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This work continues our program of lattice-QCD baryon physics using staggered fermions for both the
sea and the valence quarks. We present a proof-of-concept study that demonstrates, for the first time, how to
calculate baryon matrix elements using staggered quarks for the valence sector. We show how to relate the
representations of the continuum staggered flavor-taste group SUð8ÞFT to those of the discrete lattice
symmetry group. The resulting calculations yield the normalization factors relating staggered baryon
matrix elements to their physical counterparts. We verify this methodology by calculating the isovector
vector and axial-vector charges gV and gA. We use a single ensemble from the MILC Collaboration with
2þ 1þ 1 flavors of sea quark, lattice spacing a ≈ 0.12 fm, and a pion mass Mπ ≈ 305 MeV. On this
ensemble, we find results consistent with expectations from current conservation and neutron beta decay.
Thus, this work demonstrates how highly improved staggered quarks can be used for precision calculations
of baryon properties and, in particular, the isovector nucleon charges.
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I. INTRODUCTION

Accurate first-principles calculations of nuclear cross
sections are an important objective in the particle physics
community. In particular, heavy nuclei, such as 12C and
40Ar, are used as targets in neutrino-scattering and dark-
matter detection experiments. In calculations of cross
sections, a necessary component is the modeling of nuclei
as collections of nucleons, opening up an opportunity for
lattice QCD [1]. At the quasielastic peak, for example, the
electromagnetic and axial-vector form factors of the
nucleon, which characterize the electric charge and spin
distribution within the nucleon, are key ingredients. Such
form factors can be obtained from first principles with
lattice QCD. These hadronic inputs, however, remain one

of the largest sources of systematic error as the exper-
imental precision on these cross sections continues to
improve [2–4].
The electromagnetic form factors have been extracted

precisely from high statistics electron-nucleon scattering
experiments [5,6]. At zero momentum transfer, the proton’s
electric form factor becomes the total electric charge
gV ¼ 1, and the slope at the origin is related to the charge
radius. Recently, experiments that make use of the Lamb
shift of muonic hydrogen report significantly smaller
proton radii than those measured via scattering [7]. (For
recent reviews of the proton radius puzzle, see Refs. [8,9].)
In addition, a recent reanalysis has demonstrated that the
vector form factors at intermediate Q2 also exhibit tensions
outside of their quoted uncertainties [10]. These disagree-
ments could benefit from better knowledge of the Standard
Model predictions, which necessitates using lattice QCD to
calculate the form factor.
In comparison, the nucleon axial-vector form factor is

much less constrained from experimental data. A recent
reanalysis [11] of the deuterium bubble-chamber data
found greater uncertainties than previously assumed.
Again, lattice QCD can be illuminating here, computing
the axial-vector form factor from first principles as an
independent check on the form factor extracted from

*yin01@uchicago.edu
†asmeyer.physics@gmail.com

Present address: UC Berkeley and Lawrence Berkeley National
Laboratory, Berkeley, CA 94720, USA.

‡ask@fnal.gov

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 054510 (2021)

2470-0010=2021=103(5)=054510(21) 054510-1 Published by the American Physical Society

https://orcid.org/0000-0002-0270-666X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.054510&domain=pdf&date_stamp=2021-03-23
https://doi.org/10.1103/PhysRevD.103.054510
https://doi.org/10.1103/PhysRevD.103.054510
https://doi.org/10.1103/PhysRevD.103.054510
https://doi.org/10.1103/PhysRevD.103.054510
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


experimental data. At zero momentum transfer, the axial-
vector form factor gives the so-called nucleon axial charge
gA ¼ 1.2756ð13Þ, which has been measured precisely in
neutron beta decay [12]. Thus, the axial charge can be used
to validate lattice-QCD calculations before studying the
momentum dependence of the form factor. In addition, a
percent-level first principles calculation of gA could shed
light on the neutron lifetime puzzle [13].
Lattice-QCD calculations of baryonic observables are

hindered by the well-known exponential growth of the
noise relative to the signal, which sets in at large times
[14,15]. At early times, where the signal-to-noise ratio is
favorable, the lattice-QCD correlator data contain signifi-
cant contributions from several states in an infinite tower.
When using a fit to disentangle the higher-lying states from
those of interest, some residual, unwanted contamination
remains in the parameters of interest. It is imperative,
therefore, to demonstrate control over both the noise and
the excited-state contamination.
In this work, we use an ensemble generated by the MILC

Collaboration [16], which incorporates a sea with equal-
mass up and down quarks, the strange quark, and the charm
quark. MILC uses the highly improved staggered-quark
(HISQ) action [17] for the sea quarks; here we use
the HISQ action for the valence quarks too. Because
staggered fermions have only one component per site
and retain a remnant chiral symmetry, they are computa-
tionally efficient. Nevertheless, staggered fermions are
complicated by the fermion doubling problem, leading
to four species, known as tastes, for each fermion field.
The four tastes become identical in the continuum limit,
leading to an SUð4nfÞ flavor-taste symmetry for nf flavors.
Consequently, the spectrum of staggered lattice baryons is
rich and intricate. For nucleons, the spectrum has been
classified [18–20], finding many states that have the same
properties as the physical nucleon.
In a recent paper, we used staggered baryons to calculate

the nucleon mass [20]. Computing nucleon charges is
the next step and a necessary one en route to the full
momentum dependence of the form factors. As discussed
in Ref. [20], it can be advantageous to use unphysical
nucleonlike states to carry out the calculation. These states
obtain the same properties as the physical nucleon in the
continuum limit, where the full SUð8ÞFT flavor(isospin)-
taste symmetry emerges. For matrix elements such as
charges and form factors, however, one must find the
correct group-theoretic normalization factors relating
nucleonlike matrix elements to their physical counter-
parts. This exercise is a straightforward if complicated
application of the generalization of the Wigner-Eckart
theorem to SU(8).
To demonstrate this approach, we compute the nucleon

vector and axial-vector charges on a single MILC HISQ
ensemble with lattice spacing a ≈ 0.12 fm and pion mass
Mπ ≈ 305 MeV. We employ local vector and axial-vector

currents. We also outline the steps needed to apply this
method to matrix elements of other baryons, with an eye to
future studies including staggered baryons, such as N → Δ
transition form factors. We find that it is possible, without
too much effort, to cope with the challenges that come
with staggered valence quarks. As with mesons [21], it is
possible to fit the oscillating states but even better to take
combinations of adjacent time slices to suppress their
contribution before trying such fits. Although multistate
Bayesian curve fitting is sufficient, we have code to solve
the generalized eigenvalue problem on two-point correla-
tors from our earlier work studying the nucleon mass [20].
Following the suggestion of Ref. [22], we find that a
suitably projected three-point function is saturated with the
nucleon at reasonable distances. Our research thus points to
a third way for mining MILC’s library of HISQ ensembles,
with its unprecedented scope and very high statistics.
Earlier work on these ensembles used a mixed-action
setup, with Möbius domain wall [23] or Wilson-clover
[24] valence fermions. Such setups entail additional low-
energy constants in the context of chiral perturbation theory
and, in the case of Wilson fermions, the danger of excep-
tional configurations. The remnant chiral symmetry also
makes renormalization simpler than with Wilson fermions.
For example, here we can obtain the normalization of gA
from a vector current.
This paper is organized as follows. In Sec. II, we discuss

staggered-baryon correlators, starting with a brief review
of the two-point correlator methodology [20]. We then
present an overview of our three-point correlators. Here, we
also present one of the key results of this paper: the correct
normalization of the nucleonlike matrix elements. In
Sec. III, we describe strategies for removing excited-state
contamination. Section IV provides the details of our
simulation, while Sec. V describes Bayesian fits to the
correlator data. Our computational results are presented in
Sec. VI, including the robustness of our results under
variations of our fitting procedure, the renormalization of
the bare lattice charge to the physical charges, and the final
values for gV and gA on the single ensemble being used.
Finally, we compare our results to mixed-action results on
the same ensemble and provide our conclusions in Sec. VII.
Appendixes A and B present the group theory relating the
nucleonlike matrix elements to their physical counterparts,
including a numerical demonstration that these derivations
are correct.

II. STAGGERED BARYON CORRELATORS

For simplicity, we focus here on two flavors, up and
down, with isospin symmetry. With staggered fermions,
instead of the usual SUð2ÞF isospin symmetry, an enlarged
SUð8ÞFT flavor-taste symmetry group emerges in the
continuum limit. It is important to note that the irreducible
flavor-taste representations contain components with non-
trivial taste and unexpected isospin. For example, Bailey
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has shown [19] that nucleonlike states exist with unphysical
isospin yet masses equal in the continuum limit to the
physical tasteless nucleon. In fact, all physics of such
nucleonlike states can be related to that of the physical
nucleon. In particular, here we show how to relate nucleon-
like matrix elements to their physical counterparts. As such,
we are allowed to choose any nucleonlike representation, for
example, one that reduces the computational complexity.
We use the isospin-3

2
operators that transform in the 16

irrep of the geometric time slice group (GTS) [18,25], as
presented in Ref. [20]. They are less complicated to analyze
because only a single nucleonlike taste appears in the
spectrum. On the other hand, this irrep contains contribu-
tions from three Δ-like tastes.

A. Two-point correlators

Using the same notation as in Ref. [20], the two-point
correlators read

Cðr1;r2Þ
2pt ¼ 1

16

X
s;D⃗

X
x⃗

hBðr2Þ
sD⃗

ðx⃗; tÞB̄ðr1Þ
sD⃗

ð0Þi; ð2:1Þ

using sink and source operators Bðr2Þ
sD⃗

ðx⃗; tÞ and B̄ðr1Þ
sD⃗

ð0Þ
defined in Ref. [20]. To increase the statistical precision, we
average over the eigenvalues s ¼ � of the staggered
rotation in the x − y plane, and also the eight corners of
the cube D⃗; together, s and D⃗ label the components of the
16 irrep. Here, r1; r2 ¼ 2, 3, 4, 6 represent four different
operator constructions, or “classes” [18–20], as well as
other possible properties, such as smearing.

B. Staggered-baryon matrix elements

In this work, we are specifically interested in the
isovector nucleon vector and axial-vector charges, namely
gV and gA, respectively. These are defined through the
nucleon matrix elements

hNjðūΓJu − d̄ΓJdÞjNi ¼ gJūNΓJuN; ð2:2Þ

where ΓA ¼ γzγ5 or ΓV ¼ γ4, u and d are continuum-QCD
up- and down-quark fields, and uN is the nucleon spinor at
zero momentum.
We calculate these nucleon matrix elements using

(highly improved) staggered quarks. To achieve this, we
must extend the mass relations of Bailey [19] to matrix
elements. The baryonlike matrix elements and the physical
matrix elements are related through symmetry transforma-
tions in the continuum. In the Appendixes, we find the
appropriate Clebsch-Gordan coefficients that relate the
single-taste baryon matrix elements to the physical tasteless
QCD matrix elements by applying the generalized Wigner-
Eckart theorem of SUð8ÞFT.
The correctly normalized three-point correlators for our

baryonlike operators are then

Cðr1;r2Þ
V ðt;τÞ

¼−
1

16

X
D⃗

X
x⃗;y⃗

SVðD⃗ÞðhBðr2Þ
−D⃗

ðx⃗;tÞVðy⃗;τÞB̄ðr1Þ
−D⃗

ð0Þi

þhBðr2Þ
þD⃗

ðx⃗;tÞVðy⃗;τÞB̄ðr1Þ
þD⃗

ð0ÞiÞ; ð2:3Þ

Cðr1;r2Þ
A ðt; τÞ

¼ 1

16

X
D⃗

X
x⃗;y⃗

SAðD⃗ÞðhBðr2Þ
−D⃗

ðx⃗; tÞAðy⃗; τÞB̄ðr1Þ
−D⃗

ð0Þi

− 3hBðr2Þ
þD⃗

ðx⃗; tÞAðy⃗; τÞB̄ðr1Þ
þD⃗

ð0ÞiÞ; ð2:4Þ

where t is the source-sink separation time and τ is the
current insertion time. The factor −1 in front of CV and the
factor −3 in front of the second term of CA come from
the group theory just described. Without these factors, these
correlators would not yield the desired nucleon charges.
For baryon operators and currents in other GTS irreps,
different prefactors arise. In Eqs. (2.3) and (2.4), we sum
over unit-cube sites D⃗ with weights SJðD⃗Þ (J ¼ V, A) and
have a separate term for each value of s ¼ �1.
Equations (2.3) and (2.4) introduce local currents

Vðy⃗; τÞ ¼ SVðy⃗Þðχ̄uðy⃗; τÞχuðy⃗; τÞ − χ̄dðy⃗; τÞχdðy⃗; τÞÞ;
SVðA⃗Þ ¼ ð−1ÞðAxþAyþAzÞ=a; ð2:5Þ

Aðy⃗; τÞ ¼ SAðy⃗Þðχ̄uðy⃗; τÞχuðy⃗; τÞ − χ̄dðy⃗; τÞχdðy⃗; τÞÞ;
SAðA⃗Þ ¼ ð−1ÞAz=a; ð2:6Þ

where χf is the field in the HISQ action of flavor f. The
local vector and axial-vector currents, V and A, have
spin taste γ4 ⊗ ξ4 and γzγ5 ⊗ ξzξ5 [25], respectively.
The opposite-parity partners then arise from spin taste
γ5 ⊗ ξ5 and γzγ4 ⊗ ξzξ4, respectively. Because these local
currents are not derived from Noether’s theorem, they
require a finite renormalization, that is, ZVV and ZAA have
the same matrix elements as the continuum isovector
currents in Eq. (2.2).
In the limit τ → ∞ and t − τ → ∞, the ratio of the three-

point to the two-point correlators approaches the desired
nucleon charge

Cðr1;r2Þ
gJ ðt; τÞ
Cðr1;r2Þ
2pt ðtÞ

⟶
τ→∞

t−τ→∞
g̃J; ð2:7Þ

where g̃J is now the bare lattice charge, that is, gJ ¼ ZJg̃J.
In practice, of course, we compute the correlators for
several values of t and τ and fit the t and τ dependence to
extract the charges.
The finite renormalization factors ZJ are determined first

by noting that the remnant chiral symmetry requires
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ZA ¼ ZV þ OðmqaÞ2. At zero momentum transfer, the
vector current simply counts the number of up quarks
minus the number of down quarks, for the proton
2 − 1 ¼ 1. One could, thus, define ZV by demanding
ZVg̃V ¼ gV ¼ 1. Here, however, we prefer to define ZV
via a similar relation obtained from a pseudoscalar-meson
matrix element [26], then use the result to renormalize our
nucleon matrix elements. With this choice our result for gV
is a genuine test of our methodology.

III. EXCITED-STATE CONTAMINATION

Excited-state contamination is one of the most difficult
challenges when accurately estimating nucleon matrix
elements from lattice QCD. The problem is even more
complicated with staggered nucleons because of the pres-
ence of negative-parity and low-lying Δ-like states in the
spectrum, which nonstaggered formulations do not contain.
These are both significant sources of excited-state con-
tamination in the present calculation. We have, however,
demonstrated control of excited-state contamination when
extracting nucleon physics from two-point staggered-
baryon correlators [20]. Here we describe extensions of
those techniques to the three-point correlators of the present
work. In particular, we show how to suppress contributions
from the lowest-lying negative-parity states and the lowest
three Δ-like tastes.

A. Negative-parity states

Let C2ptðtÞ and C3ptðt; τÞ be any staggered-baryon
correlators. The source-sink separation is denoted t and
the current insertion time is denoted τ. Any staggered
operator that is local in time will create negative parity
states, which in turn causes the characteristic oscillations in
time. This is obvious from the correlators spectral decom-
position

C2ptðtÞ ¼ zþz̄þe−Mþt þ ð−1Þt=az−z̄−e−M−t þ � � � ; ð3:1Þ

C3ptðt; τÞ ¼ zþAþþz̄þe−Mþt þ ð−1Þt=az−A−−z̄−e−M−t

þ ð−1Þðt−τÞ=azþAþ−z̄−e−Mþτe−M−ðt−τÞ

þ ð−1Þτ=az−A−þz̄þe−M−τe−Mþðt−τÞ

þ � � � ; ð3:2Þ

whereM� are the lowest-lying � parity masses, z̄� and z�
are, respectively, the source and sink overlap factors for
states of parity �, and A�� and A�∓ are the transition
matrix elements. For simplicity, we have ignored backward
propagating terms proportional to e−M�ðT−tÞ, which are
assumed to contribute negligibly in the following.
Equation (3.2) shows that the terms involving negative

parity states change sign when either t=a or τ=a change by
one unit. With this in mind, a time-averaging procedure can
be applied to suppress the negative parity contributions to

the correlator. A similar scheme was deployed in Ref. [21].
The first ingredient is

C0
2ptðtÞ ¼ e−aMsnkC2ptðtÞ þ C2ptðtþ aÞ; ð3:3Þ

C0
3ptðt; τÞ ¼ e−aMsnkC3ptðt; τÞ þ C3ptðtþ a; τÞ; ð3:4Þ

where we call aMsnk the time-averaging parameter.
Substituting this expression into the spectral decomposition
in Eq. (3.2), one sees that the functional forms of primed
correlators are unchanged except that the sink overlap
factors become

zþ → zþðe−aMsnk þ e−aMþÞ; ð3:5Þ

z− → z−ðe−aMsnk − e−aM−Þ: ð3:6Þ

If one chooses aMsnk ¼ aM−, then terms with theM− state
at the sink will vanish, while the overlap factors for the
positive parity states become slightly larger. In practice,
the time-averaging parameter does not need to be exact to
suppress the negative-parity states.
A similar time-averaging parameter, aMsrc, can be

introduced to reduce the negative parity contributions at
the source via

C00
2ptðtÞ ¼ e−aMsrcC2ptðtÞ þ C2ptðtþ aÞ; ð3:7Þ

C00
3ptðt; τÞ ¼ e−aMsrcC3ptðt; τÞ þ C3ptðtþ a; τ þ aÞ: ð3:8Þ

Again, this step does not alter the functional forms of the
two- and three-point correlators but replaces the source
overlap factors by

z̄þ → z̄þðe−aMsrc þ e−aMþÞ; ð3:9Þ

z̄− → z̄−ðe−aMsrc − e−aM−Þ: ð3:10Þ

If several negative parity states contribute significantly
to the data, successive applications of this procedure,

with suitable parameters ½aMð1Þ
src ; aM

ð2Þ
src ;…� and ½aMð1Þ

snk;

aMð2Þ
snk;…�, can appreciably suppress them. On the other

hand, because the relative error in the correlators becomes
larger with time, too much time averaging renders the data
statistically less precise. Moreover, time-averaging reduces
the available τ range in the modified correlators, thereby
producing fewer data for the fit. For each dataset, some
study is necessary to strike an optimal balance.

B. Δ-like states

Another source of excited-state contamination arises
from the presence of the three Δ-like states in the 16-irrep
correlators. With four different classes of interpolators at
both the source and the sink, we adopt the strategy from
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Ref. [22] and solve the generalized eigenvalue problem
(GEVP) [27]. In Ref. [20], we applied the GEVP to our
two-point correlators and successfully disentangled the
nucleonlike state from the Δ-like states. We extend that
strategy to the three-point functions here.
Given a matrix two-point correlator, C2ptðtÞ, the left and

right nucleon eigenvectors, uðt1; t0Þ and vðt1; t0Þ, are the
solutions of

C2ptðt1Þuðt1; t0Þ ¼ λðt1; t0ÞC2ptðt0Þuðt1; t0Þ; ð3:11Þ

vðt1; t0ÞC2ptðt1Þ ¼ λðt1; t0Þvðt1; t0ÞC2ptðt0Þ: ð3:12Þ

Here, we focus on the eigenvectors for the nucleonlike
state, the ones with the lowest eigenvalues, and put the
others aside. These eigenvectors optimize the projection
onto the nucleonlike state in both the two- and the three-
point correlators via

C2ptðtÞ ¼ vðt1; t0ÞC2ptðtÞuðt1; t0Þ; ð3:13Þ

C3ptðt; τÞ ¼ vðt1; t0ÞC3ptðt; τÞuðt1; t0Þ: ð3:14Þ

One has to decide which t1 and t0 to use in Eqs. (3.11) and
(3.12). The stability of our results under such variations will
be discussed in Sec. IV. Below we call the correlators in
Eqs. (3.13) and (3.14) the nucleon-optimized two- and
three-point correlators.
To summarize our strategy, we start with the correlators

in Eqs. (2.1), (2.4), and (2.3), and apply two iterations
of time averaging at both the source and the sink, and
then project the time-averaged correlation matrix as in
Eq. (3.14). The time averaging suppresses the negative
parity states contributions, and the projection suppresses
the Δ-like baryons contributions.

IV. SIMULATION DETAILS

To demonstrate the feasibility of nucleon matrix
elements with staggered quarks, we use a single gauge
ensemble, which was generated by the MILC Collaboration
[16]. MILC implemented the one-loop, tadpole-improved
Lüscher-Weisz gauge action [28], as well as the HISQ
action [17] for the sea, which contains equal-mass up and
down quarks, the strange quark, and the charm quark. In
this work, we also employ the HISQ action for the valence
quarks, with the same mass as the up-down sea quarks.
The ensemble has dimensionL3 × T ¼ 243 × 64, a lattice

spacing a ¼ 0.1222ð3Þ fm (determined from theFp4s mass-
independent scheme [29]), a pion mass Mπ ≈ 305 MeV,
and a light-to-strange-quark mass ratio of 1=5. Other
parameters of this ensemble are listed in Ref. [29]. Note
that the CalLat [23] and the PNDME [24] Collaborations
have both used this same ensemble to calculate gA, albeit
with either theMöbius domainwall orWilson-clover valence
fermion actions, respectively.

We generate the two- and three-point correlators accord-
ing to Eqs. (2.1), (2.3), and (2.4). We measure each
correlator on 872 configurations, and further increase the
statistics by randomly placing the corner-wall sources on
eight maximally separated time slices to give a total of 6976
measurements per correlator. (The τ=a ¼ 7 correlators have
only four time sources per configuration.)
We block all measurements in a single gauge configu-

ration and every four consecutive gauge trajectories to
avoid autocorrelations. The covariance matrix between
different correlator components are estimated with the
nonlinear shrinkage method [30] to avoid ill-conditioning
from finite sample sizes.
As described in Ref. [20], we use corner-wall sources to

optimize the signal-to-noise ratio and point sinks. In the
present work, we remove the Coulomb-gauge fixed links,
as we have empirically observed that leaving out the links
has little effect on correlators but with the added advantage
of a simpler code. Here we also incorporate the Wuppertal
smearing [31,32] at the sink by applying

χðnÞ ¼
�
1þ 3σ2

32a2N
Δ
�
χðn−1Þ; ð4:1Þ

Δχðx⃗Þ ¼ −6χðx⃗Þ þ
X3
i¼1

½χðxi þ 2aÞ þ χðxi − 2aÞ� ð4:2Þ

in order to reduce excited-state contamination. In Eq. (4.1),
n is the nth iteration of N total iterations; all shifts are stride
2 to preserve the staggered symmetries. We include the
appropriate gauge transporters to make the smearing gauge
covariant [20], but for succinctness they are omitted from
Eq. (4.2). We generate data with two different root-mean-
squared (rms) smearing radii, σ, which are about 0.2 and
0.6 fm. We label the two smearings as Gr2.0N30 and
Gr6.0N70.
For the three-point correlators, we invert the propagators

from the current insertion to obtain all operator classes at
the sink. Five current insertion times, τ=a ¼ ½3; 4; 5; 6; 7�,
are generated for both the vector and the axial-vector
current insertions.
On each configuration, we solve the staggered Dirac

equation

N2pt
sol ¼ NcND⃗Nsrc ð4:3Þ

times to construct two-point functions, and

N3pt
sol;τ ¼ NcND⃗NJNsrc;τ; ð4:4Þ

more times for each three-point function current insertion
time τ. The total number of solves computed per configu-
ration is then
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Nsol ¼ N2pt
sol þ

X7
τ¼3

N3pt
sol;τ: ð4:5Þ

Nc is the number of colors, ND⃗ the number of corners in the
spatial cube (analogous to the four Dirac components
of Wilson or domain-wall fermions), Nsrc the number of
two-point function time sources, Nsrc;τ the number of
three-point function time sources for current insertion time
τ, and NJ the number of unique currents. In this work,
Nc ¼ 3, ND⃗ ¼ 8, NJ ¼ 2 for the vector and axial-vector
currents, and Nsrc ¼ 8. For τ=a ¼ 7, Nsrc;τ ¼ 4, while for
the other source-current separations Nsrc;τ ¼ 8. The total is
Nsol ¼ 1920. The Wuppertal smearing is applied at the
sink so it requires no extra solves. The four operators that
enable the GEVP analysis also do not require extra solves
if ND⃗ ¼ 8; at the expense of the operator basis, which
reduces excited-state contaminations, ND⃗ could be chosen
as small as 3.
To eliminate the unwanted negative parity states, we then

pass all the correlators through two iterations of time
averaging using Eqs. (3.4) and (3.7) with

½aMð1Þ
src ; aM

ð2Þ
src � ¼ ½aMð1Þ

snk; aM
ð2Þ
snk� ¼ ½0.9; 1.1�: ð4:6Þ

These two numbers are based on an observation in Ref. [20]
that the lowest-lying negative parity state seems to have
energy around the S-wave Nπ state, which in this ensemble
is about 0.9 in lattice units. We then set the second
averaging parameters about aMπ ∼ 0.2 higher than the
first ones, which again is consistent with our findings in
Ref. [20]. As the goal is to suppress the negative-parity
states, the accuracy of these parameters is not crucial. Note
that each iteration of the source time averaging in Eq. (3.8)
reduces the current insertion time slices by one, so the time-
averaged three-point correlators have only τ=a ¼ ½3; 4; 5�.
The smearing in Eq. (3.4), on the other hand, does not
reduce the range for τ=a.
After time averaging, we solve for the left and right

eigenvectors using Eq. (3.12) in order to optimize our
correlators as in Eq. (3.14). To ensure the robustness of our
fitting methodology, we test the stability of our results
under variations of the choice of t0. To do so, we compute
the effective mass of the optimized two-point correlators,
which we define as

aMeffðtÞ≡ 1

2
ln

�
C2ptðtÞ

C2ptðtþ 2aÞ
�
: ð4:7Þ

The t0 stability plots are shown in Fig. 1. Because the
statistical errors of the eigenvectors are taken into account
by solving Eqs. (3.11) and (3.12) via bootstrap resampling,
the errors of the left and right eigenvectors, and hence, the
optimized two-point correlators grow as t0=a increases.
However, because of the strong correlation between C2ptðtÞ

and C2ptðtþ 2aÞ, the effective masses are insensitive to the
errors of eigenvectors. This is why the errors stay relatively
constant for t0=a ¼ 4, 6, and 8; for t0=a ¼ 10, on the other
hand, the eigenvectors’ errors become so large that they
dominate the errors at small t=a, but again become
insignificant as t increases. We observe that t0=a ¼ 4, 6,
and 8 all produce similar results, so we choose t0=a ¼ 6 for
the subsequent analysis. Similarly, we vary ðt1 − t0Þ=a
from 2 to 6 and find, again, that the differences are
negligible, so we fix ðt1 − t0Þ=a ¼ 2.
Since we have normalized the nucleonlike three-point

correlators correctly, and each of the correlator transfor-
mations that we perform preserve the functional form of the
spectral decomposition, the optimized three-to-two-point
correlator ratios converge to the desired nucleon charges in
the large-time limits. In Figs. 2 and 3, we plot the ratio of
the nucleon-optimized three-to-two-point correlators, with
and without time averaging at the source and sink. The left

FIG. 1. Effective masses of the nucleon-optimized correlators
as a function of the source-sink separation time t. The top plot
has Wuppertal sink smearing radius σrms ¼ 0.2 fm (Gr2.0N30),
and the bottom σrms ¼ 0.6 fm (Gr6.0N70). The time-averaging
parameters are given in Eq. (4.6). Different colored points
represent different choices of t0 when solving the GEVP equation
in Eq. (3.12), as shown in the legends, and are offset slightly for
clarity.
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column shows the optimized correlators without time
averaging, and the right column shows them time averaged
with the parameters given in Eq. (4.6). The two smearings
are shown in the top (Gr2.0N30) and bottom (Gr6.0N70)
rows. Significant oscillations are clearly present in the
unaveraged correlators, particularly for the vector current
in Fig. 2. This is expected, because the parity partner of
the vector current is the pseudoscalar current P, and the
hNπjPjNi matrix element gives a large contribution to the
vector-current data and, thus, causes large oscillations. For
the gA data, on the other hand, the parity partner of the axial
current is the tensor current Tz4, and when the nucleon is at
rest hNjTz4jNi ¼ 0. Consequently, the first nonzero con-
tribution in the axial-vector parity partner channel will
likely be from hNπjTz4jNi, leaving small oscillations.

V. CORRELATOR FITTING

We apply the Bayesian fitting methodology implemented
in CORRFITTER [33] to extract the nucleon mass and matrix

elements. We observe in Fig. 2 that the vector correlators
have noticeable oscillatory contributions, whereas the
axial-vector correlators shown in Fig. 3 do not. Further,
the vector correlators seem relatively insensitive to our
choice of Wuppertal smearing. We perform separate fits to
the vector and axial-vector correlators, but include their
correlations through bootstrapping.
It should be stressed that, after applying the excited-state

suppression techniques from Sec. III, the interpretation of
the higher exponentials in the correlators is ambiguous. For
the positive-parity channel, the first “excited state” could be
a mixture of any leftover Δ-like states, the P-wave Nπ
states, or other finite volume energy levels higher up in the
spectrum that are related to resonances. For the negative-
parity channel, we found in Ref. [20] that the ground state is
likely to contain S-wave Nπ states. The time-averaging
procedure to cancel out the negative-parity states makes
identification of these states even more ambiguous.
Regardless of the origin, we can treat the excited states
as nuisance parameters and fit them away with an

FIG. 2. The gV three-point to two-point nucleon-optimized correlator ratio as a function of the source-sink separation time t, and
current insertion time τ. Correlators are labeled by the rms Wuppertal smearing radii, σrms ¼ 0.2 fm (Gr2.0N30) and σrms ¼ 0.6 fm
(Gr6.0N70). In the limits τ; t − τ → ∞, this ratio converges to the bare gV nucleon charge. The correlators in the left column are not time
averaged with the oscillation suppressing procedure described in Sec. III. The right column shows data that are time-averaged with the
parameters given in Eq. (4.6), yielding much smoother curves reminiscent of nonstaggered fermion correlators.
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exponential fit function. In this case, each excited expo-
nential mass parameter describes a conglomeration of
several eigenstates of the Hamiltonian. Still, we will refer
to each exponential in the fit function as a state without
necessarily identifying it with any single eigenstate. As
discussed in Ref. [20], the stability of the extracted fit
parameters as a function tmin indicates a lack of excited-
state contamination, as long as they are modeled accurately.
This tmin stability plot is shown in Fig. 5 and is discussed in
Sec. V B.

A. Functional forms for fitting

For the gA analysis, we perform simultaneous fits to the
optimized two- and three-point correlators, and include
both the Gr2.0N30 and the Gr6.0N70 sink smearings.
Observation of the strong suppression of excited states in
Fig. 2 leads us to use a fit ansatz that contains two positive-
parity states and one negative-parity state:

Cσ;fit
2pt ðtÞ ¼ zσþ0z̄þ0e−Mþ0t þ zσþ1z̄þ1e−Mþ1t

þ ð−1Þt=azσ−0z̄−0e−M−0t; ð5:1Þ

Cσ;fit
A ðt; τÞ ¼

X1
i;j¼0

zσþiAþi;þjz̄þje−Mþiτe−Mþjðt−τÞ

þ zσ−0A−0;−0z̄−0ið−1Þt=ae−M−0t

þ
X1
i¼0

zσ−0A−0;þiz̄þið−1Þðt−τÞ=ae−Mþiτe−M−0ðt−τÞ

þ
X1
i¼0

zσþiAþi;−0z̄−0ð−1Þτ=ae−M−0τe−Mþiðt−τÞ:

ð5:2Þ
Here, Mþ0 ¼ MN is the nucleon mass, Mþ1 is the mass of
the first residual positive-parity excited state, z̄þi and zσþi
are their source and sink overlap factors (with sink
smearing σ ¼ 0.2, 0.6 fm), M−0 is the mass of the residual
negative-parity state, and z̄−0 and zσ−0 are the source and
sink overlap factors. The terms A�i;�j are the unrenormal-
ized axial-vector matrix elements, with Aþ0;þ0 ¼ g̃A the
desired bare axial charge. Note that the two-point correlator
terms involving the finite temporal T extent are not
included here since we average our data symmetrically
around the T=2 point as described in Ref. [20].

FIG. 3. Identical to Fig. 2 but with gA instead of gV . See the caption of Fig. 2 for further details.
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In the Bayesian fit, we choose Gaussian priors for the
ground-state masses, overlap factors, and matrix elements.
We choose log-normal priors for the mass differences
between adjacent states to enforce the ordering of states.
It has been observed empirically that the nucleon mass has
an approximate linear dependence on the pion mass (see,
for example, Ref. [34]), so we choose a prior of 1100�
200 MeV for the nucleon mass on our ensemble with
Mπ ¼ 305 MeV. We put a wide prior of 300� 300 MeV
centered at the Δ-like mass for the mass splitting Mþ1 −
Mþ0 to accommodate for potential mixing of many
physical states. For the same reason, we also impose a
wide mass prior of 1600� 500 MeV for the negative-
parity mass M−0 centered at the S-wave Nπ state. All prior
choices are summarized in Table I.
A priori, we have no knowledge of the sign or magnitude

of the overlap factors. Consequently, all overlap factors are
effectively unconstrained. In practice, we have normalized
the correlators such that their values are much less than 1
for all t, so the overlap priors are chosen to be 0� 5 for all
states. Very wide priors of 0� 5 are chosen for all matrix
elements, apart from g̃A ¼ Aþ0;þ0, for which we choose a
wide prior of 1.2� 0.3 centered near the PDG [12] value of
gA. As discussed below in Sec. VI, we know from other
work with pseudoscalar mesons that ZA is close enough to
unity not to influence the choice of prior.
For the gV analysis, we use the same two-point func-

tional form as Eq. (5.1). However, for the three-point
correlators we use

Cσ;fit
gV ðt; τÞ ¼

X1
i¼0

zσþiVþi;þiz̄þie−Mþit

þ zσ−0V−0;−0z̄−0ið−1Þt=ae−M−0t

þ
X1
i¼0

zσ−0V−0;þiz̄þið−1Þðt−τÞ=ae−Mþiτe−M−0ðt−τÞ

þ
X1
i¼0

zσþiVþi;−0z̄−0ð−1Þτ=ae−M−0τe−Mþiðt−τÞ;

ð5:3Þ

where the notation is identical to that of Eq. (5.2). The Vi;j

are the unrenormalized vector matrix elements. The Vþi;þj

with i ≠ j are omitted on the first line of Eq. (5.3), because
they are forbidden by vector charge conservation, up to
small discretization effects. The priors are also identical to
the gA fits except for the bare vector charge, g̃V . Given that
the renormalization constant is close to unity, we choose the
g̃V prior to be 1.0� 0.3.

B. Fit stability

The most important part of the nucleon matrix element
fitting procedure is separating the nucleon observables of
interest from the excited-state contributions. To demon-
strate the lack of excited-state contamination, we examine
the stability of the observables as choices in the fit are
varied. Specifically, we vary tmin, Δτmin, and tmax where
tmin is the minimum source-sink separation time that we
include in our two-point correlator fits, Δτmin is the
minimum source-sink separation time after the current
insertion time, τ, that we include in our three-point
correlator fits, and tmax is the maximum source-sink
separation time. The nominal parameters for the nominal
fits are given in Table II.
We plot the stability of the extractedMN (g̃V and g̃A) as a

function of tmin and Δτmin in Fig. 4 (Fig. 5). The x axes are
different choices of tmin, and the y axes are the correspond-
ing observables. The four different choices of Δτmin are
also shown slightly displaced for each tmin. The solid
squares are the nominal fits with parameters given in
Table II. As can be seen in Fig. 4, the extracted nucleon
mass is stable as a function of tmin=a and Δτmin=a, which
illustrates the lack of excited-state contamination in these
posteriors. Similar behavior is seen for gV in Fig. 5. The
only noticeable structure in the stability plots is for gA,
where the observable is stable for tmin=a ≥ 4. Note that as
we increase tmin=a or Δτmin=a, fewer data are available to
fit, and, consequently, the results become less precise.
Thus, as in Ref. [20], we have demonstrated control over
excited-state contamination when extracting matrix ele-
ments from staggered-baryon correlators.

TABLE I. Summary of the prior choices for the fit Ansätze
given in Eqs. (5.1), (5.2), and (5.3). All prior distributions are
Gaussian, except for Mþ1 −Mþ0, which is log-normal.

Quantity Prior value±width

Mþ0 ¼ nucleon mass 1100� 200 MeV
Mþ1 −Mþ0 300� 300 MeV
M−0 1600� 500 MeV
Aþ0;þ0 ¼ g̃A 1.2� 0.3
Vþ0;þ0 ¼ g̃V 1.0� 0.3
Ai;j; i ≠ þ0; j ≠ þ0 0.0� 5.0
Vi;j; i ≠ þ0; j ≠ þ0 0.0±5.0

TABLE II. Summary of the nominal fit range parameters. t is
the source-sink separation time, and τ is the current insertion
time. tmin and tmax are the minimum and maximum source-sink
separation included in the nominal fits; Δτmin is the minimum
time after the current insertion time that we include in the three-
point fits.

Correlator Fit parameter Nominal value

Two-point tmin=a 5
tmax=a 13

Three-point Δτmin=a 3
tmax=a 13
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VI. RESULTS

In this section, we present our Bayesian fitting results
and our final renormalized values for the nucleon charges
gV and gA. All fitting errors are estimated from 1000
bootstrap samples. We take correlations into account by
using the same bootstrap samples for both g̃V and g̃A.

A. Nucleon mass

In Fig. 6, we plot the extracted posterior fitted value for
the nucleon mass from simultaneous fits of both smearings
of the optimized two-point correlator and three-point
correlator of a given current. We also plot the nucleon-
optimized effective masses. These effective-mass data are
identical to the t0=a ¼ 6 data shown in Fig. 1. The green-
shaded bands are the posterior estimates with the gA three-
point correlators, while the yellow-shaded bands are with
the gV three-point correlators. We obtain aMN ¼ 0.707ð6Þ
from the gA fit and aMN ¼ 0.704ð9Þ from the gV fit.

There are some notable features in our fits. First, the gV fit
has larger posterior uncertainties than the gA fit. Both fits
include the same information from the two-point correlators,
so the difference must arise from the three-point correlators.
As one can see in Fig. 2, the gV three-point correlators are
less sensitive to the Wuppertal smearing than the gA
correlators. On the other hand, the gV three-to-two-point
correlator ratios show remarkably little curvature, even at the
early times. This behavior implies that the vector three-point
correlators become quickly saturated by the ground state,
and therefore provide limited additional information about
the overlap factors and masses than what is contained in the
two-point correlators. The gA data do not share these
features, and thus contain additional information about
the two-point posteriors. This explains why the gV fit has
a less precise nucleon mass than the gA fit.
For these reasons, we quote the posterior nucleon mass

from the gA fits as the nominal result, which has value

aMN ¼ 0.707ð6Þ; MN ¼ 1141ð10Þ MeV; ð6:1Þ

where the error shown is statistical only. It is crucial to
bear in mind that this result is for a lattice spacing of

FIG. 4. The stability plot for the extracted nucleon mass, aMN ,
as a function of tmin and Δτmin, obtained from either the gV (top)
or the gA (bottom) fits. The definitions of tmin and Δτmin are
described in the text. The maximum source-sink separation time
is fixed at tmax ¼ 13a for all correlators. The solid squares are the
nominal fit results, and all uncertainties are estimated with 1000
bootstrap samples.

FIG. 5. The stability plot for the bare vector charge, g̃V (top),
and bare axial charge, g̃A (bottom), as a function of tmin and
Δτmin. See the caption of Fig. 4 for further details.
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a ¼ 0.1222ð3Þ fm and pion mass of Mπ ¼ 305 MeV [29].
For comparison, a fit including only the two-point corre-
lators yields aMN ¼ 0.704ð9Þ, which is identical to the
posterior of the fit with gV .
In Ref. [20], we computed the nucleon mass at the same

lattice spacing but with a physical pion mass, obtaining
MN ¼ 960ð9Þ MeV. The difference between these two
masses is ΔMN ¼ 181ð13Þ MeV, assuming uncorrelated
statistical errors. Given that the pion mass difference
between these two ensembles is about 170 MeV, ΔMN
agrees within 1σ with the empirical observation that MN ¼
800 MeVþMπ within a few percent [34].

B. Nucleon gV and gA charges

In Figs. 7 and 8, we plot the optimized gV and gA three-
to-two-point correlator ratios as a function of source-sink

separation t. The raw data are identical to the right-hand
plots of Figs. 2 and 3. The posterior fit results are super-
imposed as gray bands. In the limits τ; t − τ → ∞, the data
points are seen to converge to these posteriors. It should
be emphasized, however, that the ratio data points are
shown only for illustration: we perform direct fits to the
optimized correlators, as discussed in Sec. V, in order to
obtain results, namely

g̃V ¼ 1.03ð2Þ; ð6:2Þ

g̃A ¼ 1.24ð5Þ: ð6:3Þ

It should be mentioned that the gV and gA fits have some
different features. First, the residual oscillations from the

FIG. 6. Nominal fit results for the effective masses of the
optimized correlators as a function of source-sink separation time
t. The open circles are excluded from the fits. Correlators are
labeled by their Wuppertal smearing parameters, with rms radii of
0.2 fm (Gr2.0N30) or 0.6 fm (Gr6.0N70). We perform simulta-
neous fits to two-point correlators with either the gA or the gV
three-point correlators. Both sets of Wuppertal smeared correla-
tors are included in each fit. The green and yellow shading shows
the 1σ bands from fits with either gA or gV, respectively.

FIG. 7. Nominal fit results for the optimized three-to-two-point
correlator ratio as a function of source-sink separation time t and
current insertion time τ. In the limits τ; t − τ → ∞, the optimized
three-to-two-point correlator ratios converge to the bare axial
charge g̃V . Data points from different current insertion times, τ,
are slightly displaced for clarity. The filled data points are
included in the nominal fit. Correlators are labeled by their
Wuppertal smearing parameters with rms radii of 0.2 fm
(Gr2.0N30) or 0.6 fm (Gr6.0N70). The 1σ error bands for the
different τ’s are shown in blue, orange, and green, and the 1σ
error band for the g̃V posterior is shown in gray.
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parity partner matrix element are noticeable in the gV fit.
Second, the gV data turn out to be relatively insensitive to
the Wuppertal smearing radius. Both of these features can
be observed in Fig. 7. This highlights that there are less
uncorrelated data available with which to extract gV as
compared to gA. In contrast, we observe that the vector
correlators in Fig. 7 contain less positive parity excited-
state contamination at early times than the axial-vector
correlators in Fig. 8. As such, since the oscillations turn out
to be easier to constrain and there is less contribution from
the same parity excited states, we obtain a more precise
estimate for g̃V than for g̃A.
As discussed in Sec. II B, the remnant chiral symmetry

enforces ZA ¼ ZV þ OðamqÞ2. Therefore, the ratio of bare
charges is renormalized, and we obtain a value of

gA
gV

¼ g̃A
g̃V

¼ 1.21ð5Þ; ð6:4Þ

where the correlation between g̃A and g̃V is taken into
account via bootstrapping. We can also obtain ZV by
imposing current conversation on a pseudoscalar meson

vector-current matrix element [26]. Then the renormalized
charges are

gV ¼ ZVg̃V ¼ 1.02ð2Þ; ð6:5Þ

gA ¼ ZAg̃A ¼ 1.23ð5Þ; ð6:6Þ

based on ZV ¼ ZA ¼ 0.991ð1Þ [26].

VII. DISCUSSION AND CONCLUSIONS

We have presented two key results in this work. First, we
have shown how to analytically relate the staggered
nucleonlike matrix elements with nontrivial tastes to the
physical nucleon matrix elements. This step is crucial for
our ongoing program of extracting high-precision nucleon
results from staggered fermions. The general procedure,
which can be applied to any staggered baryon matrix
element, is outlined in Appendixes A and B. Specifically,
for the nucleon charges gV and gA, we summarize our
key results for the zero-momentum isovector (axial)
vector three-point correlators in Eqs. (2.3) and (2.4).
These equations explicitly show the nontrivial normaliza-
tions needed to relate the nucleonlike matrix elements to
their physical counterparts. Our successful computation
of gV and gA shows that continued use of the 16 irrep of
the staggered symmetry group GTS is feasible, which is
convenient because the 16 contains a single nucleonlike
taste in the spectrum [20].
This finding is encouraging, because the additional

complexity of staggered baryons, compared with staggered
mesons is probably the reason staggered-baryon matrix
elements have not been explored until now. There are as
many meson tastes (16) as bosonic irreps of GTS. As
such, each staggered meson interpolating operator excites
only a single taste of meson. In contrast, there are 64 ¼ 43

different tastes of a staggered baryon, yet only three unique
irreps of GTS, denoted 8, 80, and 16 after their dimensions.
Consequently, there are not enough unique components of
these irreps to accommodate all 64 tastes of baryons, and
more than one taste of the same baryon can appear in each
irrep’s tower of states. Choosing an irrep with only one
nucleon taste simplifies the correlator analysis and, as we
have shown in this paper, allows for accurate and precise
results for nucleon matrix elements.
The second key result of this work is demonstrating the

practicality of staggered baryons by computing the iso-
vector nucleon vector and axial-vector charges. For this
purpose, we choose a single ensemble with a ≈ 0.12 fm,
2þ 1þ 1 flavors in the sea, and, when using identical sea
and valence HISQ quarks, Mπ ¼ 305 MeV. With approx-
imately 7000 measurements and techniques designed to
handle staggered correlators, we find few-percent statistical
uncertainty. Our final values for gV, gA, and gA=gV on this
ensemble are

FIG. 8. Similar to Fig. 7, but for the axial-vector three-point
correlators g̃A.
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gV ¼ 1.02ð2Þ; ð7:1Þ

gA ¼ 1.23ð5Þ; ð7:2Þ
gA
gV

¼ 1.21ð5Þ: ð7:3Þ

The conservation of the vector charge, gV ¼ 1, is a non-
trivial verification of our methodology.
As discussed in Sec. V, we include two positive-parity

states and one negative-parity state in our fit function.
The number of matrix elements included in the fit grows
quadratically as a function of the states included. With
more precise data, we could constrain more matrix ele-
ments. Alternatively, we could also impose tighter priors on
the transition matrix elements and overlap factors, for
example, with the empirical Bayes method [24]. This
proof-of-concept study does not attempt a full calculation
with all errors included, so we leave exploration of those
options for future work.
The same ensemble has been used by both the CalLat

[23] and PNDME [24] Collaborations in their calculations
of gV and gA. CalLat uses Möbius domain-wall fermions for
the valence quarks, while PNDME uses Wilson fermions
with the clover action. CalLat defines ZV by demanding
gV ¼ ZVg̃V ¼ 1 and uses the remnant chiral symmetry
to set ZA ¼ ZV . They then quote g̃V ¼ 1.021ð2Þ and
gA ¼ 1.21ð1Þ. PNDME determines ZV and ZA independ-
ently via the regularization-independent symmetric
momentum-subtraction scheme, commonly known as
RI-sMOM, and quote gV ¼ 0.97ð2Þ, gA ¼ 1.21ð4Þ, and
gA=gV ¼ 1.25ð2Þ. Our result is consistent with both,
despite the different choices of valence-quark formulation.
Several further lattice-QCD calculations of gA exist in the

literature [35]. Calculations performed on 2þ 1þ 1
ensembles include those from CalLat [23] and PNDME
[24], discussed above, and one with improved Wilson sea
and valence quarks [36]. Additional determinations of gA
on 2þ 1 ensembles have been carried out [37–46], as well
as others without the strange sea [36,47–54]. It would be
nice to make a detailed comparison of the computational
costs of all these calculations, but not all relevant informa-
tion has been published. Thus, the calculations performed
on the same MILC ensemble provide the most apt
comparison.
With an eye toward subpercent determinations of the

axial charge, it is instructive to compare how the pre-
cision on gA is influenced by each collaboration’s data
and methodology, limiting our considerations to the three
calculations on the same HISQ ensemble. The three
analyses share a few common aspects. First is the use of
eight sources (with high-precision solutions of the Dirac
equation) per gauge-field configuration, so the raw statis-
tics are about the same. Second, the time range of the
central fits for the two-point correlators turns out to be the

same: tmax þ 1 − tmin ¼ 8. Third, all three collaborations
simultaneously fit a correlator containing the matrix
element with the two-point correlators. Last, PNDME
and we use time ranges in the central fits of the three-
point correlators, such that there are 21 data points in the fit.
In addition, each collaboration employs techniques to

improve the signal. We have two smeared sinks and start
with 4 × 4 matrix correlators, following from the four
operator classes for our choice of staggered irrep. We apply
the GEVP to the 4 × 4 matrix for each smearing radius
to find the optimal source and sink operators for the
nucleon. PNDME increases statistics via the truncated-
solver method with bias correction [55,56]. CalLat reduces
noise with an a-independent number of steps of a gradient
flow [57]. In the future, we could easily take advantage of
the truncated-solver method, while the gradient flow would
prevent us from using numerous technical results from the
Fermilab Lattice and MILC Collaborations, such as lattice-
spacing and renormalization-factor determinations.
A more striking difference is CalLat’s introduction of

the currents into a propagator in a way inspired by the
Feynman-Hellmann theorem [58]. A key feature of
the technique is that instead of a three-point function,
the matrix element lies within another two-point function.
Thus, the CalLat method requires a fit to a single time
variable instead of two; indeed the matrix element pops out
of a fit to the ratio of the two two-point correlators.
In the end, the relative precision on gA is quoted as 1%,

3%, and 4% for CalLat [23], PNDME [24], and this work,
respectively. One should bear in mind, however, the
effective number of components per site, which are four
for Wilson fermions, eight for staggered fermions (corre-
sponding to the corners of the unit cube), and 4L5 for
domain-wall fermions (where L5 is the extent of the fifth
dimension; L5 ¼ 8 in Ref. [23]). Taking the number of
components into account but ignoring algorithmic speed-
ups from the code or specific features of each action, the
cost for a given precision is roughly the same. It would,
therefore, be interesting to explore the truncated-solver
and Feynman-Hellmann-inspired methods with staggered
fermions.
For future reference, we estimate the total cost of this

calculation to be 20,000 node hours of the LQ1 cluster at
Fermilab, of which about 90% is used for propagator
solves, 5% for Wuppertal smearing, and 5% for correlator
tie-ups. Each node on LQ1 consists of two twenty-core
Intel Xeon Gold 6248 Processors, and the nodes are
interconnected via an Intel EDR Omni-Path network. In
this work, however, all calculations ran on a single node.
This work sets the foundation needed to continue a

program of precise nucleon form-factor calculations.
Calculations of the vector and axial-vector form factors
at nonzero momentum transfer are indeed underway on the
same ensemble as used here. Further, we have started
computing gV and gA on the same ensembles used in
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Ref. [20]. These ensembles have physical pion masses
and a range of lattice spacings to enable a continuum
extrapolation.
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APPENDIX A: RELATING STAGGERED-QCD
MATRIX ELEMENTS TO QCD

MATRIX ELEMENTS

Lattice gauge theory with staggered fermions can be
thought of as an extension of QCD with four degenerate
flavors, called tastes, for each quark. The associated taste
symmetry allows for many more composite states which
can have nontrivial taste structures. We call states that have
nontrivial taste “baryonlike” states, to distinguish from the
physical single-taste baryons. In this work, we focus on the
nucleon and restrict ourselves to that case going forward.
The nucleonlike states can be mapped onto the physical
nucleon states through appropriate flavor-taste symmetry
transformations. This allows the freedom to choose which
nucleonlike state to study in order to extract observables.
As highlighted in Ref. [20], the two-point correlator data
constructed from nucleonlike states are easier to analyze
than their physical counterparts due to the smaller multi-
plicity of tastes in the spectrum. However, one needs the
mapping from the specific nucleonlike state to the physi-
cal state.
We use isospin-3

2
, GTS-16 nucleonlike interpolating

operators to extract nucleon observables, since the spec-
trum contains only a single nucleonlike state. The relation-
ship between the nucleonlike matrix elements and the
physical nucleon matrix elements is, unfortunately, not at
all transparent. In this and the following Appendixes, we
will establish the relationship between the 16-irrep nucle-
onlike matrix elements and the single-taste physical
nucleon matrix elements.
Bailey [19] inferred the spectrum of staggered baryons by

subducing nucleonlike representations of the full SUð8ÞFT
flavor-taste symmetry of the continuum limit into GTS. We
expand that work to matrix elements. Specifically, we will

demonstrate how one can apply the generalized Wigner-
Eckart theorem to SU(4) and relate the lattice nucleonlike
matrix elements to the physical tasteless nucleon matrix
elements through appropriate normalization factors, which
are generalizedClebsch-Gordan coefficients. The procedure
outlined here can be applied to any staggered baryon matrix
elements in any SUðnfÞ × GTS flavor-taste irrep.
Following the notation from Ref. [20], we first determine

the continuum quantum numbers of the nucleonlike states
that subduce into the 16 irrep of GTS. This step is needed
for the generalized Wigner-Eckart theorem. We focus on
the continuum symmetry group SUð2ÞS × SUð8ÞFT, where
SUð2ÞS is the spin symmetry and SUð8ÞFT is the flavor (F)
and taste (T) symmetry for two equal-mass flavors. This
group breaks on a discrete lattice to the unbroken flavor
symmetry subgroup SUð2ÞF and the GTS [18,19]. The
GTS can be decomposed into [20,59]

GTS ¼ ððQ8 ⋊ SW3Þ × D4Þ=Z2; ðA1Þ

where Q8 is generated by the discrete taste transformations
fΞ12;Ξ23g, SW3 by the cubic rotations fR12; R23g, and D4

by the discrete taste and spatial inversion transformations
fΞ123; ISg. (These symbols are all defined in the Appendix
of Ref. [20].)
The subgroup chain we work with is1

SUð2ÞS ×SUð8ÞFT ×P ⊃ SUð2ÞS ×SUð2ÞF ×SUð4ÞT ×P

⊃ SUð2ÞS ×SUð2ÞF ×SUð2ÞQ8
×SUð2ÞD4

×Uð1ÞD4
×P

⊃ SUð2ÞF ×GTS×P; ðA2Þ

where P ¼ ISΞ4 becomes the usual parity operation in the
continuum limit [18]. The factor SUð2ÞD4

on the second
line arises from decomposing the SUð4ÞT taste symmetry
onto a discrete lattice, which leads to the factor D4 in
Eq. (A1), combined with the Uð1ÞD4

phase factor. Note that
in Ref. [20] we omitted the Uð1ÞD4

factor, but here we make
it explicit. The other groups are defined and explained
in Ref. [20].

1. Using shift symmetries to relate
staggered correlators

The goal is to assign continuum quantum numbers of
SUð2ÞS × SUð2ÞF × SUð4ÞT to each nucleonlike state
created by every component of the 16 irrep. We begin
by investigating the continuum quantum numbers of the
simplest nucleonlike states created by the 16 irrep.
Afterwards, we can use the lattice symmetry transforma-
tions to obtain the remaining components.

1Various ZN quotient factors are often omitted for clarity. They
are only necessary to avoid overcounting group elements [for
example, SUð4ÞT ⊃ ðSUð2ÞQ8

× SUð2ÞD4
Þ=Z2].
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We can form nonvanishing two-point correlation func-
tions by contracting any one of the 16 irrep components
with the same component on a later time slice. One can then
apply lattice rotations and shifts2 to show that these 16 two-
point correlators are identical in the ensemble average.
The 16 irrep components split into two sets of eight

different components that reside on the eight corners of a
cube (see the appendix of Ref. [20] for explicit construc-
tions). The construction of nonvanishing three-point cor-
relator data also depends on the current insertion. For the
local vector and axial-vector currents we use in this work,
the zero-momentum three-point correlators do not vanish if
and only if the source and sink interpolators are identical.
Correlators constructed from the same set of eight compo-
nents can be related to each other with the lattice shift
symmetries.
To summarize, this means that the nonvanishing two-

point correlators satisfy

X
x⃗

hB16

þM⃗
ðx⃗; tÞB̄16

þM⃗
ð0Þi ¼

X
x⃗

hB16

sN⃗
ðx⃗; tÞB̄16

sN⃗
ð0Þi; ðA3Þ

where the superscript denotes the 16 irrep operators, M⃗ and
N⃗ are equal to any one of the eight corners of the cube, and
s ¼ �1 are the eigenvalues of the lattice rotation R12 for
M⃗ ¼ N⃗ ¼ 0⃗. The notation is defined in detail in Ref. [20].
We are using local currents J ¼ V, A in this work, so the

nonvanishing three-point correlators satisfy

X
x⃗;y⃗

hB16

sM⃗
ðx⃗; tÞJðy⃗; τÞB̄16

sM⃗
ð0Þi

¼ SJðN⃗ − M⃗Þ
X
x⃗;y⃗

hB16

sN⃗
ðx⃗; tÞJðy⃗; τÞB̄16

sN⃗
ð0Þi; ðA4Þ

where SJðA⃗Þ ¼ �1 is a sign factor that depends on both J
and A⃗. Its specific value can be determined by applying a
lattice shift symmetry transformation between M⃗ and N⃗.
For the currents used in this work, it is identical to the sign
factor appearing in the construction of the staggered current
J. For example, SVðA⃗Þ ¼ ð−1ÞðAxþAyþAzÞ=a for the γ4 ⊗ ξ4
vector current and SAðA⃗Þ ¼ ð−1ÞAz=a for the γzγ5 ⊗ ξzξ5
axial current. The currents and phase factors are also
defined in Eqs. (2.5) and (2.6). For a general current (other
than the local currents used here), however, it might be
necessary to have different interpolating operators at the
source and sink. In that case, the phase factors in the
general version of Eq. (A4) would still be obtained from
the lattice shift symmetries.

Going forward, it is sufficient to study the correlator with
component N⃗ ¼ 0 located at the origin of the staggered unit
cube,

P
x⃗ B

16

�0⃗
ðx⃗; tÞ. Then, owing to Eq. (A4), the other

seven components follow immediately.
The quantum numbers of the nucleonlike states created

by
P

x⃗ B
16

�0⃗
ðx⃗; tÞ will be denoted as j½3

2
; 3
2
�F½16;�0⃗�GTSi.

The first bracket gives the unbroken SUð2ÞF flavor quan-
tum numbers, which here has total and z-component
isospins 3

2
, and the second bracket denotes the 16 irrep

with the eigenvalues of R12.

2. Quantum numbers of nucleonlike states

Next, we must find a convenient basis for the continuum
nucleonlike states and then subduce them down to the
j½3
2
; 3
2
�F½16;�0⃗�GTSi lattice states. From Eq. (A2), we want

to track the quantum numbers of SUð2ÞS × SUð2ÞF ×
SUð4ÞT and may ignore the passive phase Uð1ÞD4

and
parity P ¼ þ1 factors. From the group subduction pre-
sented in Refs. [19,20], the 16 irrep is subduced from the
continuum spin-flavor-taste irrep via

SUð2ÞS × SUð2ÞF × SUð4ÞT
⊃ SUð2ÞS × SUð2ÞF × SUð2ÞQ8

× SUð2ÞD4
; ðA5Þ

�
1

2
;
3

2
;20M

�

→

�
1

2
;
3

2
;
1

2
;
3

2

�
⊕

�
1

2
;
3

2
;
3

2
;
1

2

�
⊕

�
1

2
;
3

2
;
1

2
;
1

2

�
: ðA6Þ

Here we have adopted a convention that labels non-SU(2)
group irreps by their dimensions and subscript M (mixed),
S (symmetric), or A (antisymmetric). The irreps of SU(2)
are denoted with standard spin notation.
The task of classifying a general irrep of SU(4) amounts

to finding the maximal set of commuting operators and
uniquely labeling the states by their eigenvalues; for a
general SU(4) irrep, there are six eigenvalues to classify
[61]. Because there are no degenerate irreps when decom-
posing any of the irreps in this work from SU(4) into
SUð2Þ × SUð2Þ, we can use the eigenvalues of the pair of
SU(2) factors to identify SU(4) states. Therefore, only
four of those six eigenvalues are necessary to completely
characterize the states. As such, the four eigenvalues of
each state can be uniquely identified with two pairs of the
jL2; Lzi quantum numbers.
Given Eq. (A6), we notice that 20M → ð1

2
; 1
2
Þ ⊕ ð3

2
; 1
2
Þ ⊕

ð1
2
; 3
2
Þ. We seek to find the four quantum numbers for the

states after decomposition of the 20M irrep of SUð4ÞT into
the subgroup SUð2ÞQ8

× SUð2ÞD4
. We write the continuum

nucleonlike states kets

2We use the convention of staggered phases, η1ðxÞ ¼ ð−1Þx4 ,
η2ðxÞ ¼ ð−1Þx4þx1 , η3ðxÞ ¼ ð−1Þx4þx1þx2 , and η4ðxÞ ¼ 1 [60],
which affects the phases appearing in the lattice rotations and
shifts.
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����
�
1

2
; mS

�
S

�
3

2
;
3

2

�
F
½jQ8 ; mQ8 �Q8

½jD4 ; mD4 �D4

�
: ðA7Þ

Each bracket represents the standard spin quantum num-
bers of one of the SU(2) group factors, distinguished
by the superscripts and subscripts: S (spin), F (flavor),
Q8 [SUð2ÞQ8

], and D4 [SUð2ÞD4
]. This ket serves as

the irrep basis for both SUð2ÞS × SUð2ÞF × SUð4ÞT and
SUð2ÞS × SUð2ÞF × SUð2ÞQ8

× SUð2ÞD4
.

3. Matching the continuum and lattice
nucleonlike states

Now that we have established an appropriate basis
for the nucleonlike states, both on the lattice and in the
continuum, we are ready to match the two sets. In particular,
we are interested in which linear combination of states from
Eq. (A7) combine to subduce into the lattice states
j½3
2
; 3
2
�F½16;�0⃗�GTSi of interest. For the 16 irrep nucleonlike

states, we have shown in Ref. [20] that jQ8 ¼ 3
2
and jD4 ¼ 1

2
.

Consequently, we only need to determinemS,mQ8 , andmD4 .
We start with determining mD4 of SUð2ÞD4

from
Eq. (A7). To do so, it is illuminating to study the
decomposition

SUð2ÞD4
× Uð1ÞD4

× P → fISg; ðA8Þ

where fISg is the group generated by the lattice spatial
inversion. As Eq. (A8) shows, IS receives contributions
from three different factors: the taste factor SUð2ÞD4

, a
phase factor e−iπ=2 ¼ −i from Uð1ÞD4

to match the eigen-
values of IS, and the continuum-limit parity P ¼ ISΞ4. For
the spin-1

2
irreps of SUð2ÞD4

, which include the 16 irrep
nucleons [20], the matrix representation of IS is the tensor
product of those three factors

eiσ3π=2 ⊗ e−iπ=2 ⊗ þ1 ¼
�
1 0

0 −1

�
¼ σ3 ¼ IS; ðA9Þ

where σ3 is the third Pauli matrix. The representation in
Eq. (A9) can be mapped onto the groups in Eq. (A8). The
first factor arises from the 180 degrees rotation in the “x − y
plane” of the spin-1

2
representation of SUð2ÞD4

, the second
e−iπ=2 phase is from Uð1ÞD4

, and the þ1 is from parity. As
can be seen from Eq. (A9), for the spin-1

2
irrep of SUð2ÞD4

,
the IS matrix admits �1 eigenvalues which arise from the
mD4 ¼ � 1

2
components of σ3. Since the nucleon is a

positive-parity state with IS ¼ 1, we assign mD4 ¼ 1
2
to

the j½3
2
; 3
2
�F½16;�0⃗�GTSi lattice states.

We now consider the quantum numbers of mS and mQ8 .
The 16 irrep components can be labeled by the irreps of
W3 ¼ SW3 × f1; ISg, where SW3 is the cubic rotation
group, as [18]

16 → Eþ ⊕ E− ⊕ Tþ
1 ⊕ T−

1 ⊕ Tþ
2 ⊕ T−

2 ; ðA10Þ

where E is the two-dimensional irrep of SW3, T1 and T2 are
the different three-dimensional irreps of SW3, and the
superscripts show the eigenvalues of IS. By applying lattice
rotations to j½3

2
; 3
2
�F½16;�0⃗�GTSi, we can show they belong

to the two-dimensional Eþ irrep of W3.
Subducing SUð2ÞSW3

⊂ SUð2ÞQ8
× SUð2ÞS to the lattice

angular momentum of SW3 is a problem common to all
fermion formulations [62]. We can write the irrep compo-
nents of SUð2ÞSW3

that subduce into E as [62]
����½2; 0�SW3

�
1

2
;
1

2

�
D4

�
→ j½16;þ0⃗�GTSi

→ j½Eþ;þ�W3
i; ðA11Þ

1ffiffiffi
2

p
�����½2; 2�SW3

�
1

2
;
1

2

�
D4

�
þ
����½2;−2�SW3

�
1

2
;
1

2

�
D4

��

→ j½16;−0⃗�GTSi → j½Eþ;−�W3
i; ðA12Þ

where the irreps of SUð2ÞSW3
are again labeled by the total

and z component of angular momentum, and the arrows
indicate the subduction from continuum to lattice states.
j½Eþ;��W3

i is a state that transforms in the Eþ irrep of
W3 with a þ1 eigenvalue under spatial inversion and �1
eigenvalue under rotation R12. We identify SUð2ÞSW3

as the
diagonal subgroup of SUð2ÞS × SUð2ÞQ8

[18]. Then, by
using the Clebsch-Gordan coefficients, the components are
related as

j½2; 0�SW3
i

¼ 1ffiffiffi
2

p
�����

�
1

2
;
1

2

�
S

�
3

2
;−

1

2

�
Q8

�
þ
����
�
1

2
;−

1

2

�
S

�
3

2
;
1

2

�
Q8

��

ðA13Þ
and

1ffiffiffi
2

p ðj½2;2�SW3
i þ j½2;−2�SW3

iÞ

¼ 1ffiffiffi
2

p
�����

�
1

2
;
1

2

�
S

�
3

2
;
3

2

�
Q8

�
þ
����
�
1

2
;−

1

2

�
S

�
3

2
;−

3

2

�
Q8

��
:

ðA14Þ
Taking all the results of this Appendix together, we have

j16;þ0⃗i≡ 1ffiffiffi
2

p
�����

�
1

2
;
1

2

�
S

�
3

2
;
3

2

�
F

�
3

2
;−

1

2

�
Q8

�
1

2
;
1

2

�
D4

�

þ
����
�
1

2
;−

1

2

�
S

�
3

2
;
3

2

�
F

�
3

2
;
1

2

�
Q8

�
1

2
;
1

2

�
D4

��

→

����
�
3

2
;
3

2

�
F
½16;þ0⃗�GTS

�
; ðA15Þ
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j16;−0⃗i≡ 1ffiffiffi
2

p
�����

�
1

2
;
1

2

�
S

�
3

2
;
3

2

�
F

�
3

2
;
3

2

�
Q8

�
1

2
;
1

2

�
D4

�

þ
����
�
1

2
;−

1

2

�
S

�
3

2
;
3

2

�
F

�
3

2
;−

3

2

�
Q8

�
1

2
;
1

2

�
D4

��

→

����
�
3

2
;
3

2

�
F
½16;−0⃗�GTS

�
: ðA16Þ

Here, j16;�0⃗i have been introduced as shorthand
notation for the continuum states for future reference.

4. Quantum numbers of the current operators

The last ingredient needed for the Wigner-Eckart theo-
rem is the irreducible tensor current operator. In this
work, we use the local isovector axial current, A, and
local isovector vector current, V, which have spin tastes
γzγ5 ⊗ ξzξ5 and γ4 ⊗ ξ4, respectively. We will need their
SUð2ÞS × SUð2ÞF × SUð4ÞT quantum numbers, just as in
the above sections.
The spin and flavor quantum numbers of the currents are

straightforward. By construction, both currents have a total
isospin equal to one, with Iz ¼ 0 components. A is a spin-1
current with Sz ¼ 0, and V is a spin scalar. The nontrivial
part of the identification comes from mapping the quantum
numbers of SUð2ÞQ8

× SUð2ÞD4
to the full SUð4ÞT group.

The quark bilinears we use3 transform in the 15 (adjoint)
irrep of SUð4ÞT . The decomposition of the 15 irrep into
SUð2ÞQ8

× SUð2ÞD4
irreps occurs via

15 → ð1; 1Þ ⊕ ð1; 0Þ ⊕ ð0; 1Þ: ðA17Þ

Just as above, the quantum numbers of SUð2ÞQ8
× SUð2ÞD4

can label the 15 irrep of SUð4ÞT as there are no degenerate
irreps in Eq. (A17). It should be noted that on the lattice,
bosonic irreps can be classified according to a subgroup of
the GTS group called the RF group [25].
We will first examine the continuum quantum numbers

of the local lattice vector current, V. At zero momentum, it
has spin taste γ4 ⊗ ξ4. Within the RF group, V transforms
as the trivial irrep, 1 [25]. We can decompose RF into the
discrete rotational subgroup, SW3, to get

1 → A1; ðA18Þ

where A1 is the trivial irrep of SW3.
We denote as V the continuum operator corresponding

to V and apply the same subduction procedure as in
the previous session by following the subgroup chain
SUð2ÞS × SUð2ÞQ8

→ SUð2ÞSW3
→ SW3. The spin-0 irrep

of SUð2ÞSW3
subduces into the trivial irrep of SW3 [62].

Consequently, V needs to be in the trivial irrep of
SUð2ÞS × SUð2ÞQ8

, and matching Q8 factors, V can
only transform as (0,1) irrep of SUð2ÞQ8

× SUð2ÞD4
from

Eq. (A17).
We have just found that V is a triplet of SUð2ÞD4

, and so
we need to determine its z-component quantum number.
With positive parity, the three mD4 components of the
(0, 0, 1) irrep from SUð2ÞS × SUð2ÞQ8

× SUð2ÞD4
subduce

into the lattice currents γ4 ⊗ γ4, γ4 ⊗ ξ4ξ5, and γ4 ⊗ ξ5.
Each transforms trivially in RF. The first lattice current is
local, and the other two are nonlocal with multilink
connections between the quarks and antiquarks. The
eigenvalues of IS are þ1 for the local current and −1
for the other two. As discussed in Eq. (A8), the matrix
representation of IS in the continuum can be constructed
from the tensor product of representations of SUð2ÞD4

,
Uð1ÞD4

, and P to give

eiπ×diagð1;0;−1Þ ⊗ 1 ⊗ 1 ¼

2
64
−1 0 0

0 1 0

0 0 −1

3
75 ¼ IS; ðA19Þ

where the SUð2ÞD4
factor is in a spin triplet as discussed,

Uð1ÞD4
is a trivial factor to give the correct IS eigenvalues,

and the parity is also trivial by construction. Consequently,
to get the correct IS ¼ 1 eigenvalue on the lattice, the local
γ4 ⊗ γ4 current must have zero z component in the triplet
irrep of SUð2ÞD4

in the continuum limit. This completes the
subduction of V into V.
The procedure is similar subducing the continuum axial-

vector current A into the lattice version A. On the lattice, A
transforms as a three-dimensional irrep, 3″″, of RF, which
decomposes into the

3″″ → A1 ⊕ E ðA20Þ

irreps of SW3. The linear combination

A1 ∝ ðγxγ5 ⊗ ξxξ5Þþðγyγ5⊗ ξyξ5Þþðγzγ5 ⊗ ξzξ5Þ ðA21Þ

transforms trivially under discrete rotations so it lives in the
A1 irrep. The remaining linear combinations are

Eþ ∝ ðγxγ5 ⊗ ξxξ5Þ þ ðγyγ5 ⊗ ξyξ5Þ − 2ðγzγ5 ⊗ ξzξ5Þ;
ðA22Þ

E− ∝ ðγxγ5 ⊗ ξxξ5Þ − ðγyγ5 ⊗ ξyξ5Þ; ðA23Þ

where the subscript on the left-hand side is the eigenvalue
� of R12.
In the continuum, A is a spin-1 operator of SUð2ÞS. The

A1 irrep subduces from the spin-0 irrep of SUð2ÞSW3
, and

3We do not use the taste-scalar current as it is a multilink
operator, which has been empirically observed to have more
noise.
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the E irrep subduces from the spin-2 irrep of SUð2ÞSW3
.

With the rules for the addition of angular momentum, this
requires A to be in the irrep (1,1) of SUð2ÞS × SUð2ÞQ8

with zero z-component spins in both SU(2) factors.
Now, according to Eq. (A17),A can be either a spin-0 or

1 operator of SUð2ÞD4
. Recall that on the lattice, D4 is

generated by the transformations IS and Ξ123 [20]. A is
an eigenvector of both these symmetries with respective
eigenvalues 1 and −1. Because SUð2ÞD4

subduces into the
D4 factor of the GTS group, these nontrivial eigenvalues
mean that A cannot transform trivially under SUð2ÞD4

. As
such, A can only belong to spin-1 irrep of SUð2ÞD4

.
Further, it has zero z component following the same
argument in Eq. (A19).
In summary, we have determined the continuum quan-

tum numbers of A and V, which subduce into the desired
lattice current operators, A and V, respectively. Using the
same notation as in Eq. (A7), the continuum currents
transform as

−Að1;0ÞSð1;0ÞF
ð1;0ÞQð1;0ÞD4

≡A=
ffiffiffiffi
nt

p
→ A=

ffiffiffiffi
nt

p
; ðA24Þ

Vð0;0ÞSð1;0ÞF
ð0;0ÞQð1;0ÞD4

≡ V=
ffiffiffiffi
nt

p
→ V=

ffiffiffiffi
nt

p
: ðA25Þ

The spin and flavor quantum numbers of the tensor
operators are denoted by the superscripts, whereas the taste
quantum numbers are given in the subscripts. nt ¼ 4 is the
number of tastes, and

ffiffiffiffi
nt

p ¼ 2 is required to properly
normalize tensor operators. The minus sign in front of the
axial current is a convention that we follow according to
Table I of Ref. [61].
As an aside, there is an easy way to obtain the continuum

taste quantum numbers of an arbitrary quark bilinear
without explicit group subduction. Table I of Ref. [61]
outlines the SU(4) generators and their corresponding
tensor operators. Once we adopt the Euclidean Dirac
representation for the taste gamma matrices ξ4 ¼ σ3 ⊗ I;
ξj ¼ σ2 ⊗ σj (where σj are the usual Pauli matrices), those
generators give the components of the continuum taste
matrices. For example, the local axial and vector currents
we use have taste gamma matrices of

ξzξ5 ¼

2
6664
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

3
7775; ðA26Þ

ξ4 ¼

2
6664
1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

3
7775: ðA27Þ

They are proportional to the generators 1
2
ðA11 − A22 −

A33 þ A44Þ and 1
2
ðA11 þ A22 − A33 − A44Þ. By identifying

S as D4 in Table I of Ref. [61], and similarly T as Q8, we
can recognize the tensor product S ⊗ T ¼ σ3 ⊗ σ3 and
σ3 ⊗ I, indicating a spin-1 representation whenever a σ3
appears in the tensor product. This yields the continuum
taste quantum numbers of these states as ð1; 0ÞQ8

ð1; 0ÞD4

and ð0; 0ÞQ8
ð1; 0ÞD4

.4

APPENDIX B: WIGNER-ECKART THEOREM
AND THE PHYSICAL MATRIX ELEMENTS

In this Appendix we need to relate, for each current, the
s ¼ �0 nucleonlike lattice matrix elements to their physi-
cal continuum counterpart. We label the continuum matrix
elements as

MV
� ≡ h16;�0⃗jVj16;�0⃗i; ðB1Þ

MA
� ≡ h16;�0⃗jAj16;�0⃗i: ðB2Þ

Since we know the continuum quantum numbers of
each state and current, we can apply the Wigner-Eckart
theorem to relate the different components. To further
reduce the number of independent matrix elements from
four to two, we apply the Wigner-Eckart theorem to the
SUð2ÞQ8

part of the irreps in Eqs. (A15), (A16), (A24), and
(A25) to find

MA
− ¼ −3MAþ; ðB3Þ

MV
− ¼ MVþ: ðB4Þ

This result is consistent with the discussion around
Appendix A 1. On the lattice, we have found exact
symmetries for the local vector currents

	�
3

2
;
3

2

�
F
½16;þ0⃗�GTSjVj

�
3

2
;
3

2

�
F
½16;þ0⃗�GTS

�

¼
	�

3

2
;
3

2

�
F
½16;−0⃗�GTSjVj

�
3

2
;
3

2

�
F
½16;−0⃗�GTS

�
; ðB5Þ

which come from Eq. (A3) and

X
x⃗;y⃗

hB16

þ0⃗
ðx⃗; tÞVðy⃗; τÞB̄16

þ0⃗
ð0Þi

¼
X
x⃗;y⃗

hB16

−0⃗
ðx⃗; tÞVðy⃗; τÞB̄16

−0⃗
ð0Þi; ðB6Þ

4There is a typo in Table I of Ref. [61]. The irreducible
tensor components at line 3 should read −T ½211�

ð1;0Þð1;0Þ instead of

−T ½211�
ð0;0Þð0;0Þ.
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derived from applying lattice rotations and shifts. For the
local axial-vector current, there are no symmetries relating
the matrix elements on the lattice, but the relationship in
Eq. (B3) emerges in the continuum.
To demonstrate this observation, we have plotted the

ratio of optimized gA three-point correlators created withP
x⃗ B

16

−0⃗
ðx⃗; tÞ and

P
x⃗ B

16

þ0⃗
ðx⃗; tÞ interpolators in Fig. 9. In

the limits τ; t − τ → ∞ and a → 0, the ratio should con-
verge to the dashed lines at −3 as predicted by the above
group theory. The small deviation is caused by a combi-
nation of excited-state contamination, discretization effects,
and taste-breaking effects. The same ratio for the vector
current is consistent with one to high precision, as enforced
by the lattice relation in Eq. (B6). Figure 9 is therefore a
nontrivial verification of our group theory understanding of
staggered baryon matrix elements.

To relate the two remaining staggered matrix elements to
their counterparts in QCD without tastes we observe that

jMV
phyj ¼ jhBjVjBij; ðB7Þ

jMA
phyj ¼ jhBjAjBij; ðB8Þ

where MV
phy and MA

phy are the physical vector and axial
matrix elements. Here

jBi≡
����
�
1

2
;
1

2

�
S

�
1

2
;
1

2

�
F

�
3

2
;
3

2

�
Q8

�
3

2
;
3

2

�
D4

�
ðB9Þ

is the single-taste nucleon; e.g., jBi has the correct isospin
of 1

2
and transforms as the symmetric 20S irrep of SUð4ÞT .

The 20S irrep of SUð4ÞT contains states with a single-taste
baryon.5 To relate single-taste baryon matrix elements
to the physical one, we also need the taste-diagonal current
operators which have tastes ξzξ5, ξ4, ξ1ξ2, or 1. These
constructions must coincide with the physical matrix
elements, up to a sign, if the taste restoration is valid in
the continuum limit.
Again, we can use the quantum numbers of SUð2ÞQ8

×
SUð2ÞD4

to uniquely label components in 20S because
there are no degenerate irreps in the decomposition
20S → ð3

2
; 3
2
Þ ⊕ ð1

2
; 1
2
Þ. We apply the Wigner-Eckart theo-

rem to normalize the matrix elements,MV
− andMA

−, toMV
phy

and MA
phy. This boils down to finding the correct Clebsch-

Gordon coefficients to rotate j16;−0⃗i to the single-taste
baryon jBi while leaving the taste-diagonal currents
unchanged. An SUð4ÞT rotation alone is insufficient
because these states belong to different SUð4ÞT irreps.
However, we can embed flavor and taste into a larger
group and perform rotations in this larger group to
accomplish the task. If we consider the relevant group
factors SUð4ÞF×D4

⊃ SUð2ÞF × SUð2ÞD4
, both j16;−0⃗i and

jBi belong to the same 20M irrep of SUð4ÞF×D4
, and so we

can apply the Wigner-Eckart theorem to this group.
The details of the generalized Wigner-Eckart theorem

for SU(4) are described in Ref. [61]. We will only need the
Wigner-Eckart theorem in Eq. (33) of that reference,
and the Clebsch-Gordon coefficients in Table A4. 5 of
Ref. [61], to conclude that

jMV
−j ¼ jhBjVjBij ¼ jMV

phyj; ðB10Þ

jMA
−j ¼ jhBjAjBij ¼ jMA

phyj: ðB11Þ

We can understand the trivial normalization factor by
realizing that in the continuum, SUð2ÞF, SUð2ÞQ8

, and

FIG. 9. The ratio of the three-point gA correlators, built withP
x⃗ B

16

−0⃗
ðx⃗; tÞ (“16−” with eigenvalues of −1 for the x-y plane

rotation) and
P

x⃗ B
16

þ0⃗
ðx⃗; tÞ (“16þ” with eigenvalue of þ1)

interpolating operators, as a function of source-sink separation
time t and current insertion time τ. Both interpolators are used
in Eq. (2.4) to compute gA. Each plot represents a different
Wuppertal smearing at the sink, with parameters 0.2 (Gr2.0N30)
and 0.6 fm (Gr6.0N70) rms radii. The group theory requires that
in the continuum and t; τ → ∞ limits that the ratio is equal to −3,
which is shown as dashed lines.

5As an analogy, the single taste of SUð2ÞT is similar to theΔþþ
(consisting of three valence up-quarks) in SUð2ÞF.
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SUð2ÞD4
are indistinguishable from one another because

of the enlarged SUð8ÞFT symmetry. This means that the
matrix elements are invariant under the exchange of
D4 and F labels in Eq. (B7) and Eq. (B8). This shows
that Eq. (B7) and Eq. (B8) are identical to Eq. (B1)

and Eq. (B2), and hence, the trivial normalization
factors. Combining the shift symmetry relationship in
the correlators from Eqs. (A4) with Eqs. (B11) gives a
key result for this paper, which is presented in Eqs. (2.3)
and (2.4).
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