OA

and OA0 mix as they belong to the same type and have the
same charges under the global symmetry [103].
To match the PC4F operators to the above conformal

hyperbaryons, we need to find the correspondence between
all three-fermion operators that may couple to the SM fields
and the operators built above. Below, we give an explicit
example for the left-handed quark isodoublet, with the
other cases being straightforward. All the possibilities are
thus listed below:

qL ⇒ QC
R →

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

½QC
R�1S=A=A0 ¼ hLD1χ̃i ⊂ OS=A=A0 ;

½QC
R�2S=A=A0 ¼ hLD2χ̃i ⊂ OS=A=A0 ;

½QC
R�3S=A=A0 ¼ hLη̃χi ⊂ OS=A=A0 ;

½QC
R�1Ā ¼ hL̄Ū1χ̃i ⊂ OĀ;

½QC
R�2Ā ¼ hL̄Ū2χ̃i ⊂ OĀ;

½QC
R�3Ā ¼ hL̄ η̄ χi ⊂ OĀ;

½QC
R�1Adj ¼ hL̄D1χ̄i ⊂ OAdj;

½QC
R�2Adj ¼ hL̄D2χ̄i ⊂ OAdj;

½QC
R�3Adj ¼ hL̄ η̃ ¯̃χi ⊂ OAdj;

½QC
R�4Adj ¼ hLŪ1χ̄i ⊂ OAdj;

½QC
R�5Adj ¼ hLŪ2χ̄i ⊂ OAdj;

½QC
R�6Adj ¼ hLη̄ ¯̃χi ⊂ OAdj:

ð85Þ

Note the SM gauge quantum numbers should all match.
The superscript index labels different components inside
the same multiplet of the global symmetries that can
potentially couple to qL: This shows that hyperbaryon

operators in the symmetric or antisymmetric have three
possible ways, while in the adjoint, there are six. As
mentioned above, the HC dynamics can only mix the
two operators OA and OA0 ; however, it will not generate
mixing between the various components inside each
operator, which couple to the SM fields. This is due to
the fact that they are protected by the global symmetries.
On the other hand, some mixing may be generated by the
SM gauge symmetries; this is the case, for instance, for
operators containingD1;2 andU1;2, as they have exactly the
same quantum numbers. Others cannot mix. For example,
we do not expect a mixing between ½QC

R�3Ā and ½QC
R�1;2Ā

, as
the former contain the QCD-charged η, while the latter
contains QCD-neutral isosinglets.
Vector-mediated PC4F operators associated with qL can

then be classified as

1

M2
V
qL½c1L̄ η̄ χ þ ci2L̄Ūiχ̃ þ cj3L̄ χ̄Dj þ c4L̄ ¯̃χ η̃�

¼ 1

M2
V
qL½c1½QC

R�3Ā þ c12½QC
R�1Ā þ c22½QC

R�2Ā
þ c13½QC

R�1Adj þ c23½QC
R�2Adj þ c4½QC

R�3Adj�; ð86Þ

where the ci’s are calculable dimensionless coefficients.
Note that c1;22 and c1;23 are related to each other by rotation
angles from Eq. (53), as they stem from operators con-
taining Db and Ut, respectively. For gauge-mediated PC4F
operators, therefore, only OĀ and OAdj are relevant. The
anomalous dimensions have been computed perturbatively
at one loop order in Ref. [103], yielding:

γĀ ¼ −
3g2HC
16π2

ð2C2ðRψÞ − C2ðRχÞÞ ¼ −
1

2

3g2HC
16π2

;

γAdj ¼ −
3g2HC
16π2

ðC2ðRχÞÞ ¼ −2
3g2HC
16π2

: ð87Þ

While these results have limited validity, they seem to
suggest the correct sign and that jγAdjj > jγĀj so that the
adjoint would lead to larger enhancement.
Once the theory flows down to energies ∼ΛHC, the heavy

hyperfermions in Table IV can be integrated out, and the
theory with only light flavors condenses and generates
dynamically a mass gap. The global symmetry is thus

G
H

¼ SUð4Þψ × SUð6Þχ ×Uð1Þ
Spð4Þψ × SOð6Þχ

; ð88Þ

where the Uð1Þ charges are q0ψ ¼ −3q0χ ¼ 1. We can now
build operators containing two light flavors in the sameway
as in Eqs. (79)–(84), except for the different Uð1Þ charges:

Oll
S ¼ðS;FÞ5=3; Oll

A=A0 ¼ ðA;FÞ5=3; Oll
Ā
¼ðĀ;FÞ−7=3;

Oll
Adj¼ðAdj; F̄Þ1=3; Oll

0 ¼ð1; F̄Þ1=3; ð89Þ
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where the quantum numbers in parenthesis correspond to
the global symmetry G. Operators containing one heavy
flavor are also relevant, and they can be classified as

Olh
FF=FF0 ¼ hψ lψhχi ¼ ðF;FÞ2=3; ð90Þ

Olh
FF̄ ¼hψ lψ̄hχ̄i ¼ ðF; F̄Þ4=3; ð91Þ

Olh
F̄F ¼hψ̄ lψ̄hχi ¼ ðF̄;FÞ−4=3; ð92Þ

Olh
F̄ F̄ ¼hψ̄ lψhχ̄i ¼ ðF̄; F̄Þ−2=3: ð93Þ

The matching of the possible PC4F couplings from Eq. (85)
also changes; focusing for simplicity on the example of the
adjoint components in Eq. (86), we see

½QC
R�1Adj ⊂ Oll

Adj; ½QC
R�2;3Adj ⊂ Olh

F̄ F̄: ð94Þ

This matching allows one to construct spurions that encode
the SM spinor qL and can be used to construct the low
energy effective Lagrangian [99]. As a final step, the
operators above should be matched to the baryon reso-
nances, which have definite masses. They can be classified
in terms of the unbroken symmetry H. For instance,

Oll
Adj → Bjj

½A;F� þ Bjj
½S;F�; ð95Þ

where the subscript denotes the representation under
H ¼ ½Spð4Þ; SOð6Þ�. Note that the same hyperbaryon
resonance also overlaps with the other operators, as they
share the same quantum numbers under the unbroken
symmetry H, but with different structure functions [37],

Oll
S → Bjj

½S;F�; Oll
A;A0;Ā → Bjj

½A;F�: ð96Þ

In this case, the most relevant resonance will be determined
by the spectrum. In the case of operators containing one
heavy flavor, they all overlap with the same baryon,
namely,

Olh
X → Blh

½F;F�; ð97Þ

where hyperbaryon operators containing different heavy
flavors, U2=D2, η=η̃, should be considered as different
states. Also, the corresponding baryon resonance will have
a mass larger than that of the Bll states and proportional to
the mass of the heavy flavor, MR2 or Mη.

IV. THREE FAMILY MODEL

A realistic composite Higgs model must not only
account for EWSB within the dynamics of the PNGBs

and generate masses for the third family SM fermions, but
also be able to generate masses of the first and second
family SM fermions and nontrivial mixing matrices. So far,
the issue of flavor physics in composite models has been
discussed only in the context of effective field descriptions,
for both quarks [55–57,104] and leptons [58,105,106], or in
extra dimensional holographic descriptions [107–109].
Models with a microscopic description of the composite
dynamics [29,30] do not go beyond the generation of the
top mass. In particular, in Ref. [56], a model was proposed
where two scales are identified: a light one where the
physics relevant for the top quark resides with light top
partners and a larger scale where masses for the light
generations and flavor mixing are generated. This approach
has been pushed forward in Ref. [57], where a multiscale
scenario is discussed where each SM fermion has a partner
at a different mass scale. Our PUPC approach offers the
unique opportunity to explore in detail the origin of flavor
physics and fermion masses in a composite Higgs scenario;
while in previous approaches, the couplings relevant for
flavor physics were added as effective operators, without
any possible attempt to investigate the physics that sources
them, in the PUPC approach, they can be clearly associated
to either gauge or scalar couplings. They can, therefore, be
considered fundamental by all means. As we will demon-
strate in this section, this has important consequences for
the low energy physics. In this section, we will, therefore,
describe how to expand the TPS model to give mass to the
first and second generations.
The first obvious step consists in adding new fermions

containing the first and second family SM fermions, in
terms of TPS gauge multiplets. The simplest option is to
introduce two more copies ofΩ andϒ; see Eqs. (4) and (5).
A priori, there is no need to introduce more copies of the Ξ
field since it does not contain SM fermions. The sterile
fermion N is also extended to three families. In Table V, we
summarize in detail the fermion multiplets and their
components. We want to remark the introduction of two
additional copies of the hyperfermions L, Ud, and Du,
which come along the SM fermions. Thus, the total number
of hyperfermions in the fundamental of Spð4ÞHC becomes
Nψ ¼ 20, which is too much in order to keep the theory
inside a near-conformal phase below the TPS symmetry
breaking, as discussed in Sec. II E. This observation already
suggests that the hyperfermions associated to the first two
generations should be heavy, with a mass close to the TPS
symmetry breaking scale.6

The next step consists in extending the Lagrangian to the
three family case; adding family indices to Eq. (39), we
obtain

6The only way to keep all the hyperfermions light is to break
the CHC symmetry at low energy, close to ΛHC, so that the
conformal window is generated by the SUð4ÞCHC dynamics; cf.,
Sec. II E.
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LY ¼ −
1

2
μaNN

aNa −
1

2
μΞΞΞ −

1

2
λΨΞΨΞ

− ðλabΦ ϒaΦNb þ λaΘLΩaΘ�Ωa þ λaΘRϒ
aΘϒa

þ λaΔϒ
aΔ�Ξþ H:c:Þ; ð98Þ

where,without lossofgenerality,wehaveused theUð3Þ flavor
symmetry of the fields Na, Ωa, and ϒa to diagonalize the
matrices μN and λΘL=R. We can already remark that the only
terms that connect different flavors are λabΦ , which character-
izes the mixing between right-handed and sterile neutrinos,
and λaΔ, which introduces couplings between the right-handed
SM fermions and the hyperfermions contained in Ξ.
As discussed in the previous section, masses for the

hyperfermions in Ωa and ϒa are generated by the Yukawas
λΘL=R upon Θ developing its CHC-breaking VEV. Thus, in
order to preserve a wide walking window, we need

vΘCHC ≫ ΛHC; λ1;2ΘL=R ∼Oð1Þ; λ3ΘL=R ≪ 1: ð99Þ

The latter comes from the need to keep the hyperfermions
of the third generation light, as discussed in the previous
section. Note that this necessary setup already allows us to
rule out the scenario of Ref. [57] in the TPS framework; as
partners of the light generations can only contain the
hyperfermions L1;2, U1;2

d , and D1;2
u , it is not possible to

generate hierarchical masses for them without spoiling the
walking in the near-conformal window (this would lead to
an excessive suppression of the top mass).
In the remainder of this section, we will focus on the

symmetry breaking pattern involving VEVs for the scalar
multiplets Φ, Ψ, and Θ because it allows one to preserve
baryon number, as we will discuss later.

A. Scenarios for EWSB with flavor

In the previous section, the composite Higgs was
associated with the hyperfermions of the third family
and the ones contained in Ξ, which need to remain
relatively light. As we have shown, it is also necessary
to keep the hyperfermions of the light generations very
heavy. To discuss light generation masses, we need to first
explore how they can couple to the source of EWSB. We
envision three potential scenarios:
(1) Private Higgs scenario: it may be possible that each

family receives the EWSB from a bound state of the
hyperfermions of the same generation. This scenario
has some similarities with the private Higgs pro-
posed in Ref. [110]. As we will explain below, this
case should be discarded.

(2) Flavorful partial compositeness: light generation
may be connected to their own partners, i.e., spin-
1=2 resonances from the hyperbarion operators of
first and second generations. As we mentioned, the
need for a walking window implies that the light
generation partners should have a fairly large mass,
close to the CHC breaking scale vΘCHC. Unless this
scale can be pushed to relatively low values, this
scenario seems unlikely because the masses would
be excessively suppressed.

(3) Flavored couplings: the remaining scenario consists
in generating couplings for all SM fermions to the
hyperfermions of the third generation. The flavor
structure is thus embedded in the couplings. As we
will see, this scenario requires an extension of the
scalar sector as compared to the minimal model of
Sec. III.

To better understand why the scenario 1 should be
discarded, we need to closely investigate the global
symmetries of the TPS model extended to three gener-
ations. Firstly, for each family, we may introduce a discrete

TABLE V. Extension of the TPS fermion sector to three families. For Ωa and ϒa, the two columns correspond to
the SUð2ÞL=R components, while the rows are connected by the SUð8ÞPS symmetry. For Ξ, the two columns

correspond to the 35 and 35 components of the multiplet under SUð7ÞEHC.
First family Second family Third family
N1 N2 N3

Ω1 ¼
  L1

u

u1L
ν1L

! L1
d

d1L
e1L

!!
Ω2 ¼

  L2
u

u2L
ν2L

! L2
d

d2L
e2L

!!
Ω3 ¼

  L3
u

u3L
ν3L

! L3
d

d3L
e3L

!!

ϒ1 ¼
  U1

d
d1cR
e1cR

! D1
u

u1cR
ν1cR

!!
ϒ2 ¼

  U2
d

d2cR
e2cR

! D2
u

u2cR
ν2cR

!!
ϒ3 ¼

  U3
d

d3cR
e3cR

! D3
u

u3cR
ν3cR

!!

Ξ ¼

0
BBB@
2
6664
Ut

χ
η
ω
ρ

3
7775
2
6664
Db

χ̃
η̃
ω̃
ρ̃

3
7775
1
CCCA

CACCIAPAGLIA, VATANI, and ZHANG PHYS. REV. D 103, 055001 (2021)

055001-18



Z2 symmetry that we name ZL;p (p being the family
index), under which all components of theΩp field are odd,
while all other fields are even (including Ωq, q ≠ p).
Secondly, for each family, we may introduce a global
SUð2ÞL;p symmetry, which is the simultaneous SUð2ÞL
rotation of all components in Ωp (while Ωq with q ≠ p are
untouched). In the minimal model with a single Θ field,
charaterized by the Yukawa terms in Eq. (98), all the ZL;p’s
are explicitly preserved by the complete Lagrangian of the
TPS model, while the SUð2ÞL;p’s are only broken due to the
SUð2ÞL gauging.
The mass terms of the SM fermions in the generation p

necessarily break bothZp and SUð2ÞL;p, or, in other words,
the private Higgses Hp are charged under these sym-
metries. In scenario 1, we implicitly assume that these
symmetries are broken spontaneously, leading to the
presence of three sets of PNGBs due to the breaking of
the global SUð2ÞL;p symmetries. While one set constitutes
the exact Goldstones of the W� and Z bosons, the others
will acquire a mass via the explicit breaking due to the
SUð2ÞL gauging, and independent of the mass of the
hyperfermions. This seems to be in contradiction with
the decoupling condition [111,112], which dictates that
heavy particles should be decoupled from IR physics. The
existence of a massless Goldstone boson composed of
superheavy constituents certainly contradicts the decou-
pling condition. Note also that a theorem by Vafa and
Witten [113] states that “nonchiral” global symmetries
cannot be spontaneously broken. Strictly speaking, the TPS
model is not a vectorlike theory, even though an SUð2ÞL;p
invariant mass for Lp can be written, so this theorem cannot
be directly applied. Yet, the argument above suggests that
the EWSB must be associated only with light hyper-
fermions, i.e., the third generation ones and the ones
contained in Ξ, as we studied in the previous section.
Another possibility is that the EWSB is communicated to

the heavy hyperfermions via explicit breaking, like loops of
the SUð2ÞL gauge bosons. However, the breaking would be
suppressed by the mass of the heavy hyperfermions,
∼v2SM=vΘCHC. Unless the CHC breaking scale is low, this
possibility is excluded in the same way as in scenario 2.

B. Second family masses and the rank
of the mass matrix

In the orginal work proposing partial compositeness [66],
D. B. Kaplan realized that, although at high energy, three
families with the most general flavor structure are included,
the fermionmass matrix obtained at low energymay turn out
to be of rank 1, as its entries can be expressed as

mab ¼ κaκ̃b; ð100Þ

where a, b ¼ 1, 2, 3 are family indices. Thus, to generate
masses for the first and second families, he introduced

mechanisms other than PC. In the TPS model, we should
also check that the rank of the mass matrix is enough to
give mass to all generations. For each SM fermion f, the
mass matrix can be schematically written as

Mf ¼

0
B@

hOL1OR1i hOL1OR2i hOL1OR3i
hOL2OR1i hOL2OR2i hOL2OR3i
hOL3OR1i hOL3OR2i hOL3OR3i

1
CA; ð101Þ

where OL=Ra, with a ¼ 1, 2, 3, are the sum of hyperbaryon
operators that couple to the SM fermion fields fLi; fRj,
while h…i denotes the Fourier-transformed correlator at
zero external momenta.
Equation (101), which connects the fermion mass matrix

and the hyperbaryon correlator matrix, requires some
technical explanations. In the one family case, the relation
between the generated fermion mass and the corresponding
two-point hyperbaryon correlator can be derived by match-
ing the functional derivatives of the generating functional
obtained in the low-energy effective theory (described in
terms of PNGBs and external elementary fields) and the
UV description of the model [88]. Here, we simply
generalize the formula to the three family case. Since
the low-energy effective theory is valid up to ΛHC, the
matching must be done at low energy as well. To compute
the fermion mass matrix Mf, therefore, the operators
OLi; ORj that appear in Eq. (101) should be viewed as
renormalized operators defined at ∼ΛHC. The running and
mixing effects, together with all effects of original cou-
plings and integrating out mediators, have been taken into
account in the definition of these operators.
We note that one PC4F operator can be mediated by

multiple vector and scalar mediators. In the scalar mediator
part, there can be complicated mixing, which affects the
mass eigenvalues and Yukawa couplings of the scalar
components. Nevertheless, as long as we go below the
scale of the lightest mediator mass, all PC four-fermion
interactions can be incorporated into local effective PC4F
operators, regardless of the origin and properties of the
mediators. Moreover, let us note that mediator masses and
mixings are certainly family independent, and one side of
the mediator must be connected to two hyperfermions,
which is also described by a family-independent coupling.
The family dependence only comes in at the other side
where a scalar mediator is connected to one SM fermion
and one hyperfermion and is only embodied in one
proportionality factor at tree level.
Complication may arise due to the hierarchical hyper-

fermion masses. When the theory is evolved from UV to
IR, in principle, we should integrate out heavy hyper-
fermions when we go below the corresponding mass
thresholds. However, if this is done for all hyperfermions
heavier than ΛHC, Eq. (101) may be invalid since some
contributions other than hyperbaryon correlators are
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ignored. On the other hand, the form of Eq. (101) is
convenient for the analysis of its rank. Our strategy will be
as follows. We subdivide all hyperfermions heavier than
ΛHC into two types. The first type includes those hyper-
fermions that are so heavy that their effect on SM fermion
mass generation can be safely ignored. This is the case for
hyperfermions in the first and second families, which are
assumed to have superheavy masses ∼vΘCHC. The second
type includes those hyperfermions that have a mass close to
ΛHC, like η and η̃, as their effect on SM fermion mass
generation cannot be ignored. We will simply integrate out
hyperfermions of the first type but retain hyperfermions of
the second type when we perform the matching to obtain
Eq. (101). In this manner, the convenience of Eq. (101) is
retained. Of course, if concrete calculations are to be
carried out, we need be extremely careful about how the
correlators involving heavy hyperfermions are computed.
However, in the following analysis, we are not bothered
with such complication since we are only concerned with
the rank of Mf.
Now, one of the elementary properties of the correlator

hOLaORbi is that it is linear with respect to the participating
operators OLa and ORb. This sounds trivial, but it turns out
to be crucial for the model building. For example, suppose
the participating hyperbaryon operators have the structure,

OLa ¼ yLaOL; ORb ¼ yRbOR; ð102Þ

where OL, OR are fermionic operators, and yL=Ra are
arbitrary coefficients. Then, we immediately realize the
resulting mass matrix will have entries like Eq. (100),
which means its rank is 1 and will not be able to give
masses to all three families.
What is the situation for the TPS model described so far?

Firstly, we note that gauge mediation can only be effective
for the third generation, as it only couples components
inside the same multiplet. Scalar mediation, on the other
hand, is sensitive to the details of the Yukawa interactions
in Eq. (98). The couplings of the left-handed doublets,
contained in Ωp, are only generated by the Yukawa λaΘL,
which is diagonal. This implies that only the third gen-
eration SM fermions can couple to the light hyperfermions,
and furthermore, λ3ΘL ≪ 1. Thus, the left-handed operators
will have the form,

OLa ¼ δa3OL; ð103Þ

leading to rank-1 mass matrix. To mend this problem, we
can extend the minimal model by adding a second Θ scalar
and a second Ψ scalar. We can further use a rotation
symmetry between the two to cast the VEVs on the first,Θ1

and Ψ1, while the second ones, Θ2 and Ψ2, have a large
mass. The Yukawa Lagrangian now contains two copies of
the couplings, as listed below:

LY ⊃ −ðλkabΘLΩaΘ�
kΩb þ λkabΘRϒ

aΘkϒb þH:c:Þ− 1

2
λkΨΞΨkΞ:

ð104Þ

We can again use Uð3Þ flavor rotations to cast λ1abΘL=R into a
diagonal form so that the mass matrices for the hyper-
fermions generated by the Θ1 VEVare diagonal. Note that
λ1abΘL=R entries need to fulfil the condition in Eq. (99), while

all the entries in λ2abΘL=R can be sizeable. Similarly, we can

have λ1Ψ ≪ 1 and λ2Ψ ∼Oð1Þ. From Table III, we see that
PC4F operators for qL and lL can be generated by the scalar
components φ2 and φ1, respectively, via mixing between
Θ2 and Ψ2. In both cases, one additional operator is
generated in the form,

O0
La ¼ λ2a3ΘL λ

2
ΨOL;φ; ð105Þ

which, once added to the one from vector mediation, gives
rank 2 to the mass matrix, thus allowing for the second
generation masses.
We finally remark that for right-handed fermions, there

are already at least three channels: the gauge mediation for
third generation, the λ2a3ΘR λ

2
Ψ combination, and the combi-

nation from the λΔ Yukawa, which can generate at least
three independent baryonic operators. In addition, we recall
that from Table III the right-handed fermions appear in
more mediator channels than the left-handed ones. The
limitation in the rank of the mass matrix, therefore,
uniquely arises from the left-handed sector.

C. First family masses

So far, the first generation of SM fermions remains
massless. Adding further Θ scalar multiplets does not help:
While one can introduce additional flavor structures, they
will only appear in a linear combination to the low energy
lagrangian, once the mediators are integrated out. In other
words, the form of the operator in Eq. (105) remains
unchanged, with λ2a3ΘL replaced by a linear combination of
Yukawa couplings.
A possible solution to this problem consists in intro-

ducing a new scalar field ΔL, transforming as a 56 under
SUð8ÞPS, doublet under SUð2ÞL and singlet under SUð2ÞR,
and a new Yukawa coupling,

LY ⊃ −λaΔLΩaΔLΞþ H:c: ð106Þ

As ΔL is not allowed to develop a VEV, λaΔL can be sizable
and generate a new set of operators for the left-handed
doublets, in the form,

O00
La ¼ λaΔLλ

3
ΔLOL;Δ; ð107Þ

thus elevating the mass matrix rank to the desired 3. As the
flavor structures in the left- and right-handed sectors are
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independent, this allows one to generate the needed flavor
mixing and nontrivial CKM and PMNS mixing matrices.
CP-violating phases can be traced back either to physical
phases in the Yukawas or in phases developed by the
hyperbaryon correlators. In Table VI, we summarize the
complete field content of the three-generation model.
Another possible solution, which does not require

introducing ΔL, is to consider loop-induced PC4F oper-
ators. This mechanism relies on the fact that the couplings
to the superheavy hyperfermions can be transmitted to the
light hyperfermions via loops of the Yukawa couplings. As
an example, in Fig. 4, we show schematically a loop
generating a coupling for the left-handed quarks qL. This
would generate a new coupling of the form,

O00
La ¼ ðλ2ΨÞ2λ1aaΘL ðλ2a3ΘL Þ†OL;loop: ð108Þ

Because of the insertion of λ1aaΘL [for which a ¼ 1, 2 have
large entries, see Eq. (99)], this operator has a different
flavor structure than O0

La in Eq. (105), thus raising the rank
of the mass matrix to 3 and generating masses for the first
generation.

D. Baryon number conservation and dark matter

In all models where quarks and leptons are unified in a
single multiplet, proton decay, or any other process
violating lepton L and baryon B numbers, is a potential
threat. Proton and neutron decay experiments, in fact, can
constrain the scale of violation to very high values,
∼1015÷16 GeV. The Pati-Salam model [74] is known to
have neutron-antineutron oscillation instead of proton
decay [114,115]. The reason is that, although there exist
gauge bosons that connect quarks and leptons, such
transition preserves baryon number. The baryon number
violation then depends on the detail of the scalar sector.
In the TPS model, it is possible to define both ordinary

baryon and lepton numbers and a hyperbaryon number H.
We normalize B and L like in the SM, while we assign H
number �1=2 to the hyperfermions in the Ωp and ϒp

multiplets (see top block in Table VII). If we only focus on
the gauge and Yukawa terms, we realize that B, L, and H
can be consistently assigned to all the fermion components,
as shown in the second block of Table VII. This can be
easily understood by looking at the Uð1Þ’s contained in the
TPS gauge group; in fact, two combinations of B, L, andH
are contained in two (broken) generators of SUð8ÞPS (while
the unbroken hypercharge is defined as a linear combina-
tion of B − L inside SUð8ÞPS and the diagonal generator of
SUð2ÞR). Finally, the remaining combination corresponds
to the global Uð1ÞG defined in Table VI, with

QG ¼ 2H þ 3Bþ L; ð109Þ

which yields q ¼ 1. The survival of these symmetries is,
therefore, linked to the breaking of the gauge symmetries;
in the bottom two blocks of Table VII, we report the

TABLE VI. Minimal scalar and (left-handed Weyl) fermion
field content in the TPS model that accounts for three families.
The last column indicates the minimal number of fields needed.

Three-family TPS model

Field Spin SUð8ÞPS SUð2ÞL SUð2ÞR QG #

Φ 0 8 1 2 q 1
Θ 0 28 1 1 2q 2
Δ 0 56 1 2 q 1
ΔL 0 56 2 1 −q 1
Ψ 0 63 1 1 0 2
N 1=2 1 1 1 0 3
Ω 1=2 8 2 1 q 3
ϒ 1=2 8̄ 1 2 −q 3
Ξ 1=2 70 1 1 0 1

FIG. 4. Loop-induced PC4F operators as an explanation for the
first family fermion masses.

TABLE VII. Global charges B, L, andH for the fermions in the
TPS model. We also list the charges of the scalar VEVs, to
highlight which symmetries are broken.

Global charges

Fields B L H

SM quarks 1=3 0 0
SM leptons 0 1 0
Lp 0 0 1=2
Up

d , D
p
u 0 0 −1=2

Ut −1=2 1=2 1=2
χ, ω −1=6 1=2 0
η 1=6 1=2 −1=2
ρ 1=2 1=2 −1
Np 0 0 0
vΦPS 0 1 0
vΨEHC 0 0 0
vΘCHC 0 0 1
vΔEHC 1=2 −1=2 −1
vΔCHC −1=2 1=2 0
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charges of the VEVs contained in the scalar sector of the
theory. We see that the VEV breaking the SUð8ÞPS gauge
symmetry also violates L (recall that this VEV generates
the mixing between the right-handed neutrinos and the
singlets N). The CHC breaking VEV in Θ breaks H (and
generates masses for the hyperfermions in the Ωp and ϒp

multiplets). Thus, if the breaking is due only to VEVs inΦ,
Ψ, and Θ, B remains unbroken. Note also that all the
Goldstone bosons associated to the two broken symmetries
are eaten by the massive gauge bosons; thus, no light scalar
remains. In this section, we will focus on the B-preserving
scenario, while the B-violating case (due to the VEVs in Δ)
will be discussed in the next subsection. Note finally that no
explicit Uð1ÞG breaking should be present in the scalar
sector.
The main consequence of this scenario, which we shall

call B-preserving vacuum, is that proton and neutron
decays are forbidden, thus avoiding the strong bounds
deriving from experiments.7 The price to pay is that mixing
between the Ξ components and other fermions are turned
off so that many interesting effects discussed in Sec. III,
like the bcR–ω̃ mixing, are forbidden. This vacuum, how-
ever, also enjoys the presence of fermions with exotic B
charges, which therefore cannot decay back into SM states.
The lightest of the Ξ components, therefore, can play the
role of a dark matter candidate. Of course, if the lightest
state is charged under Spð4ÞHC, the dark matter candidate
can be a meson containing one such hyperfermion.
The mass spectrum of the Ξ components in the B-

preserving vacuum has been discussed in Sec. III C: Here,
we simply recall that

Mω ¼ Mχ ¼ jμ0 − 5μ1j; Mρ ¼ μ0; ð110Þ

and the two isosinglet hyperfermions have the same mass
as ρ, while Mη ¼ jμ0 þ 2μ1j is correlated with the other
two. As ω does not carry HC charges, it is crucial that it is
not the lightest state. Furthermore, as η is the only hyper-
fermion in the fundamental of Spð4ÞHC that carries QCD
color charges, mesons containing a single η or η̃ are not
good dark matter candidates. In the following, with the aim
of presenting a qualitative discussion of the typical dark
matter phenomenology, let us consider the case in which
ρ; ρ̃ act as the dark matter candidate, with the typical
parameter space for masses characterized by

Mρ < Mω ¼ Mχ ; and Mρ < Mη: ð111Þ

This configuration occurs in the light and dark green areas
in Fig. 5 in the μ0–μ1 parameter space. The light green

wedge also features Mχ < Mη, which could explain the
lightness of leptons with respect to quarks in the same
generation; cf., Sec. III E. As a final comment, bound states
of Ut–Db, if they receive a negative contribution to their
mass from the binding energy, may also be lighter than ρ
and play the role of composite dark matter candidate. We
also checked that all states with exotic B charges can decay
into ρ; for instance, ω → ρ̃þ tþ τ−, hL3

uηi → ρþ b̄, and
so on. These may be very interesting final states to look for
at the LHC or at future high energy hadron colliders.
A detailed study of the dark matter phenomenology of ρ

goes beyond the scope of this paper, and we leave it for
further exploration. Yet, the most interesting property of
this dark matter candidate is that it is stable thanks to the
ordinary baryon numbers. Its relic density can, therefore, be
linked to that of the ordinary baryons under some simple
assumptions: (a) a baryon or lepton asymmetry is generated
at scales well above the EWSB scale (for instance, via
leptogenesis [116]); (b) the EW phase transition is strong.
Both conditions can be attained in the TPS model: the
former via the presence of the heavy sterile neutrinos N,
the latter thanks to the presence of additional light PNGBs
accompanying the Higgs [117,118]. At the EW phase
transition, therefore, the lepton or baryon asymmetries
will be reshuffled between the various active degrees of
freedom in thermal equilibrium. The number of Ξ compo-
nents in the baryon asymmetry can then be computed
following the procedure delineated in Ref. [119] (see also
Refs. [120,121]). In our case, the ρ and ω are in thermal
equilibrium thanks to the couplings to PC4F operators,
which are enhanced at low energy by the anomalous

FIG. 5. Mass hierarchy between ρ, χ=ω, and η in the μ0–μ1
parameter space. The green regions are favorable for dark
matter. The solid lines give, as a reference, the boundaries of
the regions where Mρ < ΛHC (gray), Mχ ¼ Mω < ΛHC (blue),
and Mη < ΛHC (red).

7Nevertheless, we will consider that the breaking of the
symmetries occurs at high scale, in order to keep the scalar
sector “natural”, i.e., avoiding a large hierarchy between elemen-
tary scalar masses and the Planck scale.
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dimensions, as it can be inferred, for instance, from the
gauge-mediation currents in Eqs. (41) and (42). More
details on this calculation, and the assumptions adopted,
are reported in Appendix B. The final result is that the ratio
of dark matter and baryon densities can be written as

ΩDM

Ωb
¼ Mρ

mN
j2σD − 2ση − 5σχ − σωj; ð112Þ

where σX is a Boltzmann suppression factor, which
depends on the mass of the particle X and the critical
temperature T� of the EW phase transition, defined in
Eq. (B6).
In Fig. 6, we show the numerical result in the parameter

region, where ρ is the lightest Ξ component, focusing on
the μ1 > 0 region (cf., Fig. 5). We expressed the mass
parameters μ0;1 in terms of Mρ and the mass difference
Mχ −Mρ, where the dashed line corresponds to Mη ¼ Mχ

boundary. The black line corresponds to points saturating
the Planck measurement [122] for T� ¼ vSM ¼ 246 GeV,
showing that the ρ mass is typically between 2.5 ÷ 3 TeV,
except for a funnel region where cancellations between the
Boltzmann factors occur. We also show results for T� ¼
100 GeV (red) and T� ¼ 500 GeV (blue), showing how
the ρ mass can be lowered or enhanced. While these results
are qualitative, they provide a reliable indication of the
typical mass range for the components of the Ξ multiplet,
which also has consequences for the low energy properties
of the composite theory. We see that the region with the
mass hierarchy Mρ < Mχ < Mη, relevant in explaining the
lightness of lepton masses, seems particularly favorable for
this kind of dark matter candidate.

E. Baryon number violation

Baryon number violation can occur in the TPS model in
two ways: either via explicit interactions in the scalar
potential or via spontaneous breaking due to scalar VEVs.

As an example of the former, let’s consider the following
quartic coupling:

LV ⊃ −λ4ΘϵijklmnopΘij�Θkl�Θmn�Θop� þ c:c: ð113Þ

where i;…; p are SUð8ÞPS indices. This terms explicitly
violatesUð1ÞG; thus, it leads to baryon number violation. If
we examine the decomposition of Θ at the HC level,
we may identify two scalars with quantum numbers
θ ¼ ð1; 3Þ−1=3 and θ̄ ¼ ð1; 3̄Þ1=3, which coincides with
the quantum number of one type of scalar leptoquark that
can mediate proton decay [123]. However, while θ has
Bθ ¼ 1=3 and Lθ ¼ 1, θ̄ has Bθ̄ ¼ 2=3 and Lθ̄ ¼ 0. Thus,
the former behaves like a lepto-quark while the latter as a
di-quark:

θ → uþ e−; θ̄ → uþ d: ð114Þ

The coupling in Eq. (113), after Θ acquires a VEV,
will, however, generate a mass mixing in the form
λ4ΘðvΘCHCÞ2θθ̄, thus allowing the standard proton decay
operator,

1

M2
θ

ðudÞðue−Þ: ð115Þ

This kind of processes would require that the mass of these
scalars is very large, Mθ ≈ 1015÷16 GeV.
The source of spontaneous B violation is due to VEV(s)

for the scalar multiplet Δ, as shown in the bottom block of
Table VII. This scenario has several interesting features,
linked to mixing between the Ξ components and other
fermions and hyperfermions, as discussed in Sec. III.
However, it may also generate dangerous B-violating
effects. One example is the presence of B-violating
PC4F operators, mediated by scalars mixing Δ with other
multiplets, as shown in Table III. Such effects, while
suppressed by a large scalar mass, may be enhanced at
low energy by the anomalous running in the conformal
phase, thus leaving sizeable traces at low energy. It may,
therefore, not be enough to push the scalar masses and
symmetry breaking scales above the proton decay limits.

F. Final remarks

We have found that the TPS model can accommodate for
masses and flavor mixing between the three SM gener-
ations, once it is suitably extended, as shown in Table VI.
The model can preserve baryon number, B, if the symmetry
breaking is due to VEVs for Φ, Ψ, and Θ1, while some
couplings in the scalar potential are forbidden. This
scenario also entails a candidate for dark matter, protected
by a semi-integer baryon number.
One remarkable consequence of the TPS construction is

that it fixes many essential properties of the model in the

FIG. 6. Points saturating the DM relic density in the Mρ vs
Mχ −Mρ parameter space. The solid lines correspond to T�¼
246GeV (black), T� ¼ 100 GeV (red), and T� ¼500GeV (blue).
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IR, i.e., in the confined phase. Besides the choice for the
HC gauge group, this goes into the number of light
hyperfermions and their EW quantum numbers. For in-
stance, we found that the low energy model resembles M8
of [33], except for the hypercharge of χ (which is −1=3 in
the TPS model, instead of 2=3 [29,30]). This difference
implies that the low energy model suffers from corrections
to the bottom couplings to the Z boson [124], with
strong bounds on the masses of the baryons as a
consequence.
Furthermore, a detailed study of the low energy dynam-

ics is crucial to establish the viability of the model in view
of unwanted flavor and CP violation. This analysis is made
more difficult by the ignorance of the dynamics in the
walking phase, which can only be studied on the lattice;
although the flavor scale is superheavy (ΛF ∼ 1016 GeV),
flavor violation is incorporated into local PC4F operators
whose effects are preserved down to ΛHC ∼ 10 TeV due to
large anomalous dimensions of certain hyperbaryon oper-
ators. The flavor-violating couplings are introduced due to
the need to generate masses for the first and second family
SM fermions, so we expect flavor violation is suppressed
by light SM fermion Yukawas. However, it is known such
suppression is not enough to be compatible with exper-
imental bounds [19]. CP-violating couplings are also
needed to generate the phase of CKM matrix in order to
account for CP-violation phenomena in the quark sector.
However, unwanted CP violation may result in observables
like electron electric dipole moment (EDM). Recent elec-
tron EDM results [125] lead to a strong constraint on
the compositeness scale: f ≳ 100 TeV, where f is the
Goldstone decay constant [126]. In the low-energy effec-
tive theory, introducing certain flavor symmetries may help
relax the constraint [55,58]. It could be tricky (if possible)
to implement such symmetries in a UV-complete model
like TPS, without affecting generating realistic masses and
mixing of SM fermions. We, therefore, leave this issue for
future study [94].

V. SUMMARY AND OUTLOOK

That EWSB may originate from condensation in a new
sector of strong dynamics is an attractive idea. Compared to
the SM Higgs sector, which is parametrized via an
elementary scalar field, it may naturally provide deeper
insights into the possible origin of the EWSB and its
connection to fermion mass generation. With the discovery
of a 125 GeV Higgs-like particle and the need to accom-
modate the large top quark mass, it is then compelling to
combine the idea of a PNGB Higgs and fermion partial
compositeness in order to achieve natural and realistic
models of EWSB based on strong dynamics.
In underlying gauge-fermion realizations, PC is realized

via four-fermion operators built out of one SM fermion and
three hyperfermions charged under the new confining HC
gauge group. In this work, we propose the first complete

model, valid up to the Planck scale, that can generate the
necessary four fermion operators (PC4F) in a model that
has all the necessary features to provide a realistic low
energy dynamics. This construction is based on the PUPC
framework [54], where the HC and SM gauge symmetries
are partially unified. When the larger gauge group under-
goes spontaneous symmetry breaking, the resulting mas-
sive gauge bosons (and massive scalars) act as mediators
for the PC4F operators.
Realizing the PUPC framework in practice, however, is

highly nontrivial due to the many theoretical and phenom-
enological requirements. We found that the simplest model
is based on an SUð8ÞPS × SUð2ÞL × SUð2ÞR (TPS) gauge
group, which breaks to an Spð4ÞHC and the SM gauge
groups at a high scale ΛPU ≈ 1016 GeV. A minimal
anomaly-free set of fermions can embed both the SM
fermions and hyperfermions needed to generate PC at low
energy. Furthermore, we add suitable scalar fields at
a high scale (thus being natural) that play the roles of
breaking the gauge group, generate PC4F operators via
Yukawa couplings, and give masses to some hyperfer-
mions. The last feature is crucial in order to generate a
walking dynamics between the UVunified phase and the IR
confined one. We demonstrated that a renormalizable
gauge-Yukawa theory based on the TPS gauge group
automatically contains all the ingredients necessary to
achieve the above goals. Thus, by a higher level unification,
we naturally achieve a tighter theoretical structure, which
gives deeper insight of the origin of fermion PC and mass
generation.
In this work, we have shown how the TPS model can

generate masses for the three generations of SM fermions,
with nontrivial mixing among them, while preserving all
the attractive features of composite PNGB Higgs models.
We identify several mechanisms that can explain the mass
split between the various SM fermions (i.e., leptons versus
quarks, bottom versus top) and the lightness of neutrinos
via an inverse seesaw mechanism that arises naturally in
this construction. Finally, the walking phase can be
achieved by giving appropriate masses to the hyperfer-
mions appearing in the model. We pointed out that
accidental Uð1Þ symmetries corresponding to the hyper-
baryon number, the baryon number, and the lepton number
have important and interesting phenomenological conse-
quences. In our TPS construction, it is possible to preserve
baryon number, thus avoiding strong constraints from
proton and neutron decays, with the bonus feature
of obtaining a dark matter candidate thanks to the presence
of semi-integer baryon number neutral states. Under certain
circumstances, the relic density can be linked to the baryon
asymmetry, leading to typical masses for the dark matter
candidate in the few TeV range.
While in this work, we have proven the feasibility of the

PUPC framework, via the explicit TPS realization, this
work should be considered as a stepping stone to further
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investigate the phenomenology of the TPS model. The
main points that need further investigations include:

(i) We have identified the minimal scalar sector and the
phenomenologically relevant symmetry breaking
patterns due to scalar VEVs that are proven to exist
in the literature. It is, nevertheless, necessary to
check if the desired VEV patterns can be realized in
the scalar potential of the complete model.

(ii) The presence of a walking phase, where the theory
approaches an IR conformal fixed point, is crucial
for the realization of flavor physics in this model.
While estimates seem to support the presence
of such a phase in the TPS model, only lattice
calculations can verify this nonperturbatively. Re-
markably, in the TPS model, both the gauge sym-
metry and the fermion properties are specified.
Furthermore, calculating the anomalous dimensions
of the hyperbaryon operators in this phase is
crucial to understand the flavor structure at low
energy.

(iii) We have shown that the model can generate the
needed flavor structures of the SM. A more detailed
analysis is needed, however, to check if unwanted
CP and flavor-violating effects survive at low
energy, which should face the strong experimental
bounds. This analysis can be done in a reliable way
only after lattice input is provided in the form of
anomalous dimensions in the walking phase to study
the enhancement of flavor-violating effects at low
energy and the spectrum of the baryons below the
condensation scale.

(iv) Finally, the running of the gauge couplings should
be studied in detail in order to check the consistency
of partial unification, where the QCD and HC ones
are the most relevant. This task is daring due to the
fact that the HC dynamics is strong over many
decades of energy; thus, nonperturbative techniques
are needed.

Although we do not attempt to solve these issues in the
present work, we hope that our model-building effort can
provide new perspectives for understanding and evaluating
the PNGBHiggs and PC ideas and motivate the community
to investigate the related problems and the lattice commu-
nity to explore uncharted territories that are crucial for our
quest for mass generation.
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APPENDIX A: FIELD DECOMPOSITIONS

To match the TPS theory in the UV with the composite
Higgs model in the IR, it is important to understand the
decomposition of the TPS multiplets at various steps of the
gauge symmetry breaking path. To this end, in this
Appendix, we will provide for the reader all the necessary
information, following the steps:

SUð8ÞPS × SUð2ÞR → SUð7ÞEHC ×Uð1ÞE
→ SUð4ÞCHC ×Uð1ÞY; ðA1Þ

where we omitted the SUð2ÞL gauge as it remains unbroken
all the way down to the compositeness scale. Also, we
recall that the additional Uð1ÞX charges, relevant for the
Ψ–Θ path, can be recovered as QX ¼ QE − Y. Also,
the SUð4ÞCHC representations can be easily matched to
the Spð4ÞHC ones as follows:

15CHC → 10HC ⊕ 5HC; 6CHC → 5HC ⊕ 1HC;

4=4̄CHC → 4HC: ðA2Þ

To distinguish the components at various steps, we will use
the following notation:

f56;2g⇒fSUð8ÞPS;SUð2ÞRÞg; 211=7⇒SUð7ÞEHC;Uð1ÞE ;

½1;3̄�1=3⇒ ½SUð4ÞCHC;SUð3ÞC�Uð1ÞY : ðA3Þ

The decomposition of the SUð2ÞL and SUð2ÞR gauge
bosons being rather straightforward, we will omit them
and report the gauge multiplet of SUð8ÞPS,

f63; 1g ¼

8>>><
>>>:

10 ¼ ½1; 1�0
74=7 ¼ ½1; 3�2=3 ⊕ ½4; 1�1=2
7̄−4=7 ¼ ½1; 3̄�−2=3 ⊕ ½4̄; 1�−1=2
480 ¼ ½1; 1�0 ⊕ ½4; 3̄�−1=6 ⊕ ½4̄; 3�1=6 ⊕ ½1; 8�0 ⊕ ½15; 1�0:

ðA4Þ
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For the scalar fields used in the model building, we have

Φ ¼ f8; 2g ¼

8>>><
>>>:

10 ¼ ½1; 1�0
1−1 ¼ ½1; 1�−1
74=7 ¼ ½1; 3�2=3 ⊕ ½4; 1�1=2
7−3=7 ¼ ½1; 3�−1=3 ⊕ ½4; 1�−1=2;

ðA5Þ

Θ ¼ f28; 1g ¼
� 7−3=7 ¼ ½1; 3�−1=3 ⊕ ½4; 1�−1=2
211=7 ¼ ½1; 3̄�1=3 ⊕ ½4; 3�1=6 ⊕ ½6; 1�0;

ðA6Þ

Δ¼f56;2g

¼

8>>><
>>>:

211=7¼½1; 3̄�1=3⊕ ½4;3�1=6⊕ ½6;1�0
21−6=7¼½1; 3̄�−2=3⊕ ½4;3�−5=6⊕ ½6;1�−1
355=7¼½1;1�1⊕ ½4̄;1�1=2⊕ ½4; 3̄�5=6⊕ ½6;3�2=3
35−2=7¼½1;1�0⊕ ½4̄;1�−1=2⊕ ½4; 3̄�−1=6⊕ ½6;3�−1=3;

ðA7Þ

ΔL ¼ f56; 1g

¼
� 21−5=14 ¼ ½1; 3̄�−1=6 ⊕ ½4; 3�−1=3 ⊕ ½6; 1�−1=2
353=14 ¼ ½1; 1�1=2 ⊕ ½4̄; 1�0 ⊕ ½4; 3̄�1=3 ⊕ ½6; 3�1=6;

ðA8Þ

while for the adjoint Ψ ¼ f63; 1g, the same decomposition
as for the SUð8ÞPS gauge bosons applies.
For the fermion multiplets used in the main text, we

obtain

Ω ¼ f8; 1g ¼
� 1−1=2 ¼ ½1; 1�−1=2
7−3=7 ¼ ½1; 3�1=6 ⊕ ½4; 1�0;

ðA9Þ

ϒ ¼ f8; 2g ¼

8>>><
>>>:

10 ¼ ½1; 1�0
1−1 ¼ ½1; 1�−1
74=7 ¼ ½1; 3�2=3 ⊕ ½4; 1�1=2
7−3=7 ¼ ½1; 3�−1=3 ⊕ ½4; 1�−1=2;

ðA10Þ

Ξ ¼ f70;1g

¼
�35−2=7 ¼ ½1;1�0 ⊕ ½4̄;1�−1=2 ⊕ ½4; 3̄�−1=6 ⊕ ½6;3�−1=3
352=7 ¼ ½1;1�0 ⊕ ½4;1�1=2 ⊕ ½4̄;3�1=6 ⊕ ½6; 3̄�1=3:

ðA11Þ

In principle, the multiplet Ξ could be replaced by other
antisymmetric representations of SUð8ÞPS. We will briefly
discuss the alternatives below.

1. Two-index case

The fermion multipletΞ could be replaced by a two-index
antisymmetric Γ2, and its conjugate Γ̄2, decomposing as

Γ2 ¼ f28; 1g ¼
� 7−3=7 ¼ ½1; 3�−1=3 ⊕ ½4; 1�−1=2
211=7 ¼ ½1; 3̄�1=3 ⊕ ½4; 3�1=6 ⊕ ½6; 1�0;

ðA12Þ

Γ̄2 ¼ f28;1g ¼
� 7̄3=7 ¼ ½1; 3̄�1=3 ⊕ ½4̄;1�1=2
21−1=7 ¼ ½1;3�−1=3 ⊕ ½4̄; 3̄�−1=6 ⊕ ½6;1�0:

ðA13Þ
Comparing with Eq. (A11), we see that both contain
isosinglet hyperfermions Db and Ut, QCD-colored hyper-
fermions η–η̃, while the new fermions contain two copies of
the bottom partners ω–ω̃. The main difference stands in the
χ-sector: For this choice, the χ has no QCD-color charges.
Thus, all the hyperbaryons coupling to quarks must contain
η or η̃, contrary to what we found in the TPS model with Ξ.
Note also that the Yukawa couplings with Γ2 would be
different from the ones involving Ξ.

2. Three-index case

Another alternative consists in using three-index anti-
symmetric representations, which will have the same
decomposition as the scalars Δ and ΔL. In particular, we
see from Eq. (A8) that a singlet of the SUð2ÞL=R would
contain a neutral isosinglet hyperfermion and a color-triplet
with charge 1=6, which is necessarily stable. To avoid this
issue, the minimal option would be to promote the fermion
Γ3 to a doublet of SUð2ÞR, thus having the same decom-
position as Δ,

Γ3¼f56;2g

¼

8>>>>><
>>>>>:

211=7¼ ½1; 3̄�1=3⊕ ½4;3�1=6⊕ ½6;1�0
21−6=7¼ ½1; 3̄�−2=3 ⊕ ½4;3�−5=6⊕ ½6;1�−1
355=7¼ ½1;1�1⊕ ½4̄;1�1=2⊕ ½4; 3̄�5=6⊕ ½6;3�2=3
35−2=7¼ ½1;1�0 ⊕ ½4̄;1�−1=2⊕ ½4; 3̄�−1=6⊕ ½6;3�−1=3;

ðA14Þ
Γ̄3¼f56;2g

¼

8>>>>><
>>>>>:

21−1=7¼ ½1;3�−1=3 ⊕ ½4̄; 3̄�−1=6⊕ ½6;1�0
216=7¼ ½1;3�2=3⊕ ½4̄; 3̄�5=6⊕ ½6;1�1
35−5=7¼ ½1;1�−1⊕ ½4;1�−1=2 ⊕ ½4̄;3�−5=6⊕ ½6; 3̄�−2=3
352=7¼ ½1;1�0⊕ ½4;1�1=2⊕ ½4̄;3�1=6⊕ ½6; 3̄�1=3:

ðA15Þ
The main drawback of this choice is that is contains
a much larger number of hyperfermions, thus seriously
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endangering the presence of a walking dynamics in the IR;
cf., Sec. II E.

APPENDIX B: DARK MATTER RELIC
DENSITY CALCULATION

To compute how the baryon number generated above
ΛHC is transferred to the SM and to the fermions with
fractional baryon number (components of Ξ), we consider
only the states that have a mass below or around ΛHC. The
fermions are listed in Table VIII, with their electric charge
Q, their weak isospin T3

L, their baryon number B, and the
multiplicity (which counts the gauge degrees of freedom).
We already imposed the relation between the chemical
potentials deriving from the hyperfermion masses.
We shall also consider the W� gauge boson, for which

we choose chemical potential μW associated to W− (and
−μW for Wþ). The EW interactions within the isodoublets
require

μbL ¼ μtL þμW; μτL ¼ μνL þμW; μL ¼−
1

2
μW: ðB1Þ

To take into account the HC dynamics, which replaces the
Higgs sector of the SM, we include in the counting of
degrees of freedom the hyperfermions themselves. This is a
rough approximation, as the EW phase transition may
occur below the condensation scale, where it would be
more appropriate to consider bound states. Nevertheless, as
we want to obtain a rough estimate of the dark matter
mass, to simplify the analysis, we will stay within this
approximation.
Additional relations between the chemical potentials

derive from the PC4F operators that survive at low energy
due to the large anomalous dimension enhancement. To
simplify the analysis, again, we will only consider gauge-
mediated PC4F operators. Looking at the expression of
the currents in Eqs. (41) and (42), we see that the Ξ

components ρ and ω also participate to PC. Thus, consid-
ering the PC4F operators is equivalent to imposing the
equality of the chemical potentials of the various compo-
nents of the currents, namely for JμE,

−μtL þ μL ¼ μU − μtR ¼ −μU − μbR ¼ −μχ − μD

¼ −μη þ μχ ¼ −μη þ μω ¼ −μρ þ μη

¼ −μω − μD; ðB2Þ
while for JμC,

μL þ μτL ¼ μνR − μU ¼ μτR þ μU ¼ μη þ μχ

¼ μη þ μω ¼ μρ − μD: ðB3Þ
The relations above allow to determine all the chemical
potentials but 4.
A phase transition of the first order is characterized by

the vanishing of the total electric charge and isospin,
given by

Qtot ¼ 9

	
2

3
ðμtL þ μtRÞ −

1

3
ðμbL þ μbRÞ



þ 3½−ðμτL þ μτRÞ�

þ 4

	
1

2
μL2σL þ 1

2
μU2σU þ 1

2
μD2σD




þ 15

�
−
1

3
μχ

�
2σχ þ 12

�
−
1

6
μη

�
2ση

þ 3

�
−
1

3
μω

�
2σω þ 4ð−μWÞ; ðB4Þ

T3
tot ¼

1

2
½9ðμtL − μbLÞ þ 3ðμνL − μτRÞ þ 4μL2σL� − 4μW;

ðB5Þ
where we have introduced the statistical factor for
fermions,

TABLE VIII. Weyl fermions participating to the EW phase transition; nf indicates the degrees of freedom of each spinor.

SMþ standard hyperfermions Exotic B fermions

Q T3
L B nf Q T3

L B nf

tL μtL 2=3 1=2 1=3 9 Ut −μD −1=2 0 −1=2 4
bL μbL −1=3 −1=2 1=3 9 Db μD 1=2 0 1=2 4
tcR −μtR −2=3 0 −1=3 9 χ μχ −1=3 0 −1=6 15
bcR −μbR 1=3 0 −1=3 9 χ̃ −μχ 1=3 0 1=6 15
νL μνL 0 1=2 0 3 η μη −1=6 0 1=6 12
τL μτL −1 −1=2 0 3 η̃ −μη 1=6 0 −1=6 12
τcR −μτR 1 0 0 3 ω μω −1=3 0 −1=6 3
νcR −ννR 0 0 0 3 ω̃ −μω 1=3 0 1=6 3
L3
u μL 1=2 1=2 0 4 ρ μρ 0 0 1=2 1

L3
d −μL −1=2 −1=2 0 4 ρ̃ μρ 0 0 −1=2 1

U3
d μU 1=2 0 0 4

D3
u −μU −1=2 0 0 4

TECHNI-PATI-SALAM COMPOSITE HIGGS MODEL PHYS. REV. D 103, 055001 (2021)

055001-27



σX ¼ 3

2π2

Z
∞

0

dxx2cosh−2
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p �
; z ¼ mX

T
;

ðB6Þ

T being the temperature. The conditions Qtot ¼ 0 and
T3
tot ¼ 0, together with the EW Sphaleron condition,

μtL þ 2μbL þ μνL ¼ 0; ðB7Þ

allow one to fix all chemical potentials as a function of one.
Finally, the baryon number density in the SM quarks

(which corresponds after the EW phase transition to the
net baryon number density in the Universe), can be
expressed as

nSMb ¼ −
12ð3þ σUÞ

6þ 3σD þ ση þ 5σχ þ σω
μU; ðB8Þ

while the total number density of fermions in the ξ
components is

nΞ ¼ −
12ð3þ σUÞð2σD − 2ση − 5σχ − σωÞ

6þ 3σD þ ση þ 5σχ þ σω
μU

¼ ð2σD − 2ση − 5σχ − σωÞnSMb : ðB9Þ

Finally, we can express the relic density of dark matter,
divided by the baryon density, as

ΩDM

Ωb
¼ Mρ

mN

���� nΞnSMb

���� ¼ j2σD − 2ση − 5σχ − σωj
Mρ

mN
¼ 5.36;

ðB10Þ

where mN ≈ 1 GeV is the nucleon mass, and the numerical
value comes from the Planck 2018 measurement [122]. The
equation above can be used to determine the mass of the
dark matter,Mρ, as a function of the temperature of the EW
phase transition (which enters in the expressions for the σ
functions).
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