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Motivated in part by the pseudo-Nambu Goldstone boson mechanism of electroweak symmetry breaking
in composite Higgs models, in part by dark matter scenarios with strongly coupled origin, as well as by
general theoretical considerations related to the large-N extrapolation, we perform lattice studies of the
Yang-Mills theories with Spð2NÞ gauge groups. We measure the string tension and the mass spectrum of
glueballs, extracted from appropriate two-point correlation functions of operators organized as irreducible
representations of the octahedral symmetry group. We perform the continuum extrapolation and study the
magnitude of finite-size effects, showing that they are negligible in our calculation. We present new
numerical results for N ¼ 1, 2, 3, 4, combine them with data previously obtained for N ¼ 2, and
extrapolate toward N → ∞. We confirm explicitly the expectation that, as already known for N ¼ 1, 2 also
for N ¼ 3, 4 a confining potential rising linearly with the distance binds a static quark to its antiquark. We
compare our results to the existing literature on other gauge groups, with particular attention devoted to the
large-N limit. We find agreement with the known values of the mass of the 0þþ, 0þþ�, and 2þþ glueballs
obtained taking the large-N limit in the SUðNÞ groups. In addition, we determine for the first time the mass
of some heavier glueball states at finiteN in Spð2NÞ and extrapolate the results towardN → þ∞ taking the
limit in the latter groups. Since the large-N limit of Spð2NÞ is the same as in SUðNÞ, our results are relevant
also for the study of QCD-like theories.

DOI: 10.1103/PhysRevD.103.054509

I. INTRODUCTION

Recent years have seen a resurgence of interest in gauge
theories based upon symplectic groups, driven by theo-
retical as well as phenomenological motivations, related to
model building in the context of physics beyond the
Standard Model (SM). In comparison with the SUðNÞ
and [limited to (2þ 1)-dimensional] SOðNÞ cases [1–5],
the literature on lattice studies of Yang-Mills theories with
Spð2NÞ gauge groups is limited in its extent, scope, and
reach (see, for instance, Ref. [6]). In a recent publication [7]
(see also Refs. [8–11]), some of us announced the intention
to carry out a long-term, systematic lattice exploration of
the strong-coupling dynamics of the theories based on
Spð2NÞ gauge symmetry, and proposed a research program
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that includes as one of its crucial steps the study of the
dynamics of glueballs and strings in the pure gauge theory.
In the same paper [7], we presented our first compre-

hensive study of the Spð4Þ pure gauge theory, and
computed the spectrum of masses and decay constants
of mesons consisting of two fundamental (Dirac) fermions,
treated in the quenched approximation. In the context of
composite Higgs models (CHMs) [12–14] (see also
Refs. [15–55]), that initial step provided an important
source of quantitative information about the underlying
dynamics. In particular, we started to explore and exploit
the dynamical origin of low-energy effective field theories
(EFT) based upon the SUð4Þ=Spð4Þ coset, which have a
prominent role in the CHM context (see, for instance,
Refs. [56–76]), as well as for related models of dark matter
with a strong-coupling origin [77–80]. More recently [81],
some of us presented the first continuum results of the
lattice study of the Spð4Þ theory with dynamical Wilson
fermions, hence making the treatment of the dynamics
more realistic and useful in the CHM context. A first set of
exploratory studies of the quenched theory with valence
fermions in multiple representations has been published
in Ref. [82].
In the present paper (see also Refs. [83,84]), we take

major steps in a complementary direction, by focusing on
the pure gauge theory without matter content, but extending
the analysis to different Spð2NÞ gauge groups. Our specific
objective is to obtain for the Spð2NÞ Yang-Mills theories in
D ¼ 3þ 1 dimensions a comparable level of control over
the spectra of strings and glueballs as achieved for the
previously studied SUðNÞ and SOðNÞ gauge theories
[1–5]. On a theoretical side, this endeavor will allow us
to study the approach toward the common large-N limit via
an alternative sequence of groups in respect to SUðNÞ and
SOðNÞ. In turn, this will provide an alternative set of
numerical tests for such conjectural behaviors as those put
forward, for example, in Refs. [83,85–92], as well as
allowing comparison to calculations performed within
the context of gauge-gravity dualities (see, for instance,
Refs. [93–103]) or with alternative field theoretical meth-
ods [104–108]. In pragmatic terms, we will also set the
stage for future studies in quenched theories realizing the
SUð4Þ=Spð4Þ coset, based upon generic Spð2NÞ groups. In
[82] some of us studied the quenched meson spectrum of a
theory with Spð4Þ gauge group and fermions in multiple
representations, relevant for the implementation of partially
composite top scenarios. The present study is a first step in
the direction of extending these results to the determination
of the dependence on N of the masses and decay constants
of the states of mesonic spectrum for Spð2NÞ gauge
theories, both in the fundamental and in higher dimensional
representations of the gauge group.
In our investigation, we adopt a unified approach to the

study of Spð2NÞ gauge theories, by applying the same heat
bath (HB) algorithm exploited in Ref. [7] for the Spð4Þ

theory to the whole Spð2NÞ sequence. In addition to
reconsidering Spð2Þ ∼ SUð2Þ, which allows us to test
our algorithm and procedures by comparing to existing
results in the literature and extending the N ¼ 2 results
discussed in Ref. [7] with new calculations, we consider the
N > 2 cases. For the latter, with the exception of our study
in Ref. [83] (focusing on a discussion of the two lowest-
lying glueball states and on a remarkable universality
property of their ratio) and Ref. [84] (presenting some
preliminary numerical results, further discussed in the
current work), no detailed calculation of the glueballs
has been reported in the literature so far. From an opera-
tional perspective, we first compute the effective string
tension and glueball masses in the large-volume limit for
fixed lattice spacing and N ¼ 1, 2, 3, 4. Then, after taking
the continuum limit of the glueball spectrum at each
investigated value of N, we perform a critical analysis of
the large-N extrapolation and compare to other results in
the literature, as appropriate.
The paper is organized as follows. In Sec. II we introduce

the basic definitions and conventions adopted in the lattice
calculations. In Sec. III we describe the spectral observ-
ables of interest. In Sec. IV we present our numerical
results, including also the extrapolations to continuum and
large-N limits. Section V summarizes our conclusions and
suggestions for future further inquiries. We have relegated
some important technical details to the appendixes.

II. NUMERICAL SIMULATIONS OF THE
LATTICE MODEL

In four Euclidean dimensions, the Spð2NÞ gauge theory
is defined by the following action:

SYM ≡ −
1

2g20

Z
d4xTrFμνFμν; ð1Þ

where g0 is the gauge coupling, the trace is over color
indices, the field-strength tensor Fμν ≡P

A F
A
μντ

A is
defined by

FA
μν ≡ ∂μAA

ν − ∂νAA
μ þ fABCAB

μAC
ν ; ð2Þ

and the gauge fields are Aμ ¼
P

A A
A
μ τ

A, with the indices
taking the values A;B;C ¼ 1;…; Nð2N þ 1Þ, for Spð2NÞ.
The 2N × 2N matrices τA are the generators of the algebra
associated with the Spð2NÞ group, written in the funda-
mental representation, and normalized according to
TrτAτB ¼ 1

2
δAB. The structure constants of the algebra

are defined as the commutation relations

½τA; τB� ¼ ifABCτC: ð3Þ

We regularize the theory on a lattice, in which the
continuumcoordinates are discretizedwith lattice spacinga.
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The four-dimensional Euclidean hypercubic lattice consists
of sites that are denoted by their position x in the lattice.
The sites are connected by links that are characterized by the
position x and direction μ, where μ; ν ¼ 0;…; 3 label the
four spacetime coordinates. The elementary variables of
the lattice regularized Spð2NÞ gauge theory are the link
variables, defined as

UμðxÞ≡ exp

�
i
Z

xþμ̂

x
dλμτAAA

μ ðλÞ
�
; ð4Þ

with μ̂ the unit vector in direction μ. The 2N × 2N matrices
UμðxÞ transform according to the fundamental representa-
tion of the Spð2NÞ group. Gauge transformations take the
form UμðxÞ → gðxÞUμðxÞg†ðxþ μ̂Þ, with gðxÞ a group
element.
The simplest gauge invariant operator is the trace of the

product of link variables around an elementary square of
the lattice,

PμνðxÞ≡UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ: ð5Þ

The matrices PμνðxÞ are called the elementary plaquette
variables or just plaquettes for short.
The Spð2NÞ lattice gauge theory (LGT) we adopt in this

paper is defined by the Wilson action,

SW ≡ β
X
x

X
μ<ν

�
1 −

1

2N
ℜTrPμνðxÞ

�
: ð6Þ

In this expression,ℜTrPμνðxÞ is the real part of the trace of
PμνðxÞ. The inverse coupling β is related to g0 by the
request that, when the lattice spacing a → 0, Eq. (6) tends
to the continuum Yang-Mills action in Eq. (1), at leading
order in a. From this requirement, one finds

β ¼ 4N
g20

: ð7Þ

Monte Carlo numerical evaluations of the integrals
appearing in the definitions allow us to explore the long-
distance regime of the Spð2NÞ (pure) Yang-Mills theories,
capturing nonperturbative phenomena that are not acces-
sible to perturbation theory. For any quantity OðAμÞ that
depends on the gauge fields, the physical observables are
estimated as ensemble averages, which are schematically
given by

hOðUμÞi≡
R
DUμe−SWOðUμÞ

ZðβÞ ; ð8Þ

where the denominator is

ZðβÞ≡
Z

DUμe−SW : ð9Þ

These expressions can be computed numerically by sam-
pling the space of configurations ofUμðxÞ, according to the
probability distribution e−SW. This can be achieved by
defining a Markovian process that evolves a particular
configuration according to an update algorithm. The
algorithm must respect detailed balance and reproduce
the correct equilibrium distribution. Then, if i labels the M
configurations produced sequentially, the ensemble average
can be obtained as the simple average

hOi ¼ lim
M→∞

1

M

XM
i¼1

Oi; ð10Þ

where Oi is the value that the observable OðUμÞ takes on
configuration i. The algorithm adopted in this work to
produce successive configurations is a combination of local
HB and overrelaxation (OR) updates, adapted to Spð2NÞ
from the SUð2NÞ implementation provided in Ref. [109]
(see Appendix A for further details). Configurations are
updated sequentially, one link at a time, with one HB update
followedby fourORupdates.Anupdate of all the links on the
lattice is called a lattice sweep. Successive configurations
produced in this manner are correlated; to reduce the effects
of autocorrelation, the ensemble averages used for physical
calculations are restricted by sampling the history in steps
that are separated by ten lattice sweeps. Our implementation
of the algorithms above is based on the HIREP code [110],
originally designed for the treatment of SUðNÞ theories with
matter fields in general representations.1

The lattice size being finite, we impose periodic boun-
dary conditions in all directions. In the continuum, it is
known that resulting configurations of gauge fields are
characterized by an integer topological number [111],
defined as

Q≡ 1

32π2
ϵμνρσ

Z
d4xTrFμνFρσ: ð11Þ

The associated susceptibility can be related to the large
mass of the η0 particle [112]. The configuration space is
thus divided into sectors, each characterized by an integer
value of the topological numberQ, and separated from each
other by potential barriers.
Because of the lattice discretization, the topological

charge Q takes nearly integer values [113–115]. There
are many microscopic lattice definitions of the topological
charge that reproduce the same, correct long-distance
results in the a → 0 limit. In this work we adopt the
definition

1
HIREP can be downloaded from https://github.com/

claudiopica/HiRep.
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Q≡X
x

qðxÞ; ð12Þ

with

qðxÞ≡ 1

32π2
ϵμνρσTrfUμνðxÞUρσðxÞg; ð13Þ

and where x runs upon all lattice sites. Since these
definitions make use of the short-distance degrees of
freedom, calculations are affected by short-range fluctua-
tions. These effects can be reduced by the use of smoothing
operations such as the gradient (or Wilson) flow [116],
which we will introduce below.
As in the continuum, also on the lattice the different

topological sectors are separated by potential barriers. If
these barriers are not too steep, in simulations a sufficient
number of tunneling events between sectors will occur, and
the resulting measured topological charge will be Gaussian
distributed around zero. However, superselection of
topological sectors can be shown to emerge close to the
continuum limit [113,114]. As a consequence, Monte Carlo
update algorithms tend to become trapped inside one of the
topological sectors. Hence, close to the continuum limit, the
topological charge has a long autocorrelation time. This
phenomenon is referred to in the literature as topological
freezing. Because of large-N suppression of small-size
instantons, which are crucial for changing the topological
charge in numerical simulations [117], topological freezing
becomes more severe as N increases. We shall discuss
implications of this algorithmical trappingmore extensively
later in the paper, focusing on the effects of topological
freezing on the observables that are of interest to us.
To remove ultraviolet fluctuations that would otherwise

dominate the signal in the extraction of the topological
charge, we employ the gradient flow [116,118] of the
Wilson action (i.e., the Wilson flow). The gradient flow
provides a first-principles approach to the smoothening of
configurations with efficiency comparable to that of the
more empirical and time-honored cooling methods (see, for
instance, Ref. [119]). Moreover, the evolution of observ-
ables under the gradient flow can be determined with
numerical procedures that can easily be implemented. For
this reason, this method has gained a prominent role in
lattice studies in recent years.
With t the coordinate in an additional fifth dimension

(referred to as flow time) and x a point in four-dimensional
space, the gradient flow Bμðt; xÞ is defined by the following
differential equations and boundary conditions:

dBμðt; xÞ
dt

¼ DνGνμðt; xÞ; with Bμðt ¼ 0; xÞ ¼ AμðxÞ:
ð14Þ

Here AμðxÞ is the continuum gauge field, while the
covariant derivative is Dμ ¼ ∂μ þ ½Bμ; ·�, which yields
the field-strength tensor:

Gμν ≡ ½Dμ; Dν�: ð15Þ

On the lattice, the gradient flow for the action in Eq. (6) is
defined by

∂Vμðt; xÞ
∂t ≡ −g20f∂x;μSflow½Vμ�gVμðt; xÞ; ð16Þ

with initial condition Vμðt ¼ 0; xÞ ¼ UμðxÞ. Here, Sflow is
the Wilson plaquette action for Vμ.
The gradient flow describes a diffusion process with

time t. At the leading order in the coupling g0, the flow to
time t acts on the gauge fields as a Gaussian spherical
smoothing operation, with root-mean-square radius

ffiffiffiffi
8t

p
,

the flow time t having the dimension of a length squared.
Furthermore, to all orders in perturbations in g0, any gauge
invariant composite operator constructed from Bμðt; xÞ is
renormalized at t > 0, and thus directly encodes physically
observable properties. Using a value of the flow time τ
such that a ≪

ffiffiffiffiffi
8τ

p
≪ R, where R is a typical hadronic

scale, provides four-dimensional smoothed configurations
Vðτ; xÞ that are not affected by ultraviolet fluctuations and
still encode the correct infrared behavior of the theory.

III. THE SPECTRUM

Non-Abelian Yang-Mills theories confine, and their
spectra consist of massive color-neutral states called glue-
balls. If a non-Abelian gauge theory is formulated on a
space with one or more compact directions, wrapping
torelon states arise. The validity of the confinement picture
for the specific case of Spð4Þ has been confirmed explicitly
in the numerical calculations reported in Refs. [6,7]. The
main objectives of this work are to show through lattice
calculations that, as one would expect, confinement arises
also in Spð6Þ and Spð8Þ, to measure the resulting glueball
mass spectrum, and to determine the large-N limit of the
latter. Before discussing our numerical results, in this
section we review the methodology we shall adopt. The
methodological material presented in this section is based
upon notions that have been tested and are well established
in the literature. Details beyond our exposition can be
found, e.g., in Refs. [120–125], from which we draw
heavily in what follows.

A. The variational method

LetH be a Hamiltonian of the three-dimensional system
of volume L3 defined on a lattice with Lt time slices.2 Let
jni and En be the eigenstates and eigenvalues of H, i.e.,

Hjni ¼ Enjni: ð17Þ

The transfer matrix,

2In our calculations, we set Lt ¼ L=a.
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T≡ e−aH; ð18Þ

is the operator that evolves one time slice of the system into
the next. Note that in this section, for simplicity, we
reabsorb β in the definition of H. In terms of T, the
partition function in Eq. (9) can be expressed as

Z ¼ TrðTLtÞ: ð19Þ

Masses of particle states can be obtained from the large
time decay rate of (normalized) two-point correlators of
interpolating operators,

CðtÞ≡ hΩjO†ð0ÞOðtÞjΩi
hΩjO†ð0ÞOð0ÞjΩi¼

hΩjO†ð0ÞTt=aOð0ÞjΩi
hΩjO†ð0ÞOð0ÞjΩi ; ð20Þ

where jΩi is the vacuum state, normalised so that
jΩi ¼ TjΩi, and OðtÞ is an interpolating operator that
produces the single-particle state jΨi by acting on the
vacuum,

jΨi ¼ OðtÞjΩi; ð21Þ

with hΩjΨi ¼ 0. Inserting a complete set of eigenstates of
H in Eq. (20), we obtain

CðtÞ ¼
X
n

jcnj2e−Ent; ð22Þ

where the coefficients cn, given by

cn ¼
hnjOð0ÞjΩiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hΩjO†ð0ÞOð0ÞjΩi
p ; ð23Þ

are called overlaps. If E0 < E1 < � � �, then

CðtÞ ∼ jc0j2e−E0t

�
1þ jc1j2

jc0j2
e−ðE1−E0Þt þ � � �

�
∼ jc0j2e−E0t;

t ≫ ðE1 − E0Þ−1: ð24Þ

Hence

E0 ¼ − lim
t→∞

1

a
log

Cðtþ aÞ
CðtÞ : ð25Þ

This equation implies that, in principle, E0 can be obtained
by fitting an exponential to the large t values of CðtÞ as
measured from the lattice. When OðtÞ creates a zero-
momentum state, the energies Ei are identified with particle
masses mi. In our calculation we will restrict to this case.
Following from Eq. (25), we define the effective mass

meffðtÞ as

ameffðtÞ≡ − log
Cðtþ aÞ
CðtÞ : ð26Þ

If a one-particle eigenstate of the Hamiltonian were
propagating, meffðtÞ would be constant with respect to t
with a value equal to the mass of that state. In the presence
of other states contributing to the correlation function, we
expect this effective mass to be an upper bound for the true
asymptotic mass at any finite t. In numerical studies, a tmin
can be identified such that, for t ≥ tmin, only the ground
state (or, more precisely, the smallest mass eigenstate with
nonzero overlap) contributes to CðtÞ within the statistical
precision, and hence ameffðtÞ becomes constant. The
plateau value of meffðtÞ provides an estimate of the ground
state mass m0, which can be extracted by fitting a single
exponential to the data for CðtÞ for t ≥ tmin.
While this program is at the basis of standard techniques

for extracting masses from correlators, its direct imple-
mentation is not straightforward and requires a careful
treatment of numerical data. The first difficulty one
encounters stems from the statistical noise affecting the
measurements. In fact, while the statistical fluctuations of
CðtÞ are roughly independent of t, the magnitude of
correlation functions decays exponentially. This gives an
exponentially suppressed signal-to-noise ratio which is
prohibitively hard to improve upon with an increase in
the measurement sample size alone. In addition, the value
tmin of the onset of the single-exponential asymptotic
regime is not known a priori; it is a model-dependent
feature, sensitive to the mass spectrum in the given channel
and to the choice of the operator O, as well as to the
precision of the numerical calculation. The time tmin is
extracted from the simulations. Moreover, simple argu-
ments based on asymptotic freedom show that for a given
operator and in a given channel, tmin grows exponentially as
the continuum limit is approached.
The discussion above highlights the necessity to go to

large times to isolate the ground state, but then the signal-
to-noise ratio degrades, and this makes it difficult to
estimate m0 in a reliable way. If one could find operators
with correlators that provide single exponential behaviors,
one could perform fits at small times, when the signal is still
well visible above the noise. Although this ideal situation
cannot be reproduced in numerical investigations, since the
knowledge of operators giving rise to single exponential
correlators would only arise from an at least partial solution
of the theory, one can try to engineer the calculation in such
a way that in each relevant channel tmin is as small as
possible. For this purpose, at each value of a we construct
interpolating operators that maximize the overlaps with the
spectral states of interest. The main idea is to approximate
the (unknown) exact eigenfunctions of H with an appro-
priate linear combination of a set of states fjΨiig, chosen
on the basis of symmetry considerations, as trial wave
functions. Then, in the given channel, the mass of the
lowest lying state above the vacuum can be bound as
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am0 ≤ −
1

τ
log

�
min
fjΨig

hΨjTτjΨi
hΨjΨi

�
¼ amvar; ð27Þ

where Ψ denotes any linear combination of the variational
basis Ψi, subject to the constraint hΨjΩi ¼ 0, and τ is a
time chosen for minimization, which is performed across
the linear combinations of our basis operators. This
bound is saturated by the lowest-lying eigenstate of the
Hamiltonian in the chosen channel, which can be obtained
using a complete set of variational states fjΨiig. Since
variational bases used in calculations are necessarily finite,
the bound is in general not saturated when the variational
method is used in practice. Nevertheless, with a suitably
large variational basis, the extracted variational mass mvar
will eventually be compatible within the statistical errors
with m0. This framework, referred to henceforth as the
variational technique, can be implemented algorithmically
in order to extract both the glueball and the torelon
spectrum in various channels [124].
The success of this approach and the quality of the

results obtained with this technique crucially depend on the
nature of the operators that we include in the variational
basis. For this reason, particular attention needs to be paid
to its construction. We will review in the following two
subsections the approach we followed to construct trial
states to be used in the variational calculation, by discus-
sing how gauge invariant states are created on the lattice in
Sec. III B, and how one obtains the irreducible representa-
tions of the symmetry group of the lattice in which these
states must transform in Sec. III C. In Sec. III D we will
show how to perform the extremization provided in
Eq. (27) in an effective way, in order to obtain robust
estimates of m0. The effective description of torelon states
as closed fluxtubes will be summarized in Sec. III E. The
estimates of m0 will be affected by systematic errors of
different origins, which will be discussed in Sec. III F.

B. States on the lattice

In this section we explain how to create gauge invariant
states out of the vacuum and their interpretation in terms of
glueball and torelon states. Consider traced path ordered
products of links, defined in Eq. (4), around closed
spacelike loops C,

UðCÞ ¼ Tr
Y

ðx;μÞ∈C
UμðxÞ; ð28Þ

where C can be defined as a set of successive displace-
ments,

C ¼ ½f1; f2;…; fL�; ð29Þ

where each fj is one of the elementary vectors of the lattice
fe⃗ig. The sequence f1; f2;…; fL is defined up to cyclic

permutations. The closeness of the path C implies thatP
i fi ¼ 0.
A generic gauge invariant operator O such that

hΩjOjΩi ¼ 0 can be obtained as a sum of products of
operators OC, each defined as

OC ¼ UðCÞ − hΩjUðCÞjΩi ð30Þ

for specified choices of C.
Single trace operators create states called glueballs when

C is contractible and torelon states when C wraps around a
spatial direction of the spacetime hypertorus and is thus
noncontractible. These two classes of states transform in
different representations of the center of the group and
hence do not mix. We will start our analysis from the
contractible loops. Most of our arguments are applicable
also to noncontractible loops, which will be analyzed more
specifically in Sec. III E.
Multitrace operators are monomials involving products

of at least two of the operators in Eq. (28). Operators in this
class can be used to generate multiparticle states. Some of
these states have the same quantum numbers as single
particle states we are interested in and can thus mix with
them. This mixing can result in a systematic error in the
extraction of masses of single-particle states. In our
calculation, we will neglect mixing of genuine glueball
states with multiparticle states. The justification for neglect-
ing multitrace operators resides in the fact that matrix
elements involving them go to zero in the large-N limit.

C. Symmetries

In the lattice theory, the Poincaré symmetry of the
continuum is explicitly broken to the discrete subgroup
of symmetries of the hypercubic lattice and discrete trans-
lations by an integer number of lattice spacings. In
particular, on an infinite lattice, for a time slice, this is
the semidirect product of discretized translations Td and of
the point groups of invariance of the elementary (cubic) cell
of the lattice: the Octahedral group Oh (see, e.g.,
Ref. [126]). The study of the representations of this
symmetry group of the lattice is simplified by the fact
that Td is an invariant Abelian subgroup. The one-dimen-
sional representations of Oh (related to momentum) can
thus be studied separately from those of Td.
In a finite box of size L, and with periodic boundary

conditions, the momentum is quantized in every direction
as pn ¼ 2πn=L. On a lattice its value must also lie in the
Brillouin zone containing p⃗ ¼ 0⃗. Operators at fixed
momentum can be obtained as Fourier sums of their
counterpart in coordinate space,

OCðt; p⃗Þ ¼
X
x⃗

eip⃗·x⃗OCðx⃗; tÞ: ð31Þ

Zero momentum combinations (to which we restrict our-
selves in this study) can be simply obtained as sums over
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fixed time slices of operators of the type given in
Eq. (30),

OCðt; p⃗ ¼ 0⃗Þ ¼
X
x⃗

OCðx⃗; tÞ: ð32Þ

We now briefly describe the irreducible representations of
Oh and their relation with the representations of the Poincaré
group. The Octahedral group is the symmetry group of a
cube. This group has 24 elements divided into 5 conjugacy
classes. Accordingly, it has 5 inequivalent irreducible rep-
resentations, labeled by R ¼ A1; A2; E; T1; T2, of dimen-
sions 1, 1, 2, 3, 3, respectively. The spatial parity P has two
eigenstates, which we label by an additional� sign, depend-
ing on whether they remain invariant (þ) or are reflected (−)
under a parity transformation. We will label the states of the
lattice theory with R ¼ RP and their mass with mRP .
Asterisks will denote excitations of the ground state: Aþ�

1

will denote the first excited state ofAþ
1 , A

þ��
1 the second, etc.

The states generated from the vacuum by gauge invariant
operatorsUðCÞwill transform in the same representation as
the paths on which they were defined according to Eq. (28).
In general, single trace operators belong to reducible
representations of the octahedral group. Under the action
of an element r of the group, the operators OC transform in
representation UðrÞ in the following way:

UðrÞOCU−1ðrÞ ¼ OrC; ð33Þ

where the law of transformation of C can be inferred from
its definition in Eq. (29),

C0 ¼ rC ¼ ½rf1; rf2;…; rfL�: ð34Þ

The decomposition of UðrÞ in terms of its irreducible
components can be obtained from the orthonormality
property of characters, supplemented by a choice of
orthonormal bases for each of the irreducible representa-
tions RP of Oh. For this, the projector method borrowed
from Ref. [126] has been used.
In the continuum limit, we expect the Poincaré symmetry

to be recovered. The relationship between the representa-
tions of the octahedral group defined above and those of the
Poincaré group enables us to decompose the former in their
continuous spin components. The representations of the
Poincaré group are labeled by the mass m and the quantum
numbers JPC, where J is associated with irreducible
representations of the rotation group, P with spatial parity,
and C with charge conjugation. Owing to the pseudoreality
of the representations of Spð2NÞ, C is always positive.
Hence, we will drop this quantum number from now on.
If we restrict the elements of the rotation group in a

representation J to the discrete rotations that lie in Oh, we
obtain the subduced representation J↓O. We report in
Table I the subduced representations for the lowest values

of J, adapted from Ref. [124]. In Oh, these representations
are reducible in terms of A1, A2, E, T1, and T2. Thus,
degenerate states with the same spin but different polar-
izations of the continuum spectrum might have a different
mass on the lattice. In the continuum limit, nevertheless, the
restoration of continuum rotational invariance implies that
these states become degenerate. For instance, the E and T2

representations of the octahedral group contain, respec-
tively, two and three of the five polarizations of spin-2
particles. Hence, corresponding states extracted in the E�

and T�
2 channels must become degenerate in the continuum

limit. The degree of degeneracy of these states at finite
lattice spacing will thus provide an important measure of
the effect of lattice artifacts.

D. Extraction of masses

Let us now consider a specific irreducible representation
RP and build a generic linear combination Φ of basis
elements ORP

at time t, which we denote as

ΦðtÞ ¼
X
i

viORP

i ðtÞ: ð35Þ

The two-point correlation function is

hΩjΦ†ð0ÞΦðtÞjΩi ¼
X
ij

v⋆i vjCijðtÞ; ð36Þ

where, in general,

CijðtÞ ¼
X
a

ca⋆i caj e
−mat; ð37Þ

with cai ¼ hajORP

i ð0ÞjΩi. As a result, Eq. (26) can be
rewritten as

ameffðtÞ ¼ − log

P
ijv

⋆
i vjCijðtÞP

ijv
⋆
i vjCijðt − aÞ : ð38Þ

The matrix CijðtÞ is positive definite [see Eq. (37)], and its
eigenvalues are given by λaðtÞ ¼ e−mat. Hence, extracting
the spectrum is equivalent to the diagonalization of CijðtÞ.
Unfortunately, due to statistical fluctuations, eigenvectors

TABLE I. Subduced representations R of the continuum
rotation group and their components labeled with the spin J,
up to J ¼ 4.

J A1 A2 E T1 T2

0 1 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 1 0 1 1
4 1 0 1 1 1
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and masses of the measured CijðtÞ do depend on t. In order
to resolve this dependency, we seek a solution to the
generalized eigenvalue problem

X
j

CijðτÞvj ¼ λðτ; 0Þ
X
j

Cijð0Þvj; ð39Þ

by diagonalising ½C−1ð0ÞCðτÞ� for some τ > 0. The eigen-
vectors of ½C−1ð0ÞCðτÞ� provide us with a practical choice
Φ̃i of the optimal operators. The corresponding masses mi

can be obtained from fits of the correlators of the Φ̃i (which
we refer to as C̃i) at t > t0, using the ansatz

C̃iðtÞ ¼ 2jcij2e−miLta=2 coshmi

�
t −

Lta
2

�
; ð40Þ

over ranges of t for which

ameffðtÞ ¼ arccosh

�
C̃iðtþ aÞ − C̃iðt − aÞ

2C̃iðtÞ
�

ð41Þ

reaches a plateau value. We still denote as ameff the
effective mass, although we adopt from now on a definition
that differs from the one in Eq. (26). The reason for the
discrepancy, which is visible only away from the large
volume limit, is a consequence of adopting periodic
boundary conditions in time, which allows for both forward
and backward propagating states. The mass of the ground
state, m0, is obtained from a fit of the largest eigenvalue λ0.
The masses of higher energy states can be obtained in the
same manner from the diagonal correlators of eigenvectors
associated with the other eigenvalues computed in the
generalized eigenvalue problem.
As discussed earlier, a crucial ingredient for an efficient

variational calculation is the preparation of trial states that
have an extension comparable to the target glueball state.
A priori, we have no information about the physical size
characterizing glueball states. To determine an efficient
linear combination, we shall insert in our variational set
operators obtained from prototypical paths of different
sizes and shapes, and also operators obtained from the
original basis at each of S iterations of smearing and
blocking operations, with the combination obtained in
Ref. [2] (to which we refer the reader also for the definition
of the operations of blocking and smearing and for specific
details on the particular paths used to define the basis
operators). In this way, we obtain a variational basis that
finely scans the propagating states from length scales
corresponding to the lattice spacing all the way up to
the lattice extent L.
From the technical perspective, the only procedural

change to the methodology employed for Spð4Þ in
Ref. [7] (to which we refer for further details) lies in the
projection and cooling routines that had to be adapted to the
case of Spð2NÞ. With M elementary paths and S smearing

steps used for constructing the basis, our variational basis is
formed by S ×M operators in total, and C̃ijðtÞ will
accordingly have ðS ×MÞðS ×M þ 1Þ=2 elements. In
our calculations, we perform the maximum number of
blocking steps Nb allowed by the finite size, provided by
the maximization of the left-hand side (LHS) in the
inequality 2Nb ≤ L=a. At each blocking step we perform
2 smearing steps and 15 cooling steps to reproject on the
group. In general, our variational basis contains approx-
imately 200 elements.

E. Effective string theory

Torelon states are generated from the vacuum by path
ordered products of link variables along noncontractible
paths, i.e., paths that wrap the periodic lattice along a given
direction. These states have the same quantum numbers as
physical states in which a wrapping closed loop of glue
with fixed length is propagating in the system. We refer to
this configuration as a fluxtube. When the fluxtube is long
enough, it can be described by an effective string theory.
This classical effective theory is written in terms of a single
physical parameter, the string tension σ, that governs the
energy of the fluctuations. In order to extract it from the
data with the highest precision, we will make use of
effective string theory, as briefly summarized in this
section.
Effective string theory is based on approximating

the fluxtube as a one-dimensional fluctuating object—a
string—with constant energy per unit length.Classically, the
mass m and the length L of the fluxtube are proportional,

m ¼ σL: ð42Þ

This classical string description becomes exact in the long
string limit L2σ → ∞.
At finite length, quantum corrections become relevant.

The energy of the fluxtube is obtained as a power expansion
in 1=ðσL2Þ around the long string limit. In general,

m0 ¼ σL

�
1þ

X∞
k¼1

dk
ðσL2Þk

�
; ð43Þ

where the dimensionless coefficients dk, which are in
principle calculable, can be determined by matching the
power series to the results of numerical measurements.
Universality theorems allow one to fix some of these
coefficients on the basis of symmetry arguments. The
formation of the fluxtube can be described as a process
of spontaneous breaking of some of the generators of the
Poincaré symmetry. We omit details, for which we refer the
reader to the literature [127].
The ground state massm of a torelon wrapping along one

direction of extent L is given, in a spacetime of dimension
D, by
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mLOðLÞ ¼ σL −
πðD − 2Þ

6L
; ð44Þ

where we included the leading order correction in an
expansion in 1=σL2, and

mNLOðLÞ ¼ σL −
πðD − 2Þ

6L
−
1

2

�
πðD − 2Þ

6

�
2 1

σL3
; ð45Þ

which describes mðLÞ up to the next-to-leading-order
correction. At this order, one can show that these predic-
tions are universal; i.e., the coefficients are fixed by
Poincaré invariance and certain geometric dualities. The
only physical parameter to consider is thus σ.
In general, for the ground state, no deviations with

respect to the Nambu-Goto formula

mNGðLÞ ¼ σL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðD − 2Þπ
2σL2

r
ð46Þ

are allowed up the term 1=ðσ2L5Þ. These results will allow
us to compute σ from the mass of torelons, keeping under
control the effects of working at finite L.

F. Sources of systematic errors

There are several sources of systematic errors that affect
the computation of glueball and torelon masses. In this
section, we discuss the most relevant ones for our study.
As explained in Sec. III D, the variational technique

depends on our choice of basis of operators. A potential
source of error is the choice to include only single trace
operators in our variational set. By doing so, we are
neglecting scattering states and multitorelon states that
share the quantum numbers of single glueball states of
interest. In the case of scattering, we deal with states with
two or more glueballs. Neglecting the interactions (an
approximation that holds at large N), these states have
masses that are about twice as large as the smallest glueball
mass. Thus, below this threshold, we can safely neglect the
effect of scattering states. Even above that threshold,
scattering states decouple at large N. Multitorelon states
have a mass that is in general an increasing function of L.
Therefore, at large enough values of L, they decay quickly
in correlators and can hence be neglected as well. The effect
of these states can in principle be controlled by including
the corresponding operators in the variational basis and
evaluating their overlaps, as done in Ref. [124].
As a consequence of the fact that we are simulating a

finite lattice, all our physical estimates will be affected by
finite-size effects. These effects have been reported in
Ref. [128], where it is shown that they obey the relationship

mðLÞ ¼ m

�
1þ be−

ffiffi
3

p
2
mL

mL

�
; ð47Þ

with mðLÞ and m the masses in volume V ¼ L3 and at
infinite volume, respectively. b is a coefficient that, a priori,
depends on the symmetry channel. Under the assumption
that these corrections are independent of the lattice spacing
a, we will be able to compute them at one value of a and
use the same prediction for all others. More so, we will be
able to neglect them altogether once we find that, at a
certain combination of a and L, these effects are much
smaller than the statistical error.
Discretization errors come from the dependence of the

masses on the lattice spacing. A trivial dependence can be
inferred from dimensional analysis. The lattice combina-
tion ma is dimensionless. Since all masses obtained on the
lattice depend on the lattice spacing a in this way, we
consider ratios of dimensionful objects where the trivial
dependence simplifies in the ratio. As a reference scale for
the ratio, we use the square root of the string tension

ffiffiffi
σ

p
.

This choice is motivated by the fact that, thanks to the
results discussed in Sec. III E, we can measure the string
tension more accurately than any other quantity of interest.
Hence, the use of the string tension reduces significantly
the systematic error due to the scale setting process, which
is a necessary step to provide quantities in physical units.
Beyond the overall dependence of the mass on the lattice

spacing a, we know, by computing the naïve continuum
limit of the theory described by the lattice action in Eq. (6),
that the leading corrections to mass ratios start at order a2.
Therefore, close to the continuum limit, for a glueball state
RP, we approximate

mRPffiffiffi
σ

p ðaÞ ¼ mRPffiffiffi
σ

p ð0Þð1þ cRPσa2Þ: ð48Þ

To conclude this overview of systematic effects, we
return to mentioning topological freezing. Near the con-
tinuum limit, the Monte Carlo updates tend to get trapped in
a sector at fixed topology. This topological trapping
becomes more pronounced at larger N [117]. Restricting
the gauge theory to a sector at fixed topology generates
power-law corrections in the inverse volume that delay the
onset of the large volume regime [129,130]. Both large-N
reduction arguments [131] and the large-N scaling pre-
scription of the θ angle [132] suggest that finite volume
corrections due to topological freezing are suppressed at
large N. The decreased severity of topological freezing as
N increases has been verified explicitly in Ref. [133]. In
Sec. IV, we will show that topological freezing affects only
a small subset of our calculations. When discussing the
relevant ensembles, we shall describe how topological
freezing has been accounted for in those specific cases.

IV. NUMERICAL RESULTS

In this section, we present and discuss our main
numerical results. In Sec. IVA we perform calibration
and validation studies of the underlying algorithm. We also
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select the values of the coupling β at which to compute the
masses of torelons and glueballs for the Spð2NÞ Yang-
Mills theories with N ¼ 3, 4. In Sec. IV B, we compute the
ground state mass of torelons of various lengths at fixed
lattice spacing. We compare the results to the predictions
discussed in Sec. III E. We also evaluate finite-size effects,
alongside exposing our strategy for extracting the string
tension using one lattice size, in the asymptotic regime. In
Sec. IV C we report the results of the continuum limit
extrapolations of the glueball spectrum for N ¼ 1, 2, 3, 4,
while we cover in detail in Appendix C all pertinent
technicalities. The continuum limit values of the masses
are then used to extrapolate toward the large-N limit, in
Sec. IV D.

A. Preliminary tests and calibration studies

We compute the expectation value of the plaquette P,
which is defined as

hPi≡ 1

6L4

1

2N

X
x;μ>ν

ℜTrPμνðxÞ: ð49Þ

We consider several values of β, and focus attention on
N ¼ 3 and N ¼ 4. Independent ensembles are generated
for each chosen value of β, with either unit (cold) or random
(hot) starting configurations in the Monte Carlo update
algorithm. We calculate hPi each 5 sweeps, record 104

individual measurements of this quantity out of the 5 × 104

sweeps performed for each β value. By comparing the
history of hPi starting separately with unit and random
configurations, we are able to identify and discard the
initial transient due to thermalization. We have verified
explicitly that the integrated autocorrelation times are less
than 1.5 for all values of β. We finally bin and bootstrap the
measurements of hPi. For Spð2NÞ Yang-Mills theories
with N ¼ 3, 4, the results are shown in Fig. 1 for lattices
with size ðL=aÞ4 ¼ 164.

Our algorithm is based on a heat bath update of Spð2Þ
subgroups that when combined provide a covering of the
whole Spð2NÞ group (see Appendix A for a detailed
explanation). For validation purposes, we obtained alter-
native, independent estimates for the average plaquette
using the simpler (and slower) Metropolis-Hastings update
algorithm. For bothN ¼ 3 andN ¼ 4, and at every relevant
value of β, the estimates obtained with the two different
algorithms are compatible with each other, within 1
standard deviation. For N ¼ 3, independent numerical
results are also available through Ref. [6], and our results
are compatible with theirs within 1 standard deviation,
when comparisons are possible. Finally, the limits of weak
(β → ∞) and strong (β → 0) coupling can be controlled
analytically [6]. It is expected that

hPiweak ¼ 1 −
ðN þ 1Þ

8β
þOð1=β2Þ ð50Þ

and

hPistrong ¼
β

N
þOðβ5Þ ð51Þ

at weak and strong coupling, respectively. In Fig. 1, we
compare the leading terms of these analytical predictions to
our numerical data in the relevant regime. The combination
of all these tests supports the robustness of the algorithm we
are employing.
The behavior of hPi as a function of β is also used to

detect the potential presence of a bulk phase transition that
separates the weak and the strong coupling regimes of the
theory. While the latter is dominated by strong lattice
artifacts, the former is relevant to continuum physics. The
pseudoinflection point visible in Fig. 1 (for both N ¼ 3 and
N ¼ 4) is a potential signature of such a phase transition.
We study the nature of this change of regime in
Appendix B, where we conclude that our numerical data

FIG. 1. The average plaquette hPi measured at varying coupling β=2N, for fixed lattice size L ¼ 16a. The results from the leading
order expressions at weak (β → ∞) and strong (β → 0) coupling regimes in Eqs. (50) and (51) are presented by the solid lines for
comparison purposes.
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are compatible with a crossover, confirming the findings of
Ref. [6] for N ¼ 3 and extending this conclusion to N ¼ 4.
In principle, the absence of a genuine phase transition

may allow extraction of physical observables by perform-
ing an extrapolation to the continuum limit that makes use
of generic values of β. Nevertheless, by restricting our
choices of β to the weak coupling regime we maintain
better control over the approach to the continuum. Our
choice of the values of β for the simulations results from a
pragmatic compromise aimed at reducing discretization
errors while deploying the finite amount of available
computational resources.

B. Torelons and strings

In this subsection, we discuss the methodology we use to
extract the string tension from the ground state mass of
torelons of length L for N ¼ 3, 4, while also testing the
predictions of Sec. III E. We first perform an analysis of
the L dependence of the mass at a fixed value of the
lattice coupling, in order to identify the regime in which the
string effective description is applicable. We then extract
the string tension from torelon masses measured at one
asymptotic value of L for each choice of β. This pro-
cedure allows us to obtain accurately the string tension
as a function of the finite lattice size, using the known
functional form of the torelon mass. We retained 104

thermalized configurations for postproduction analysis.
The variational basis we adopt includes the elementary
Wilson line winding around a compact spatial dimension,
and averaged over all three spatial directions, alongside its
blocked and smeared improved versions, up to blocking
level Nb such that in the inequality 2Nb ≤ L=a the LHS is
maximized. Following Ref. [7], to which we refer for
further details, we performed either one (for the coarsest
lattices) or two (for the finest lattices) smearing steps in
between one blocking step.
For the study of the finite-size dependence of the torelon

mass, we generated configurations with β ¼ 16.5 for Spð6Þ
and β ¼ 26.7 for Spð8Þ, on the lattice sizes listed in
Table II. These values of β are chosen to be small enough
that large physical volumes are reached with moderate
computing cost, while still remaining within the weak
coupling regime. The values of the masses thus obtained,
denoted by ams, are reported in Table II and plotted in
Fig. 2. In order to extract ams, we performed a maximum
likelihood analysis based upon Eq. (40). The value of the
resulting χ2=Nd:o:f: is usually below or around one; excep-
tions to this are mostly restricted to the largest lattice
studies in Spð8Þ, where ams becomes of order one and as a
consequence the signal decays quickly.
We now test the predictions of Sec. III E. From Fig. 2, we

see that, at the largest values of L=a, msa is an approx-
imately linear, increasing function of the length, in both
N ¼ 3 and N ¼ 4. This behavior supports the intuitive

description of a torelon state as a closed fluxtube with
constant energy per unit length. In order to extract the string
tension σ, as a first approximation we use Eq. (42) applied
to the largest value of L=a, treating the fluxtube as a
classical string. We call σcl the resulting string tension. For
Spð6Þ, we find σcla2 ¼ 0.0212ð4Þ at L=a ¼ 28, and for
Spð8Þ, we obtain σcla2 ¼ 0.0520ð14Þ at L=a ¼ 20. The
large-L expansion is expected to be well-behaved when
σL2 ≫ 1. At a given value of β, the classical string in
Eq. (42) should hence provide an accurate description of
the torelon when L ≫ 7a for Spð6Þ and L ≫ 5a for Spð8Þ,
the numerical coefficients in these two expressions coming
from the condition σL2 ≃ 1. Corrections to long string
behavior, such as those encoded in Eqs. (44)–(46), are
expected to become important as L=a is decreased.
We show inFig. 2 our best-fit results of the numerical data,

based upon Eqs. (44)–(46) and a linear form inspired by
Eq. (42), restricting the fitting region to the rangeL ≥ 16a in
Spð6Þ and L ≥ 12a in Spð8Þ. The results of the fits are also
reported in Table III. All the values of χ2=Nd:o:f: are
acceptable. Determinations based upon LO, NLO, and
NG effective string treatments are indistinguishable from
one another, but they are different from the classical behavior
represented by the linear approximation.We elected to adopt
theNGvalueasourbestdeterminationof the string tensionas
the final result of this preliminary analysis, andhencewe find

σN¼3a2 ¼ 0.02271ð17Þ; β ¼ 16.5; ð52Þ

for N ¼ 3, and

σN¼4a2 ¼ 0.05412ð33Þ; β ¼ 26.7; ð53Þ

for N ¼ 4.
From this analysis, we observe that at the chosen values

of β the string picture provides a good description of the
torelon mass down to lattice size L ¼ 16a for Spð6Þ and
L ¼ 12a for Spð8Þ. These values correspond to L ffiffiffi

σ
p

≃ 2.4

TABLE II. Ground state masses of the torelon states of Spð2NÞ
theories for N ¼ 3 and N ¼ 4, at various values of L=a. Masses
are obtained from a fit to Eq. (40).

Spð6Þ, β ¼ 16.5 Spð8Þ, β ¼ 26.7

L=a ams χ2=Nd:o:f: ams χ2=Nd:o:f:

8 0.1136(13) 0.82 0.2108(33) 0.54
10 0.1159(14) 0.72 0.3963(44) 0.33
12 0.1385(26) 0.52 0.5644(73) 1.0
14 0.2126(43) 0.32 0.6609(90) 1.03
16 0.3004(64) 0.08 0.815(20) 2.74
18 0.3372(72) 0.71 0.915(11) 1.84
20 0.4038(98) 0.11 1.040(30) 1.71
22 0.4423(90) 1.37 � � � � � �
24 0.503(11) 0.67 � � � � � �
28 0.594(11) 1.51 � � � � � �
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for Spð6) and L
ffiffiffi
σ

p
≃ 2.8 for Spð8Þ, somewhat more

generous than the generic, conservative estimates we
anticipated. We hence impose the bound L

ffiffiffi
σ

p
≥ 3, in

order to control the extraction of the string tension through
an asymptotic large-L expansion including at the least the
LO correction. This observation will be used in the
following to extract the string tension at other β values
for both N ¼ 3 and N ¼ 4, when we will apply the NG
expression to torelon masses obtained at a single size L and
test a posteriori that L=a fulfills the condition L

ffiffiffi
σ

p
≥ 3.

C. The glueball spectrum

In this section, we report on the spectrum of glueballs in
Spð2NÞ gauge theories for N ¼ 1, 2, 3, 4, for each fixed
value of N, focusing on the results obtained in the

continuum. Calculations of the masses in units of the
lattice spacing, finite-size effects studies, and more tech-
nical details on the continuum extrapolation can be found in
Appendix C.
We report the glueball masses in Table IV, in units of

ffiffiffi
σ

p
(top half of the table) as well as in units of the mass of the
Eþ state (bottom half). The spectra at the various values of
N are also presented in Fig. 3, where, together with the
lattice quantum numbers, we display the continuum quan-
tum numbers of glueball states. The latter have been
obtained from the decomposition presented in Table I
under the assumption that lighter states correspond to
lower continuum spin. For N ¼ 1, since Spð2Þ ≃ SUð2Þ,
results for the spectrum are already present in the literature;
see, for example, Ref. [2]. In this case, the results obtained
in our study are useful for comparison and as a test of our
procedure. For SUð2Þ, Ref. [2] finds the values mAþ

1
=

ffiffiffi
σ

p ¼
3.78ð7Þ and mEþ=

ffiffiffi
σ

p ¼ 5.45ð11Þ. These values are com-
patible within 1 standard deviation with the values obtained
in this work (see Table IV). For N ¼ 2, some of us already
obtained first results for the spectrum in Ref. [7]. We
combine our new measurements for Spð4Þ with our earlier
results, and in Table IV we report the weighted averages of
the two. The available datasets for Spð4Þ are discussed in
more detail in Appendix D.
A look at Fig. 3 shows that, while specific details depend

on N, there are common patterns across the investigated
values ofN. As expected, the Aþ

1 channel is consistently the

TABLE III. Measurements of the string tensions σ, based upon
applying Eqs. (44)–(46) and a linear form inspired by Eq. (42), to
fit the dependence of numerical results of msa on L=a.

Spð6Þ Spð8Þ
β ¼ 16.5; L ≥ 16a β ¼ 26.7; L ≥ 12a

σa2 χ2=Nd:o:f: σa2 χ2=Nd:o:f:

Linear 0.02493(92) 0.79 0.0591(20) 1.61
LO 0.02251(17) 0.74 0.05382(33) 1.48
NLO 0.02268(17) 0.89 0.05409(33) 1.55
NG 0.02271(17) 0.97 0.05412(33) 1.59

FIG. 2. Masses of the torelons measured on lattices of volume L4 at fixed lattice coupling β. We compare the results obtained by
adopting a linear expression (referred to as linear, blue), leading order (yellow), next-to-leading order (green), and Nambu-Goto (red)
effective description of the dependence of msa on L=a. In the left-hand panel, we show the results for the Spð6Þ theory at coupling
β ¼ 16.5, with fits to the data in the range L=a ≥ 16. The right-hand panel displays the results for the Spð8Þ theory at coupling
β ¼ 26.7, with fits to the data in the range L=a ≥ 12. Fit curves are displayed outside the fit range in order to expose the short-L
deviations of the data from the asymptotic string behavior. See Table III for the fit results.
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lightest, followed by the (Tþ
2 , E

þ) (degenerate) pair. At a
slightly larger mass we find the A−

1 channel and the T−
2

and E− (degenerate) pair. As explained in Sec. III C, the
degeneracy of these pairs provides evidence that the
rotation invariance of the continuum theory is recovered
as a → 0. The remaining channels, A�

2 and T�
1 , are also

almost degenerate in pairs, and their masses are larger than
those of all other states. Since the smallest masses in the A�

2

and T�
1 channels are comparable with twice the ground

state mass of the lowest-lying Aþ
1 state, numerical results

for these masses may be affected by systematic errors due
to mixing with scattering states, as discussed in Sec. III F.
An indication of this is the fact that the error bars for the
masses of those heavier states are visibly larger. Large error
bars are also the result of the higher level of noise affecting
the extraction of masses of heavier states.

We were able to extract masses of excited states for the
A�
1 channels at all values ofN. These masses are reported in

Table IV and displayed above the corresponding ground
states in Fig. 3. The error bars of the Aþ⋆

1 states are
comparable to those of the ground state in the A−

1 channel,
while for the A−⋆

1 states they are similar to those found in
heavier channels.
Finally, we note that, where determined in both calcu-

lations, corresponding states obtained from a recent SUð3Þ
study [134] are in broad agreement with the spectrum
resulting from our investigation.

D. The spectrum toward the large-N limit

As shown, for instance, in Ref. [135], while correspond-
ing quantities in SUðNÞ and Spð2NÞ Yang-Mills theories
converge to a common large-N limit, the 1=N expansions
around this limit are different: in the case of SUðNÞ, only
even powers of 1=N are present, while for Spð2NÞ the
power expansion is genuinely in 1=N. Following the
strategy that has been implemented in the large-N extrapo-
lation of the SUðNÞ glueball masses, we shall investigate
whether the lowest order correction to the large-N limit is
sufficient to describe the large-N glueball spectrum in
Spð2NÞ for all the simulated values of N. Therefore, we fit
the finite-N spectrum with the ansatz

mRPffiffiffi
σ

p ðNÞ ¼ mRPffiffiffi
σ

p ð∞Þ þ cRP

N
; ð54Þ

where cRP is a constant (expected to be of order 1 in a well-
behaved expansion) that depends on the glueball channel. If
the ansatz provides a sufficiently accurate description of the
data, mRPffiffi

σ
p ð∞Þ is a reliable infinite-N extrapolation of the

ratio of the mass in the channel RP normalized to the square
root of the string tension.
For each channel, we perform a separate linear fit to

Eq. (54) using cRP and mRP=
ffiffiffi
σ

p ð∞Þ as fittings parameters.
The results of the fits are reported in Table V. The fitting
range includes all the values of N. From Fig. 4 we see that
Eq. (54) describes the data well in this range ofN for the A�

1

channels, for the T�
2 , E

� degenerate pairs, and for the T�
1

channels. For the A−�
1 and for the Aþ

2 channels, the value of
χ2=Nd:o:f: is larger than the critical value at the 5% con-
fidence level. For comparison, in Appendix E, the same fits
are performed for a range N > 1. Although generally the
χ2=Nd:o:f: are smaller, in this latter case the parameters cRP

and mRP=
ffiffiffi
σ

p ð∞Þ are estimated from three data points only
and thus only 1 degree of freedom remains to assess the
goodness of the fits. For this reason, we opt to present the
extrapolations including the (generally still acceptable)
N ¼ 1 data points, postponing to future studies that
investigate larger N the question of whether N ¼ 1 is
captured by a simple leading correction with the current
precision of the data. For the time being, in the absence of

TABLE IV. Calculations of the masses in the continuum limit
for each N and each channel, in units of

ffiffiffi
σ

p
(top) and mEþ

(bottom). For N ¼ 2, these values have been computed as
weighted means between those in Ref. [7] and those obtained
in the present work; see Appendix C 2. In the case of
SUðN → ∞Þ, we have m=

ffiffiffi
σ

p ¼ 3.307ð53Þ for the Aþþ
1 channel,

6.07(17) for the Aþþ�
1 channel, and 4.80(14) for the Eþþ channel

(data taken from Ref. [2]). As expected, at least for these three
channels, which are the only ones for which we can compare, the
masses of SpðN → ∞Þ and SUðN → ∞Þ theories are compatible.

1 2 3 4 ∞

RP mRP=
ffiffiffi
σ

p
mRP=

ffiffiffi
σ

p
mRP=

ffiffiffi
σ

p
mRP=

ffiffiffi
σ

p
mRP=

ffiffiffi
σ

p
Aþ
1

3.841(84) 3.577(49) 3.430(75) 3.308(98) 3.241(88)
Aþ�
1

5.22(33) 6.049(40) 5.63(32) 5.58(44) 6.29(33)
A−
1 6.20(14) 5.69(16) 5.22(23) 5.36(26) 5.00(22)

A−�
1 7.37(72) 7.809(79) 6.59(49) 7.76(85) 7.31(45)

Aþ
2

6.81(31) 7.91(16) 7.36(39) 6.5(1.0) 8.22(46)
A−
2 8.99(86) 9.30(38) 8.60(67) 7.2(1.4) 8.69(83)

Tþ
2

5.29(20) 5.050(88) 5.09(16) 4.73(23) 4.80(20)
T−
2 6.55(34) 6.879(88) 6.47(43) 6.36(35) 6.71(35)

Eþ 5.33(18) 5.05(13) 5.03(13) 4.62(29) 4.79(19)
E− 6.61(37) 6.65(12) 6.34(40) 6.29(29) 6.44(33)
Tþ
1

8.58(41) 8.67(28) 7.77(59) 8.45(52) 8.33(51)
T−
1 9.63(77) 9.24(33) 9.15(69) 8.90(75) 8.76(72)

RP mRP=mEþ mRP=mEþ mRP=mEþ mRP=mEþ mRP=mEþ

Aþ
1

0.710(33) 0.711(21) 0.674(23) 0.708(44) 0.678(32)
Aþ�
1

0.957(77) 1.199(37) 1.110(70) 1.20(11) 1.275(81)
A−
1 1.159(54) 1.123(44) 1.019(57) 1.118(87) 1.008(66)

A−�
1 1.40(10) 1.541(47) 1.41(11) 1.57(18) 1.55(12)

Aþ
2

1.264(79) 1.573(57) 1.437(97) 1.44(29) 1.66(12)
A−
2 1.66(18) 1.850(94) 1.76(14) 1.63(38) 1.79(18)

Tþ
2

0.968(56) 1.003(34) 1.008(41) 1.049(75) 1.046(56)
T−
2 1.223(85) 1.375(45) 1.307(94) 1.44(11) 1.454(96)

Eþ � � � � � � � � � � � � 1.00(65)
E− 1.235(99) 1.330(44) 1.310(95) 1.37(12) 1.41(10)
Tþ
1

1.59(11) 1.707(74) 1.50(13) 1.87(16) 1.76(13)
T−
1 1.85(18) 1.820(86) 1.80(15) 2.01(20) 1.84(17)
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any evidence that would suggest otherwise, we assume that
indeed this is the case.
For some of the lightest states for which the continuum

mass in the large-N limit is available in the literature, we
can verify that the large-N extrapolation of the Spð2NÞ and
of the SUðNÞ values are compatible. In Fig. 3 the spectrum
in the large-N limit is represented together with the finite-N
one, to allow for such a comparison. Recalling that charge
conjugation is always positive in Spð2NÞ, for the sake of
comparing corresponding states, we temporarily reintro-
duce the corresponding index in the notation for glueball
states for the rest of the current subsection. With the second
þ superscript identifying positive charge conjugation, we

borrow the values of the Aþþ
1 , Aþþ�

1 , and Eþþ channel
masses for SUð∞Þ from Ref. [2]. Figure 3 shows that the
large-N extrapolations of the Aþþ

1 , the Aþþ�
1 , and the Eþþ

in Spð2NÞ and SUðNÞ are compatible with each other, as
predicted by general large-N arguments.
Armed with the results of the mass calculation of the

Aþþ
1 , we can provide further support to the conjecture put

forward in Ref. [86] that the quantity η in the relationship

m2
0þþ

σ
¼ η

C2ðAÞ
C2ðFÞ

ð55Þ

is a universal constant depending only on the dimension of
spacetime. In this equation, C2ðFÞ and C2ðAÞ are the
quadratic Casimir operators in the fundamental and adjoint
representations, respectively, whose ratio in Spð2NÞ is
given by

C2ðAÞ
C2ðFÞ

¼ 4ðN þ 1Þ
2N þ 1

: ð56Þ

After performing the standard identification of the Aþþ
1

with the lowest-lying scalar glueball, we tested this con-
jecture by performing a fit of Eq. (55) to the data, using η as
a fitting parameter. The result can be found in Table VI and
is represented in the top panel of Fig. 5. The behavior of η
as a function of N is compatible with a constant for both the
Spð2NÞ and the SUðNÞ sequences. Moreover, the values of
η extracted in each sequence are compatible with each other
within 1 standard deviation, as reported in Table VI. As an
additional test of Eq. (55), the behavior of m2

0þþ=ð ffiffiffi
σ

p
ηÞ is

TABLE V. Large-N extrapolated masses of the glueball spec-
trum obtained from a fit of Eq. (54). Note that the left-hand part of
this table is the same as the last column of Table IV.

RP mRP=
ffiffiffi
σ

p ðN ¼ ∞Þ cRP χ2=Nd:o:f:

Aþ
1

3.241(88) 1.29(29) 2.38
Aþ�
1

6.29(33) −1.6ð1.2Þ 2.91
A−
1 5.00(22) 2.43(60) 0.63

A−�
1 7.31(45) 0.9(1.4) 3.5

Aþ
2

8.22(46) −2.5ð1.3Þ 3.3
A−
2 8.69(83) 1.3(3.0) 0.9

Tþ
2

4.80(20) 1.01(69) 0.65
Eþ 4.79(19) 1.15(63) 0.72
T−
2 6.71(35) 0.1(1.2) 1.97

E− 6.44(33) 0.9(1.2) 2.03
Tþ
1

8.33(51) 0.7(1.6) 1.15
T−
1 8.76(72) 1.7(2.6) 0.02

FIG. 3. Spectrum of the Spð2NÞ theory in the continuum limit for N ¼ 1, 2, 3, 4, and N ¼ ∞, in units of
ffiffiffi
σ

p
. Continuum quantum

numbers are reported at the top. For comparison, we have reported also the masses of the Aþþ
1 , Aþþ�

1 , and Eþþ states for SUð∞Þ
(borrowed from Ref. [2]). The boxes represent 1σ statistical errors.
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represented in Fig. 5 for both Spð2NÞ and SUðNÞ groups,
along with the ratio of the quadratic Casimir operators. The
weighted mean of the values of m2

0þþ=ð ffiffiffi
σ

p
ηÞ obtained in

each series is also reported in Table VI and represented in
Fig. 5. This analysis provides further indications of the
validity of the conjectured Casimir scaling, at least within
current accuracy and precision.
Another remarkable universal property is the independ-

ence on the gauge group of the ratio between the mass of
the tensor glueball and the mass of the scalar glueball. This

has been the subject of the investigation reported in
Ref. [83] that makes use of the measurements reported
here. We do not repeat the details of that analysis, but refer
the interested reader to Ref. [83].

V. CONCLUSIONS

We have performed a numerical study of the low-lying
spectrum in Spð2NÞ Yang-Mills gauge theories. We have
considered the lattice theory formulated with N ¼ 1, 2, 3,
4, and we have measured numerically its torelon and low-
lying glueball spectrum as a function of the lattice coupling
β. After estimating finite-size effects on the target observ-
ables by using effective-string-theory motivated predictions
applied to torelon masses at N ¼ 3, 4, we have extracted
the string tension as a function of β and N from the latter
quantities. As a by-product, through this calculation we
have explicitly verified the realization of the confinement
scenario in Spð6Þ and Spð8Þ Yang-Mills theories by
exposing one of its most typical signatures: the presence
of stringy states wrapping compact directions. While this is
hardly surprising, direct validation of the expected behavior
in these two gauge theories had never been done before in
the literature. We have then extrapolated to the continuum
limit the measurements of the adimensional ratios between
the glueball masses and the square root of the string

FIG. 5. Top panel: ratios defining the conjectured universal
constant η for both SUðNc ¼ NÞ and SpðNc ¼ 2NÞ. Note that
the naming convention for the symplectic group has been altered,
using the variable Nc ¼ 2N, to better accommodate the data into
the plots; fits are also shown for the SpðNcÞ family, the SUðNcÞ
family, and the combination of SpðNcÞ and SUðNcÞ results.
Bottom panel: measured ratios m2

0þþ=σ further divided by the
fitted universality constant η plotted as a function of 1=Nc; lines
are the ratios of the quadratic Casimir operators of the adjoint
representation over the corresponding ones of the fundamental
representation as Nc varies. (We note that, for the sake of the
visualization, in this figure we have represented Nc as a real
number.)

TABLE VI. Resulting values of the universal constant η for the
Casimir scaling described in Eq. (55) for Spð2NÞ and SUðNÞ
groups. The combined fit to both groups is also reported.

Group ηð0þÞ χ2=Nd:o:f:

SUðNÞ 5.41(10) 1.43
Spð2NÞ 5.35(13) 2.02
Combined 5.388(81) 1.49

FIG. 4. Glueball mass in each symmetry channel RP in units offfiffiffi
σ

p
, as a function of 1=2N. The point corresponding to 1=2N ¼ 0

is the value of mRP=
ffiffiffi
σ

p ð∞Þ obtained from the best fit of Eq. (54)
to the numerical measurements reported in this publication. See
main text for details.
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tension. Finally, we have obtained the large-N limit of the
glueball spectrum in the Spð2NÞ sequence of groups
through an extrapolation in a power series in 1=N. For
the lowest-lying masses, the leading correctionsOð1=NÞ to
the large-N limit appear to be sufficient to describe the N
dependence down to the smallest value N ¼ 1. We have
assessed the size of systematic errors connected with the
continuum and the large-N extrapolations and showed that
they are negligible at the level of precision of our data.
We have found that, for the states for which the large-N

extrapolation in the SUðNÞ sequence has been measured,
their masses in the large-N limit agree with the ones we
have extracted taking the same limit in the Spð2NÞ
sequence, as expected. The other states we have determined
in this calculation extend our knowledge of the continuum
large-N spectrum, therefore providing a more complete set
of masses to compare to analytic methods that naturally
work at N ¼ ∞, such as gauge-gravity duality techniques.
Through an analysis of the ratio of the lowest-lying glueball
mass squared and the string tension as a function of N, we
have provided further support to the conjecture put forward
in Ref. [86] that this ratio is proportional to the ratio of the
quadratic Casimir of the adjoint over that of the funda-
mental representation of the gauge group. Indeed, we have
verified that the m2

0þþ=σ ratio normalized with the appro-
priate ratio of quadratic Casimir operators is constant
within the Spð2NÞ and the SUðNÞ family, and takes
compatible values in the two. Our calculation bounds
possible N-dependent corrections to this constant to be
less than 10%, the latter being the minimum precision with
which we have measured the ratio as a function of N.
In addition to the glueball spectrum at finite N ≤ 4, our

study has also provided a preliminary investigation of the
topological charge in Spð2NÞ gauge theories, in relation to
systematics effects in the generation of configurations and
in the extraction of spectral masses. An extended analysis
of topological observables and a more thorough analysis of
topological freezing effects at large N is currently in
progress and will be reported elsewhere.
We envision a number of possible future avenues for

exploration, in order to improve and extend this study.
Beside the obvious increase in precision that can be
obtained by simulating at larger N and smaller lattice
spacing (both of which, however, are affected by increased
autocorrelation times near the continuum limit and as N
grows), one could investigate the effect of including
double-torelon and scattering states in the operator basis,
in order to have a better resolution of genuine glueball
masses. A study of glueball scattering would also provide
an extension to the physical reach of our current inves-
tigation (see, for example, Refs. [136,137], for the case of
scalar glueball scattering in SUð2Þ lattice gauge theory).
Indeed, a scenario in which Spð2NÞ glueballs may play a
central role is gluonic dark matter [138,139]. In order to

assess the viability of a dark matter scenario based on
Spð2NÞ glueballs, one would have to compute the cross
section for the decay of the higher-spin glueballs into two
scalar glueballs. This (very challenging) calculation would
require a dedicated study of multipoint glueball functions.
A study of correlators describing glueball scattering would
be a natural starting point for such an investigation. As
observed in the context of QCD (see, e.g., Ref. [140]), we
expect that the presence of fundamental dynamical fer-
mions does not shift significantly the masses in the glueball
spectrum. Moreover, the mild N dependence in the gluonic
observables provides a first indication that no large varia-
tions will emerge across corresponding relevant physical
observables evaluated in different Spð2NÞ gauge theories,
as long as the theory is dominated by gluon dynamics, with
small numbers of matter fields.
Finally, it is worth reminding the reader that the main

motivation for our work has been provided by our ongoing
investigation of the pseudo-Nambu-Goldstone-boson mech-
anism of electroweak symmetry breaking based on the
SUð4Þ ↦ Spð4Þ global symmetry breaking pattern in
Spð2NÞ gauge theories with two fundamental Dirac flavors,
following the program outlined in Ref. [7]. In this context, it
was shown in Ref. [81] that themeson spectrum in the theory
with dynamical fundamental fermions is well approximated
by the quenched results. In principle, the calculation of the
meson spectrum of Spð2NÞ gauge theories allows one to
probe the extent and the bounds of validity of this similarity.
The present workmay be considered to contribute to this line
of research by providing a reference energy scale for a
comparison with the fermionic matter spectrum, both in the
quenched and in the full theories.
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APPENDIX A: CABIBBO-MARINARI
UPDATING FOR Spð2NÞ

The Spð2NÞ group is the subgroup of SUð2NÞ with
elements U satisfying the relationship

UΩUT ¼ Ω; ðA1Þ

where the superscript T indicates the transposition oper-
ation and Ω is the symplectic matrix. The latter can be cast
in the form

Ω ¼
�

0 1

−1 0

�
; ðA2Þ

with 1 the N × N identity matrix. Equation (A1) implies
that U has the form

U ¼
�

A B

−B� A�

�
; ðA3Þ

with the N × N matrices A and B satisfying the conditions
A†Aþ B†B ¼ 1 and ATB ¼ BTA.
As briefly mentioned in Sec. II, ensembles of Spð2NÞ

configurations distributed according to Eq. (6) are obtained
from lattice sweeps of single link HB and OR updates.
In our implementation of these algorithms, we have used an

adaptation of the Cabibbo-Marinari method [109] to the
case of Spð2NÞ. The Cabibbo-Marinari algorithm updates a
group matrix via subsequent updates of SUð2Þ subgroups
covering the whole target gauge group. The choice of the
set of SUð2Þ subgroups to update is crucial. For SUðNÞ, an
efficient implementation can be obtained starting from all
the Cartan generators ði; jÞ having 1 on the ith diagonal
element, −1 on the jth diagonal element (with 1 ≤
i < j ≤ N), and 0 everywhere else, along with their
eigenvectors under conjugate action. Each generates an
SUð2Þ subgroup of SUðNÞ. Since Spð2NÞ is a subgroup of
SUð2NÞ, the desired set of subgroups can be obtained from
the set found for SUð2NÞ by excluding the SUð2Þ sub-
groups that alter the block structure in Eq. (A3) of the
Spð2NÞ matrices. Chosing a larger set improves the
decorrelation of the algorithm. In this work, we used N2

subgroups.
To better understand how these subgroups are embedded

in Spð2NÞ matrices, we reformulate the considerations
above in the language of group representations. Each choice
of Cartan generators, along with its eigenvectors, exponen-
tiates to a SUð2Þ subgroup of SUðNÞ. The elements of the
matrices of this subgroup are different fromaunitmatrix only
at the positionsfði; jÞ; ðj; iÞ; ði; iÞ; ðj; jÞg. ASUð2Þmatrix is
thus embedded into a SUðNÞ matrix. We denote this
embedding with ði; jÞ. The different embeddings ði; jÞ can
be seen as completely reducible representations of SUð2Þ
that are unitarily equivalent toR ⊕ 1N−2;N−2, i.e., to the (1,2)
embedding, where R is the 2 × 2 irreducible representation
of SUð2Þ. The unitary transformation that maps one embed-
ding into another is the exchange of rows and columns i and j
with 1 and 2, respectively. If ½N�SU is the fundamental
representation of SUðNÞ and f2g the fundamental repre-
sentation of SUð2Þ, then all the embeddings above can be
decomposed as

½N�SU ¼ f2g ⊕ ðN − 2Þ1: ðA4Þ

For the Spð2NÞ case, the allowed SUð2Þ embeddings must
respect the block structure Eq. (A3). These embeddings can
be split into three classes that are not unitarily equivalent.
The embedding (1,2) is unitarily equivalent to the

embeddings ði < N; j < NÞ. Embeddings in this class
can be denoted by

½2N�Sp ¼ f2g ⊕ f2g ⊕ ð2N − 4Þ1: ðA5Þ

Examples are, for N ¼ 3,
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0
BBBBBBBBB@

1 0 0 0 0 0

0 a b 0 0 0

0 −b� a� 0 0 0

0 0 0 1 0 0

0 0 0 0 a� b�

0 0 0 0 −b a

1
CCCCCCCCCA
;

0
BBBBBBBBB@

a 0 b 0 0 0

0 1 0 0 0 0

−b� 0 a� 0 0 0

0 0 0 a� 0 b�

0 0 0 0 1 0

0 0 0 −b 0 a

1
CCCCCCCCCA
;…; ðA6Þ

with a; b ∈ C such that jaj2 þ jbj2 ¼ 1 and a�b − b�a ¼ 0. There are NðN − 1Þ=2 of those embeddings.
The embedding ð1; 2Þ0 is unitarily equivalent to the embeddings ði < N; j < NÞ0. Embeddings in this class can be

denoted by

½2N�0Sp ¼ f2g0 ⊕ f2g0 ⊕ ð2N − 4Þ1: ðA7Þ

Examples are, for N ¼ 3,

0
BBBBBBBBB@

1 0 0 0 0 0

0 a 0 0 0 b

0 0 −a� 0 −b� 0

0 0 0 1 0 0

0 0 −b� 0 a� 0

0 b 0 0 0 −a

1
CCCCCCCCCA
;

0
BBBBBBBBB@

a 0 0 0 0 b

0 1 0 0 0 0

0 0 −a� −b� 0 0

0 0 −b� a� 0 0

0 0 0 0 1 0

b 0 0 0 0 −a

1
CCCCCCCCCA
;…; ðA8Þ

with a; b ∈ C such that jaj2 þ jbj2 ¼ 1 and a�b − b�a ¼ 0. There are NðN − 1Þ=2 of those embeddings.
The embedding ð1; 1þ NÞ is unitarily equivalent to the embeddings ði; iþ NÞ. These can be denoted by

½2N�Sp ¼ f2g ⊕ ð2N − 2Þ1: ðA9Þ

Examples are, for N ¼ 3,

0
BBBBBBBBB@

1 0 0 0 0 0

0 a 0 0 b 0

0 0 1 0 0 0

0 0 0 1 0 0

0 −b� 0 0 a� 0

0 0 0 0 0 1

1
CCCCCCCCCA
;

0
BBBBBBBBB@

a 0 0 b 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−b� 0 0 a� 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1
CCCCCCCCCA
;…; ðA10Þ

with a; b ∈ C such that jaj2 þ jbj2 ¼ 1 and a�b − b�a ¼ 0.
There are N of those embeddings.
With our construction, we have identifiedN2 embeddings

that cover the whole of Spð2NÞ. A HB iteration on one link
consists in updating consecutively each of the embeddings
belonging to classes Eqs. (A5), (A7), and (A9) with the
Creutz or Kennedy-Pendleton implementation of the SUð2Þ
HB algorithm. An OR iteration is built in a similar way.

For this work, we performed one HB iteration followed
by 4 OR iterations for each link variable. Repeating these
iterations for all the links of the lattice is a lattice sweep. To
prevent the desymplectization and deunitarization of the
configuration caused by the accumulation of numerical
error, we reprojected each link of the configuration on the
group after each ten lattice sweeps with a modified Gram-
Schmidt algorithm that preserves the Spð2NÞ structure [7].
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APPENDIX B: SEARCHING FOR THE BULK
PHASE TRANSITION

A phase transition taking place in the (dþ 1)-dimen-
sional classical canonical system defined by Eq. (9) is
called a bulk phase transition. This transition separates the
strong and weak coupling regimes of the theory, limiting
the range of β that is analytically connected to the
continuum limit. The identification of bulk phase transition
points is hence a crucial step for extrapolating numerical
data to the a → 0 limit in a controlled way.
In general terms, a bulk phase transition takes place at

values of β for which one of the derivatives of ZðβÞ with
respect to β is singular (in the L → ∞ limit). For a system
defined by Eq. (9), with the action in Eq. (6), the first
derivative of lnZðβÞ corresponds to the expectation value
of the average plaquette,

hPðβÞi≡ 1

L4

∂ lnZðβÞ
∂β ; ðB1Þ

and its second derivative to the plaquette susceptibility,

χpðβÞ≡ ∂2 lnZðβÞ
∂β2 ¼ L4½hP2ðβÞi − hPðβÞi2�: ðB2Þ

As we observed in Sec. IVA, hPiðβÞ shows a pseudoin-
flection point at some value βc of the lattice coupling. This
pseudoinflection corresponds to a maximum χcðLÞ of the
plaquette susceptibility. If the latter is associated with the
smoothing of a proper phase transition, we expect
χcðLÞ → ∞, and βcðLÞ → βc, as L → ∞. Conversely, if
χcðLÞ stays finite when L → ∞, the change from the strong
coupling regime to the weak coupling one happens not
through a phase transition, but via a crossover.3

To study the scaling of the maximum of the plaquette
susceptibility with the size of the system, we focused our
attention on the neighborhood of the identified pseudoc-
ritical coupling βc, computing at various values of β near
this coupling for L=a ¼ 8, 12, 16, and collecting measure-
ments of hPiðβÞ. A total of 3000 data points at each
investigated value of β and L were collected, one every five
sweeps. The corresponding results for hPiðβÞ are reported
in Table VII. The Monte Carlo histories of our simulations
were searched for any sign of metastability, which would
have signaled a first order phase transition, with negative
results. This allows us to exclude the presence of a
discontinuous phase transition for both N ¼ 3 and

N ¼ 4. The plaquette susceptibility χpðβÞ was computed
at each β. The results are presented in Fig. 6. At each
volume, βc and χc were estimated using the multihistogram
method. The obtained values are reported in Table VIII. No
appreciable scaling of the peak values can be detected as L
is increased. Thus, from our data we can conclude that no
phase transition is present for N ¼ 3, 4, with the change of
behavior from strong to weak coupling being described by
a crossover. These conclusions are in agreement with the
findings in Ref. [6] for the case N ¼ 3.

FIG. 6. The plaquette susceptibility χp, as defined in Eq. (B2),
as a function of β ¼ 2N=g2, at volumes L=a ¼ 8 (orange
squares), L=a ¼ 16 (blue triangles) for the Spð2NÞ lattice gauge
theory with N ¼ 3 (left panel) and N ¼ 4 (right panel).

TABLE VII. Expectation values of the plaquette hPðβÞi in
Spð2NÞ lattice theories with N ¼ 3 (left) and N ¼ 4 (right) at
L ¼ 16a.

β=2N hPðβÞi, N ¼ 3 hPðβÞi, N ¼ 4

1.0 0.1671559(26) 0.1251247(20)
1.5 0.2536905(26) 0.1884348(20)
2.0 0.3504599(27) 0.2540525(20)
2.5 0.538850(11) 0.3259904(23)
3.0 0.6624336(27) 0.4205164(39)
3.5 0.7205217(22) 0.6138239(25)
4.0 0.7604072(18) 0.6770339(19)
4.5 0.7899299(20) 0.7199132(19)
5.0 0.8128151(16) 0.7521754(15)
5.5 0.8311878(14) 0.7773942(16)
6.0 0.8461740(18) 0.7978683(12)
6.5 0.8586757(17) 0.8148922(11)
7.0 0.8693439(14) 0.8290391(13)
7.5 0.8784713(11) 0.8412828(11)
8.0 0.8863930(16) 0.8517954(18)
8.5 0.8933310(17) 0.86112031(93)
9.0 0.8994785(12) 0.8691295(10)

3In principle, higher-order (e.g., third order) phase transitions
are also possible. However, the only examples known to us arise
strictly in the N → ∞ limit (e.g., Refs. [141,142]). If a higher-
order phase transition were present, it would be extremely
difficult to detect it in our data. At the same time, we expect
its influence on the numerical measurements to mimic a cross-
over. For this reason, we use here the expression crossover in a
rather loose sense.
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Even if a phase transition is excluded, the presence of a
crossover can still affect physical observables near the
change of regime. An example of a similar effect in SUð4Þ
Yang-Mills with a fundamental Wilson action is described
in Ref. [125], where the effect of the presence of a
crossover reflects in a dip of the measured scalar glueball
masses at the corresponding values of β. Similar results
emerge also in SUð2Þ with a mixed fundamental-adjoint
action [143,144]. Therefore, to extrapolate lattice observ-
ables to the continuum limit with a simple and controlled
dependence in a

ffiffiffi
σ

p
, it is still necessary to be in the weak

coupling regime. We achieved this by ensuring that our data
points were far enough from the inflection points and then
verifying that there was no visible signal of bulk phase
contamination in our observables.

APPENDIX C: CONTINUUM AND INFINITE
VOLUME EXTRAPOLATIONS

As mentioned in Sec. III F, estimates of glueball and
torelon masses obtained from the lattice are affected by
systematic errors. We focus on the systematic error caused
by working on a lattice of finite size in Sec. C 1 and on the
error caused by the discretization in Sec. C 2.

1. Finite-size effects

The spectrum of a theory defined in a finite box of linear
size L with periodic boundary conditions depends on L.
The problem was studied, for instance, in Ref. [145], and

this dependence was found to be described by Eq. (47). The
magnitude of the leading finite-size effects (FSEs) decays
exponentially as a function of mL, where m is the lightest
excitation in the spectrum.
If ma is estimated to a given finite precision, a value

Lmin=a exists such that for L > Lmin the FSEs on the
spectrum are negligible—by which we mean that their size
is much smaller than the statistical error. For L > Lmin, the
measured spectral masses can thus be considered as an
estimate of the infinite-size spectrum at fixed lattice
spacing. In the scaling regime, mL is also a constant as
a → 0, and once Lmin=a is found for a value of a, the
FSEs will remain negligible as a is taken to 0, provided
the physical volume is kept approximately constant in the
process. The precise value of Lmin=a depends on the
precision of our estimates and on the theory under scrutiny,
and must be determined empirically.
To determine Lmin and obtain an estimate for the

spectrum at infinite size for N ¼ 3, 4, we used the
ensembles described in Sec. IV B. For each ensemble,
we determined the glueball spectrum and the string tension.
The results are reported in Table IX for N ¼ 3 and Table X
for N ¼ 4. In this Appendix we focus on the lightest
channel, which is consistently found to be Aþ

1 and suffers
from the largest FSEs. (Exceptions to this rule can be
found, but they can only occur in the small L=a regime, in
which we are not interested.)
The estimates of amAþ

1
are presented in Fig. 7, for N ¼ 3

in the top panel and N ¼ 4 in the bottom panel. From these
figures we see that amAþ

1
rapidly settles on a plateau as L=a

is increased. This means that, as expected, FSEs become
negligible as L is increased. A rough estimate yields
Lmin=a ¼ 20 for Spð6Þ at β ¼ 16.5 and 10 for Spð8Þ at
β ¼ 26.7. As an a posteriori check, note that mAþ

1
Lmin ∼

9.76 for Spð6Þ andmAþ
1
Lmin ∼ 6.94 for Spð8Þ. The infinite-

size spectrum can then be estimated by any one of the
results at L > Lmin. We fitted Eq. (47) to the data using b
and mð∞Þ as fitting parameters. The fitted curves and the
related χ2=Nd:o:f: are displayed in Fig. 7.

TABLE IX. Estimates of the masses of glueballs ma in all symmetry channels RP in units of the lattice spacing at
β ¼ 16.5, for various L=a and for N ¼ 3.

L=a

RP 14 16 18 20 22 24

Aþ
1

0.321(14) 0.492(21) 0.419(29) 0.488(19) 0.479(18) 0.493(19)
A−
1 0.662(31) 0.766(32) 1.016(87) 0.879(52) 0.801(32) 0.778(31)

Aþ
2

1.122(75) 1.125(88) 1.172(78) 1.108(93) 1.282(92) 1.087(66)
A−
2 1.26(23) 1.39(21) 1.382(45) 1.351(61) 1.391(46) 1.360(41)

Eþ 0.374(19) 0.496(27) 0.684(32) 0.754(28) 0.755(25) 0.731(14)
E− 0.908(58) 0.926(52) 0.911(49) 1.044(62) 0.987(48) 0.962(47)
Tþ
2

0.726(34) 0.782(32) 0.748(30) 0.684(30) 0.775(28) 0.740(22)
T−
2 0.960(79) 0.924(58) 0.970(47) 0.906(49) 0.900(50) 1.027(47)

Tþ
1

1.19(11) 1.16(11) 1.154(98) 1.091(88) 1.20(12) 1.196(26)
T−
1 0.96(12) 1.22(11) 1.28(15) 1.38(12) 1.348(29) 1.25(13)

TABLE VIII. Location of the maximum value of the suscep-
tibility for N ¼ 3 and N ¼ 4 at L=a ¼ 8, 12, 16.

N ¼ 3 N ¼ 4

L=a βc χPmax βc χPmax

8 14.909(35) 0.0319(14) 24.45(3) 0.045(6)
12 14.909(41) 0.0315(27) 24.45(3) 0.047(6)
16 14.920(40) 0.0283(87) 24.45(3) 0.048(7)
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From the analysis above, we conclude that FSEs are
negligible when L > 20a, for N ¼ 3, and L > 10a, for
N ¼ 4. On these lattices, the condition L

ffiffiffi
σ

p
≥ 3, which

identifies the large volume regime of torelons, is also
fulfilled. Hence, we choose this condition throughout as an
indicator that finite volume effects can be neglected.

2. Continuum limit extrapolations

The behavior of the discretization error was studied in
Sec. III F. The dimensionless ratio mRP=

ffiffiffi
σ

p
behaves, at

leading order in a, as

mRPffiffiffi
σ

p ðaÞ ¼ mRPffiffiffi
σ

p ð1þ cRPσa2Þ; ðC1Þ

where cRP is a constant that depends on the symmetry
channel and on the excitation number. The multiplicative
term on the right-hand side is the continuum limit of the
ratio, while the term in σa2 describes the deviation with
respect to this limit for sufficiently small a.
The continuum limit of the spectrum of glueballs can be

obtained from sets of estimates thereof obtained at finite
lattice spacing with a fit of Eq. (C1) to the data. This is
the general strategy to extract results of the continuum

FIG. 7. Mass of the lightest glueballmAþ
1
a in units of a, at fixed coupling, as a function of L=a. This corresponds to the Aþ

1 channel for
both N ¼ 3, evaluated at β ¼ 16.5 (top panel), and N ¼ 4, evaluated at β ¼ 26.7 (bottom panel). The solid line is the best fit of Eq. (47)
to the data.

TABLE X. Estimates of the masses of glueballs ma in all symmetry channels RP in units of the lattice spacing at
β ¼ 26.7 for various L=a and for N ¼ 4.

L=a

RP 8 10 12 14 16 18 20

Aþ
1

0.2881(60) 0.694(19) 0.695(31) 0.664(29) 0.727(33) 0.685(27) 0.707(25)
A−
1 0.678(30) 1.119(42) 1.32(14) 1.296(36) 1.063(97) 1.186(35) 1.237(29)

A−
2 2.05(25) 1.98(22) 1.62(16) 1.91(23) 2.05(19) 2.05(20) 2.55(31)

Aþ
2

0.87(13) 1.86(13) 1.76(12) 1.90(12) 1.82(11) 1.697(94) 1.696(73)
E− 0.776(63) 1.544(70) 1.37(22) 1.446(68) 1.518(64) 1.543(47) 1.473(50)
Eþ 0.298(10) 0.612(33) 1.116(31) 1.106(30) 1.044(70) 1.046(80) 1.167(76)
T−
2 1.13(20) 1.377(62) 1.564(79) 1.505(64) 0.97(14) 1.503(64) 1.412(46)

Tþ
2

0.644(35) 1.141(39) 0.80(19) 1.156(86) 1.200(99) 1.137(28) 1.016(60)
T−
1 1.83(19) 2.08(25) 2.09(19) 1.99(20) 2.09(20) 2.18(18) 2.12(15)

Tþ
1

1.03(20) 1.74(15) 1.70(11) 1.86(13) 2.01(13) 1.709(98) 1.737(82)
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spectrum from estimates at finite a, if the latter are obtained
in a regime where Eq. (C1) is valid.
For each N ¼ 1, 2, 3, 4, ensembles of 10,000 thermal-

ized configurations were obtained at several values of a and
L=a and stored for later analysis. The values of L=a were
always chosen so that FSEs could be safely neglected. This
has been verified a posteriori from the measured values of

mRPL. The glueball and torelon masses were estimated in
units of the lattice spacing, as explained in Sec. III, for each
ensemble.
While not strictly related to the continuum extrapolation,

a comment is in order regarding the estimation of the
uncertainty on mRPa and to guide the reader in navigating
the tables of results. To determine tmin, defined in Sec. III A,

TABLE XI. Estimates of the glueball and the torelon masses for N ¼ 1, in units of the lattice spacing a, on lattices of linear size L and
lattice spacing determined by the inverse coupling β. The error in brackets is discussed in the main text.

β ¼ 2.2986 β ¼ 2.3726 β ¼ 2.4265 β ¼ 2.5115
L ¼ 10a L ¼ 12a L ¼ 16a L ¼ 20a

N ¼ 1 mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f:

Aþ
1

1.150(70) � � � 0.995(18) 0.77 0.883(32) 2.1 0.683(14) 3.36
Aþ�
1

1.99(13) 0.41 1.52(12) � � � 0.700(80) � � � 0.500(40) � � �
A−
1 2.11(23) 1.02 1.53(30) � � � 1.430(80) � � � 1.030(60) � � �

A−�
1 2.33(20) � � � 2.45(45) � � � 1.83(24) � � � 1.30(20) � � �

Aþ
2

2.05(60) � � � 2.25(17) 1.82 1.82(17) � � � 1.370(90) � � �
A−
2 � � � � � � � � � � � � 1.99(20) � � � 1.50(20) � � �

Tþ
2

2.00(30) � � � 1.50(20) � � � 1.32(12) 1.42 0.980(13) 2.78
Eþ 2.00(50) � � � 1.24(25) � � � 1.229(98) 1.99 0.950(60) � � �
T−
2 2.30(30) � � � 2.14(15) 0.28 1.670(60) � � � 1.170(80) � � �

E− 2.10(40) � � � 2.07(14) 0.64 1.59(14) � � � 1.220(60) � � �
Tþ
1

� � � � � � 1.80(30) � � � 1.70(30) � � � 1.37(20) � � �
T−
1 � � � � � � � � � � � � 2.00(20) � � � 1.50(15) � � �

σsa2 σsa2 σsa2 σsa2

0.1284(52) � � � 0.0736(31) � � � 0.0566(10) � � � 0.03116(63) � � �

TABLE XII. Estimates of glueball masses and string tensions for N ¼ 1, in units of the lattice spacing a, on lattices of linear size L,
and with lattice spacing determined by the inverse coupling β. The errors in brackets are discussed in the main text.

β ¼ 2.6 β ¼ 2.62 β ¼ 2.7
L ¼ 24a L ¼ 26a L ¼ 32a

N ¼ 1 mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f:

Aþ
1

0.467(24) 2.16 0.487(32) 2.82 0.356(10) 0.71
Aþ�
1

0.97(11) � � � 0.680(50) � � � 1.390(90) � � �
A−
1 0.810(22) 2.74 0.750(50) � � � 0.600(14) 3.25

A−�
1 0.96(10) � � � 0.940(90) � � � 0.750(30) � � �

Aþ
2

0.900(90) � � � 0.896(28) 2.81 0.680(50) � � �
A−
2 1.21(12) � � � 1.080(90) � � � 0.980(40) � � �

Tþ
2

0.690(50) � � � 0.660(40) � � � 0.490(30) � � �
Eþ 0.702(33) 2.58 0.667(13) 2.71 0.507(28) 2.91
T−
2 0.900(50) � � � 0.830(50) � � � 0.687(65) � � �

E− 0.890(60) � � � 0.780(90) � � � 0.680(50) � � �
Tþ
1

1.050(80) � � � 1.000(70) � � � 0.820(40) � � �
T−
1 1.180(80) � � � 1.140(40) � � � 0.900(50) � � �

σsa2 σsa2 σsa2

0.01715(26) � � � 0.01587(56) � � � 0.00938(18) � � �
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the quantity meffðtÞa is computed on all the available range
of t=a. If a plateau can be found, the fits of Eq. (40) over the
range t > tmin provide an estimate of mRPa together with
the statistical error of the fit and the corresponding
χ2=Nd:o:f:. It is often the case, however, that the plateau
is only 2a − 3a long, that an accurate determination of
its preimage in t=a is hindered by the contamination
from larger mass states, or that the mass itself is large.

These difficulties in determining tmin lead to a systematic
error on mRPa that can be larger than the statistical error of
the fitting procedure. In such cases, the statistical error of
the fit cannot be trusted in describing the fluctuations
of mRPa. Hence, we use a safe estimate of the mass and its
error from the envelope of the points at plateau. A value for
χ2=Nd:o:f: cannot be defined, and the corresponding entry in
the table is left empty. Finally, there are extreme cases for
which an estimate for the mass simply cannot be found; i.e.,
a plateau is absent. In that case, the corresponding entry in
the table is left empty.
All our estimates are reported in Tables XI–XX for the

ensembles with N ¼ 1, 2, 3, 4. The values of β and L=a are
found in the first row of each table; the subsequent rows
correspond to the ten symmetry channels, until the last row,
which corresponds to the string tension. For each value of
N, these estimates are plotted as a function of σa2 in
Figs. 8–11.
In general, we found that the statistical errors and the

confidence intervals are of the same order of magnitude, the
latter being slightly larger in the majority of cases. This can
be taken as an indication of the correctness of the method
detailed above. In the following, we refer to the uncertainty
in the determination of mRPa generically as its “error.”
A set of representative cases for the typical behavior of

meffðtÞa is shown in Figs. 12 and 13, where the final
estimate for mRPa is represented as a dotted line and its
error as the half-width of the corresponding horizontal
band. In Fig. 12 the effective mass of state Aþ

1 at the
smallest available value of a is reported for each N ¼ 1, 2,
3, 4. For N ¼ 1, 2, and 3, a plateau can be identified. It is at
least t=a ∼ 2 long and starts at tmin ¼ a for N ¼ 1, 3 and

TABLE XIII. Estimates of glueball masses and string tensions for N ¼ 2, in units of the lattice spacing a, on lattices of linear size L,
and with lattice spacing determined by the inverse coupling β. The errors in brackets are discussed in the main text.

β ¼ 7.62 β ¼ 7.7 β ¼ 7.85 β ¼ 8.0
L ¼ 16a L ¼ 16a L ¼ 18a L ¼ 20a

N ¼ 2 mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f:

Aþ
1

0.680(80) � � � 0.729(32) 1.62 0.634(22) 0.56 0.587(37) 1.42
Aþ�
1

� � � � � � 1.15(16) � � � 0.94(17) � � � 0.86(12) � � �
A−
1 1.21(20) � � � 1.190(50) � � � 0.980(60) � � � 0.880(40) � � �

A−�
1 1.57(32) � � � 1.64(26) � � � 1.39(12) � � � 1.230(80) � � �

Aþ
2

1.80(31) � � � 1.36(30) � � � 1.500(50) � � � 1.03(20) � � �
A−
2 � � � � � � 1.85(30) � � � 1.40(30) � � � 1.38(20) � � �

Tþ
2

� � � � � � 1.170(50) � � � 1.014(49) 1.87 0.760(40) � � �
Eþ 0.96(24) � � � 1.160(28) 1.86 0.910(50) � � � 0.810(50) � � �
T−
2 � � � � � � 1.00(25) � � � 1.22(14) � � � 1.070(30) � � �

E− 1.30(35) � � � 1.24(20) 1.58 1.16(13) � � � 1.060(60) � � �
Tþ
1

� � � � � � 1.30(30) � � � 1.22(30) � � � 1.05(20) � � �
T−
1 1.60(40) � � � 2.07(17) 0.56 1.58(17) � � � 1.10(20) � � �

σsa2 σsa2 σsa2 σsa2

0.0614(22) � � � 0.0517(12) � � � 0.03526(51) � � � 0.02487(66) � � �

TABLE XIV. Estimates of glueball masses and string tensions
for N ¼ 2, in units of the lattice spacing a, on lattices of linear
size L, and with lattice spacing determined by the inverse
coupling β. The errors in brackets are discussed in the main text.

β ¼ 8.2 β ¼ 8.3
L ¼ 26a L ¼ 32a

N ¼ 2 mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f:

Aþ
1

0.445(21) 2.31 0.402(12) 1.57
Aþ�
1

0.710(80) � � � 0.640(50) � � �
A−
1 0.700(40) � � � 0.600(40) � � �

A−�
1 0.970(90) � � � 0.860(30) � � �

Aþ
2

1.000(50) � � � 0.880(70) � � �
A−
2 1.02(14) � � � 0.85(20) � � �

Tþ
2

0.610(50) � � � 0.570(50) � � �
Eþ 0.607(58) 2.31 0.590(20) � � �
T−
2 0.820(60) � � � 0.740(60) � � �

E− 0.820(30) � � � 0.770(30) � � �
Tþ
1

1.000(50) � � � 0.790(80) � � �
T−
1 1.160(70) � � � 0.82(12) � � �

σsa2 σsa2

0.01676(26) � � � 0.01263(62) � � �
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tmin ¼ 2a for N ¼ 2. An estimate for mRPa can thus
be obtained from a fit of Eq. (40) over the range
tmin < t < tmax. The value tmax was chosen to be as large
as possible while still resulting in a value of χ2=Nd:o:f: close
to 1 for the corresponding fit. In most cases of the analysis
where a plateau could be identified, and in particular in
all of those depicted in Fig. 12, it was possible to set
tmax ¼ La=2. ForN ¼ 4, to the contrary,mAþ

1
a is estimated

from the envelope of the quasiplateau that starts at t=a ∼ 1
and that is only a long. In Fig. 13, the effective mass of
state Tþ

1 at N ¼ 3 is reported for a range of lattice spacings,
from coupling β ¼ 15.85 to coupling β ¼ 17.1. In all of
these cases a plateau of length 2 − 3a cannot be found and
mTþ

1
a is estimated from the envelope of a quasiplateau. At

β ¼ 17.1, the contamination of higher mass states lasts up
to t=a ¼ 4, and a quasiplateau can only be identified for

TABLE XV. Estimates of glueball masses and string tensions for N ¼ 3, in units of the lattice spacing a, on lattices of linear size L,
and with lattice spacing determined by the inverse coupling β. The errors in brackets are discussed in the main text.

β ¼ 15.6 β ¼ 15.65 β ¼ 15.7 β ¼ 15.85
L ¼ 12a L ¼ 12a L ¼ 12a L ¼ 14a

N ¼ 3 mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f:

Aþ
1

0.765(27) 0.18 0.777(26) 0.07 0.750(24) 0.56 0.720(20) � � �
Aþ�
1

1.43(16) 0.99 1.29(12) � � � 1.167(96) 1.28 1.17(12) � � �
A−
1 1.29(13) 0.79 1.29(17) 1.92 1.27(17) � � � 1.07(12) � � �

A−�
1 1.93(28) � � � 1.76(21) � � � 1.667(80) 0.68 1.24(15) � � �

Aþ
2

1.80(15) � � � 1.92(11) 0.51 1.64(54) 1.94 1.54(20) � � �
A−
2 1.80(30) � � � 2.08(20) � � � 2.00(30) � � � 1.60(30) � � �

Tþ
2

1.06(15) � � � 1.23(12) 2.05 1.213(87) 2.94 1.075(55) 0.49
Eþ 1.202(83) 2.37 1.257(31) 1.65 1.203(82) 1.38 1.141(71) 3.88
T−
2 1.50(13) � � � 1.70(14) � � � 1.40(20) � � � 1.37(14) � � �

E− 1.46(15) � � � 1.41(30) � � � 1.33(18) � � � 1.26(12) � � �
Tþ
1

1.70(30) � � � 2.00(18) � � � 1.07(40) � � � 1.52(16) � � �
T−
1 1.37(35) � � � 1.90(40) � � � 2.25(35) � � � 1.70(40) � � �

σsa2 σsa2 σsa2 σsa2

0.06464(79) � � � 0.0663(11) � � � 0.05918(72) � � � 0.04879(60) � � �

TABLE XVI. Estimates of glueball masses and string tensions for N ¼ 3, in units of the lattice spacing a, on lattices of linear size L,
and with lattice spacing determined by the inverse coupling β. The errors in brackets are discussed in the main text.

β ¼ 16.1 β ¼ 16.3 β ¼ 16.5 β ¼ 16.7
L ¼ 16a L ¼ 20a L ¼ 20a L ¼ 28a

N ¼ 3 mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f:

Aþ
1

0.581(28) 0.25 0.536(20) 2.09 0.499(15) 0.11 0.432(10) � � �
Aþ�
1

0.95(12) � � � 0.910(80) � � � 0.810(60) � � � 0.690(90) � � �
A−
1 0.971(41) 0.49 0.846(36) 0.33 0.808(21) 2.62 0.610(50) � � �

A−�
1 1.16(17) � � � 1.031(53) 1.78 0.82(17) � � � 0.72(16) � � �

Aþ
2

1.488(38) 3.97 1.23(15) � � � 1.050(50) � � � 0.92(12) � � �
A−
2 1.48(25) � � � 1.50(12) � � � 1.28(10) � � � 1.12(10) � � �

Tþ
2

0.854(85) 1.14 0.780(60) � � � 0.700(40) � � � 0.636(20) 2.92
Eþ 0.954(35) 0.98 0.830(50) � � � 0.710(30) � � � 0.650(30) � � �
T−
2 1.200(50) � � � 1.080(81) 3.73 0.950(60) � � � 0.770(60) � � �

E− 1.247(24) 1.94 1.090(70) � � � 0.974(37) 0.33 0.830(50) � � �
Tþ
1

1.50(10) � � � 1.380(90) � � � 1.12(12) � � � 0.920(80) � � �
T−
1 1.59(10) � � � 1.20(16) � � � 1.10(20) � � � 1.21(10) � � �

σsa2 σsa2 σsa2 σsa2

0.03501(59) � � � 0.02825(99) � � � 0.02303(33) � � � 0.01606(33) � � �
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t=a in the interval ∼ ½3a; 5a�. Its quality progressively
degrades as β takes smaller values, becoming barely visible
for β ¼ 15.85.
In general, a plateau can be identified when a is

sufficiently small that the mass of the ground state in
lattice units is well below 1=a. In principle, hierarchies
between the masses in the spectrum may make their
estimation difficult for all the channels at a common value
of a. This is shown for channels Aþ

1 and Tþ
1 at β ¼ 17.1 in

Figs. 12 and 13, respectively, where the mass of the Tþ
1 is

approximately twice the mass of Aþ
1 . Moreover, as dis-

cussed in Sec. III F, the plateau may show contaminations
from excited and scattering states. These may be difficult to
remove even for small a, as shown for Tþ

1 in Fig. 13.
Despite these difficulties, it was possible to provide reliable
estimates of mRPa in a great majority of cases.
Let us now comment on the features of these finite-a

estimates that are common across all the values of N. The
fact that in every casemRPL > 3 allows us to safely neglect
FSEs for all the ensembles, as anticipated. Moreover, all the
estimates satisfy mRPa ≤ 2, except for the two roughest
lattices when N ¼ 1, corresponding to β ¼ 2.2986 and
β ¼ 2.3726. Therefore, we can assert that our choices of β
are well calibrated to study the flow to the continuum limit
of the spectrum of these systems. In the glueball sector, the
Aþ
1 is consistently the lightest channel, followed by the

(E�; T�
2 ) degenerate pairs. The error of the estimates is

larger for larger mRPa, as is to be expected on the basis of
the discussion in Sec. III F. The E� and T�

2 are degenerate
over the whole range of a probed at least at the 2σ level,
with the mass difference being below 1 standard deviation
in most of the cases. This is a nontrivial a posteriori test of
the restoration of continuum rotational invariance and can
be taken as a signal that we are in the regime for which
Eq. (48) is valid.
An additional source of systematic error, the effects of

which are difficult to account for, is the autocorrelation time
of the system, which grows as the continuum limit is
approached. Since the topological charge is one of the
quantities with the longest autocorrelation time, studying
the evolution of this observable yields a conservative

TABLE XVII. Estimates of glueball masses and string tensions
for N ¼ 3, in units of the lattice spacing a, on lattices of linear
size L, and with lattice spacing determined by the inverse
coupling β. The errors in brackets are discussed in the main text.

β ¼ 16.8 β ¼ 17.1
L ¼ 24a L ¼ 28a

N ¼ 3 mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f:

Aþ
1

0.441(15) � � � 0.360(14) 1.02
Aþ�
1

0.730(70) � � � 0.610(40) � � �
A−
1 0.66(12) � � � 0.550(30) � � �

A−�
1 1.49(10) � � � 0.970(90) � � �

Aþ
2

0.76(28) � � � 0.764(77) 2.14
A−
2 0.90(17) � � � 0.99(13) � � �

Tþ
2

0.680(30) � � � 0.558(19) 2.01
Eþ 0.663(22) 1.93 0.560(18) 1.17
T−
2 0.840(70) � � � 0.730(40) � � �

E− 0.787(79) 3.98 0.690(50) � � �
Tþ
1

0.80(30) � � � 0.73(14) � � �
T−
1 1.16(10) � � � 0.85(15) � � �

σsa2 σsa2

0.01824(30) � � � 0.01183(52) � � �

TABLE XVIII. Estimates of glueball masses and string tensions for N ¼ 4, in units of the lattice spacing a, on lattices of linear size L,
and with lattice spacing determined by the inverse coupling β. The errors in brackets are discussed in the main text.

β ¼ 26.5 β ¼ 26.7 β ¼ 26.8 β ¼ 27.0
L ¼ 14a L ¼ 14a L ¼ 14a L ¼ 16a

N ¼ 4 mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f:

Aþ
1

0.705(33) 2.88 0.734(12) 0.6 0.705(22) 0.26 0.615(30) 0.08
Aþ�
1

1.22(12) � � � 1.262(88) 1.08 1.104(66) 2.13 0.94(11) � � �
A−
1 1.230(80) � � � 1.198(28) 1.06 1.140(60) � � � 1.055(59) 0.53

A−�
1 1.73(26) � � � 1.66(15) � � � 1.564(48) 1.51 0.900(90) � � �

Aþ
2

1.890(50) � � � 1.21(25) 1.97 1.720(60) � � � 1.500(50) � � �
A−
2 2.03(12) 2.56 1.99(30) � � � 2.06(15) 3.09 1.980(90) � � �

Tþ
2

1.15(15) � � � 1.081(67) 0.23 1.048(53) 1.38 1.028(15) 2.08
Eþ 1.15(14) � � � 1.156(69) 1.3 1.210(59) 12.53 1.010(40) � � �
T−
2 1.60(10) � � � 1.46(15) � � � 1.370(40) � � � 1.310(40) � � �

E− 1.620(40) � � � 1.40(10) � � � 1.26(13) 1.07 1.310(60) � � �
Tþ
1

1.40(30) � � � 1.50(15) � � � 1.690(70) � � � 1.590(90) � � �
T−
1 1.50(30) � � � 1.95(15) � � � 1.94(10) � � � 1.750(80) � � �

σsa2 σsa2 σsa2 σsa2

0.06386(85) � � � 0.0549(15) � � � 0.04947(72) � � � 0.04362(61) � � �
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estimator of these effects. Particular attention should be
paid to cases in which the topology is (nearly) frozen.
These can be detected by analyzing the time series of the
topological charge. To this end, a subset of configurations
were obtained from the N ¼ 3 and N ¼ 4 ensembles, by
picking one configuration each 100. The gradient flow was
then used to smooth each of the configurations, and the
regularized topological charge was computed using
Eq. (11) at each smoothing step. The continuum topologi-
cal charge is obtained when the regularized topological

charge reaches a plateau under further smoothing opera-
tions. The results of this analysis are visible in Figs. 14
and 15.
For both N ¼ 3 and N ¼ 4, there is a value βmin above

which the topological charge barely changes with the
Monte Carlo steps that we are able to perform. These
ensembles are topologically frozen. From visual inspection
of the figures we estimate that

βminðN ¼ 3Þ ≃ 16.5; βminðN ¼ 4Þ ≃ 27.0: ðC2Þ

Given that topological freezing affects only our two largest
values of N, where the systematic effects it induces on
measurements of masses are expected to become less
severe (as discussed in Sec. III F), we included the
estimates obtained from these frozen ensembles in the
extrapolation to the continuum limit.
A related potential source of systematic error lies in the

length of the initial thermalization. Our earlier estimates of
the continuum spectrum, especially for N ¼ 3 and N ¼ 4,
presented a visible dip in the calculated masses for the
smallest values of σa2. This urged us to perform an overall
check of the invariance of the final result under the
prolongation of the simulation trajectory. In Fig. 16, we
show results of mRP=

ffiffiffi
σ

p
at finite lattice spacing as a

function of the initial thermalization time. The fact that
these estimates are largely independent of this initial
thermalization time suggests that the Markov chains from
which the final averages are obtained are long enough for
the system to be at statistical equilibrium.
Let us now discuss the continuum extrapolations of the

ratiosmRP=
ffiffiffi
σ

p
for given values of a. These ratios can easily

be formed for each ensemble from the estimates in
Tables XI–XX. At each value of N, fits of Eq. (C1) using

TABLE XIX. Estimates of glueball masses and string tensions for N ¼ 4, in units of the lattice spacing a, on lattices of linear size L,
and with lattice spacing determined by the inverse coupling β. The errors in brackets are discussed in the main text.

β ¼ 27.2 β ¼ 27.3 β ¼ 27.6 β ¼ 27.9
L ¼ 16a L ¼ 16a L ¼ 18a L ¼ 20a

N ¼ 4 mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f: mRPa χ2=Nd:o:f:

Aþ
1

0.610(20) � � � 0.565(20) 1.96 0.530(20) � � � 0.486(18) � � �
Aþ�
1

0.91(10) � � � 0.860(60) � � � 0.760(50) � � � 1.27(15) � � �
A−
1 1.025(51) 2.16 0.890(90) � � � 0.890(30) � � � 0.769(33) 1.79

A−�
1 1.32(17) � � � 1.32(16) � � � 1.30(12) � � � 1.11(14) � � �

Aþ
2

1.480(70) � � � 1.410(80) � � � 1.230(90) � � � 1.164(84) 1.3
A−
2 1.67(15) � � � 1.690(70) � � � 1.45(10) � � � 1.23(12) � � �

Tþ
2

0.946(41) 0.98 0.863(49) 0.67 0.815(26) 1.84 0.700(50) � � �
Eþ 0.957(77) 1.94 0.870(50) � � � 0.839(27) 0.41 0.690(60) � � �
T−
2 1.200(60) � � � 1.160(60) � � � 1.100(90) � � � 0.972(63) 1.97

E− 1.220(50) � � � 1.168(36) 2.59 1.030(60) � � � 0.983(57) 0.94
Tþ
1

1.41(16) 1.36 1.480(90) � � � 1.290(90) � � � 1.230(50) � � �
T−
1 1.60(10) � � � 1.45(15) � � � 1.48(15) � � � 1.33(10) � � �

σsa2 σsa2 σsa2 σsa2

0.03644(56) � � � 0.03384(56) � � � 0.02728(48) � � � 0.02303(54) � � �

TABLE XX. Estimates of glueball masses and string tensions
for N ¼ 4, in units of the lattice spacing a, on lattices of linear
size L, and with lattice spacing determined by the inverse
coupling β. The errors in brackets are discussed in the main text.

β ¼ 28.3
L ¼ 22a

N ¼ 4 mRPa χ2=Nd:o:f:

Aþ
1

0.440(10) � � �
Aþ�
1

0.910(50) � � �
A−
1 0.680(70) � � �

A−�
1 1.050(90) � � �

Aþ
2

0.940(80) � � �
A−
2 1.14(11) � � �

Tþ
2

0.641(22) 0.64
Eþ 0.634(35) 1.78
T−
2 0.849(38) 2.91

E− 0.850(60) � � �
Tþ
1

1.020(80) � � �
T−
1 1.220(90) � � �

σsa2

0.01869(50) � � �
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FIG. 8. Glueball mass in each symmetry channel RP of the Spð2NÞ theory with N ¼ 1, in units of
ffiffiffi
σ

p
, as a function of σa2. For each

symmetry channel RP, the value at σa2 ¼ 0 is the continuum limit, obtained from the best fit of Eq. (C1) to the data. The best fits lines
are represented as solid lines.
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FIG. 9. Glueball mass in each symmetry channel RP of the Spð2NÞ theory with N ¼ 2, in units of
ffiffiffi
σ

p
, as a function of σa2. For each

symmetry channel RP, the value at σa2 ¼ 0 is the continuum limit, obtained from the best fit of Eq. (C1) to the data. The best fits lines
are represented as solid lines.
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FIG. 10. Glueball mass in each symmetry channel RP of the Spð2NÞ theory with N ¼ 3, in units of
ffiffiffi
σ

p
, as a function of σa2. For each

symmetry channel RP, the value at σa2 ¼ 0 is the continuum limit, obtained from the best fit of Eq. (C1) to the data. The best fits lines
are represented as solid lines.
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FIG. 11. Glueball mass in each symmetry channel RP of the Spð2NÞ theory with N ¼ 4, in units of
ffiffiffi
σ

p
, as a function of σa2. For each

symmetry channel RP, the value at σa2 ¼ 0 is the continuum limit, obtained from the best fit of Eq. (C1) to the data. The best fits lines
are represented as solid lines.
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FIG. 13. The effective mass meffðtÞa for the channel RP ¼ Tþ
1 , as a function of t=a, for N ¼ 3, obtained on a set of lattice spacings

corresponding to couplings β ¼ 15.85, β ¼ 16.1, β ¼ 16.5, and β ¼ 17.1. In this case, only quasiplateaux could be identified, as a
consequence of the large mass of the Tþ

1 state in lattice units and of contaminations from excited and scattering states. The quasiplateau
is denoted by a band. Its horizontal extent covers the t interval of the quasiplateau, and its half vertical width is the error of the final
estimate for mTþ

1
a, which is represented as a dotted horizontal line. A similar behavior is observed for the other values of N.

FIG. 12. The effective mass meffðtÞa for the channel RP ¼ Aþ
1 , as a function of t=a, obtained at the smallest available lattice spacing

for each value of N ¼ 1, 2, 3, 4. The plateau is denoted by a band. Its horizontal extent covers the t interval of the plateau, and its half
vertical width is the error of the final estimate for mAþ

1
a, which is represented as a dotted horizontal line. In this case, a plateau can be

identified for all values of N other than N ¼ 4, which corresponds to the largest value of meffðtÞa among those shown in the figure.
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FIG. 14. Histories and statistical distributions (histograms) of the topological charge defined in Eq. (11) for the ensembles obtained at
N ¼ 3. The configurations of each ensemble are smoothed with the gradient flow defined in Eq. (16). The frequency of sampling in
running time is described in the text.
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FIG. 15. Histories and statistical distributions (histograms) of the topological charge as defined in Eq. (11) for the ensembles obtained
at N ¼ 4. The configurations of each ensemble are smoothed with the gradient flow defined in Eq. (16). The frequency of sampling in
running time is described in the text.
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mRP=
ffiffiffi
σ

p
in the continuum and cRP as fitting parameters

were performed for each symmetry channel. These linear
fits are plotted as solid lines in Figs. 8–11, where the
corresponding values of the χ2=Nd:o:f: are also reported.
Note that because of the way that the error on these
measurements was evaluated, the χ2=Nd:o:f: are slightly under-
estimated. These extrapolations are discussed in Sec. IVC.

APPENDIX D: A CLOSER LOOK AT
THE Spð4Þ DATA

In Sec. III we presented the spectrum of Spð2NÞ theories
in the continuum and large-N limits. Two sets of ensembles
are available for N ¼ 2: The one obtained for Ref. [7] (old
ensembles) and another, independent one, obtained for the
present work (new ensembles). The estimates shown in
Table IV, in the column N ¼ 2, are the weighted averages
of the continuum limits obtained from the new and old
ensembles. In this Appendix, we present separately the two
analyses for the new and old ensembles for N ¼ 2.
For the new ensembles, the continuum and large-N

extrapolated estimates can be found in Table XXI, in units
of both

ffiffiffi
σ

p
(top) and mEþ (bottom). The former

extrapolated values, together with the corresponding
large-N extrapolated results, are displayed, in units offfiffiffi
σ

p
, in Fig. 9, and the large-N extrapolation is shown

in Fig. 17.
The old ensembles have been reanalyzed following the

approach used in this work—see Sec. C 2. The results are
displayedinFig.18.Thecontinuumandlarge-N extrapolated
values can be found in Table XXII, in units of both

ffiffiffi
σ

p
(top)

and mEþ (bottom), and are displayed, in units of
ffiffiffi
σ

p
, in

Figs. 19 and 20, respectively. In Fig. 21 the spectrum in the
large-N limit is represented together with the finite-N one.
As expected, the estimates of the spectrum obtained from

the two ensembles are statistically compatible. This jus-
tifies taking weighted averages as our best values for
N ¼ 2. We note that, while the new ensemble provides
extrapolations with good values of χ2=Nd:o:f:, in the
old ensemble higher values of the reduced χ2 are present.
This hints toward slightly different systematics between the
old and new simulations. This could explain the higher
χ2=Nd:o:f: for some extrapolations presented in the analysis
in Sec. III. The broad compatibility of the data, never-
theless, suggests that the effect is not dominant.

FIG. 16. Mass of the Aþ
1 glueball, in units of

ffiffiffi
σ

p
, measured for different lengths of the initial thermalization. Each data point displays

the running average over 10000 subsequent configurations, with the last one in the series having the sequential index corresponding to
the abscissa.

ED BENNETT et al. PHYS. REV. D 103, 054509 (2021)

054509-34



TABLE XXI. In the left column, estimates of the spectrum at
N ¼ 2, in units of

ffiffiffi
σ

p
a and mEþ . These are obtained from the

data generated for this work (new ensembles). In the right
column, the extrapolation to N ¼ ∞ obtained from fits of
Eq. (54) to the data using the data in the left column for
N ¼ 2 and the same data as before for N ¼ 1, 3, 4.

N ¼ 2 ∞

RP mRP=
ffiffiffi
σ

p
χ2=Nd:o:f: mRP=

ffiffiffi
σ

p
χ2=Nd:o:f:

Aþ
1

3.73(15) 0.69 3.209(91) 1.15
Aþ�
1

5.85(56) 0.04 5.89(37) 0.14
A−
1 5.57(30) 0.22 4.91(23) 0.27

A−�
1 7.78(51) 0.09 6.70(52) 1.01

Aþ
2

7.90(56) 0.89 7.70(52) 1.1
A−
2 7.9(1.4) 0.18 8.23(91) 0.66

Eþ 5.12(25) 0.71 4.77(19) 0.64
E− 6.99(37) 0.56 6.31(34) 0.98
Tþ
2

4.76(35) 0.82 4.78(21) 1.0
T−
2 7.24(63) 1.37 6.45(39) 0.71

Tþ
1

8.28(73) 0.43 8.02(55) 0.43
T−
1 8.15(77) 1.2 8.52(75) 0.75

N ¼ 2 ∞
mRP=mEþ χ2=Nd:o:f: mRP=mEþ χ2=Nd:o:f:

Aþ
1

0.710(33) 0.44 0.675(33) 0.51
Aþ�
1

0.957(77) 0.03 1.230(88) 0.22
A−
1 1.159(54) 0.18 1.005(69) 0.58

A−�
1 1.40(10) 0.34 1.50(13) 0.28

Aþ
2

1.264(79) 0.17 1.56(13) 0.41
A−
2 1.66(18) 0.13 1.76(20) 0.12

E− 1.235(99) 0.45 1.40(11) 0.25
Tþ
2

0.968(56) 0.13 1.037(58) 0.18
T−
2 1.223(85) 0.43 1.45(11) 0.54

Tþ
1

1.59(11) 0.14 1.68(14) 1.58
T−
1 1.85(18) 0.01 1.82(18) 1.74

FIG. 17. Glueball mass in each symmetry channel RP of the
Spð2NÞ theory, in units of

ffiffiffi
σ

p
a2, as a function of 1=2N. For

N ¼ 2 only the numerical measurements reported in this
publication were used (new ensembles). The point correspond-
ing to 1=2N ¼ 0 is the value of mRP=

ffiffiffi
σ

p ð∞Þ obtained from the
best fit of Eq. (54) to the data. See main text for details.
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FIG. 18. Glueball mass in each symmetry channel RP of the Spð2NÞ theory with N ¼ 2, in units of
ffiffiffi
σ

p
, as a function of σa2. Only the

data produced for Ref. [7] were used (old ensembles). For each symmetry channel RP, the value at σa2 ¼ 0 is the continuum limit,
obtained from the best fit of Eq. (C1) to the data. The best fits lines are represented as solid lines. The extrapolated results are reported in
Table XXII.
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FIG. 19. Spectrum of the Spð2NÞ theory in the continuum limit for N ¼ 1, 2, 3, 4 and N ¼ ∞, in units of
ffiffiffi
σ

p
from the data collected

for Ref. [7]. For ease of comparison, we have reported also the masses of the Aþþ
1 and Eþþ channels for SUð∞Þ (borrowed from [2]).

TABLE XXII. Calculations of the masses in the continuum
limit for N ¼ 2 and each channel, in units of

ffiffiffi
σ

p
a andmEþ , using

only a reanalysis of theN ¼ 2 data from Ref. [7] (old ensembles),
as explained in the text.

N ¼ 2 ∞

RP mRP=
ffiffiffi
σ

p
χ2=Nd:o:f: mRP=

ffiffiffi
σ

p
χ2=Nd:o:f:

Aþ
1

3.73(11) 0.27 3.222(90) 1.65
Aþ�
1

6.23(19) 0.64 6.29(34) 3.1
A−
1 5.94(29) 1.37 5.01(23) 1.0

A−�
1 8.03(29) 0.63 7.25(47) 3.45

Aþ
2

8.26(37) 0.35 8.14(48) 3.28
A−
2 9.34(41) 0.67 8.76(83) 1.06

Eþ 5.16(20) 0.87 4.79(19) 0.71
E− 6.97(25) 3.14 6.39(33) 1.61
Tþ
2

5.13(21) 1.63 4.83(20) 0.69
T−
2 7.03(24) 0.41 6.67(36) 1.69

Tþ
1

9.14(47) 2.13 8.37(52) 1.58
T−
1 9.70(55) 1.03 8.96(74) 0.27

N ¼ 2 ∞
mRP=mEþ χ2=Nd:o:f: mRP=mEþ χ2=Nd:o:f:

Aþ
1

0.707(33) 0.62 0.674(32) 0.39
Aþ�
1

1.186(55) 0.16 1.274(82) 1.07
A−
1 1.092(73) 0.82 1.010(69) 0.59

A−�
1 1.554(85) 0.89 1.56(13) 0.77

Aþ
2

1.583(90) 0.72 1.64(12) 1.38
A−
2 1.76(11) 1.0 1.80(19) 0.09

E− 1.346(73) 1.73 1.40(10) 0.14
Tþ
2

1.040(58) 0.57 1.050(57) 0.23
T−
2 1.354(67) 0.66 1.443(97) 0.36

Tþ
1

1.83(12) 1.71 1.78(14) 2.38
T−
1 1.85(13) 1.51 1.89(18) 0.35

FIG. 20. Glueball mass in each symmetry channel RP in units offfiffiffi
σ

p
, as a function of 1=2N. For N ¼ 2 only the data created for

Ref. [7]wereused.Thepointcorresponding to1=2N ¼ 0 is thevalue
ofmRP=

ffiffiffi
σ

p ð∞Þ obtained from the best fit of Eq. (54) to the data.
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APPENDIX E: ON THE INCLUSION OF N = 1 IN
THE LARGE-N EXTRAPOLATION

In Sec. III, the large-N extrapolation of the spectrum has
been provided including the value N ¼ 1 for all channels.
For a handful of channels, this gives a value of χ2=Nd:o:f:
above 2, indicative of a lower statistical significance of the
extrapolation. This may suggest that, for these specific
channels, the N ¼ 1 value is not captured by the large-N
expansion. Indeed, in previous studies of SUðNÞ gauge
theories (e.g., Ref. [2]), the value of the χ2=Nd:o:f: has been
used as an indication of the reliability of the truncation of
the large-N series at a given order for capturing results at
some finite value of N. In our work, excluding the data for
N ¼ 1 generally improves the value of the χ2=Nd:o:f:.

However, this leaves only three points for the extrapolation,
and hence creates a larger systematic bias on the latter.
Likewise, adding a higher-order correction will decrease
the number of degrees of freedom and hence introduce
more noise. Being faced with the necessity to make a
choice, we have opted to systematically include N ¼ 1 in
all large-N extrapolations. This means that we interpret a
larger value of the χ2=Nd:o:f: as results of fluctuations in the
data or of some unknown systematics, rather than as
stemming from the fact that N ¼ 1 is not described by
the expansion. The question is left open by this study. For
completeness, we compare in Table XXIII our results for
the extrapolations with N ¼ 1 systematically included and
excluded. Most of the results are compatible at the two
sigma level.

TABLE XXIII. Large-N extrapolated masses of the glueball spectrum obtained from a fit of Eq. (54), in the case in
which the estimates at N ¼ 1 are included (left) or excluded (right). Note that the left-hand part of this table is the
same as the last column of Table IV and the same as Table V.

RP mRP=
ffiffiffi
σ

p
cRP χ2=Nd:o:f: mRP=

ffiffiffi
σ

p
cRP χ2=Nd:o:f:

Aþ
1

3.241(88) 1.29(29) 2.38 2.87(19) 3.4(1.0) 0.03
Aþ�
1

6.29(33) −1.6ð1.2Þ 2.91 4.94(66) 4.9(3.0) 0.3
A−
1 5.00(22) 2.43(60) 0.63 4.73(50) 3.9(2.5) 0.87

A−�
1 7.31(45) 0.9(1.4) 3.5 4.8(1.1) 12.6(4.7) 0.13

Aþ
2

8.22(46) −2.5ð1.3Þ 3.3 5.5(1.2) 10.5(5.3) 0.15
A−
2 8.69(83) 1.3(3.0) 0.9 7.2(1.7) 8.4(7.5) 0.73

Tþ
2

4.80(20) 1.01(69) 0.65 4.72(42) 1.5(2.2) 1.26
Eþ 4.79(19) 1.15(63) 0.72 4.52(42) 2.6(2.1) 0.9
T−
2 6.71(35) 0.1(1.2) 1.97 5.60(67) 5.8(3.1) 0.06

E− 6.44(33) 0.9(1.2) 2.03 5.52(57) 5.8(2.7) 0.16
Tþ
1

8.33(51) 0.7(1.6) 1.15 7.5(1.0) 5.2(5.0) 1.41
T−
1 8.76(72) 1.7(2.6) 0.02 8.8(1.3) 1.7(6.3) 0.03

FIG. 21. Spectrum of the Spð2NÞ theory in the continuum limit for N ¼ 1, 2, 3, 4 and N ¼ ∞, in units of
ffiffiffi
σ

p
. For N ¼ 2, only the

numerical measurements reported in this publication were used (new ensembles). For ease of comparison, we have reported also the
masses of the Aþþ

1 and Eþþ channels for SUð∞Þ (borrowed from [2]).
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