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We present the first determination of the hadronic decays of the lightest exotic JPC ¼ 1−þ resonance in
lattice QCD. Working with SU(3) flavor symmetry, where the up, down and strange-quark masses
approximately match the physical strange-quark mass giving mπ ∼ 700 MeV, we compute finite-volume
spectra on six lattice volumes which constrain a scattering system featuring eight coupled channels.
Analytically continuing the scattering amplitudes into the complex-energy plane, we find a pole singularity
corresponding to a narrow resonance which shows relatively weak coupling to the open pseudoscalar–
pseudoscalar, vector–pseudoscalar and vector–vector decay channels, but large couplings to at least
one kinematically closed axial-vector–pseudoscalar channel. Attempting a simple extrapolation of the
couplings to physical light-quark mass suggests a broad π1 resonance decaying dominantly through the b1π
mode with much smaller decays into f1π, ρπ, η0π and ηπ. A large total width is potentially in agreement
with the experimental π1ð1564Þ candidate state observed in ηπ, η0π, which we suggest may be heavily
suppressed decay channels.
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I. INTRODUCTION

The composition of hadrons has been the subject of
experimental and theoretical studies for many decades.
Historically, the majority of mesons could be understood in
a quark-model picture where they consist of a quark-
antiquark pair (qq̄). There are some notable long-standing
exceptions that do not appear to fit into this framework,
such as the light scalar mesons, and more recently it has
been challenged by the observation of a number of
unexpected structures in the charm and bottom sectors.
In principle mesons can contain constituent combina-

tions beyond qq̄, but whether QCD allows for such
arrangements continues to motivate investigations in both

theory and experiment. One particular focus is on hybrid
mesons in which a quark-antiquark pair is coupled to
an excitation of the gluonic field. Such states are an
attractive target because the additional quantum numbers
potentially supplied by the gluonic field allow for JPC

combinations not allowed to a qq̄ system. These exotic
JPC ¼ 0−−; 0þ−; 1−þ; 2þ−… serve as a smoking-gun sig-
nature that a novel state has been observed.
Suggestions that hybrid mesons are a feature of QCD are

long-standing, but until recently predictions of their proper-
ties came only within models whose connection to QCD is
not always clear [1–7]. While dynamical pictures like the
flux-tube model, the bag model, and constituent gluon
approaches generally agree that hybrids form part of the
meson spectrum, some with exotic JPC, they differ in
details. A common feature is that typically a JPC ¼ 1−þ
state (labeled π1 when the state has isospin-1) appears with
a mass somewhere above 1.5 GeV. A particular challenge
has been for these models to provide reliable predictions for
the decay properties of hybrid mesons, which we expect to
appear as resonances that can decay into several final states.
Having some advance knowledge of which final states are
more heavily populated in their decay is useful to experi-
ments which perform amplitude analyses final state by final
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state. A folklore has developed, largely following from
models in which the hybrid decay proceeds by the breaking
of an oscillating tube of gluonic flux or through conversion
of a constituent gluon to a qq̄ pair [8–13], where decays
featuring only the lightest hadrons are suppressed,
such as π1 → ηπ; η0π; ρπ, while decays which include a
more excited hadron are prominent, such as π1 → b1π.
Whether these results are really a feature of QCD, or reflect
the assumptions built into the flux tube (a picture whose
validity looks increasingly unlikely [14]) or constituent
gluon pictures, has yet to be established.
The experimental focus has remained largely on the

π1, and historically the picture has been quite confused
[15,16]. Analyses have mostly considered the ηπ, η0π and
ρπ → πππ final states which have the lowest possible
multiplicities. Recent datasets of unprecedented statistics
from COMPASS provide our clearest picture [17]: A broad
bump in ηπ peaking near 1400 MeV appears to match
poorly with another bump in η0π peaking near 1600 MeV.
These results are similar to those observed in earlier
experiments which were interpreted as two resonances,
π1ð1400Þ and π1ð1600Þ, with there being some further
evidence for the heavier resonance in the ρπ final state.
A recent analysis of the COMPASS data by JPAC comes

to a different conclusion [18]: The two bumps in ηπ; η0π are
actually due to a single resonance decaying into both final
states. They proceed by parametrizing the production
process and the scattering of the coupled-channel ηπ; η0π
system, respecting unitarity in these two channels. The
scattering t-matrix is constrained for real values of the
energy using experimental data. When the amplitude is
considered for complex values of the energy, a single pole
singularity is found which can be interpreted as one
resonance with a mass slightly below 1.6 GeV and a width
of around 500 MeV. A combined analysis of COMPASS
and Crystal Barrel data [19] which appeared while this
paper was in the final stages of preparation finds a very
similar mass, but a slightly smaller width ∼388 MeV.
Currently the GlueX experiment [20,21] is collecting

large datasets using photoproduction in which they will
search for hybrid mesons. Since the higher multiplicity
final states suggested as preferred by the flux-tube picture,
e.g., π1 → b1π → ðωπÞπ → πππππ, are much harder to
analyze than those investigated in COMPASS, it would be
of benefit to have some evidence within QCD that these
channels are in fact dominant in the decays of hybrid
mesons. It is to this task that we turn our attention in this
paper, using the technique known as lattice QCD.
Lattice QCD, which offers a first-principles numerical

approach to QCD, has matured to the point where it has
been able to make some fairly definitive statements about
the excited spectrum of hadrons. In Refs. [22–26], bases of
composite operators built from fermion bilinears and up to
three gauge-covariant derivatives were used to construct
matrices of two-point correlation functions. Analyzing the

time dependences of these matrices led to predictions for
the spectrum of mesons with a wide range of JPC. The
spectra obtained, for several values of the light-quark mass,
show a strong qualitative similarity to the experimental
meson spectrum, but also feature clear indications of exotic
JPC states with notably a lightest π1. A phenomenology
was developed [14] based upon the observation that this
state, along with states having JPC ¼ 0−þ; 2−þ and 1−− at
similar masses, have large matrix elements to be produced
by operators of the form ψ̄ΓtaψBa, which has the qq̄ pair in
a color octet with the color neutralized by the chromo-
magnetic field operator, Ba. It was proposed that this large
overlap signals that these states are hybrid mesons, and they
systematically appear roughly 1.3–1.4 GeV above the
lightest vector meson, even for quark masses corresponding
to charmonium [27,28]. The picture extends into the baryon
spectrum [29], where hybrid baryons can be identified,
although in this case exotic quantum numbers are not
possible.
While these calculations have provided us with the first

picture of hybrid hadrons directly connected to QCD, the
picture is clearly incomplete. These excited hadrons are not
stable particles having a definite mass, rather they are
unstable resonances which should appear as enhancements
in the scattering of lighter stable hadrons, but this was
neglected in the calculations. The resonant nature of these
states has consequences for the spectrum calculated in
lattice QCD, where the important difference with respect to
experiment is the use of a finite spatial volume.
The discrete spectrum of eigenstates in a finite periodic

spatial volume can be related to infinite-volume scattering
amplitudes using an approach that is commonly referred to
as the Lüscher method [30–33], a formalism that has been
extended to systems moving with respect to the lattice,
hadrons with nonzero spin and any number of coupled
hadron-hadron channels [34–44]. Obtaining the complete
spectrum of eigenstates requires a larger basis of operators
than that used in the calculations referred to above [45,46],
and it has been demonstrated that operators constructed as
products of meson operators are sufficient. The coupled-
channel t-matrix can then be obtained through the use of
parametrizations which are constrained at the discrete real
values of energy provided by the finite-volume spectra. The
t-matrix is then continued into the complex-energy plane
and any pole singularities identified. From these the mass
and width of a resonance can be determined, along with its
couplings to different decay channels, in what can be
argued to be the most rigorous way possible. In the past few
years this approach has been used extensively in the study
of elastic scattering, in cases like isospin-1 ππ where the ρ
resonance appears [45–61], and in several pioneering
calculations of coupled-channel scattering [46,62–68].
In this paper we report on the first calculation of an

exotic JPC ¼ 1−þ meson appearing as a resonance in
coupled-channel meson-meson scattering. By working
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with an exact SU(3) flavor symmetry where the u, d quark
masses are raised to the physical strange-quark mass, we
reduce the effective number of decay channels and make
three-body decays irrelevant.
The paper is structured as follows: In Sec. II we review

the techniques needed to compute finite-volume spectra in
lattice QCD and to relate these to scattering amplitudes.
Section III discusses the generalities of working with an
exact SUð3ÞF symmetry. In Sec. IV we present calcula-
tional details and finite-volume spectra relevant for a 1−þ
resonance on six lattice volumes. In Sec. V these spectra are
used to constrain a scattering matrix of eight channels using
a range of parametrizations, and in Sec. VI these para-
metrizations are analytically continued into the complex-
energy plane where a resonance pole singularity is found.
Section VII interprets the decay couplings obtained from
the residue of the resonance pole, comparing to existing
models of hybrid meson decay, and attempts an extrapo-
lation to physical kinematics. Finally, we summarize in
Sec. VIII. Some additional technical points are discussed in
the Appendixes, and details of the various parametrizations
used can be found in Supplemental Material [69].

II. RESONANCES IN LATTICE QCD

Our approach to determining resonant physics in lattice
QCD requires the computation of discrete spectra in the
finite-volume defined by the lattice, and analysis of these
spectra in terms of a scattering matrix using the Lüscher
method. In this section we will review our approach for
doing this; if further details are required, the field is
reviewed in Ref. [70].

A. Finite-volume spectra

In order to constrain the scattering t-matrix over a range
of energies, we are required to calculate a large number of
discrete finite-volume levels sampling the energy region.
An approach which has proven to be highly effective for the
reliable extraction of many excited states is through the
diagonalization of a large matrix of correlation functions,
CijðtÞ ¼ h0jOiðtÞO†

jð0Þj0i. This can be achieved by solv-
ing a generalized eigenvalue problem [71–73], with our
implementation described in Refs. [23,74]. This approach
makes use of orthogonality between energy eigenstates to
distinguish contributions of even near-degenerate states,
supplying their energies through the time dependence of
the eigenvalues while the eigenvectors provide linear
combinations of the basis operators which serve as the
optimal operator, in the variational sense, for each state.
One possible basis of operators fOig that can be used to

form a matrix of meson correlation functions is built from
fermion bilinears featuring gauge-covariant derivatives. A
large basis can be constructed both with zero momentum
[23] and nonzero momentum [25]. For the determination of
stable hadrons, such a basis is typically sufficient and leads

to reliable determinations of the mass (or energy with
nonzero momentum) and optimized operators which relax
to the desired state more rapidly than any single operator in
the basis (see for example Fig. 2 of Ref. [75] or Fig. 3
of Ref. [76]).
The reduced rotational symmetry of a cubic lattice

means that meson states are characterized not by integer
spin values and parity, but by the irreducible representa-
tions (irreps) of the octahedral group or the appropriate
little group1 for nonzero momentum, with the allowed
momenta in an L × L × L periodic volume given by
p⃗ ¼ 2π

L ðnx; ny; nzÞ where ni are integers. In general, this
means that examination of a particular irrep requires
considering multiple JP values, but the group theory
describing how spin subduces into irreps [77,78] and the
construction of operators in appropriate irreps [23,25] are
well understood.
When considering energies near and above meson-

meson decay thresholds, a basis of only fermion bilinears
is insufficient to capture the complete finite-volume spec-
trum, while augmenting this single-meson-like basis with a
set of meson-meson-like constructions has proven to be
highly effective [45,46]. Such operators are built by
combining optimized stable meson operators using appro-
priately weighted products. For anM1M2-like operator with
overall momentum P⃗ in irrep Λ,

OΛμ†
M1M2

ðP⃗Þ ¼
X
μ1;μ2

X
p̂1;p̂2

Cð½P⃗�Λ; μ; ½p⃗1�Λ1; μ1; ½p⃗2�Λ2; μ2Þ

×ΩΛ1μ1†
M1

ðp⃗1ÞΩΛ2μ2†
M2

ðp⃗2Þ:

Here the optimized stable meson operator ΩΛiμi†
Mi

ðp⃗iÞ for
meson Mi with momentum p⃗i, is labeled by the irrep Λi,
and the row of that irrep, μi (analogous to the Jz value for a
spin-J meson in an infinite-volume continuum). The sum
over momentum directions related by allowed cubic rota-
tions is subject to the constraint that p⃗1 þ p⃗2 ¼ P⃗. The
generalized Clebsch-Gordan coefficients C are discussed
in Ref. [75].
Each meson-meson operator can be characterized by the

magnitudes of meson momenta that went into its con-
struction, ðjp⃗1j; jp⃗2jÞ. This leads to a natural truncation of
the basis of operators following from the energy we would
expect if the mesons had no residual interactions,

Eð2Þ
n:i: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ jp⃗1j2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ jp⃗2j2
q

:

Clearly, as the individual meson momenta increase, the
noninteracting energy increases, and at some point
becomes sufficiently far above the energy region of interest

1The set of allowed octahedral group rotations and reflections
which leave the momentum vector unchanged.
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that we are justified in not including that operator, or any
above it, in our basis.
Constructing operators which resemble meson-meson-

meson systems, relevant in the energy region above three-
meson thresholds, can be done by a recursive application of
the approach described above [68]. However, one subtlety
that arises here is that intermediate meson-meson subsys-
tems may feature resonant behavior which a single meson-
meson operator alone will not efficiently capture. In this
case, one or more optimized operators can be constructed
for the lowest-energy eigenstates in the meson-meson
subsystem by diagonalizing a matrix of correlation func-
tions formed from a basis of single-meson-like and meson-
meson-like operators. These optimized operators are then
combined with the remaining optimized stable meson
operator to form three-meson-like operators that efficiently
interpolate the energy eigenstates. Details of this type of
construction are given in Ref. [68].
The inclusion of multimeson and isospin-0 single-meson

operators in our bases naturally leads to Wick contractions
which feature quark-antiquark annihilations; in the context
of lattice QCD these appear via t-to-t quark propagators.
The distillation approach to computing correlation func-
tions [79] efficiently handles these, along with the required
source-sink propagators, without the need to make any
further approximations or to introduce any stochastic noise.
The propagators, which factorize from the operator con-
structions, are extremely general. They can be extensively
reused in other calculations which require propagation of
the same flavor of quarks such that the computational cost
of obtaining them is spread over many physics results.

B. Scattering amplitudes

Once the finite-volume spectrum has been extracted from
a variational analysis of a matrix of correlation functions it
can be used as a constraint on the energy dependence of the
coupled-channel t-matrix. The relationship is encoded in the
Lüscher quantization condition [30–44],

det½1þ iρtð1þ iMÞ� ¼ 0; ð1Þ

where the diagonal matrix of phase-space factors ρðEcmÞ
and MðEcm; LÞ are known functions of essentially kin-
ematic origin; see Ref. [80] for our conventions. The matrix
space over which the determinant acts is the set of partial
waves subduced into a particular irrep, for all kinematically
accessible meson-meson scattering channels. For a given
t-matrix2 tðEcmÞ, the discrete set of solutions of this equation
½EcmðLÞ�n¼1;2;… for a fixed value of L is the finite-volume
spectrum in an L × L × L periodic box. A practical
approach for reliably finding solutions to this equation
when there are multiple partial waves and/or hadron-hadron
scattering channels, which makes use of an eigenvalue

decomposition of a suitable transformation of the matrix
under the determinant, was presented in Ref. [80].
Equation (1) is capable of describing any number of

coupled hadron-hadron channels, but must be supplemented
with further formalism once three-hadron channels are
accessible. Recent progress is reviewed in Refs. [81,82].3

An approach that allows computed finite-volume spectra
to constrain scattering amplitudes is to propose paramet-
rizations of tðEcmÞ, whose parameters can be varied, with
the corresponding finite-volume spectra from the solution
of Eq. (1) at each iteration compared to the computed
spectra [75]. In this way, a χ2 can be defined which can
be minimized to find the best description of the computed
lattice QCD spectra [Eq. (9) in Ref. [45] ]. Use of a
K-matrix in the parametrization of the t-matrix ensures
coupled-channel unitarity, and sensitivity to the particular
choice of form chosen for KðEcmÞ can be explored by
varying the form [39].
This method provides coupled-channel amplitudes con-

strained for real values of Ecm, but use of explicit functional
forms in the parametrizations means that we can analyti-
cally continue into the complex-energy plane to explore the
singularity content of the t-matrix. Poles at complex values
of Ecm can be identified with resonances, with the real and
imaginary parts of the pole position having an interpreta-
tion in terms of, respectively, the mass and width of the
resonance. Factorizing the residues of elements of t at the
pole position leads to decay couplings of the resonance to
the various scattering channels. The statistical uncertainty
originating in the finite number of Monte Carlo samples in
the lattice QCD calculation can be propagated through this
process, and in addition the scatter over parametrizations
can be used to estimate a systematic uncertainty from the
choice of parametrization.
This approach has been applied successfully in several

recent calculations of coupled-channel scattering, most
notably in a series of papers computing on three lattice
volumes with mπ ∼ 391 MeV. In the first calculations
[62,63], coupled πK, ηK scattering was investigated. A
virtual bound state and a broad resonance were found in
JP ¼ 0þ, a bound state in 1−, and there was evidence for a
narrow resonance in 2þ, but for all these JP the coupling to
the ηK channel was found to be small in the energy region
studied. In Ref. [64], the JP ¼ 0þ coupled πη; KK̄ scatter-
ing sector was considered, where an asymmetrical peak in
πη → πη at the KK̄ threshold was found to correspond to a
resonance pole that could be compared to the experimental
a0ð980Þ. In Ref. [66], the JP ¼ 0þ and 2þ coupled
ππ; KK̄; ηη isospin-0 sectors were studied. The scalar
amplitudes show a sharp dip in ππ → ππ at KK̄ threshold
that could be associated with a resonance pole related to the

2Related to the scattering S-matrix via S ¼ 1þ 2i
ffiffiffi
ρ

p
t

ffiffiffi
ρ

p
.

3What role the experimentally observed dominance of quasi-
two-body isobars plays in these formalisms is not yet known, but
it may lead to considerable simplifications in practice.
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experimental f0ð980Þ, while a rapid turn-on of ππ at
threshold was found to be due to a bound state related
to the σ=f0ð500Þ. The tensor sector was more straightfor-
ward, with clear bumps related to two resonances poles, the
lighter of which was found to be dominantly coupled to ππ
and the heavier to KK̄, in line with the experimental
f2ð1270Þ and f02ð1525Þ. In Ref. [68], coupled πω, πϕ
scattering was considered, with the vector nature of the ω
(which is stable at this quark mass) leading to dynamically
coupled partial waves in JP ¼ 1þ. A bump was found in
πωð3S1Þ → πωð3S1Þ whose origin is a b1-like reso-
nance pole.
Before computing finite-volume spectra and determining

scattering amplitudes relevant for the exotic JPC ¼ 1−þ
channel, we now discuss some of the consequences of
working with exact SU(3) flavor symmetry.

III. MESONS WITH EXACT SU(3)
FLAVOR SYMMETRY

In this paper we will present the first attempt to compute
the properties of a resonance with exotic JPC, the lightest
π1, which is suspected to be a hybrid meson. As indicated in
the Introduction, this is a challenging problem owing to the
large number of possible decay channels. A significant
simplification would occur if we had an exact SU(3) flavor
symmetry, as opposed to the approximate one present in
nature, as then many of the apparently independent
channels would coalesce into particular representations
of SUð3ÞF. In this first calculation, we opt to make this
symmetry exact by working with three flavors of light
quark all with a mass value tuned to approximately match
the physical strange-quark mass. In this world, the lightest
pseudoscalar octet, containing the pion, kaon and η-like
unflavored member, has a mass around 700 MeV. This
relatively large mass has the additional useful effect of
pushing three-meson thresholds to higher energies such
that they become irrelevant in our calculation.
With exact SU(3) flavor symmetry, the “conventional”

mesons (having flavor quantum numbers accessible to qq̄)
lie in octet (8) and singlet (1) representations following
from the decomposition of 3 ⊗ 3̄. The lightest of these is
the pseudoscalar octet containing degenerate mesons which
we can associate with the pion, the kaon and something
close to the η meson. We choose to use the zero-isospin,
zero-strangeness member of the octet as a label to indicate
the JPðCÞ, e.g., η8 in this case of 0−ðþÞ. There is also a light
pseudoscalar singlet η1, whose sole member is close to the
familiar η0.4 The lightest octet of vectors ω8 contains
mesons we identify with the ρ and the K�, but its neutral

member cannot easily be associated with either the ω or the
ϕ, as the experimental ω is believed to have approximate
quark content uūþ dd̄, while the ϕ is dominantly ss̄.
These correspond to significant admixtures of the octet
(uūþ dd̄ − 2ss̄) and singlet (uūþ dd̄þ ss̄). Clearly, when
SUð3ÞF is broken, the flavorless members of ω8 and ω1

must mix to form the physical eigenstates.
The notable difference between the pseudoscalar and

vector sectors was explored in lattice QCD in terms of the
qq̄ annihilation, or “disconnected,” contributions to two-
point correlation functions in Ref. [26]. As can be seen in
Figs. 4 and 5 of that paper, the vector correlators have
extremely small disconnected pieces, both at and away
from the SUð3ÞF limit, leading to a lack of hidden-light–
hidden-strange mixing and the ρ and ω mesons being close
to degenerate. This can be compared to the same quantities
in the pseudoscalar sector shown in Figs. 2 and 3 therein.
These observations are related to the Okubo-Zweig-

Iizuka (OZI) rule which states that processes where
there are no quark lines connecting the initial-state hadrons
to the final-state hadrons are suppressed. Empirically this
holds for many JPC, including vectors, where a famous
example is the suppression of the otherwise allowed
decay ϕ → πππ which leads to the ss̄ assignment for the
ϕ. The OZI rule does not seem to apply to the pseudoscalar
sector.
A major advantage of an exact SU(3) flavor symmetry

comes when we consider meson-meson scattering, as
channels that with broken SUð3ÞF were independent and
had differing thresholds, like ππ, KK̄, …, are now equiv-
alent, being a single channel, η8η8. Since the stable scattering
hadrons lie in octets and singlets, the meson-meson products
8 ⊗ 8, 8 ⊗ 1 and 1 ⊗ 1 are of interest, with the first of these
being decomposed into 1 ⊕ 81 ⊕ 82 ⊕ 10 ⊕ 10 ⊕ 27. The
representations 10; 10; 27 lie outside the “conventional”
sector, requiring at least qqq̄q̄, and are unlikely to be
resonant [67,75,83]. The two octets 81; 82 can be distin-
guished by their symmetries under the exchange of the flavor
of the two hadrons in the product. We follow the conventions
of Ref. [84], where 81 is symmetric and 82 is antisymmetric,
and we summarize the relevant results in Appendix A. As an
example, using the SU(3) analogs of Clebsch-Gordan
coefficients in that reference, the flavor structure of the
I ¼ 0, Iz ¼ 0, zero-strangeness members of the two octets in
the vector-pseudoscalar case can be expressed as

81 ¼
1ffiffiffiffiffi
20

p ðK�þK− þ K�−Kþ − K�0K̄0 − K̄�0K0Þ

−
1ffiffiffi
5

p ðρþπ− þ ρ−πþ − ρ0π0Þ − 1ffiffiffi
5

p ω8η8;

82 ¼
1

2
ðK�þK− − K�−Kþ − K�0K̄0 þ K̄�0K0Þ; ð2Þ

4The physical η, η0 eigenstates [with broken SUð3ÞF] are
believed to be admixtures of the octet/singlet basis states with a
small mixing angle as discussed in Sec. VII. The dependence of
this mixing angle on the light-quark mass was explored using
lattice QCD in Ref. [26].
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which makes manifest that 81 is symmetric under the
interchange of the flavor of the two hadrons while 82 is
antisymmetric.
In determining what decays are possible, it is important

to pay attention to the generalization of charge-conjugation
symmetry. With exact isospin symmetry it is useful to
consider G-parity and there are natural extensions of this in
the SUð3ÞF case. Because we are at liberty to consider any
member of the target SU(3) multiplet, here we focus on the
neutral zero-strangeness element where charge-conjugation
symmetry itself is good and so C-parity is the relevant
quantum number to consider. The resulting selection rules
apply to all members of the multiplet. Details are provided
in Appendix A and the relevant results are summarized in
Table I where the different symmetries of 81 and 82 are
apparent.
When the two scattering mesons are in the same SUð3ÞF

multiplet, there is the additional constraint of Bose sym-
metry which requires that the state is symmetric under the
interchange of the two mesons, i.e., the overall symmetry
under the interchange of flavor, spin and spatial position. In
the pseudoscalar-pseudoscalar case, where there is no spin
to be dealt with, we immediately have the restriction that
η8η8 with even l appear in 81 with JPðCÞ ¼ lþðþÞ, while
odd l appear in 82 with JPðCÞ ¼ l−ð−Þ. It is therefore not
possible to have an octet 1−ðþÞ resonance decay to η8η8.
Slightly more complicated is the case of ω8ω8 where the
spin of the two vectors can combine to total spin S ¼ 0, 1, 2
(symmetric, antisymmetric, symmetric respectively) which
is then coupled to orbital angular momentum l. The
spinþ space symmetric options (such as ω8ω8f1S0g)
appear in 81, while the spinþ space antisymmetric options
(such as ω8ω8f3S1g) appear in 82. A more complete
discussion of these constraints can be found in Appendix B.
In this study we will present the result of a calculation of

the JPðCÞ ¼ 1−ðþÞ octet labeled η81. We will choose to focus
our later interpretation on the isovector member, the π1,
even though with exact SUð3ÞF symmetry the properties of
the isoscalar member the η1 and the strange members are
exactly the same. The reason for this choice is that as we
move away from the SUð3ÞF limit by reducing the u, d

quark masses, retaining an isospin symmetry, we expect
that the η1 can mix with an η1 living in the SUð3ÞF singlet,
the η11, while the kaonic states can mix with 1−ð−Þ kaons
owing to there being no relevantC-parity-like symmetry for
mesons with net strangeness. On these grounds it seems
plausible that the properties of the π1 will change least as
we move away from the exact SUð3ÞF limit. There may be
some mixing with the corresponding states in the 10; 10; 27
representations, but this is expected to be negligible given
that there is no evidence for anything beyond rather weak
nonresonant interactions in these multiplets.
The meson-meson scattering channels capable of cou-

pling to the 1−ðþÞ octet include η1η8, ω8η8, ω8ω8, ω1ω8,
f81ω

8, h81η
8, f11η

8…. How many of these are kinematically
accessible in the decay of a potential lightest 1−ðþÞ
resonance depends upon QCD dynamics which we will
now explore in a lattice QCD calculation.

IV. LATTICE QCD SPECTRA

Calculations of correlation functions were performed on
six anisotropic lattices with volumes ðL=asÞ3 × ðT=atÞ ¼
123 × 96 and f143; 163; 183; 203; 243g × 128. The spatial
and temporal lattice spacings are as ∼ 0.12 fm and
at¼as=ξ∼ð4.7GeVÞ−1 respectively, where the anisotropy
ξ ∼ 3.5. Gauge fields were generated from a tree-level
Symanzik improved gauge action and a Clover fermion
action with three degenerate flavors of dynamical quarks
[85,86] tuned to approximately the value of the physical
strange-quark mass, such that the pion mass is ∼700 MeV.
On all volumes, exponentially suppressed finite-volume
and thermal effects remain negligible as mπL≳ 6 and
mπT ≳ 14.
Correlation functions were computed using the distil-

lation framework [79] and we give the rank of the
distillation space Nvecs, number of gauge configurations
Ncfgs, and time sources Ntsrcs used on each volume in
Table II. We typically compute all the elements of the
matrix of correlation functions; however, in a few cases we
made use of Hermiticity to infer CjiðtÞ from a com-
puted CijðtÞ.

TABLE II. Number of distillation vectors (Nvecs), gauge con-
figurations (Ncfgs) and time sources (Ntsrcs) used in computation
of correlation functions on each lattice volume, as described in
the text.

ðL=asÞ3 × ðT=atÞ Nvecs Ncfgs Ntsrcs

123 × 96 48 219 24
143 × 128 64 397 16
163 × 128 64 529 4
183 × 128 96 358 4
203 × 128 128 501 4
243 × 128 160 607 4

TABLE I. C-parity values for the neutral zero-strangeness
components of the SU(3) octets and singlets from meson-meson
products. Ca and Cb denote the C-parity of the neutral zero-
strangeness components of the product irreps. We present an
example for the 1−ð−Þ0−ðþÞ → 1þðCÞ case to illustrate notation.

Fa ⊗ Fb → F C e.g., (1−ð−Þ0−ðþÞ → 1þðCÞ)

8a ⊗ 8b → 81 CaCb (ω8η8 → h81 C ¼ −)
8a ⊗ 8b → 82 −CaCb (ω8η8 → f81 C ¼ þ)

8a ⊗ 8b → 1 CaCb (ω8η8 → h11 C ¼ −)
8a ⊗ 1b → 8 CaCb (ω8η1 → h81 C ¼ −)
1a ⊗ 1b → 1 CaCb (ω1η1 → h11 C ¼ −)
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The spectrum of low-lying mesons on these lattices is
shown in Fig. 1, obtained as the ground states in variational
analysis of matrices of correlation functions using a basis of
fermion-bilinear operators in either SUð3ÞF octet or singlet
representations.5 As we might expect, the pseudoscalar
octet (containing the analogs of the pion, kaon and η) is
lightest, with the pseudoscalar singlet (comparable to the
η0) being somewhat heavier. The octet and singlet vector
mesons are close to degenerate reflecting that this JPC has a
very small disconnected contribution which distinguishes
the singlet from the octet.
The singlet scalar meson (f10) is rather light, at a similar

mass to the pseudoscalar singlet. As it does not appear in
the decays of the 1−ðþÞ resonance we are studying in this
paper, we will not discuss it further here. The extracted
scalar octet meson (f80) mass lies very close to the η8η8

threshold. This indicates that to properly understand the f80,
which may be a resonance or a shallow bound state, we
would have to include meson-meson operators in our basis.
Levels corresponding to the tensor mesons (f12; f

8
2) are

found some way above the η8η8 threshold, strongly
suggesting that these states will be resonances capable
of decaying into η8η8.
The axial mesons, the JPðCÞ ¼ 1þð−Þ h11 and h81, and the

JPðCÞ ¼ 1þðþÞ f11 and f81, all lie quite far below their
relevant decay thresholds, indicating that they are stable.
As in the pseudoscalar-vector complex, the C ¼ þ states
show some octet-singlet splitting owing to a significant

disconnected contribution, while the C ¼ − states are close
to degenerate.
As well as the computations in the rest frame from which

the hadron masses in Table III are obtained, matrices of
correlation functions are also computed with nonzero
values of allowed lattice momentum p⃗ ¼ 2π

L ðnx; ny; nzÞ,
and from these the dispersion relations Eðjp⃗jÞ for the stable
mesons are determined; these are found to be well
described by the expected relativistic form,

ðatEn⃗Þ2 ¼ ðatmÞ2 þ 1

ξ2

�
2π

L=as

�
2

jn⃗j2; ð3Þ

with the fitted values of anisotropy found for each meson
being broadly compatible up to small variations due to
discretization effects. An estimate of the anisotropy with an
uncertainty that reflects the small variation over different
mesons is ξ ¼ 3.486ð43Þ; see Ref. [67] for further details.
Figure 2 illustrates the position of a likely octet 1−ðþÞ

resonance based upon variational analysis of correlation
matrices using only fermion-bilinear constructions, along

0.15

0.20

0.25

0.30

0.35

FIG. 1. Spectrum of low-lying octet (red) and singlet (cyan)
mesons by JPðCÞ obtained using only single-meson operators.
Solid boxes show mesons which lie below relevant meson-meson
thresholds and are thus stable, while hatched boxes show mesons
which lie above threshold and which will require a full finite-
volume analysis to resolve their resonant nature. Dashed lines
show the lowest relevant meson-meson thresholds.

TABLE III. Relevant stable hadron masses, atm.

η8 0.1478(1) η1 0.2017(11)
ω8 0.2154(2) ω1 0.2174(3)

f10 0.2007(18)
f81 0.3203(6) f11 0.3364(14)
h81 0.3272(6) h11 0.3288(17)

0.30

0.35

0.40

0.45

FIG. 2. Masses of C ¼ þ octet mesons obtained using only
single-meson operators (taken from Ref. [26]). Thresholds
relevant for JPðCÞ ¼ 1−ðþÞ are shown.

5More details of the operator construction, and decomposition
in terms of connected and disconnected contributions can be
found in Ref. [26]. The 163 and 203 volumes used in that
reference are supplemented with the other volumes in Table II in
the current work.
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with the decay thresholds given in Table IV which follow
from the masses in Table III. Also shown are the expected
octet resonance spectra with other JPðþÞ taken from
Ref. [26]. These quantum numbers would contribute if
spectra with nonzero overall momentum were to be
considered, significantly complicating the analysis. For
this reason, in this first calculation of the exotic 1−ðþÞ
scattering system, we will restrict our attention to the

spectrum in the overall rest frame, considering the T−ðþÞ
1

irrep. We will consider the role played by 3−ðþÞ, 4−ðþÞ
scattering, which in principle contribute in this irrep, later
in the manuscript.

A. Operator bases

We construct a suitable basis of operators in the T−ðþÞ
1

irrep from a set of single-meson-like operators and a set of
meson-meson-like operators. A total of 18 fermion bilin-
ears ψ̄Γψ are used following Ref. [23], with a spin and
spatial structure built from Dirac γ-matrices and gauge-
covariant derivatives. Gluonic degrees of freedom enter
through the gauge-covariant derivatives. For example, one
simple 1−ðþÞ bilinear operator constructed using the vector
cross product of γi and the commutator of two derivatives,
is given by

ðψ̄ΓψÞi ¼ ϵijkðψ̄γjψÞBk|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
1−−⊗1þ−→1−þ

; ð4Þ

where Bk ∝ ϵkpq½Dp

↔
; Dq

↔ � is the chromomagnetic field. In
practice, when we determine the spectra we vary the
number of single-meson operators to establish insensitivity
to the details of the choice of operator basis.
In Table IV, we show the relevant multihadron thresholds

for two- and three-meson channels that appear in 1−ðþÞ and
that transform in the flavor octet. To ensure all relevant
meson-meson operators are included in the operator
basis, we calculate the noninteracting energies for each
multimeson system by considering all momenta combina-
tions that sum to zero. All meson-meson operators with a
corresponding noninteracting energy below atEcm ¼ 0.48,

a modest distance below f11η
8 threshold, are included.6

These operators are presented in Table V, listed by
increasing noninteracting energy.
The only relevant three-meson threshold η8η8η8 lies

slightly below the expected 1−ðþÞ resonance position.
The lowest noninteracting three-meson energies appear

at atE
ð3Þ
n:i: > 0.51. As discussed in Sec. II, resonant excita-

tions in two-meson subsystems may be present and
operators that capture these subsystem interactions need
to be considered for inclusion. To do this we examine the

“two-plus-one” noninteracting energies atE
ð2þ1Þ
n:i: , which

follow from assuming no residual interaction between
the interacting two-meson subsystem and the third meson;
details are provided in Ref. [68]. The lowest-energy
combination of three η8 that appears in the T−

1 irrep is

½011�A2|fflfflfflffl{zfflfflfflffl}
η8

⊗ ½001�A2|fflfflfflffl{zfflfflfflffl}
η8

⊗ ½001�A2|fflfflfflffl{zfflfflfflffl}
η8

→ ½000�T−
1|fflfflfflffl{zfflfflfflffl}

η8
1

⊕ …: ð5Þ

We consider all possible meson-meson subsystems here
that could feature bound states or resonances. Combining
the first two pseudoscalar octets appearing in Eq. (5) into
definite momentum type ½001�, we find the only irrep
combination that yields the T−

1 irrep is

ð½011�A2|fflfflfflffl{zfflfflfflffl}
η8

⊗ ½001�A2|fflfflfflffl{zfflfflfflffl}
η8

Þ ⊗ ½001�A2|fflfflfflffl{zfflfflfflffl}
η8

→ ½000�T−
1|fflfflfflffl{zfflfflfflffl}

η8
1

½001�E2|fflfflfflffl{zfflfflfflffl}
η8η8

⊗ ½001�A2|fflfflfflffl{zfflfflfflffl}
η8

→ ½000�T−
1|fflfflfflffl{zfflfflfflffl}

η8
1

:

The irrep ½001�E2 houses the ω8 and f81, which we treat as
stable scattering particles; any excited finite-volume energy
level coupling to η8η8 (in any flavor combination) will lie
above the f81 level, and hence no three-meson-like operators
are needed in the basis to study a 1−ðþÞ resonance
near atE ∼ 0.46.
As discussed previously, the T−ðþÞ

1 irrep also features

contributions from JPðCÞ ¼ 3−ðþÞ. Considering the A−ðþÞ
2

irrep, which for J ≤ 4 features only JPðCÞ ¼ 3−ðþÞ sub-
ductions, we can isolate the contribution from the J ¼ 3
partial waves. We will use the finite-volume energy levels
in this irrep to constrain the J ¼ 3 partial waves and show
these are small over the energy range considered here. The

operator basis used in the A−ðþÞ
2 irrep for each lattice

volume is given in Table VI.

TABLE IV. Multimeson thresholds relevant for JPðCÞ ¼ 1−ðþÞ
shown in Fig. 2. Uncertainties are determined by adding the
uncertainties on the single-meson masses in quadrature.

η1η8 0.3495(11)
ω8η8 0.3632(2)
ω8ω8 0.4308(3)
ω1ω8 0.4324(7)
η8η8η8 0.4434(2)
f81η

8 0.4681(6)
h81η

8 0.4750(6)
f11η

8 0.4842(14)

6In addition, we include an f11η
8 operator corresponding to a

noninteracting level at f11η
8 threshold. A small number of meson-

meson operators that lie a modest distance above the f11η
8

threshold were also added to explore the (very mild) sensitivity
to our choice of largest energy.
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B. Finite-volume spectra

Variational analysis of matrices of T−ðþÞ
1 correlation

functions on the six volumes leads to the spectrum
presented in Fig. 3. Error bars reflect the statistical
uncertainty and an estimate of the systematic uncertainty
from varying the details of the variational analysis (such as
operator basis and fit range). For each finite-volume
eigenstate that will be used to constrain scattering ampli-
tudes, we also show a histogram illustrating the overlap
strength with operators in the basis.
We notice that below atEcm ∼ 0.44, the energy levels lie

very close to the η1η8 andω8η8 noninteracting energies, and
each level has dominant overlap with just the operator(s)
corresponding to the particular noninteracting momentum
combination lying nearby (blue and red bars). This tends to
suggest weak, uncoupled scattering at lower energies. The
somewhat larger error bars on levels with large overlap onto

η1η8 operators is a consequence of the substantial dis-
connected contribution to the η1.
In an energy region around atEcm ∼ 0.46 on each

volume we find one more energy level than expected on
the basis of the noninteracting energies, and we begin to
observe levels having significant overlaps onto hybridlike
single-meson operator constructions (orange bar). This
energy region is where the 1−ðþÞ state proposed to be a
hybrid meson was observed in the analysis using only
single-meson operators discussed earlier. The finite-volume
eigenstates having overlap onto the hybridlike operator are
also observed to have overlap onto meson-meson con-
structions, notably η1η8 (dark blue), ω8η8 (red), f81η

8 (cyan)
and/or h81η

8 (purple), which might suggest a resonance
coupling to these scattering channels.
A level lying very close to the twofold degenerate

ω8
½011�η

8
½011� noninteracting curve is observed at each volume

above L=as ¼ 16 with a characteristic histogram that
couples strongly to the two ω8

½011�η
8
½011� operators but is

decoupled from all other operators. Such behavior would
be expected if the ω8η8f3F3g wave is weak.
On the L=as ¼ 18, 20, 24 volumes, a cluster of states

appears in the energy region of interest close to the lowest
ω8ω8 (sand) and ω1ω8 (green) noninteracting energies. The
histograms for these states, presented at the top of the
figure, show that in each case there are five energies which
have a large overlap with these vector-vector operators, but
not a large overlap with hybridlike operators. This might be

TABLE V. T−ðþÞ
1 operator basis for each lattice volume. Meson-meson operators are ordered by increasing En:i:. and labeled with the

momentum types of the two mesons; different momentum directions are summed over as discussed in Sec. II. The number in braces
fNmultg denotes the multiplicity of linearly independent meson-meson operators if this is larger than 1. The maximum number of single-
meson operators N is denoted by N × ψ̄Γψ and various subsets of these were considered to investigate sensitivity to the details of the
choice of operator basis.

L=as ¼ 12 L=as ¼ 14 L=as ¼ 16 L=as ¼ 18 L=as ¼ 20 L=as ¼ 24

18 × ψ̄Γψ 18 × ψ̄Γψ 18 × ψ̄Γψ 18 × ψ̄Γψ 18 × ψ̄Γψ 18 × ψ̄Γψ
η1½001�η

8
½001� η1½001�η

8
½001� η1½001�η

8
½001� η1½001�η

8
½001� η1½001�η

8
½001� η1½001�η

8
½001�

f81½000�η
8
½000� ω8

½001�η
8
½001� ω8

½001�η
8
½001� ω8

½001�η
8
½001� ω8

½001�η
8
½001� ω8

½001�η
8
½001�

ω8
½001�η

8
½001� f81½000�η

8
½000� f81½000�η

8
½000� η1½011�η

8
½011� η1½011�η

8
½011� η1½011�η

8
½011�

h81½000�η
8
½000� h81½000�η

8
½000� η1½011�η

8
½011� f2gω8

½011�η
8
½011� f2gω8

½011�η
8
½011� f2gω8

½011�η
8
½011�

f11½000�η
8
½000� f11½000�η

8
½000� h81½000�η

8
½000� f81½000�η

8
½000� ω8

½001�ω
8
½001� η1½111�η

8
½111�

ω8
½001�ω

8
½001� f11½000�η

8
½000� h81½000�η

8
½000� f81½000�η

8
½000� ω8

½111�η
8
½111�

f4gω1
½001�ω

8
½001� f2gω8

½011�η
8
½011� ω8

½001�ω
8
½001� f4gω1

½001�ω
8
½001� ω8

½001�ω
8
½001�

η1½011�η
8
½011� ω8

½001�ω
8
½001� f4gω1

½001�ω
8
½001� η1½111�η

8
½111� f4gω1

½001�ω
8
½001�

f2gω8
½011�η

8
½011� f4gω1

½001�ω
8
½001� f11½000�η

8
½000� h81½000�η

8
½000� η1½002�η

8
½002�

η1½111�η
8
½111� ω8

½111�η
8
½111� f81½000�η

8
½000�

ω8
½111�η

8
½111� f11½000�η

8
½000� ω8

½002�η
8
½002�

ω8
½002�η

8
½002� h81½000�η

8
½000�

f11½000�η
8
½000�

η1½012�η
8
½012�

TABLE VI. As Table V but showing the A−ðþÞ
2 operator basis

for each lattice volume, with meson-meson operators ordered by
increasing En:i:.

L=as ¼ 16 L=as ¼ 18 L=as ¼ 20 L=as ¼ 24

4 × ψ̄Γψ 4 × ψ̄Γψ 4 × ψ̄Γψ 4 × ψ̄Γψ
ω8
½011�η

8
½011� ω8

½011�η
8
½011� ω8

½011�η
8
½011� ω8

½011�η
8
½011�

ω1
½001�ω

8
½001� ω1

½001�ω
8
½001� ω1

½001�ω
8
½001� η1½111�η

8
½111�

η1½111�η
8
½111� η1½111�η

8
½111� ω1

½001�ω
8
½001�
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0.36

0.38

0.40

0.42

0.44

0.46

0.48

12 16 20 24

FIG. 3. Finite-volume spectrum in theT−ðþÞ
1 irrep on six lattice volumes. Points show the extracted energy levels, including uncertainties,

fromavariational analysis using the operator bases inTableV; black points are included in the subsequent scattering analysis andgraypoints
are not. Some points are slightly displaced horizontally for clarity when near-degenerate energies appear. Curves show meson-meson
noninteracting energies, with multiplicities greater than 1 labeled by fng and shown as slightly split curves. Dashed curves correspond to
meson-meson operators not included in the basis. Relevant thresholds transcribed from Table IV are shown on the vertical axis.
Accompanying each energy level is a histogram of the operator-state overlap factors, Zn

i ¼ hnjO†
i ð0Þj0i, for η1η8 (dark blue), ω8η8 (red),

ω8ω8 (sand), ω1ω8 (green), f81η
8 (cyan), h81η

8 (purple) and f11η
8 (brown) meson-meson operators and a sample of ψ̄Γψ (orange) fermion-

bilinear operators. The overlaps are normalized such that the largest value for any given operator across all energy levels is equal to 1. For
clarity, the histograms accompanying the cluster of levels on the L=as ¼ 18, 20, 24 volumes are displayed at the top of the figure.
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taken as a suggestion that a hybrid resonance (if present)
may not be strongly coupled to these vector-vector scatter-
ing channels.
Finally, the only states which show any significant

coupling to the f11η
8 (brown) operator lie at rather high

energies, suggesting that this channel is probably not
relevant to any resonance near atEcm ∼ 0.46.
Figure 4 shows the spectrum obtained in the A−ðþÞ

2 irrep.
It is clear from the histograms, which are dominated in each
case by a single meson-meson-like operator, and the
proximity of each level to the corresponding noninteracting
curves, that there are only relatively weak interactions.
There is no sign of any resonant behavior that might be
associated with a low-lying 3−ðþÞ state.
While a qualitative discussion of the spectra like the

one just presented can suggest possible features of the
scattering system, a rigorous determination requires an
analysis using the coupled-channel finite-volume formal-
ism described in Sec. II from which the t-matrix can be
extracted, and from it properties of any resonance poles.

V. SCATTERING AMPLITUDES

We wish to use the spectra computed in the T−ðþÞ
1 and

A−ðþÞ
2 irreps presented in the previous section to determine

the matrix describing scattering with JPðCÞ ¼ 1−ðþÞ.

We expect T−ðþÞ
1 to be dominated by 1−ðþÞ, with 3−ðþÞ,

4−ðþÞ, and still higher J being weak at these energies; these
require higher orbital angular momentum l and so are
suppressed close to threshold in the absence of any
dynamical enhancement. There is no evidence from the
single-meson operator study in Ref. [26] of a low-lying
3−ðþÞ resonance, and while 4−ðþÞ is nonexotic [it can be
constructed as the qq̄ð1G4Þ state], Ref. [26] suggests that
such a state lies at atEcm ∼ 0.58, far above our region of

interest. By computing the A−ðþÞ
2 spectrum we are able to

directly constrain the strength of scattering with JPðCÞ ¼
3−ðþÞ in the energy region of interest.
The first step in analyzing the finite-volume spectrum is

to establish the basis of relevant meson-meson partial
waves in the considered energy region which define the
matrix space in Eq. (1). The set of meson-meson channels
kinematically accessible was presented in the previous
section and in Table VII we show the set of partial waves
we will use.
A small number of possible partial waves have been

excluded from Table VII under the expectation that
they will not contribute significantly. In the 1−ðþÞ sector,
f81η

8f3D1g andh81η8f3D1g are not included, as the thresholds
for these channels are very high-lying in our energy region
such that we expect a significant angular momentum sup-
pression from theD-wave, relative to the leadingS-wave, that
will render them practically irrelevant. Similarly, in the
vector-vector channels, we exclude ω1ω8f5F1g on the basis
of F-wave angular momentum suppression.7

In the 3−ðþÞ sector, ω8η8f3F3g is included despite the
large angular momentum barrier. As can be seen in Table V,
there are two independent operators for ω8

½011�η
8
½011� and

there is a corresponding twofold degenerate noninteracting
energy. In order that there be two solutions of Eq. (1) near
this energy, as observed in our computed spectra and
commented on in the previous section, higher ω8η8 partial
waves must be considered, so we include the ω8η8f3F3g
wave along with the dominant ω8η8f3P1g. We also include
η1η8f1F3g as the η1η8 threshold is relatively low compared
with the resonant region, such that the angular momentum

0.36

0.42

0.44

0.46

0.48

0.50

12 16 20 24

FIG. 4. Analogous to Fig. 3 but for the A−ðþÞ
2 irrep (operator

lists shown in Table VI). Note the vertical axis is broken to
emphasize the relatively low-lying η1η8 and ω8η8 thresholds.

TABLE VII. Scattering partial waves included in the descrip-
tion of T−ðþÞ

1 finite-volume spectra.

1−ðþÞ η1η8f1P1g
ω8η8f3P1g
ω8ω8f3P1g, ω1ω8f1P1; 3P1; 5P1g
f81η

8f3S1g, h81η8f3S1g
3−ðþÞ η1η8f1F3g

ω8η8f3F3g
ω1ω8f5P3g

7Bose symmetry forbids ω8ω8f1P1; 5P1g and ω8ω8f5F1g.
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barrier may not sufficiently suppress contributions from
this higher partial wave in the energy region of interest.
Other possible F-waves, ω8ω8f3F3g, ω1ω8f1F3; 3F3; 5F3g
only generate additional solutions to Eq. (1) at somewhat
higher energies and have relatively high-lying thresholds
for which we expect the angular momentum suppression to
be significant. In practice we will find that all the 3−ðþÞ
partial waves we consider are modest over the energy range
considered, with direct constraints coming from the com-

puted A−ðþÞ
2 spectra.

The 4−ðþÞ sector is populated only by partial waves that
are F-wave or higher, all of which we assume to be small
enough as to be negligible, and none of which generate
additional solutions of Eq. (1) in the energy region
considered.
One partial wave with 1−ðþÞ is excluded on dynamical

grounds: f11η
8f3S1g is observed to be completely decoupled

from the other scattering channels when operator overlaps
(as presented in Fig. 3) are examined. This leads to a natural
choice of energy cutoff at atEcm ¼ 0.48, a modest distance
below the f11η

8 threshold, and we only use energies with no
significant dependence on the f11η

8-like operator. The levels
to be used in constraining amplitudes are shown in black in
Figs. 3 and 4.
The contribution of the three vector-vector partial waves

ω1ω8f1P1; 3P1; 5P1g, which differ only in the total coupled
intrinsic spin of the two vector mesons, to Eq. (1) requires
some care. In the ½000�T−

1 irrep that we are considering,
Eq. (1) is invariant under the interchange of any of these
partial waves, and it follows that the corresponding rows
and columns of the t-matrix cannot be uniquely determined
(see also Appendix C). There is reason, from an approxi-
mate extension of Bose symmetry, to expect that only
amplitudes featuring ω1ω8f3P1g could be significant while
those with ω1ω8f1P1; 5P1g will be very small. The Wick
contractions for diagrams featuring these channels differ
only from those featuring ω8ω8 by the presence of the
disconnected contribution to the ω1, but this contribution is
very small (reflected in the near degeneracy of ω1;ω8). In
practice we expect the ω1 and ω8 to have almost identical
spatial wave functions, and since ω8ω8f1P1; 5P1g are
forbidden by Bose symmetry, we anticipate that the
corresponding ω1ω8 amplitudes will be heavily suppressed.
In fact we will observe that all vector-vector amplitudes are
found to be very small over the energy range considered.
While the three-meson channel η8η8η8 becomes kine-

matically accessible at the upper end of the energy region
we are considering, we do not include such partial waves.
To couple to JPðCÞ ¼ 1−ðþÞ, this channel requires at least
two P-waves, and since our expected resonance lies barely
above the η8η8η8 threshold, the angular momentum sup-
pression implied is expected to render the partial waves
irrelevant.

We now seek to use the 61 energy levels shown in black
in Figs. 3 and 4 to constrain parametrizations of the
t-matrix in the partial-wave basis presented in Table VII
by solving Eq. (1). Solutions of Eq. (1) are only possible for
t-matrix parametrizations which satisfy multichannel uni-
tarity. The simplest way to implement that constraint is to
make use of the K-matrix, writing

½t−1ðsÞ�lSJa;l0S0Jb ¼
1

ð2kaÞl
½K−1ðsÞ�lSJa;l0S0Jb

1

ð2kbÞl0

þ δll0δSS0IabðsÞ;

where K is a symmetric matrix taking real values on the
real energy axis and IðsÞ is a diagonal matrix satisfying
ImIabðsÞ ¼ −ρaðsÞ above the threshold for channel a. The
simplest choice is to set IðsÞ ¼ −iρðsÞ, but other options
may have better analytic properties below threshold and
away from the real energy axis; for example, the Chew-
Mandelstam prescription for which our implementation is
described in Ref. [64]. The K-matrix is block diagonal in J,
reflecting the fact that total angular momentum is a good
quantum number in infinite volume and only “mixes” in a
finite volume, through the matrix M, due to the reduced
symmetry of the lattice.
The presence in the spectrum of an additional level

around atEcm ∼ 0.46 and the lack of significant energy
shifts at lower energies hints at a likely narrow resonance in
the energy region around atEcm ∼ 0.46. This is also
consistent with the exotic 1−ðþÞ octet level seen in
Fig. 2. The large overlap with axial-vector–pseudoscalar
meson-meson operators seen in Fig. 3 suggests significant
coupling to these channels, whose thresholds lie just above
the anticipated resonant region.
An efficient way to parametrize coupled-channel scatter-

ing when a narrow resonance appears is to use a K-matrix
featuring an explicit pole. For the case of a single channel
this form of parametrization is closely related to the conven-
tional Breit-Wigner and for coupled channels it is related to a
multichannel Breit-Wigner, sometimes referred to as a Flatté
amplitude in the two-channel case [87,88]. The K-matrix
can also be straightforwardly augmented by the addition of a
polynomialmatrix in s, which in the simplest case can just be
a constant matrix, that allows additional freedom beyond a
pure resonance interpretation. This is crucial to test the
robustness of scattering amplitudes and allow more flexible
forms, as, for example, a pure pole parametrization exhibits
the phenomenon of “trapped” levels, where a single energy
level is forced to appear between every pair of noninteracting
energies; see Appendix D.
In addition to varying the form of the K-matrix, the

choice of IðsÞ may also be varied. The Chew-Mandelstam
prescription improves the analytic continuation below
thresholds, which is particularly useful here where, as
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discussed above, the axial-vector–pseudoscalar thresholds
lie above the resonant region.
In this study, we will consider a variety of parametriza-

tions, finding the best description of the finite-volume
spectrum for each choice, ultimately leading to compatible
results for the amplitudes and their resonant content. As we
are only using rest-frame energy levels to determine the
large coupled-channel scattering system (see Sec. IV), we
have less constraint than in previous calculations of simpler
systems where in-flight spectra were computed [46,62–68].
However, the use of six volumes appears to provide enough
information to isolate most of the important features.
The A−ðþÞ

2 spectra allow us to determine the J ¼ 3
amplitudes which provide a “background” contribution

to the T−ðþÞ
1 spectra. As discussed in Sec. IV, there is no

sign of any resonant behavior associated with a 3−ðþÞ state
in this energy region and the histograms in Fig. 4 suggest a
totally decoupled system. A reasonable form of paramet-
rization, capable of successfully describing the finite-
volume spectra, is a diagonal constant K-matrix,

K3ðsÞ ¼

2
64
γη1η8f1F3g 0 0

0 γω8η8f3F3g 0

0 0 γω1ω8f5P3g

3
75; ð6Þ

where the Chew-Mandelstam prescription with subtraction
at thresholds was used for IðsÞ. The resulting fit describes

the A−ðþÞ
2 finite-volume spectra with a χ2=Nd:o:f: ¼

2.53=ð8 − 3Þ ¼ 0.51, as shown in Fig. 5. Other paramet-
rizations give a compatible set of amplitudes and quality of
fit. The 3−ðþÞ amplitudes are modest over the entire energy
range, with the η1η8 and ω8η8 being mildly repulsive, and
the ω1ω8 being mildly attractive; at atEcm ¼ 0.48 the
decoupled phase shifts reach only −13ð3Þ°, −6ð1Þ° and
5(4)° respectively.

A. An illustrative t-matrix parametrization

We now consider the eight coupled-channel 1−ðþÞ

scattering system that features in T−ðþÞ
1 . We will illustrate

the scattering analysis using a single choice of amplitude
parametrization, and later explore variations in that choice.
The properties of the illustrative amplitude choice are
motivated by the observations of the finite-volume spectra
made in Sec. IV. The four vector-vector channels appear to
be decoupled for all considered energies and show no
significant energy shifts, so in this parametrization we
make the decoupling manifest, parametrizing the ampli-
tudes with a diagonal K-matrix of constants,8

KVVðsÞ ¼

2
6664
γω8ω8f3P1g 0 0 0

0 γω1ω8f1P1g 0 0

0 0 γω1ω8f3P1g 0

0 0 0 γω1ω8f5P1g

3
7775:

For the remaining four 1−ðþÞ channels, motivated by the
likely presence of a narrow resonance, we parametrize the
amplitudes using a “pole plus constant” form,

KVVðsÞ ¼
ggT

m2 − s
þ

2
6664
γη1η8f1P1g 0 0 0

0 γω8η8f3P1g 0 0

0 0 0 0

0 0 0 0

3
7775;

where

g ¼ ðgη1η8f1P1g; gω8η8f3P1g; gf81η8f3S1g; gh81η8f3S1gÞ; ð7Þ

so that all four channels are coupled to the resonance as
motivated by the histograms in Fig. 3. We also add a
constant term in the lowest two channels as the corre-
sponding thresholds lie very low relative to the resonant
region, and the close proximity of the energy levels with the
noninteracting energies low down in the spectra suggested
a region of nonresonant behavior (see the discussion in
Sec. IV). We use the Chew-Mandelstam prescription for
IðsÞ subtracting at the K-matrix pole mass (s ¼ m2). The
eight-channel 1−ðþÞ K-matrix appears combined with the
three-channel 3−ðþÞ K-matrix as given in Eq. (6),

0.42

0.44

0.46

0.48

12 16 20 24

FIG. 5. As Fig. 4 but including, as orange bands, the energy
levels calculated from the amplitude in Eq. (6). The thickness of
the bands reflects the statistical uncertainty. The dashed curves
show the noninteracting energy levels for ω8η8 (red), η1η8 (blue)
and ω1ω8 (green).

8In some of the parametrizations we will consider, vector-
vector and non-vector-vector channels are allowed to couple to
each other though their coupling to the pole term.
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KðsÞ ¼

2
664
KVVðsÞ 0 0

0 KVVðsÞ 0

0 0 K3ðsÞ

3
775; ð8Þ

in the finite-volume spectrum condition, Eq. (1). We
minimize the χ2 by varying the 11 parameters in KVVðsÞ
and KVV , with the parameters in K3 fixed according to the

fit to the A−ðþÞ
2 lattice spectra. The resulting description of

the T−ðþÞ
1 spectra gives a very reasonable χ2=Nd:o:f: ¼

43.6=ð53 − 11Þ ¼ 1.04 shown in Fig. 6.
Plotting the resulting t-matrix elements as ρaρbjtabj2

shown in Fig. 7, we can make a number of qualitative and
quantitative observations.
The diagonal amplitudes for the η1η8, ω8η8, f81η

8, h81η
8

channels are shown in Fig. 7(a) where a clear bumplike
enhancement can be seen in the η1η8 and ω8η8 channels at
atEcm ∼ 0.46, close to the mass obtained using only single-
meson operators (see Fig. 2). We observe a sharp turn-on of
the axial-vector–pseudoscalar channels (f81η

8, h81η
8) at

threshold, allowed for S-wave amplitudes. The associated
off-diagonal amplitudes are plotted in Figs. 7(b)–7(d).
Here, we see again a bumplike enhancement in the
η1η8 → ω8η8 amplitude at atEcm ∼ 0.46, with the other
off-diagonal amplitudes being mostly small with the
exception of the f81η

8 → h81η
8 amplitude which shows a

modest rise from threshold.
The four decoupled vector-vector channels are presented

in Figs. 7(e) and 7(f). We observe that the single ω8ω8

amplitude, in the 3P1 partial wave, is weak across the entire
energy range, consistent with our observations from the
finite-volume spectra in Sec IV. For the ω1ω8 amplitudes,
we require four partial waves, three JP ¼ 1− ð1P1; 3P1; 5P1Þ
and one 3− ð5P3Þ, in order to obtain the correct number of
finite-volume energies at the corresponding fourfold

degenerate noninteracting energy. As discussed in
Appendix C, using only rest-frame energies does not
uniquely constrain the three 1− ω1ω8 amplitudes and there
is a freedom to permute these channels within the t-matrix.
We therefore consider the envelope of these three ampli-
tudes, as determined from the minimization, as our best
estimate for the size of the ω1ω8fXP1g amplitudes. This is
shown in Fig. 7(f) where we see that they are weak over the
entire range, consistent with the observations made in
Sec. IV. It is important to note that, as shown in
Appendix C, energy spectra obtained in moving-frame
irreps modify the boundary conditions of the quantization
condition and do distinguish the contributions of the
f1P1; 3P1; 5P1g partial waves. As discussed in Sec. IV,
we do not include moving-frame energy spectra owing to
the appearance of the relatively low-lying positive-parity
resonances, as parities mix at nonzero momentum, and this
would significantly complicate the analysis.
For this particular parametrization, we also examine the

effects of varying the stable hadron masses and anisotropy
within their respective uncertainties, as given in Sec. IV, to
get an estimate of some of the systematic uncertainties on
the amplitudes. We adopt a conservative approach where
we repeat the χ2 minimization procedure using the extremal
values mi → mi þ δmi and ξ → ξ − δξ, and vice versa.
These combinations yield the largest deviations in the
noninteracting energies, and therefore the largest shifts in
the energy differences between the computed energy levels
and the noninteracting values; these ultimately constrain
the scattering parameters. We anticipate that these combi-
nations will therefore result in the largest changes in the
scattering parameters and so yield a conservative estimate
of the systematic uncertainties on the parameters from
uncertainties in the hadron masses and anisotropy.
For the JP ¼ 3− amplitudes, we find that varying the

anisotropy yields the largest systematic uncertainties. The
rather weak interactions in this system lead to small shifts
in energies from their noninteracting values, as seen in
Fig. 5, which receive significant adjustment as the
anisotropy is varied.9 The quality of fits under these
systematic variations also became rather poor: χ2=Nd:o:f: ¼
2.26 for mi → mi þ δmi and ξ → ξ − δξ, and χ2=Nd:o:f: ¼
4.82 for mi → mi − δmi and ξ → ξþ δξ, reflecting that
even small discretization effects can be visible in weakly
interacting systems where the energy levels have been
determined with high statistical precision. Nevertheless, we
find all JP ¼ 3− amplitudes remain small over the entire
energy region considered.
Regarding the JP ¼ 1− amplitudes, having fixed the

(newly determined) JP ¼ 3− parameters, we find the
effects of varying the masses and anisotropy are much

0.38

0.40

0.42

0.44

0.46

0.48

12 16 20 24

FIG. 6. As Fig. 5 but for the T−ðþÞ
1 irrep using the illustrative

amplitude described in Eq. (8).

9This effect was observed previously in ρπ isospin-2 scattering
where the very small interactions meant that the systematic
uncertainties dominated over the statistical ones [67].
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smaller relative to those for JP ¼ 3−, as expected in a more
strongly interacting system. There are some modest varia-
tions in the amplitudes, but these are broadly within the
statistical uncertainties and certainly within the differences

we will see in the subsequent variation in the parametriza-
tion. For example, we find the peak of the bumplike
enhancements in the η1η8 and ω8η8 amplitudes is consistent
in height and only slightly displaced in energy (higher or
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0.5

0.43 0.44 0.45 0.46 0.47 0.48

0.1
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0.43 0.44 0.45 0.46 0.47 0.48

0.1
0.2

0.43 0.44 0.45 0.46 0.47 0.48

0.1
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0.43 0.44 0.45 0.46 0.47 0.48

0.1
0.2

0.43 0.44 0.45 0.46 0.47 0.48

0.1

0.2

0.3

0.4

0.5 (a)

(b)

(c)

(d)

(e)

(f)

0.43 0.44 0.45 0.46 0.47 0.48

FIG. 7. (a) Diagonal t-matrix elements plotted as ρaρbjtabj2, for the illustrative amplitude presented in Eq. (8) for non-vector-vector
channels: η1η8f1P1g, ω8η8f3P1g, f81η8f3S1g and h81η

8f3S1g. Shaded bands reflect statistical uncertainties on the scattering parameters.
(b)–(d) As above, but for the off-diagonal amplitudes between the four channels displayed above. (e),(f) Diagonal vector-vector
amplitudes:ω8ω8f3P1g, ω1ω8f1P1; 3P1; 5P1g. As discussed in the text, the ω1ω8 partial waves are indistinguishable and are combined in
a single plot labeled ω1ω8fXP1g, the shaded band reflecting an envelope over the statistical uncertainties for each partial wave.
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lower depending upon the sign of the systematic varia-
tions). This will be reflected in the position of a pole
singularity of the t-matrix which varies at a level compa-
rable to the statistical uncertainty.
A larger source of uncertainty arises when we consider

varying the form of parametrization, to which we now turn.

B. Parametrization variations

In order to determine the extent to which the amplitude
results presented in Fig. 7 are a unique description of the
scattering system, we try a number of parametrizations,
attempting to describe the finite-volume spectrum with
each choice. Variations in the K-matrix include allowing
energy dependence in the numerator of the pole term, and
changes in the polynomial matrix added to the pole. The
prescription used for IðsÞ is also adjusted, while maintain-
ing coupled-channel unitarity in all parametrizations. We
retain 27 parametrizations10 which are able to describe the
finite-volume spectra with χ2=Nd:o:f: ≤ 1.25, showing the
resulting amplitudes in Figs. 8–12.
For the diagonal amplitudes in the lowest two channels

η1η8f1P1g and ω8η8f3P1g shown in Fig. 8, we see a
bumplike enhancement around atEcm ∼ 0.46 for the major-
ity of parametrizations, but we note that it is possible to
describe our finite-volume spectra without seeing such a
clear bump. We will revisit this observation when we
examine the pole singularities of the t-matrix and the
corresponding couplings. For the remaining two diagonal
amplitudes in channels f81η

8f3S1g and h81η
8f3S1g, we

observe that the relatively sharp turn-on at threshold is a
quite general feature, with only the magnitude of the effect
varying somewhat. That there should be some parametri-
zation dependence here should not come as too much of a
surprise given the relatively small number of finite-volume
energy levels constraining the amplitudes above the axial-
vector–pseudoscalar thresholds.
The off-diagonal amplitude η1η8f1P1g → ω8η8f3P1g

shown in Fig. 9, typically features a bumplike enhancement
around atEcm ∼ 0.46, but as for the diagonal entries, it is
possible to describe the spectra without such a bump and
indeed without any coupling between these two channels.
The remaining off-diagonal amplitudes remain modest
under parametrization variation and are shown in
Figs. 9–11.
The vector-vector amplitudes shown in Fig. 12 have the

same qualitative behavior as in the illustrative example
presented previously. The small bump around atEcm ∼ 0.46
for ω8ω8f3P1g → ω8ω8f3P1g on a small number of para-
metrizations reflects allowing freedom for this channel to
couple to the K-matrix pole; it is observed to be a very
weak effect and is statistically compatible with zero.
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0.43 0.44 0.45 0.46 0.47 0.48
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0.43 0.44 0.45 0.46 0.47 0.48
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0.43 0.44 0.45 0.46 0.47 0.48
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0.4

0.43 0.44 0.45 0.46 0.47 0.48

FIG. 8. Diagonal t-matrix elements plotted as ρaρbjtabj2, for
each parametrization successfully describing the finite-volume
spectra as discussed in the text, for non-vector-vector channels:
η1η8f1P1g, ω8η8f3P1g, f81η8f3S1g and h81η

8f3S1g. Shaded bands
reflect statistical uncertainties on the illustrative amplitude shown
in Fig. 7.
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FIG. 9. As Fig. 8 but for off-diagonal η1η8f1P1g → ω8η8f3P1g,
f81η

8f3S1g, h81η8f3S1g amplitudes.
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FIG. 10. As Fig. 9 but for ω8η8f3P1g → f81η
8f3S1g, h81η8f3S1g

amplitudes.

10A full description of each of these parametrizations is
provided in the Supplemental Material [69].
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Collectively, these parametrization variations tell us that
the limited number of rest-frame energy levels with which
we are constraining the large number of coupled channels
is not sufficient to completely uniquely determine the
t-matrix. Nevertheless, behavior consistent with a single
resonant enhancement can typically be seen in the
η1η8f1P1g and ω8η8f3P1g amplitudes. We will find that
even those parametrizations that do not appear to show
significant enhancement in either η1η8f1P1g or ω8η8f3P1g
still feature a nearby resonance. The rapid turn-on of the
axial-vector–pseudoscalar amplitudes will prove to be due
to a large coupling of this resonance to one or both of these
channels.
In order to demonstrate the presence of a resonance, we

will now examine the amplitudes presented in this section
at complex values of s ¼ E2

cm where a pole singularity is
expected to feature.

VI. RESONANCE POLE SINGULARITIES

At each meson-meson threshold, unitarity necessitates a
branch-point singularity and the corresponding branch cut
divides the complex s-plane into two Riemann sheets. For
the system we are considering, there are six relevant
kinematic thresholds and hence a total of 64 Riemann
sheets. The physical sheet, the sheet on which physical
scattering occurs just above the real energy axis, is
identified by all scattering momenta having positive imagi-

nary parts, i.e., ImðkðaÞcmÞ > 0 for all channels, (a). Sheets
with other sign combinations of the imaginary component
of momenta are called unphysical, and it is on these sheets
where pole singularities corresponding to resonances are
allowed to live as complex-conjugate pairs away from the
real axis.

In each energy region between thresholds, the unphys-
ical sheet closest to the region of physical scattering,
has ImðkðaÞcmÞ < 0 for all kinematically open channels and

ImðkðaÞcmÞ > 0 for all kinematically closed channels. For
convenience we will refer to this as the proximal sheet, and
a nearby pole singularity on the proximal sheet will have a
significant impact on physical scattering.
For brevity, sheets are labeled as an ordered list of six

signs, where the order reflects increasing threshold energies
(η1η8, ω8η8, ω8ω8, ω1ω8, f81η

8, h81η
8), and the sign reflects

the imaginary component of momenta for that channel. For
example ½þþþþþþ� represents the physical sheet, and
½−−þþþþ� represents the proximal sheet for scattering
above the ω8η8 threshold, but below the ω8ω8 threshold.
The position of pole singularities can be related to

conventional pictures of meson states. Poles on the real
axis below the lowest threshold on the physical sheet
correspond to stable bound states, while poles in that
location on unphysical sheets are virtual bound states that
do not appear as asymptotic particles. Poles off the real
axis on unphysical sheets11 are associated with resonances,
and it is common to interpret the real and imaginary
components of the pole position s0 in terms of the mass
mR and width ΓR, via

ffiffiffiffiffi
s0

p ¼ mR � i
2
ΓR. Near the pole, the

t-matrix takes the form,

tlSJa;l0S0Jb ∼
clSJacl0S0Jb

s0 − s

where the factorized residues give access to clSJa, which
are interpreted as complex-valued resonance couplings for
the channel a in partial wave 2Sþ1lJ.
The amplitudes presented in Sec. V suggest a likely

resonance with real energy at
ffiffiffi
s

p
∼ 0.46, in which case the

proximal sheet is ½−−−−þþ�. Indeed, for every para-
metrization which successfully describes the finite-volume
spectrum, we find a complex-conjugate pair of poles on the
proximal sheet whose real energy is in the neighborhood of
the anticipated mass and which has only a small imaginary
energy.12 For the illustrative amplitude given by Eq. (8), the
poles on the proximal sheet lie at

at
ffiffiffiffiffi
s0

p
½−−−−þþ� ¼ 0.4609ð12Þ � i

2
0.0036ð15Þ; ð9Þ
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FIG. 11. As Fig. 9 but for the f81η
8f3S1g → h81η

8f3S1g ampli-
tude.
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FIG. 12. As Fig. 8 but for vector-vector channels: ω8ω8f3P1g,
ω1ω8fXP1g amplitudes.

11Causality forbids poles on the physical sheet off the real axis,
and any amplitudes featuring such singularities close enough to
the real axis to have a non-negligible effect should be discarded
as unphysical.

12For a few parametrizations, the pole is found to lie on the real
axis below the f81η

8 threshold. These parametrizations are those
which decouple the resonance from the η1η8, ω8η8, ω8ω8 and
ω1ω8 channels, such that the pole describes a stable bound state
in a coupled f81η

8, h81η
8 system.
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where the uncertainty is statistical. Based upon the varia-
tion of scattering hadron masses and anisotropy described
in Sec. V, an additional conservative systematic error could
be added of similar size to the statistical error.
For each of the parametrizations found to successfully

describe the finite-volume spectrum, we show in Fig. 13 the
proximal sheet pole position situated in the lower half-
plane. In every case, the pole is found with a small
imaginary component and hence is very close to the region
of physical scattering, strongly influencing the amplitudes
at real energies. As expected there are also “mirror poles”
distributed across some of the remaining unphysical
Riemann sheets, but these have a negligible effect on
physical scattering by virtue of lying farther away.
While it is clear that a nearby pole is required to describe

the finite-volume spectra, the channel couplings which
come from the factorized residues of this pole are not
uniquely determined across different parametrizations. We
find that the couplings of the pole to the η1η8f1P1g and
ω8η8f3P1g channels are small relative to a large value of the
coupling to h81η

8f3S1g and in some cases a large value of
the coupling to f81η

8f3S1g.
Focusing on the axial-vector–pseudoscalar channels, we

isolate two classes of results across our range of para-
metrization forms, one in which the coupling to f81η

8f3S1g
is large, of comparable size to a large coupling to
h81η

8f3S1g, and a second in which the coupling to
f81η

8f3S1g is small. The couplings for these two classes
are shown in the top and middle panels of Fig. 14. Their
sizes are governed largely by the corresponding g param-
eters in the numerator of the pole term in the K-matrix, as
given in Eq. (7). For a range of parametrizations that allow
both of these g parameters to freely vary, we find that the
ratio of the corresponding couplings is of order one, with
both found to be significantly nonzero; these are shown in
the top panel of Fig. 14.
We also find a number of parametrizations where the

f81η
8f3S1g coupling is negligibly small while the h81η

8f3S1g
coupling remains large, and parametrizations in which the
coupling of the resonance to f81η

8f3S1g is set to be exactly

zero are also capable of describing the finite-volume spectra.
This class of results is shown in the middle panel of Fig. 14.
Parametrizations in which the coupling of the resonance

to the h81η
8f3S1g channel is fixed to zero are found to be

incapable of describing well the finite-volume spectra.
They either have a poor χ2, or predict additional finite-
volume energy levels that lie very close to our energy
cutoff, levels for which there is no evidence in the lattice
calculation.
The ambiguity in the relative size of the f81η

8f3S1g and
h81η

8f3S1g couplings can be explained in terms of there
being only a small gap between the relevant kinematic
thresholds. These two channels both have the same partial-
wave structure (3S1), so from the point of view of the finite-
volume functionsM in Eq. (1) they differ only in the mass
difference between f81 and h

8
1. If the f

8
1 and h

8
1 masses were

degenerate, then the quantization condition would be
invariant under permutations of the t-matrix elements in
these two channels, analogous to the indistinguishable
vector-vector amplitudes we discuss in Appendix C. It
follows that we are only able to distinguish these channels
by the mass splitting of the two axial-vector octets, and we
explore the degree to which the finite-volume spectra are
sensitive to different resonance couplings in a toy model in
Appendix E. In this model, the scattering system is
simplified to a two-channel (f81η

8f3S1g, h81η8f3S1g) case
with a bound-state pole lying below both thresholds. We
find the finite-volume spectra in the rest frame constrain
very well the sum of the squared couplings, but offer
relatively little constraint on the ratio of the coupling
strengths. An energy level that is sensitive to the ratio lies
between the two thresholds, but because the thresholds are
so close together, this lever arm is not large.
In summary, while we can confidently state that the

h81η
8f3S1g coupling is large, the constraints from the finite-

volume spectra can allow the f81η
8f3S1g coupling to be as

small as zero.
Examining the η1η8f1P1g coupling in Fig. 14, we find

this to be small compared with h81η
8f3S1g. There is a clear

preference for a value close to 0.04, but there are

-0.02

-0.01

0.43 0.44 0.45 0.46 0.47

FIG. 13. Pole singularities on the proximal sheet for all successful parametrizations as described in the text. Error bars reflect the
statistical uncertainties on the pole position for each parametrization.

WOSS, DUDEK, EDWARDS, THOMAS, and WILSON PHYS. REV. D 103, 054502 (2021)

054502-18



parametrizations capable of describing the finite-volume
spectra in which this coupling is set to be zero. The
coupling to ω8η8f3P1g shows a very similar behavior.
Finally, for the vector-vector channels, we find the

ω8ω8f3P1g coupling shows signs of being small but
nonzero on some parametrizations, but again the finite-
volume spectra can be equally well described with this
coupling set to zero. The ω1ω8fXP1g couplings are
negligibly small on every parametrization and again we
find perfectly reasonable descriptions of the spectra when
these are set to exactly zero.
Given this discussion, we summarize the behavior of the

couplings in Fig. 14 with the following best estimates,
which we suggest are a conservative reflection of allowed
ranges or limits taking into account statistical uncertainties
and parametrization variations,

jatcη1η8f1P1gj ¼ 0 → 0.055;

jatcω8η8f3P1gj ¼ 0 → 0.060;

jatcω8ω8f3P1gj ¼ 0 → 0.020;

jatcω1ω8fXP1gj≲ 0.020;

jatcf8
1
η8f3S1gj ¼ 0 → 0.21;

jatch8
1
η8f3S1gj ¼ 0.21 → 0.41: ð10Þ

The upper limit for jatcω1ω8fXP1gj reflects the preferred zero
value of this coupling, while the other couplings show
evidence that they scatter around some nonzero value; see
Fig. 14. These ranges and upper limit are shown by the
shaded bars in the figure. Similarly, a best estimate of the
pole position is given by

at
ffiffiffiffiffi
s0

p ¼ 0.4606ð26Þ � i
2
0.0039ð39Þ: ð11Þ

The small total width of the resonance, despite the large
coupling to h81η

8, is explained by there being no phase
space for this subthreshold decay.
The results presented in this section describe a very

narrow exotic 1−ðþÞ resonance that appears in a version of
QCD where the u, d quarks are as heavy as the physical s
quark. We will now discuss an interpretation of these
results, aiming to provide a description of the π1 resonance
at the physical light-quark mass.

VII. INTERPRETATION

In this section we will discuss what can be learned from
the observation of a JPðCÞ ¼ 1−ðþÞ resonance at the SU(3)
flavor point as presented above. As discussed in Sec. III, we
choose to focus our interpretation on the isovector member
of the SU(3) octet, the π1. We will attempt to infer possible

-0.05

0.05

0.05 0.10 0.15 0.20 0.25 0.45

-0.05

0.05

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

-0.05

0.05

0.05

FIG. 14. Couplings corresponding to the pole singularities shown in Fig. 13 as described in the text. Error bars reflect the statistical
uncertainties on each coupling for each parametrization. Shaded bars show ranges and upper limits on the couplings described in the
text. Top: couplings to non-vector-vector channels for parametrizations where the f81η

8f3S1g coupling was found to be significantly
nonzero. Middle: as top but for parametrizations where the f81η

8f3S1g coupling was found to be zero or fixed to be identically zero.
Bottom: couplings to vector-vector channels, ω8ω8;ω1ω8.
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properties of this resonance at the physical light-quark mass
by performing a crude extrapolation, making use of the
JPAC/COMPASS candidate state mass [18] to set the
relevant decay phase spaces. We will compare our results
to existing predictions for hybrid meson decay properties
made in models.
In order to present results in physical units, we must set

the lattice scale using a physically measured quantity, an
approachwhich is necessarily ambiguous, particularly given
that we are far from the physical u, dmasses. As in previous
publications, we choose to use the Ω-baryon mass as a
quantity which should not have a strong dependence on the
u, d quark masses. Calculated on the L=as ¼ 16 lattice, we
find atmΩ ¼ 0.3593ð7Þ [89], so that using the experimental
mass 1672.45(29) MeV [90], we obtain an inverse temporal
lattice spacing a−1t ¼ 4655 MeV. This scale setting yields
stable hadron masses of

mðη8Þ ¼ 688ð1Þ MeV;

mðη1Þ ¼ 939ð5Þ MeV;

mðω8Þ ¼ 1003ð1Þ MeV;

mðω1Þ ¼ 1012ð1Þ MeV;

mðf81Þ ¼ 1491ð3Þ MeV;

mðh81Þ ¼ 1523ð3Þ MeV:

The η81 resonance pole described in the previous section
when expressed in physical units has a mass mR ¼
2144ð12Þ MeV, and a width ΓR ¼ 21ð21Þ MeV, and the
couplings to meson-meson channels are

jcη1η8f1P1gj ¼ 0 → 256 MeV;

jcω8η8f3P1gj ¼ 0 → 279 MeV;

jcω8ω8f3P1gj ¼ 0 → 93 MeV;

jcω1ω8fXP1gj ≲ 93 MeV;

jcf8
1
η8f3S1gj ¼ 0 → 978 MeV;

jch8
1
η8f3S1gj ¼ 978 → 1909 MeV;

where we have given an upper bound on the magnitude of
ω1ω8fXP1g to acknowledge the preferred value of zero
coupling to this channel.
These results can be viewed in the context of past

predictions for the decays of hybrid mesons made within
models. In both flux-tube breaking pictures and bag
models, decays to meson pairs in which one meson has
qq̄ in a P-wave and the other has qq̄ in an S-wave are
enhanced over cases where both mesons have qq̄ in an
S-wave [2–4,13]. In this particular case, that would suggest
dominance of f81η

8; h81η
8 over η1η8;ω8η8;ω8ω8;ω1ω8,

which appears to be borne out in the couplings found in
our QCD calculation.

We can explore some aspects of this observation by
considering generic properties of correlation functions
having a hybrid meson interpolator at the source and a
meson-meson-like operator at the sink, following argu-
ments along the lines of those given by Lipkin [91], which
were later placed in a limited field-theoretic framework by
the “field symmetrization selection rules” [92]. For the
decay of an SUð3ÞF octet into either an octet-octet pair or an
octet-singlet pair, the possible Wick contractions are shown
in Fig. 15. In the case of decays of a 1−ðþÞ octet to a pair of
identical octet mesons, if the spinþ space configuration of
the meson-meson pair is antisymmetric, from Bose sym-
metry the flavor configuration must be antisymmetric, but
this would have the wrong C-parity as discussed in Sec. III
and Appendix B, and the correlation function is therefore
zero. Examples of such decays that are not allowed include
η8η8f1P1g and ω8ω8f1P1; 5P1g. A nontrivial implication in
the SU(3) limit is for octet-singlet meson pairs. For
example, in principle all of ω1ω8f1P1; 3P1; 5P1g can have
a nonzero coupling to the η81, but the fact that the disconne-
cted contributions to the ω1 are very small (see Sec. III)
renders the diagram D small, leaving only diagram C. As
the spatial qq̄wave function of theω1 is expected to be very
similar to that of the ω8, we can anticipate that the
antisymmetric combinations 1P1 and 5P1 from diagram C
will be small, while the symmetric combination 3P1 needs
not be suppressed. That the ω1ω8f3P1g and ω8ω8f3P1g
couplings prove to be small appears to be due to dynamics
that go beyond simple symmetry arguments.
In the case of η1η8f1P1g, if the spatial qq̄ wave functions

of the η1 and η8 were the same, diagram C would be zero
owing to the antisymmetry of 1P1. In our calculation the
optimized single-meson operators are constructed using the
same fermion-bilinear basis for both the octet and singlet,
and we find that essentially the same optimal linear
superposition is present for the η1 and the η8, suggesting

FIG. 15. Wick contraction topologies for 8 → 8 ⊗ 8 (left) and
8 → 8 ⊗ 1 (right).
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that they have similar spatial wave functions. However,
even if diagram C is heavily suppressed, there remains
diagram D which can be significant in this case owing to
the large disconnected contribution to the η1 (which
generates the mass splitting between the η8 and the η1).

A. Flavor decomposition of the SU(3) amplitudes

This is the first determination of the couplings of an
exotic JPC resonance to its decay channels within a first-
principles approach to QCD, but of course it has been done
with u, d quarks that are much heavier than those in nature.
In order to predict how this resonance would appear
experimentally, we have to make a large extrapolation
down to the physical light-quark mass. We will attempt this
in a crude way, by assuming that the pole couplings are
quark-mass independent except for a factor of the angular
momentum barrier kl evaluated at the resonance mass. To
obtain this factor, and to determine the relevant phase
space, we require the mass of the π1 at the physical light-
quark mass. Given that we do not have a calculation of this,
we use the experimental candidate mass 1564 MeV found
in the JPAC analysis of COMPASS data [18], and we also
consider a window of masses between 1500 and 1700MeV.
In order to extrapolate to the physical light-quark mass,

we need to break the SU(3) flavor symmetry present in our
calculation. We will retain isospin symmetry. Because the
neutral flavorless mesons can now become admixtures of
octet and singlet, we will have to introduce mixing angles,
which we will take from phenomenological descriptions of
experimental data. We will first break up the SU(3) octets
into their component states, making use of the SU(3)
Clebsch-Gordan coefficients provided in Ref. [84]. As
an example, for the decays of the πþ1 , the I¼1;Iz¼þ1
member of the octet, into a vector-pseudoscalar pair we
would have the combination,

1ffiffiffi
3

p ðπþρ0 − π0ρþÞ þ 1ffiffiffi
6

p ðKþK̄�0 − K̄0K�þÞ;

such that the relevant couplings would be

jcðπ1 → πρÞj ¼
ffiffiffi
2

3

r
jcω8η8 j; jcðπ1 →KK̄�Þj ¼

ffiffiffi
1

3

r
jcω8η8 j;

where the additional factor of
ffiffiffi
2

p
reflects the desire to sum

over all final state charge combinations when the decay rate
is calculated.
It is these separated couplings which we attempt to

extrapolate to the physical light-quark mass, by making the
simple-minded assumption that each coupling is indepen-
dent of the light-quark mass after appropriately rescaling
the angular momentum barrier,

jcjphys ¼
���� k

physðmphys
R Þ

kðmRÞ
����ljcj: ð12Þ

This approach is motivated by observations made in
lattice calculations of the decays of b1 → ωπ dominantly in
S-wave [68], ρ to ππ in P-wave [46], K� to Kπ in P-wave
[93] and f2; f02 decays to ππ andKK̄ inD-wave [66], which
appear to show quark-mass independence when treated this
way. For example in the b1 case, the coupling computed in
[68] at mπ ∼ 391 MeV is jcj ¼ 564ð114Þ MeV, in good
agreement with the coupling jcjphys ¼ 556ð17Þ MeV
extracted from the experimental b1 decay width. In the
P-wave ρ decay, an explicit factor of k is required for the
scaling to work, as presented in Ref. [46]. In addition, as
shown in Fig. 4 of Ref. [93], the K� coupling scaled in this
way is approximately constant for four different light-quark
masses corresponding tomπ ¼ 239 to 391MeV, even when
the K� is a shallow bound state, and is in agreement with
the experimentally measured coupling. Scaling the f2; f02
D-wave couplings computed at mπ ∼ 391 MeV in [66]
gives, in comparison to values extracted from the Particle
Data Group (PDG) review [90],

Scaled PDG

jcðf2 → ππÞj 488(28) 453þ9
−4 ,

jcðf2 → KK̄Þj 139(27) 132(7),
jcðf02 → ππÞj 103(32) 33(4),
jcðf02 → KK̄Þj 321(50) 389(12),

which is quite a reasonable agreement given the large
extrapolation in quark mass.13

Using the couplings scaled to the physical quark mass,
we can estimate partial widths for decay into kinematically
open channels using the approach presented in the PDG
review [90] where the real part of the pole position is used
to determine the phase space in

ΓðR → iÞ ¼ jcphysi j2
mphys

R

· ρiðmphys
R Þ: ð13Þ

Summing up all nonzero partial widths, we can obtain an
estimate for the total width.14 We will consider each
constrained decay channel in turn, beginning with η1η8.

(i) η1η8f1P1g: For 1 ⊗ 8 → 8, we have only, trivially,
η1π

þ, where η1 is the only member of the SU(3)
singlet. Because η8η8 is forbidden in 1P1 by Bose
symmetry, no components of the form η8π

þ can
appear, where η8 is the flavorless, neutral member of

13An additional quark-model “form factor” as part of the
scaling is advocated by Burns and Close [94].

14Note that doing this at the SU(3) point using the couplings in
Eq. (14) gives a total width in the range 0 → 45 MeV, in
reasonable agreement with our best estimate for the width from
the pole position, 21(21) MeV.
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the octet. The η8 and η1 are related to the physical η
and η0 states via a mixing angle θP,�

η8

η1

�
¼

�
cos θP sin θP
− sin θP cos θP

��
η

η0

�
; ð14Þ

where phenomenological estimates for θP place it
close to −10° [90,95–97]. The couplings of the π1 to
ηπ and η0π then follow,

jcðπ1 → ηπÞj ¼ jcη1η8 sin θPj;
jcðπ1 → η0πÞj ¼ jcη1η8 cos θPj:

The relatively small mixing angle and the lack of
coupling to Bose-forbidden η8η8 suggests that the
η0π coupling should be around 6 times larger than
the coupling to ηπ, independent of the particular
value of cη1η8 .

15

(ii) ω8η8f3P1g: For the vector-pseudoscalar channel, the
relevant flavor embedding is 8 ⊗ 8 → 82, and the
components are

1ffiffiffi
3

p ðπþρ0 − π0ρþÞ þ 1ffiffiffi
6

p ðKþK̄�0 − K̄0K�þÞ;

and the corresponding couplings accounting for a
sum over charge states to be done in the partial width
calculation are

jcðπ1 → ρπÞj ¼
ffiffiffi
2

3

r
jcω8η8 j;

jcðπ1 → K�K̄Þj ¼
ffiffiffi
1

3

r
jcω8η8 j:

(iii) ω8ω8f3P1g, ω1ω8fXP1g: The ω8ω8 and ω1ω8 vec-
tor-vector channels must be considered together.
Unlike the η8η8 channel forbidden in 1P1, the non-
trivial spin coupling in ω8ω8 means that the 3P1 is in
a totally symmetric configuration and thus not
forbidden; see Appendix B. This means the corre-
sponding components for ω8ω8 and ω1ω8 in 3P1

both feature ρω and ρϕ. For 8 ⊗ 8 → 81, the ω8ω8

components are

−
ffiffiffiffiffi
3

10

r
ðK�þK̄�0 þ K̄�0K�þÞ þ 1ffiffiffi

5
p ðρþω8 þ ω8ρ

þÞ

¼ −2
ffiffiffiffiffi
3

10

r
K�þK̄�0 þ 2

ffiffiffi
1

5

r
ω8ρ

þ;

and trivially the only component of ω1ω8 is ω1ρ
þ.

The ω8, ω1 mixing to give ω, ϕ is well known to
be very different from the pseudoscalar case, with
the ω being dominantly 1ffiffi

2
p ðuūþ dd̄Þ and ϕ domi-

nantly ss̄. Using the same conventions as Eq. (14)
with η → ω, η0 → ϕ, this “ideal” mixing would
correspond to a mixing angle of θV ≈ −54.7°. A
mixing angle of θV ∼ −52° extracted from a model
fit describing experimental vector to pseudoscalar
radiative transitions [96] is in good agreement with
this (see also [90]). It follows that the ωρ, ϕρ
couplings for 3P1 are

jcðπ1 → ωρf3P1gÞj ¼
����2

ffiffiffi
1

5

r
jcω8ω8f3P1gj cos θV

− jcω1ω8f3P1gj sin θV
����;

jcðπ1 → ϕρf3P1gÞj ¼
����2

ffiffiffi
1

5

r
jcω8ω8f3P1gj sin θV

þ jcω1ω8f3P1gj cos θV
����:

These expressions are consistent with the expect-
ations of the OZI rule: If the disconnected diagramD
in Fig. 15 vanishes and ω,ϕ mixing is ideal,

cðπ1→ϕρf3P1gÞ¼0 and cω1ω8f3P1g¼
ffiffi
8
5

q
cω8ω8f3P1g.

The coupling to kaons is

jcðπ1 → K�K̄�f3P1gÞj ¼ 2

ffiffiffiffiffi
3

10

r
jcω8ω8f3P1gj:

For 1P1 and 5P1, ω8ω8 is forbidden by Bose
symmetry and the only contribution comes from the
ω1ω8. The corresponding couplings are therefore,

jcðπ1 → ωρf1P1; 5P1gÞj ¼ jcω1ω8f1P1;5P1g sin θV j;
jcðπ1 → ϕρf1P1; 5P1gÞj ¼ jcω1ω8f1P1;5P1g cos θV j:

These couplings are expected to be very small
because only the disconnected diagram contributes
to these decays.

(iv) f81η
8f3S1g, h81η8f3S1g: Similar to ω8ω8, f81η

8 em-
beds in 81 and decomposes into

−
ffiffiffiffiffi
3

10

r
ðKþ

1AK̄
0 þ K̄0

1AK
þÞ þ 1ffiffiffi

5
p ðaþ1 η8 þ ðf1Þ8πþÞ;

where we see the neutral, flavorless members of the
pseudoscalar and 1þðþÞ octets, the η8 and ðf1Þ8, and
the strange members of the 1þðþÞ octet, K1A. We
have not included the f11η

8 channel in the scattering

15Allowing a range of −10° to −20° suggests an η0π coupling
3 to 6 times the ηπ coupling, in good agreement with a ratio of
3.0(3) suggested in the very recent analysis of COMPASS and
Crystal Barrel data [19].
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calculation, given that this was largely decoupled in
our observations of the finite-volume spectra in
Sec. IV, and we therefore assume here that the
f11η

8 coupling is zero.

The mixing of ðf1Þ8 and ðf1Þ1 to form the
physical states f1ð1285Þ and f1ð1420Þ can be
determined from the radiative decays of the
f1ð1285Þ to γρ and γϕ, which suggests a mixing
angle of θA ∼ −34°, following the formalism pre-
sented in [98], using the PDG averages [90], and
using the same conventions as Eq. (14) with
η → f1ð1285Þ, η0 → f1ð1420Þ (see also Ref. [99]).
The corresponding couplings in decays involving
the nonstrange 1þðþÞ mesons are

jcðπ1 → a1ηÞj ¼
1ffiffiffi
5

p jcf8
1
η8 cos θPj;

jcðπ1 → a1η0Þj ¼
1ffiffiffi
5

p jcf8
1
η8 sin θPj;

jcðπ1 → f1ð1285ÞπÞj ¼
1ffiffiffi
5

p jcf8
1
η8 cos θAj;

jcðπ1 → f1ð1420ÞπÞj ¼
1ffiffiffi
5

p jcf8
1
η8 sin θAj:

The other axial-vector–pseudoscalar channel h81η8
embeds in 82 and has components,

1ffiffiffi
6

p ðKþ
1BK̄

0 − K̄0
1BK

þÞ þ 1ffiffiffi
3

p ðbþ1 π0 − b01π
þÞ;

where K1B are the strange members of the 1þð−Þ
octet. The coupling to b1π is then

jcðπ1 → b1πÞj ¼
ffiffiffi
2

3

r
jch8

1
η8 j:

The physical axial-vector kaons, the K1ð1270Þ
and K1ð1400Þ, are not eigenstates of charge con-
jugation and can be considered to be admixtures of
the K1A from the 1þðþÞ octet and the K1B from the
1þð−Þ octet. This mixing, in terms of an angle θK , can
be defined through

�
K1B

K1A

�
¼
�
cosθK −sinθK
sinθK cosθK

��
K1ð1270Þ
K1ð1400Þ

�
; ð15Þ

which is consistent with the conventions in
Ref. [100]. There is not clear consensus on the
value of θK , but it could be as large as ∼45°. In
practice there is only dependence on this mixing
angle if the decay to theK1ð1270ÞK̄ channel is open;
this requires the π1 to have a mass above 1747 MeV,
significantly heavier than the JPAC/COMPASS
candidate.

B. Partial widths for a π1ð1564Þ
Combining the flavor decompositions in the previous

section with the scaling given by Eq. (12) we obtain the
couplings for a 1564 MeV π1 presented in Table VIII.16

Using these couplings, we populate Table VIII with partial
widths determined using Eq. (13). We assume that the
subsequent decays of unstable isobars (e.g., ρ, b1) factorize
from the initial π1 decays given in the table.

TABLE VIII. Thresholds, couplings and partial widths for each channel kinematically open at mR ¼ 1564 MeV.
Couplings are derived as discussed in the text and partial widths are determined according to the definition given in
Eq. (13). For both couplings and partial widths we present a range calculated from the corresponding SU(3)
couplings, while those shown as an upper bound have a preferred value of zero.

Thr./MeV jcphysi j=MeV Γi=MeV

ηπ 688 0 → 43 0 → 1
ρπ 910 0 → 203 0 → 20
η0π 1098 0 → 173 0 → 12
b1π 1375 799 → 1559 139 → 529

K�K̄ 1386 0 → 87 0 → 2

f1ð1285Þπ 1425 0 → 363 0 → 24

ρωf1P1g 1552 ≲19 ≲0.03
ρωf3P1g 1552 ≲32 ≲0.09
ρωf5P1g 1552 ≲19 ≲0.03
f1ð1420Þπ 1560 0 → 245 0 → 2

Γ ¼ P
i Γi ¼ 139 → 590

16For the ωρf3P1g and ϕρf3P1g momentum scaling, where
there is a linear combination of two SU(3) couplings, we evaluate
the momentum at the SU(3) point with m1 ¼ m2 ¼ mω8 in both
cases as the mass difference between the ω8 and ω1 is negligibly
small and it simplifies the resulting algebra.
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It is clear that the dominant decay mode is b1π, with the
next largest channels η0π; ρπ and f1ð1285Þπ being signifi-
cantly smaller. Despite the larger phase space, the partial
width into ηπ is approximately 10 times smaller than η0π,
independent of the coupling and depending only on the
mixing angle and phase space. Only one kaonic decay
mode is kinematically accessible, K�K̄, with a very small
partial width. Decays to ρω are negligible. Summing all
partial widths we obtain an estimate for the total width in
the range 139 to 590 MeV which includes the value
492(47)(102) MeV found in the JPAC/COMPASS analy-
sis.17 If our extrapolation is accurate, it suggests that the
observation of the π1 in ηπ and η0π is through decays which
are very far from being the dominant decay modes.
It is possible that this estimate of the total decay width

may be missing contributions from channels which are
closed at the SU(3) point, whose couplings we have not
determined, but which become open at physical kinematics.
Examples might include f2π (although this is a D-wave
decay with relatively little phase space, so a large width is
unlikely), or ηð1295Þπ (a P-wave decay with a very small
phase space). Any truly multibody decays to three or more
mesons, i.e., those not proceeding through a resonant
isobar, are also not included in this estimate, but the
conventional wisdom is that such decays are not large.
Figure 16 shows the partial widths for each channel in

Table VIII as a function of the physical resonance mass
mphys

R allowed to vary in the range 1500–1700 MeV.
We observe only a modest dependence upon the mass of
the π1 resonance, with the exception of the f1ð1420Þπ
channel which becomes kinematically open in this energy
range.

The only prior estimate of decay rates for a π1 obtained
using lattice QCDwas the calculation presented in Ref. [101]
which used a rather different approach to the one followed in
this paper. By tuning the value of the light-quark mass in a
two-flavor calculation (without strange quarks), the authors
were able to make the mass of the π1 be approximately equal
to the sum of the masses of the π and the b1. They argued that
the time dependence of a single two-point function having a
1−ðþÞ single-meson operator at the source and a b1π-like
operator at the sink can be used to infer a transition rate. The
method makes a number of assumptions that have not yet
been validated, but their result for pion masses near 500MeV
does suggest a large coupling. They also found a somewhat
smaller coupling to f1π.
We can also compare our result extrapolated to physical

kinematics with the predictions of models. Models based
upon breaking of the flux tube [4,13] do not allow decays to
identical mesons, but these are typically prevented by Bose
symmetry anyway. The ability of these models to predict
decays involving the η or η0 is somewhat questionable given
that no disconnected contributions are considered. Within
these models, the quark spin coupling factorizes from the
spatial matrix element such that ρπ decays are only allowed
to the extent that the spatial qq̄ wave functions of the π and
the ρ differ. This difference is quite hard to estimate in
quark models where the very light pseudo-Goldstone boson
π is typically not well described.
If this model picture of the coupling being sensitive to

the difference between the π and ρ radial wave function is
correct, our simple extrapolation of the ρπ coupling may
lead to an underestimate. We can use the charge radius as a
guide to the wave function size, and at the SU(3) flavor
symmetric point these radii were computed in Ref. [76]:
hr2i1=2π ¼ 0.47ð6Þ fm, hr2i1=2ρ ¼ 0.55ð5Þ fm. These sizes
are not that different, as one might expect given the
heaviness of the quarks, but we expect the difference to
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FIG. 16. Partial widths as a function of the π1 pole mass. The bands reflect the coupling ranges given in Table VIII. The total width
obtained by summing the partial widths is shown by the gray band.

17And the somewhat smaller value ∼388 MeV found in the
very recent analysis of COMPASS and Crystal Barrel data [19].
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grow as the light-quark mass reduces. Our simple extrapo-
lation of the ρπ coupling would not capture this change,
and hence our ρπ partial width might be an underestimate.
The flux-tube breaking models have larger couplings to

axial-vector–pseudoscalar channels like b1π and f1π than
to, for example, ρπ, but these couplings are still much
smaller than the ones we are predicting. Bag models show
similar decay systematics [2,3].

VIII. SUMMARY

Prior lattice QCD calculations which treated excited
hadrons as stable particles indicated the presence of exotic
hybrid mesons in the spectrum, but until now the only
theoretical information on the decay properties of these
states came from models whose connection to QCD is not
always clear. In this paper we presented the first determi-
nation of the lightest JPðCÞ ¼ 1−ðþÞ resonance within lattice
QCD. The resonance was observed in a rigorous way as a
pole singularity in a coupled-channel scattering amplitude
obtained using constraints provided by the discrete spectrum
of eigenstates of QCD in six different finite volumes. These
spectra were extracted frommatrices of correlation functions
computed in lattice QCD using a large basis of operators.
In order to make this first calculation practical we opted to

work with quark masses such that mu ¼ md ¼ ms, with the
quark mass selected to approximately match the physical
strange-quark mass. The resulting SUð3ÞF symmetry leads to
a simplified set of decay channels, and the relatively heavy
quark mass means that only meson-meson decays are
kinematically accessible in the energy region of interest.
The computed lattice QCD spectra are described

by an eight-channel flavor-octet 1−ðþÞ scattering system
in which a narrow resonance appears, lying slightly
below the opening of axial-vector–pseudoscalar decay
channels, but well above pseudoscalar–pseudoscalar,
vector–pseudoscalar and vector–vector decay thresholds.
The resonance pole shows relatively weak couplings to
the open channels, hence the narrow width, but large
couplings to at least one kinematically closed axial-
vector–pseudoscalar channel.
A simple-minded approach was used to predict decay

properties of a π1 resonance with physical light-quark mass
from these results. We extrapolated the determined cou-
plings, assuming their only adjustment is in the angular
momentum barrier (an approach that has proven reasonably
successful when applied to previous lattice QCD determi-
nations of vector, axial-vector and tensor mesons). This
suggests a potentially broad π1 resonance, the bulk of
whose decay goes into the b1π mode.
Comparing to the experimental π1ð1564Þ candidate state

found by the JPAC/COMPASS analysis [18], our predicted
range of total width is compatible with their width taken
from the resonance pole position. We note that the ηπ, η0π
modes in which the resonance is observed experimentally
are relatively rare decays in our picture. Although the b1π

decay mode is somewhat challenging experimentally,
ending up in five pions through b1 → ωπ, these results
suggest that it is a promising channel to search in.
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APPENDIX A: SU(3) CLEBSCH-GORDAN
COEFFICIENTS

Unlike in SU(2), where the product of two representa-
tions of definite isospin decomposes into a sum of isospins
each of which appears only once, in SU(3) a representation
can appear more than once in a product. A relevant
example is 8 ⊗ 8 ¼ 1 ⊕ 81 ⊕ 82 ⊕ 10 ⊕ 10 ⊕ 27 where
we observe two octet embeddings, 81 and 82.

Following the conventions given in Ref. [84], the SU(3)
Clebsch-Gordan coefficients Cð…Þ for 8 ⊗ 8 → 81; 82 are
respectively symmetric, antisymmetric under exchanging
the hadrons in the product or conjugating the hadrons in the
product,

C
�

8 8 8i
ν1 ν2 ν

�
¼ ξ1ðiÞ C

�
8 8 8i
ν2 ν1 ν

�
;

C
�

8 8 8i
ν1 ν2 ν

�
¼ ξ3ðiÞ C

�
8 8 8i

−ν1 −ν2 −ν

�
;

with ξ1ð1Þ ¼ ξ3ð1Þ ¼ 1 and ξ1ð2Þ ¼ ξ3ð2Þ ¼ −1, and
using 8̄ ¼ 8. Here a particular member of the octet is
labeled by its isospin I, hypercharge Y, and z-component of
isospin Iz, in ν ¼ ðI; Y; IzÞ, and for mesons the hypercharge
is simply equal to the strangeness, Y ¼ S.
It is useful at this point to write out the nonzero SU(3)

Clebsch-Gordan coefficients for the two embeddings
explicitly. As we are at liberty to work with any member
of the target octet, we choose ν ¼ ð0; 0; 0Þ. We label the
multiplied octets 8a and 8b in order to distinguish them.
Applying the rules given in Ref. [84], we have for the
symmetric 81 combination,

j81;0;0;0i

¼ 1ffiffiffiffiffi
20

p
����8a;1

2
;1;

1

2

E
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

K�þ

���8b;1
2
;−1;−

1

2

E
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

K−

þ
���8a;1

2
;−1;−

1

2

E
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

K�−

���8b;1
2
;1;

1

2

E
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Kþ

−
���8a;1

2
;1;−

1

2

E
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

K�0

���8b;1
2
;−1;

1

2

E
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

K̄0

−
���8a;1

2
;−1;

1

2

E
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

K̄�0

���8b;1
2
;1;−

1

2

E
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

K0

�

−
1ffiffiffi
5

p
����8a;1;0;1E|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ρþ

���8b;1;0;−1E|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
π−

þ
���8a;1;0;−1E|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ρ−

j8b;1;0;1i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
πþ

−j8a;1;0;0i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ρ0

j8b;1;0;0i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
π0

�
−

1ffiffiffi
5

p j8a;0;0;0i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ω8

j8b;0;0;0i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
η8

;

while for the antisymmetric 82 combination,
j82;0;0;0i

¼1

2

����8a;1
2
;1;

1
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E
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2
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1

2

E
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�
;

where we have provided the PDG notation for vector and
pseudoscalar mesons as an example, as was done in Eq. (2).
Defining Ĝ in the usual way as Ĉ followed by a rotation

by π about the y-component of isospin R̂, it is straightfor-
ward to show [106] that,

Ĉj8; I; Y; Izi ¼ Cð−1ÞY=2þIz j8; I;−Y;−Izi;
R̂j8; I; Y; Izi ¼ ð−1ÞI−Iz j8; I; Y;−Izi;
Ĝj8; I; Y; Izi ¼ Cð−1ÞY=2þIj8; I;−Y; Izi;

where C is the intrinsic charge-conjugation quantum
number of the neutral element of the octet, for example,

C ¼ þ1 for η8 andC ¼ −1 for ω8. There are SU(3) analogs
of G-parity where the rotation is between the u, s or d, s
quarks rather than the u, d quarks. When SU(3) is broken
these are no longer good quantum numbers whereas
G-parity is still good as long as there is isospin symmetry.
Acting with Ĉ or Ĝ on the decompositions above gives

Ĉj81; 0; 0; 0i ¼ Ĝj81; 0; 0; 0i ¼ þCaCbj81; 0; 0; 0i;
Ĉj82; 0; 0; 0i ¼ Ĝj82; 0; 0; 0i ¼ −CaCbj82; 0; 0; 0i;

where Ca and Cb are the intrinsic charge-conjugation
quantum numbers of the neutral element of the octets
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8a and 8b. Therefore, 81 and 82 have isoscalar members
which are eigenstates of charge conjugation with opposite
values of C.

In the case of 8 ⊗ 8 → 1, the SU(3) Clebsch-Gordan
coefficients are symmetric under interchange; explicitly the
construction is

j1;0;0;0i

¼ 1

2
ffiffiffi
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1

2
;1;−
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2
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K0

�

þ 1

2
ffiffiffi
2

p ðj8a;1;0;1i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ρþ

j8b;1;0;−1i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
π−

þj8a;1;0;−1i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ρ−
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Þ− 1

2
ffiffiffi
2

p j8a;0;0;0i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ω8

j8b;0;0;0i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
η8

;

and Ĉj1; 0; 0; 0i ¼ Ĝj1; 0; 0; 0i ¼ CaCbj1; 0; 0; 0i.
For the cases of 8 ⊗ 1 → 8 and 1 ⊗ 1 → 1, the Clebsch-

Gordan coefficients are trivial,

j8; 0; 0; 0i ¼ j8a; 0; 0; 0ij1b; 0; 0; 0i;
j1; 0; 0; 0i ¼ j1a; 0; 0; 0ij1b; 0; 0; 0i;

and obviously C ¼ CaCb.

APPENDIX B: SU(3) BOSE SYMMETRY

A practical consequence of Bose symmetry is the elimi-
nation of certain partial-wave configurations in the scatter-
ing of identical mesons. A familiar example assuming only
isospin symmetry is that ππ scattering with isospin ¼ 1 is
only in odd partial waves, while isospin = 0,2 are only in
even partial waves. The SU(3) Clebsch-Gordan coefficients
discussed in Appendix A have definite symmetry under the
exchange of the two scattering hadrons, and this makes the
application of Bose symmetry straightforward when we
need to combine two identical meson multiplets.
Consider first identical pseudoscalar meson octets—the

total spin S is zero and the spin wave function is trivially
symmetric. To ensure overall symmetry under exchange we
require the product of flavor and spatial wave functions to
be overall symmetric, meaning they are either both sym-
metric or both antisymmetric. In Appendix A we showed
that 81 and 82 are symmetric and antisymmetric in flavor
respectively, so we deduce that only partial waves of even l
are permitted in 81 and odd l in 82. It follows that, for
example, η8η8 appears with even l in 81 with JPðCÞ ¼ lþðþÞ

and odd l in 82 with JPðCÞ ¼ l−ð−Þ. A consequence is
that η8η8 is forbidden in decays of a JPðCÞ ¼ 1−ðþÞ octet
resonance.
For identical vector meson octets, the symmetry of the

spin wave function depends on the total spin S: symmetric
for S ¼ 0, 2 and antisymmetric for S ¼ 1. It follows that
for S ¼ 0, 2, the product of flavor and spatial wave
functions must be totally symmetric, so either they are
both symmetric or both antisymmetric, similar to the case

above—only even l partial waves are permitted in 81,
while only odd l appear for 82. In the case of S ¼ 1, by an
analogous argument, only partial waves of odd l are
permitted in 81 and even l in 82. Hence ω8ω8 is forbidden
in 1P1 and 5P1 decays of a JPðCÞ ¼ 1−ðþÞ octet resonance,
while it is allowed in 3P1. Table IX summarizes the Bose-
allowed partial-wave content of 81 and 82 for identical
vector meson octets.

APPENDIX C: INDISTINGUISHABLE
VECTOR-VECTOR P-WAVES IN T −

1

In this Appendix we show that the quantization condition
Eq. (1) when subduced into the T−

1 irrep at rest cannot
uniquely constrain the ω1ω8f1P1; 3P1; 5P1g amplitudes
owing to a residual S3 permutation symmetry on these
channels; i.e., the corresponding scattering parameters in
the t-matrix can be freely interchanged while leaving the
determinant invariant. We also show that the same permu-
tation symmetry is not present for systems with overall
nonzero momentum, so including energy levels obtained in
such irreps would provide a unique constraint for each of
these partial waves.
Recalling the form of the quantization condition,

detlSJma½1þ iρtð1þ iMÞ� ¼ 0;

we note that the finite-volume nature of the problem resides
in the matrix M whose components are defined explicitly
in Appendix A of Ref. [80]. M is trivially diagonal in the

TABLE IX. Bose-allowed partial-wave content of multiplets
81 and 82 from a product of two identical vector meson octets
8a ⊗ 8a for l ≤ 4.

81 ðC ¼ þÞ 82 ðC ¼ −Þ
1S0; 1D2; 1G4;… 1P1; 1F3;…
3P0;1;2; 3F2;3;4;… 3S1; 3D1;2;3; 3G3;4;5;…
5S2; 5D0…4; 5G2…6;… 5P1;2;3; 5F1…5;…
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hadron channel and intrinsic spin, leading to it being
diagonal in ω1ω8f1P1; 3P1; 5P1g channels.18 The reason
that these channels cannot be distinguished at overall zero
momentum is that the diagonal entries of M in each of
ω1ω8f1P1; 3P1; 5P1g are equal.
From the product of spherical harmonics in Eq. (A1) of

Ref. [80],
R
dΩY�

1ml
Y �̄
lm̄l

Y1m0
l
, it is clear that only l̄ ≤ 2

contribute, and from the symmetries of the Lüscher zeta
functions at zero momentum,

Z0⃗
l∉2Z;m∉4Z ¼ 0; Z0⃗

20 ¼ 0;

only l̄ ¼ 0; m̄l ¼ 0 survives. The elements of M thus
reduce to the rather simple form,

Mð2Sþ1P1; m; 2S
0þ1P1; m0Þ ¼ δS;S0δm;m0

4π

k
c0⃗0;0ðk2;LÞ;

and it follows that the rest frame M does not distinguish
between the ω1ω8f1P1; 3P1; 5P1g channels. The result of
this is that permutations of the ω1ω8f1P1; 3P1; 5P1g chan-
nels will leave the determinant in Eq. (1) invariant.
These partial waves become distinguishable if we con-

sider the system at overall nonzero momentum. Following a
similar derivation to the zero momentum case, owing to ZP⃗

20

being nonzero in general, we find that elements of M are
spin dependent. For example, in the case that P⃗ ¼ ½00n�,
the m ¼ þ1, m0 ¼ þ1 elements are given by

Mð1P1;þ1;1P1;þ1Þ¼ 4π

k
cP⃗0;0ðk2;LÞ−

1ffiffiffi
5

p 4π

k3
cP⃗2;0ðk2;LÞ;

Mð3P1;þ1;3P1;þ1Þ¼ 4π

k
cP⃗0;0ðk2;LÞþ

1

2
ffiffiffi
5

p 4π

k3
cP⃗2;0ðk2;LÞ;

Mð5P1;þ1;5P1;þ1Þ¼ 4π

k
cP⃗0;0ðk2;LÞ−

1

10
ffiffiffi
5

p 4π

k3
cP⃗2;0ðk2;LÞ;

where we observe that the coefficients of the cP⃗2;0 term
distinguish the different spin configurations.

APPENDIX D: TRAPPED LEVELS FOR
FACTORIZED K-MATRIX POLES

A parametrization in common use to describe a single
coupled-channel resonance with angular momentum J
assumes a factorized pole in the K-matrix and the simple
phase space [IaðsÞ ¼ −iρaðsÞ] in the construction of the
t-matrix,

t ¼ K̃ð1 − iρK̃Þ−1;
½K̃ðsÞ�lSJa;l0S0Jb ¼ ð2kaÞl

glSJagl0S0Jb

m2 − s
ð2kbÞl0

:

Here we will show that this particular form can lead to
the phenomenon of “trapped” levels in finite-volume
spectra, a situation where there is guaranteed to be exactly
one finite-volume energy level lying between every neigh-
boring noninteracting energy. In particular, we will present
a proof of how trapped levels emerge in coupled meson-
meson scattering in 3S1 and f1P1; 3P1; 5P1g-wave in the rest
frame irreps, as relevant for this study. This effect is not a
general feature of the finite-volume method; for example,
upon adding a matrix of polynomials in s to the K-matrix
above (as we commonly do) the guarantee is removed.
The Lüscher quantization condition Eq. (1) can be

rewritten in terms of the K-matrix defined above yielding
the convenient form,

det½1 − ρK̃M� ¼ 0;

where the determinant is taken over the N-dimensional
space of hadron-hadron channels and partial waves.
When K̃ is factorized as above, the matrix ρK̃M is of the

form abT for all energies, where aðsÞ and bðsÞ are (energy-
dependent) vectors, and hence of rank one. It has one
nonzero eigenvalue μ0ðsÞ ¼ bTa, with eigenvector v0 ¼ a,
and N − 1 zero eigenvalues μiðsÞ ¼ 0 for i ¼ 1;…; N − 1,
whose eigenvectors span the hyperplane orthogonal to a.
It immediately follows that 1 − ρK̃M has exactly
one eigenvalue capable of taking a zero value,
λ0ðsÞ ¼ 1 − bTa—all other eigenvalues λiðsÞ ¼ 1 for
i ¼ 1, …, N − 1. The finite-volume spectrum is therefore
given by the solutions to λ0ðsÞ ¼ 0.
For ease of illustration, consider the case of several

coupled meson-meson channels, each in a single partial
wave. The nontrivial eigenvalue λ0ðsÞ takes the form,

λ0ðsÞ ¼ 1 −
2ffiffiffi

s
p ðm2 − sÞ

X
a

ð2kaÞ2lg2akaMa; ðD1Þ

where Ma are the elements of the diagonal in channel
space M. Recalling the definition of these presented in
Ref. [80], for S- and P-waves in the rest frame,

MaðsÞ ¼
2ffiffiffi
π

p 1

kaL
Z0⃗
00

	
1;

�
kaL
2π

�
2


;

independent of the intrinsic spin of the system. The only
differences between the objects MaðsÞ for different chan-
nels come from the momenta ka. It is therefore instructive
to examine the functional form of

−ð2kaðsÞÞ2lkaðsÞMaðsÞ ðD2Þ18It is also diagonal in the ω1ω8f5P1; 5P3g subspace at rest.
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that appears for each channel in Eq. (D1). We now
investigate the consequences of this for S-wave scattering
before considering P-wave scattering.

1. S-wave scattering

In Fig. 17 we plot Eq. (D2) for the f81η
8 and h81η

8 3S1
channels. These functions are real above threshold, and
show monotonic decrease between divergences at each
noninteracting energy. The finite-volume spectrum in this
case is given by the solutions of

1

2

ffiffiffi
s

p ðs −m2Þ ¼ −g21k1ðsÞM1ðsÞ − g22k2ðsÞM2ðsÞ; ðD3Þ

where the rhs of this expression is just a weighted sum of
the expressions plotted in Fig. 17. The effect of changing
the values of g1 and g2 simply moves the point of inflection
of the rhs in each region between neighboring noninteract-
ing energies. As the lhs is a monotonically increasing
function for

ffiffiffi
s

p
> 1ffiffi

3
p m, this will intersect the rhs exactly

once in each energy region between noninteracting ener-
gies. This results in what we refer to as “trapped” levels. We
see exactly this in Fig. 18, where above f81η

8 threshold we
see a single solution in each region as described.

2. P-wave scattering

For P-wave scattering, Eq. (D2) has an extra factor of a
smooth real function 4k2aðsÞ compared to the S-wave case.
This is positive above threshold, negative below and has a
zero exactly at threshold, and this zero is the reason for
there being no noninteracting level at threshold in the
P-wave. The argument that led to “trapped” levels in the
S-wave applies here too.
It is interesting to revisit the indistinguishability of

f1P1; 3P1; 5P1g in vector-vector scattering in the context
of a factorized pole K-matrix. If we consider this system
which has only a single open channel but three partial
waves, then the single nontrivial eigenvalue which has
zeros at the finite-volume energy levels is

λ0ðsÞ ¼ 1 −
8k3Mffiffiffi
s

p ðm2 − sÞ ðg
2
1 þ g22 þ g23Þ;

as the momenta kðsÞ and the functionMðsÞ are identical in
each of these partial waves.
Naively, we would expect to find only a single root

between neighboring noninteracting energies; however,
this would overlook the fact that the multiplicity of each
of these noninteracting energies is in fact 3, and so we

0.46 0.47 0.48 0.50 0.51 0.52 0.530.49

0.46 0.47 0.48 0.50 0.51 0.52 0.530.49

0

0

FIG. 18. Top: the function −g21k1ðsÞM1ðsÞ − g22k2ðsÞM2ðsÞ, for L=as ¼ 24 and g1 ¼ g2 ¼ 1, plotted in black, and the function
1
2

ffiffiffi
s

p ðs −m2Þ with m ¼ 0.461057 plotted in gray. The points of intersection (circles) correspond to the finite-volume energy levels.
Dashed vertical lines indicate the location of noninteracting energies. Bottom: same as the top plot but with an enlarged vertical scale.

0.46
0

0.47 0.48 0.50 0.51 0.52 0.530.49

FIG. 17. Energy dependence of −k1ðsÞM1ðsÞ and −k2ðsÞM2ðsÞ for a lattice of spatial extent L=as ¼ 24. Both functions are purely
real across this energy region. Dashed vertical lines indicate the location of noninteracting energies.
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should find three roots associated with each noninteracting
energy (these roots are not necessarily triply degenerate as
we will see).
This can be seen most easily by treating each partial

wave as an independent hadron-hadron scattering channel
by perturbing the scattering vector meson mass slightly in
each partial wave. In 1P1 we take mω8 → mω8 − ϵ and in
5P1 mω8 → mω8 þ ϵ, so that the perturbed finite-volume
energy levels are roots of

λ̃0ðsÞ¼1−
8ffiffiffi

s
p ðm2−sÞðg

2
1k

3
−ϵM−ϵþg22k

3Mþg23k
3þϵMþϵÞ;

where the subscript �ϵ means that the vector meson mass
has been perturbed by�ϵ. The previously triply degenerate
noninteracting energies are now split by order ϵ. However,
there are trapped roots between these perturbed noninter-
acting energies which forces at least two of the roots to lie
within ϵ of the unperturbed noninteracting energy. In the
limit ϵ → 0, we find λ̃0ðsÞ → λ0ðsÞ with at least two roots
positioned exactly at the noninteracting energy. The third
root is free to vary in position between these two roots and
the next noninteracting energy, its location depending on
the value of g21 þ g22 þ g23; it is exactly at the noninteracting
energy if and only if g1 ¼ g2 ¼ g3 ¼ 0, in which case the
roots are triply degenerate.

APPENDIX E: SENSITIVITY TO f 81η
8f3S1g,

h81η
8f3S1g COUPLINGS

In this Appendix, we will examine the sensitivity of
finite-volume spectra to the relative size of the f81η

8f3S1g

and h81η
8f3S1g couplings. In Sec. VI, we found the ratio of

these couplings to be poorly determined, while the sum of
the squared couplings was well determined. We will
investigate this effect using a simplified two-channel toy
model where the t-matrix is given by

tabðsÞ ¼
gagb

m2 − sþ g21I1ðsÞ þ g22I2ðsÞ
:

The mass parameter m ¼ 0.46 is chosen to be below the
f81η

8f3S1g threshold, a value which is comparable to the
pole mass found in Sec. VI. By choosing the Chew-
Mandelstam phase space, with real part such that
Iaðs ¼ m2Þ ¼ 0, we ensure that when varying the cou-
plings the bound-state pole remains at

ffiffiffi
s

p ¼ m. This
enables us to test the dependence of the finite-volume
spectra on the magnitude and ratio of the couplings for a
fixed pole position.
In Fig. 19, we present finite-volume spectra obtained by

solving Eq. (1) for several values of the ratio b≡ g1=g2 for
a fixed magnitude, a≡ g21 þ g22 ¼ 1. Shown are the rest-
frame T−

1 irrep considered in this paper, and also the
moving-frame A1 irreps. It is clear that the subthreshold
level, while volume dependent, is quite insensitive to the
coupling ratio in all irreps. The level lying between the
thresholds in the T−

1 irrep is sensitive to the ratio, but that is
of limited use because the thresholds are rather close
together, split only by the mass difference between the
f81 and h81.
On the contrary, for a fixed ratio g1=g2 ¼ 1, it is clear

from Fig. 20 that the subthreshold level is rather sensitive to
the sum of the squared couplings a, with a smaller value

12 16 20 24 12 16 20 24 12 16 20 24 12 16 20 24 12 16 20 24

0.46

0.47

0.48

0.49

0.50

FIG. 19. Finite-volume spectra for the toy model as described in the text for the T−
1 irrep at rest and the A1 irreps in flight.

a2 ≡ g21 þ g22 ¼ 1 is kept fixed, while the ratio b≡ g1=g2 is varied.
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leading to an energy level much closer to the value of
m and with less volume dependence. The level between
the thresholds in the T−

1 irrep is somewhat less sensitive
to a.

It appears that to have a well-determined ratio of
couplings in this case, we need greater statistical precision
on the finite-volume energies and/or additional constraint
from several energy levels in moving frames.
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