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We extract the neutron electric dipole moment jd⃗N j within the lattice QCD formalism. We analyze one
ensemble of Nf ¼ 2þ 1þ 1 twisted mass clover-improved fermions with lattice spacing of a ≃ 0.08 fm
and physical values of the quark masses corresponding to a pion massmπ ≃ 139 MeV. The neutron electric
dipole moment is extracted by computing the CP-odd electromagnetic form factor F3ðQ2 → 0Þ through
small θ-expansion of the action. This approach requires the calculation of the topological charge for which
we employ a fermionic definition by means of spectral projectors while we also provide a comparison with
the gluonic definition accompanied by the gradient flow. We show that using the topological charge from
spectral projectors leads to absolute errors that are more than two times smaller than those provided when

the field theoretic definition is employed. We find a value of jd⃗N j ¼ 0.0009ð24Þθ e · fm when using the
fermionic definition, which is statistically consistent with zero.
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I. INTRODUCTION

The discrete symmetries of parity P, charge conjugation
C and time-reversal T play a significant role in the
phenomenological structure of the Standard Model (SM).
Although the neutron has an overall zero electric charge, a
conundrum that physicists are trying to understand for
decades is whether the distribution of the positive electric
charge could possibly not coincide with the distribution of
the negative electric charge. That is to say whether there
is no invariance under CP parity, which can address the
well-known unsolved puzzle of the origin of the imbalance
of matter and antimatter in the universe. Such an imbalance
between positive and negative electric charge would
manifest itself as the nonvanishing of the neutron elec-
tric-dipole moment (nEDM).
Up to the present, no finite nEDM value has been

measured in experiments. In addition, reported current
bounds are still several orders of magnitude below the

SM prediction on CP violation induced by the weak
interactions. A finite nEDM value would point toward
physics beyond the standard model (BSM) [1] and it is thus
an interesting quantity to study theoretically.
Experimental measurements are under way to improve

the upper bound of the value of nEDM denoted as d⃗N
provided by a number of experiments, such as those given
in Refs. [2–4]. Until recently, the best measured upper
bound was that given in Refs. [3,4] as

jd⃗N j < 2.9 × 10−13 e · fm ð90%CLÞ: ð1Þ
This result is extracted using stored “ultracold” neutrons,
applying a weak magnetic field when a strong, parallel
background electric field is reversed and measuring the
alternation on the neutron spin precession frequency. The
experiment has been carried out at the Institut Laue-
Langevin (ILL) reactor in Grenoble.
Very recently [5], an experiment measured the nEDM at

the Paul Scherrer Institute (PSI) in Switzerland using
Ramsey’s method of separated oscillating magnetic fields
with “ultracold” neutrons. The novelty of this experiment
lies on using the Hg-199 co-magnetometer and an array of
optically pumped cesium vapor magnetometers to cancel
and correct for magnetic field changes. The result of this
experiment yields an improved upper limit of
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jd⃗N j < 1.8 × 10−13 e · fm ð90%CLÞ: ð2Þ

The nEDM value has also been extracted from different
theoretical perspectives, such as model dependent
studies [6–14], as well as effective field theory calculations
[15–23], reporting values for dN in the range of jd⃗N j∼
θ ·Oð10−2–10−3Þ e · fm. Using either the result given in
Eq. (1) or Eq. (2) one derives a bound of the order
θ ≲Oð10−10–10−11Þ.
In this work, we investigate the nEDM induced by strong

interactions, namely by the topological term. We neglect
contributions which might come from higher dimensional
components in the action, such as the lowest-dimensional
(d ¼ 5) effective quark-gluon CP-odd interaction [24,25].
In this approach, we include a θ-topological term in the
QCD Lagrangian density:

LQCDðxÞ ¼
1

2g2
Tr½FμνðxÞFμνðxÞ�

þ
X
f

ψ̄fðxÞðγμDμ þmfÞψfðxÞ − iθqðxÞ; ð3Þ

written in Euclidean time. The first two terms are CP-
conserving while the θ-term is CP-violating that can give
rise to a nonzero nEDM. In the above expression, ψf

denotes a fermion field of flavor f with bare mass mf, Fμν

is the gluon field tensor and qðxÞ is the topological charge
density, which in Euclidean space, is defined as

qðxÞ ¼ 1

32π2
ϵμνρσTr½FμνðxÞFρσðxÞ�: ð4Þ

By considering the electroweak (EW) sector of the SM,
the action in Eq. (3) receives a contribution from the quark
mass matrix M, arising from the Yukawa couplings to the
Higgs field. Hence, the parameter θ shifts to θ̄ ¼ θ þ
arg detM where now θ̄ describes the CP-violating param-
eter of the extended strong and EW symmetry. Here a
delicate issue arises, namely that given the smallness of the
total value of θ̄, either θ and arg detM are both tiny or they
cancel each other at the level that satisfies the experimental
bound on the nEDM value. This is referred to as the “strong
CP problem.” Various scenarios have been put forwards as
a solution to the strong CP problem, that attempt to explain
the smallness of the nEDM. Some of them invoke new
physics as for instance the Peccei-Quinn mechanism
[26,27], which requires the existence of the axion that to
date is not confirmed. Other approaches [28–30] suggest
the presence of an infrared attractive fixed point of the
theory at θ ¼ 0 that would drive any nonzero value of θ to
zero. This would imply that no CP-violating effects could
occur at a macroscopic scale, and in particular no nEDM.
This is discussed within the lattice QCD formulation in
Ref. [31]. For the purposes of this work we assume that θ is
small and we perturbatively expand around it.

At low momentum transfer, the nucleon effective
Lagrangian gives rise to the expression for the nEDM [1]:

jd⃗N j ¼ θ lim
Q2→0

jF3ðQ2Þj
2mN

; ð5Þ

at leading order in θ, where mN denotes the mass of
the neutron, Q2 ¼ −q2 the four-momentum transfer in
Euclidean space (q ¼ pf − pi) and F3ðQ2Þ is the CP-
odd neutron form factor. We can, therefore, calculate the
electric dipole moment by extracting the zero momentum
transfer limit of the CP-odd form factor. This is the
framework on which our work is based on. In practice,
it is impossible to extract F3ðQ2Þ at Q ¼ 0 due to the fact
that the CP-violating nucleon matrix element, decomposes
to QkF3ðQ2Þ (k ¼ 1, 2, 3) and not just to F3ðQ2Þ. Hence, a
direct extraction of F3ð0Þ is prohibited by the theory. We
then need to parametrize theQ2-dependence of F3ðQ2Þ and
then take the limit Q2 ¼ 0.
Since we expect that the θ-parameter is very small we

can expand the exponential of the topological term in
powers of θ. This enables us to integrate out (over space-
time) the topological charge density, which gives the total
topological charge Q:

eiθ
R
d4xqðxÞ≡eiθQ ¼ 1þ iθQþOðθ2Þ;

Q¼
Z

d4xqðxÞ: ð6Þ

A consequence of this expansion is that the value
of F3ðQ2Þ depends on the nucleon two- and three-
point functions correlated with the topological
charge Q, namely with hJNðp⃗f; tfÞJ̄Nðp⃗i; tiÞQi as well
as hJNðp⃗f; tfÞJ em

μ ðq⃗; tÞJ̄Nðp⃗i; tiÞQi, respectively. While
the computation of nucleon two- and three-point functions
within lattice QCD in the absence of the parity-violating
term is well known and rather precise [32–34], when
correlating with Q, introduces large statistical fluctua-
tions. The topological charge, if sampled adequately, has a
Gaussian distribution centered at zero with a width that
increases with the volume of the lattice and would by itself
average to zero. If there is no correlation, or mild
correlation, between the correlation functions and the
topological charge then no signal can be obtained for
F3ðQ2Þ. Different definitions of the topological charge
may be more suitable to pick up the correlations with the
nucleon two- and three-point functions [35,36].
Recently, a comparison of lattice QCD determinations of

the topological susceptibility using a gluonic definition
with gradient-flow, cooling and other equivalent smoothing
schemes, as well as, a fermionic definition using spectral
projectors [37–40] has been carried out [35,36]. Although
both these gluonic and fermionic definitions lead to
compatible results in the continuum limit, the gluonic
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definitions are much more affected by cut-off effects. For
the spectral projectors one can choose a value of the
spectral cutoff that would completely eliminate discretiza-
tion effects in the topological susceptibility. Therefore,
using spectral projectors is preferable since the discretiza-
tion error on the topological susceptibility as well as the
statistical error are suppressed. Given the statistical supe-
riority of spectral projectors in calculation of quantities that
depend on the topological charge, one needs to consider
the fermionic definition as compared to the commonly
used gluonic definition. One has to bear in mind that the
computational cost of spectral projectors is orders of
magnitude larger than that of the gluonic. However, for
quantities calculated at a given lattice spacing without a
continuum extrapolation, the fermionic definition can be
the only option to avoid large cutoff effects. Since in this
work we investigate the nEDM at physical pion mass we
are, at the moment, restricted to use one Nf ¼ 2þ 1þ 1
ensemble [41], and therefore a continuum extrapolation is
not possible. In the future, we plan to include two more
ensembles with smaller lattice spacings in order to be able
to take the continuum limit.
An alternative way to compute the nEDM is to use an

expression from chiral perturbation theory to extrapolate
the nEDM obtained at larger pion masses to the physical
point. However, such an extrapolation in the pion mass
carries its own uncontrolled systematic errors. Current
values of F3ðmπÞ computed for mπ > 135 MeV within
lattice QCD, as can be seen in Fig. 11, are nonzero only
within a few standard deviations or even consistent with
zero within the given statistical accuracy. Furthermore, F3

decreases as the pion mass decreases vanishing at the chiral
limit. Thus, the smaller the pion mass the more difficult it is
to compute F3ðQ2Þ with a statistical significance that
would exclude a zero value. Therefore, performing a chiral
extrapolation from such data can be difficult. In a recent
study [42], the authors performed a chiral fit and obtained a
statistically significant nonzero value for F3ð0Þ at pion
mass mπ ¼ 135 MeV, concluding that there is a signal for
CP violation induced by the θ-term. However, large
uncertainties on the few data points used in the fit, cast
in doubt the reliability of the result. It is, therefore, very
important to perform a first-principles study directly at the
physical pion mass.
This paper is organized as follows: In Sec. II we explain

our methodology, which enables us to extract F3ðQ2Þ from
two and three-point correlation functions. Subsequently, in
Sec. III we provide the details of the lattice QCD setup and
the calculation, including the expressions of the correlation
functions in terms of the topological charge and discussion
on the topological properties (Sec. IV) of the ensemble used
in this work. In Sec. V we present our results for the
nucleon mixing angle and the CP-odd form factor F3ðQ2Þ
as we take theQ2 ¼ 0 limit. We compare with other studies
in Sec. VI and finally, in Sec. VII we conclude.

II. METHOD

The precise computation of the nEDM from first
principles is one of the long-standing challenges and an
active topic of research within lattice QCD. The lattice
QCD formulation provides an ideal framework to access
nonperturbatively the nEDM. The first pioneering attempt
was reported nearly three decades ago [43], and was based
on the introduction of an external electric field and the
measurement of the shift in the associated energy. This
approach of extracting the nEDM within lattice QCD,
however, breaks unitary since it requires the introduction
of an external electric field. Subsequently, two new
approaches have been proposed. The most commonly used
method involves the calculation of the CP-odd F3ðQ2Þ
form factor by treating the θ-parameter as a small pertur-
bation [42,44–48]. Another approach is to extract the CP-
odd F3ðQ2Þ form factor by simulating the theory with an
imaginary θ [49,50] to avoid the sign issue that a real θ
introduces. This can be achieved either by using a field
theoretical definition of the topological charge density or
by replacing the topological charge operator with the
flavor-singlet pseudoscalar density employing the axial
chiral Ward identities [44,45]. Although this approach
provides a well-defined framework, it requires the produc-
tion of new ensembles at various values of θ and analytic
continuation. The cost of simulations of ensembles at the
physical point for several values of θ and different values of
lattice spacing is currently prohibitively high. Therefore, in
this work we use the former approach, keeping θ real and
expanding in powers of θ.
Allowing for theCP-violating θ term, the matrix element

of the electromagnetic current

hNðp0;s0ÞjJ μ
e:m:jNðp;sÞiθ ¼ ūθNðp0;s0Þ½ΓμðqÞ�uθNðp;sÞ;

ð7Þ

can be decomposed in four form factors as follows

ΓμðqÞ ¼ F1ðQ2Þγμ þ ðF2ðQ2Þ þ iγ5F3ðQ2ÞÞ iσ
μνqν

2mθ
N

þ FAðQ2Þ ð=qq
μ − q2γμÞγ5
mθ;2

N

: ð8Þ

The electromagnetic current is given by J μ
e:m: ¼P

f efψ̄fγ
μψf, where ef is the electric charge of the quark

field ψf, ūθNðp0; s0Þ is the nucleon spinor in the presence of
the θ-term and q ¼ p0 − p is the four-momentum transfer.
In the above expression F1ðQ2Þ and F2ðQ2Þ are the Dirac
and Pauli electromagnetic form factors, F3ðQ2Þ is the CP-
odd form factor and FAðQ2Þ is the anapole form factor, that
vanishes for C-preserving actions. They are all expressed as
function of the Euclidean four-momentum transfer squared
Q2. The presence of hiθ in Eq. (7) indicates that it is the
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state with the action that includes the θ-term. Once the
dependence of the form factors on the transferred momen-
tum is known, one can extract the electric dipole moment
from F3ðQ2Þ in the limit Q2 → 0 using the relation given
in Eq. (5).
As pointed out in Ref. [51], however, a spurious mixing

between the F2ðQ2Þ and F3ðQ2Þ form factors occurs if
these quantities are not carefully defined. In particular,
the contribution to the J μ

e:m: matrix elements coming
from F3ðQ2Þ transforms as an axial 4-vector as expected,
only if the spinor uθNðp; sÞ appearing in Eq. (7) transforms
as a regular Dirac spinor under parity, i.e., only if
uθNðp0 ¼ ðp0;−p⃗ÞÞ ¼ γ4uθNðpÞ. This holds if spinors sat-
isfy the Dirac equations:

ði=pþmθ
NÞuθNðp;sÞ¼ 0; ūθNðp;sÞði=pþmθ

NÞ¼ 0; ð9Þ

where the real-valued mθ
N is the mass of the nucleon in the

θ ≠ 0 vacuum.
On the lattice, the above matrix elements can be

extracted from the Euclidean three-point function given by

Gμ;ðθÞ
3pt ðp⃗f; q⃗; tf; tinsÞ
≡ hJNðp⃗f; tfÞjJ μ

e:m:ðq⃗; tinsÞjJ̄Nðp⃗i; tiÞiθ; ð10Þ

where JNðp⃗f; tfÞ, J̄Nðp⃗i; tiÞ are the nucleon interpolating
operators that respectively create a nucleon at time ti
(source) with momentum p⃗i and annihilate it at time tf
(sink) and momentum p⃗f.
Inserting unity as a complete set of energy and momen-

tum eigenstates in Eq. (10) leads, in the large Euclidean
time limit, to the ground state contribution given as

Gμ;ðθÞ
3pt ðp⃗f; q⃗; tf; tins; tiÞ
¼ e−E

f
Nðtf−tinsÞe−Ei

Nðtins−tiÞ
X
s;s0

hJN jNðpf; s0Þiθ

× hNðpf; s0ÞjJ μ
e:m:jNðpi; sÞiθhNðpi; sÞjJ̄Niθ; ð11Þ

with Ei
N≡ENðp⃗iÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
i þðmθ

NÞ2
p

and Ef
N ≡ENðp⃗fÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p⃗2
fþðmθ

NÞ2
q

. Excited states contribution are suppressed

in the above expressions. The overlap between the inter-
polating operators and the nucleon state of a given
momentum can be expressed as

hJN jNðp⃗; sÞiθ ¼ Zθ
Nũ

θ
Nðp⃗; sÞ;

hNðp⃗; sÞjJ̄Niθ ¼ ðZθ
NÞ� ¯̃uθNðp⃗; sÞ; ð12Þ

where the spinors ũθN , ¯̃u
θ
N satisfy the following Dirac

equations

ði=pþmθ
Ne

−2iαNðθÞγ5ÞũθNðp⃗; sÞ ¼ 0;

¯̃uθNðp⃗; sÞði=pþmθ
Ne

−2iαNðθÞγ5Þ ¼ 0: ð13Þ

The imaginary phase in the mass terms that arises due to the
CP-violation induced by the θ-term, is parametrized by the
so called mixing angle αNðθÞ. These spinors are related to
the uθN , ū

θ
N that are well-behaved under parity by an axial

rotation, namely

ũθN ¼ eiαNγ5uθN; ¯̃uθN ¼ ūθNe
iαNγ5 : ð14Þ

This can be verified by substituting Eq. (14) in Eq. (13) and
noticing that one recovers Eq. (9). With this in mind, one
can rewrite Eq. (11) as

Gμ;ðθÞ
3pt ðp⃗f; q⃗; tf; tins; tiÞ

≃ jZθ
N j2e−E

f
Nðtf−tinsÞe−Ei

Nðtins−tiÞeiαNγ5
�
−i=pf þmθ

N

2Ef
N

�

× ΓμðqÞ
�
−i=pi þmθ

N

2Ei
N

�
eiαNγ5 ; ð15Þ

where we have used the summation property of the spinors.
For small θ, the quantities in the right-hand side (rhs) of

Eq. (15) can be safely replaced by their leading-order terms,
as follows:

mθ
N ≃mN þOðθ2Þ; Zθ

N ≃ ZN þOðθ2Þ;
αθN ≃ αð1ÞN θ þOðθ3Þ; F3ðQ2Þ ≃ Fð1Þ

3 ðQ2Þθ þOðθ3Þ;
ð16Þ

while higher order contributions can be neglected, therefore
in the following sections we will simply refer to the mixing
angle and the CP-odd form factor as αN and F3ðQ2Þ
correspondingly. The expectation values h…iθ can also be
expanded by using Eq. (6). This gives

hOiθ ¼
1

Zθ

Z
½dU�½dψ̄ �½dψ �Oe−SQCDþiθQ

≃ hOiθ¼0 þ iθhOQiθ¼0 þOðθ2Þ: ð17Þ

The left-hand side (lhs) of Eq. (15) is now written in terms
of expectation values of states with θ ¼ 0 and can be
computed using gauge configurations extracted with the
standard CP-even QCD action. The three-point function
reads:

Gμ;ðθÞ
3pt ðp⃗f; q⃗; tf; tinsÞ
¼ Gμ;ð0Þ

3pt ðp⃗f; q⃗; tf; tinsÞ þ iθGμ;ð0Þ
3pt;Qðp⃗f; q⃗; tf; tinsÞ þ � � � ;

ð18Þ
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with

Gμ;ð0Þ
3pt ðp⃗f; q⃗; tf; tinsÞ≡ hJNðp⃗f; tfÞJ μ

e:m:ðq⃗; tinsÞJ̄Nðp⃗i; tiÞi0;
ð19Þ

Gμ;ð0Þ
3pt;Qðp⃗f; q⃗; tf; tinsÞ
≡ hJNðp⃗f; tfÞJ μ

e:m:ðq⃗; tinsÞQJ̄Nðp⃗i; tiÞi0: ð20Þ

One can, thus, divide the rhs of Eq. (15) into a CP-even and
a CP-odd part and relate them respectively to the three-
point functions of Eq. (19) and Eq. (20). The unknown
normalization coefficients ZN can be canceled by taking an
appropriate ratio with the two-point function, while the
nucleon mixing angle αN can be measured by using the
relation

GðθÞ
2ptðp⃗f; tfÞ≡ hJNðp⃗f; tfÞJ̄Nðp⃗i; tiÞiθ

¼ jZθ
N j2e−ENðtf−tiÞ −i=pf þmθ

Ne
i2αθNγ5

2EN
; ð21Þ

and expanding in powers of θ. The result is that the mixing
angle αN can be determined from the computation of the
following two-point functions

Gð0Þ
2ptðp⃗f; tfÞ≡ hJNðp⃗f; tfÞJ̄Nðp⃗i; tiÞi0; ð22Þ

Gð0Þ
2pt;Qðp⃗f; tfÞ≡ hJNðp⃗f; tfÞQJ̄Nðp⃗i; tiÞi0: ð23Þ

III. LATTICE SETUP

We use one gauge ensemble of twisted mass fermions
produced with 2 degenerate light flavors, a strange and a
charm quark (NF ¼ 2þ 1þ 1), with all quark masses
tuned close to their physical values. We use the Iwasaki
improved gauge action [52], given by

SG ¼ β

3

X
x

�
c0

X4
μ;ν¼1
μ<ν

½1 − ReTrðU1×1
x;μνÞ�

þ c1
X4
μ;ν¼1
μ≠ν

½1 − ReTrðU1×2
x;μνÞ�

�
; ð24Þ

where β ¼ 6=g2, U1×1 the plaquette and U1×2 the rectan-
gular Wilson loops. The Symanzik coefficients are set to
c0 ¼ 3.648 and c1 ¼ ð1 − c0Þ=8. The fermionic sector is
implemented using the twisted mass formulation of lattice
QCD [53,54], which for the degenerate light quark doublet
up and down has the form

SlF ¼ a4
X
x

χ̄ðlÞðxÞ
�
DW ½U� þ i

4
cSWσμνF μν½U�

þm0;l þ iμlγ5τ3
�
χðlÞðxÞ: ð25Þ

In the equation above χðlÞ is the field representing the light
quarks doublet, expressed in the twisted basis, m0;l and μl
are respectively the untwisted and twisted mass parameters,
τ3 is the third Pauli matrix acting in flavor space and DW is
the massless Wilson-Dirac operator. The clover term ∝
σμνF μν is included in the action to suppress cut-off effects
reducing the difference between the mass of the charged
and neutral pions [41]. The strange and charm quarks are
included as a nondegenerate twisted doublet χðhÞ ¼ ðs; cÞt,
with the action [55]

ShF ¼ a4
X
x

χ̄ðhÞðxÞ
�
DW ½U� þ i

4
cSWσμνF μν½U�

þm0;h − μδτ
1 þ iμσγ5τ3

�
χðhÞðxÞ; ð26Þ

where m0;h is the bare untwisted quark mass for the heavy
doublet, μδ the bare twisted mass along the τ1 direction and
μσ the mass splitting in the τ3 direction.
We tune the partial conserved axial current (PCAC) mass

to zero in order to achieve maximal twist. This ensures
automatic OðaÞ improvement for the expectation values
of the observables of interest [56]. More details about
the generation of this ensemble can be found in Ref. [41].
The lattice size is 643 × 128, with lattice spacing
a ¼ 0.0801ð4Þ fm, as determined from the nucleon mass
[41], pion mass mπ ¼ 139ð1Þ MeV and Lmπ ¼ 3.62. We
will refer to this ensemble as cB211.72.64. For the analysis,
we used 750 gauge configurations, separated by 4 trajec-
tories each. The parameters of the simulation are summa-
rized in Table I.

A. Correlation functions

For the computation of the nucleon two- and three-point
functions we employ the standard proton interpolating
field, namely

JNðxÞ ¼ ϵabc½ua;TðxÞCγ5dbðxÞ�ucðxÞ; ð27Þ
where uðxÞ and dðxÞ are up and down quark fields in the
physical base, and C ¼ iγ2γ4 is the charge conjugation

TABLE I. Simulation parameters for the cB211.72.64 ensem-
ble [34,41] used in this work.

β ¼ 1.778 cSW ¼ 1.69 a ¼ 0.0801ð4Þ
643 × 128 mπ ¼ 139ð1Þ MeV mπL ¼ 3.62
L ¼ 5.13 fm mN ¼ 940ð2Þ MeV
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matrix. Since up and down quarks are degenerate in our
formulation, the proton and neutron are degenerate. In
order to improve the overlap with the neutron ground
state and suppress excited states, we use Gaussian
smeared quark fields [57,58], with 125 smearing steps
and parameter αG ¼ 0.2. The smearing is tuned in
order to approximately reproduce a mean square radius
for the neutron of 0.5 fm. We apply 50 steps of APE-
smearing [59] on the gauge links that enter the smearing
operator with αAPE ¼ 0.5 in order to reduce gauge
fluctuations.
For the electromagnetic current J μ

e:m:ðxÞ we use the
symmetrized lattice conserved vector current defined as

jμfðxÞ ¼
1

4
½ψ̄fðxþ μ̂ÞU†

μðxÞð1þ γμÞψfðxÞ
− ψ̄fðxÞUμðxÞð1 − γμÞψfðxþ μ̂Þ
þ ψ̄fðxÞU†

μðx − μ̂Þð1þ γμÞψfðx − μ̂Þ
− ψ̄fðx − μ̂ÞUμðx − μ̂Þð1 − γμÞψfðxÞ�; ð28Þ

which, in contrast to the local current ψ̄fðxÞγμψðxÞ,
does not need renormalization. The lattice conserved
current differs from the local current by terms of order
OðaÞ. By symmetrizing we eliminate such OðaÞ
terms [60].
The two- and three-point functions are then given by

G2ptðΓ0; p⃗f; tf; tiÞ≡
X
y⃗

Tr½Γ0hJNðy⃗; tfÞJ̄Nðx⃗; tiÞi�e−p⃗fðy⃗−x⃗Þ;

ð29Þ

G2pt;Qðγ5; p⃗f; tf; tiÞ

≡X
y⃗

Tr

�
γ5
4
hJNðy⃗; tfÞQJ̄Nðx⃗; tiÞi

�
e−p⃗fðy⃗−x⃗Þ; ð30Þ

Gμ
3ptðΓk; q⃗; p⃗f; tf; tins; tiÞ
≡X

y⃗;z⃗

Tr½ΓkhJNðy⃗; tfÞJ μ
e:m:ðz;tinsÞJ̄Nðx⃗; tiÞi�

×e−p⃗fðy⃗−x⃗Þeq⃗ðz⃗−x⃗Þ; ð31Þ

Gμ
3pt;QðΓk; q⃗; p⃗f; tf; tins; tiÞ
≡X

y⃗;z⃗

Tr½ΓkhJNðy⃗; tfÞJ μ
e:m:ðz; tinsÞQJ̄Nðx⃗; tiÞi�

× e−p⃗fðy⃗−x⃗Þeq⃗ðz⃗−x⃗Þ; ð32Þ

where the projectors Γ0 and Γk are given by

Γ0 ¼
1

4
ð1þ γ0Þ; Γk ¼ iΓ0γ5γk: ð33Þ

For the computation of the three-point functions, we
consider only the connected contribution as shown in
Fig. 1. We use the standard method of sequential inversions
through the sink, taking the final momentum p⃗f ¼ 0⃗. The
time slice of the sink relative to the source (sink-source time
separation) is kept fixed to tf − ti ¼ 12a. From our
previous investigation using an ensemble of Nf¼2þ1þ1

twisted mass fermions with pion mass mπ ≈ 370 MeV we
showed that such a time separation is sufficient to suppress
excited state contributions to the accuracy of the present
study [61]. Larger values of the sink-source time separa-
tion, even if desirable for a better suppression of the excited
states, lead to large statistical uncertainties, that for the
current investigation would require a prohibitively high
statistics. We compute the three-point functions using 54
randomly distributed source positions per configuration,
that can be treated as statistically independent measures,
leading to a total statistics of ∼40 k data. The two-point
functions enter the F3 determination both explicitly,
appearing in the ratio with the three-point function (see
Eq. (40) in Section V B), and implicitly through the mixing
angle αN . In the former case, we employ the same 54 source
positions used for the three-point functions, while for the
computation of the mixing angle, we had higher statistics
available, namely 200 source positions per configuration. A
summary of the statistics used is given in Table II.

FIG. 1. Diagrammatic representation of the two-point function (left) and connected three-point function (right).

TABLE II. Statistics employed for the evaluation of αN and F3.

Correlation functions Nsrc Ncnfs Ntot

αN G2pt 200 750 150000
F3 G2pt,G3pt 54 750 40500
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IV. TOPOLOGICAL CHARGE

As already mentioned, for the computation of the three-
and two- point functions in Eqs. (30), (32) one needs the
topological charge. In the continuum, the topological
charge is defined as the integral over the four-dimensional
volume of the topological charge density given in Eq. (4),
namely

Q ¼ 1

32π2

Z
d4xϵμνρσTr½FμνðxÞFρσðxÞ�: ð34Þ

The discrete counterpart of the above quantity can be
obtained by replacing the gluonic field tensor with a lattice
operator that reproduces the correct continuum limit. The
choice is not unique, and operators with smaller discreti-
zation effects can be obtained by using OðaÞ-improved
definitions of Fμν. In particular, one of the definitions of Q
we used in this work, is the symmetric or “clover”
definition, first introduced in Ref. [62]. It has the form

QL ¼ 1

32π2
X
x

ϵμνρσTr½CμνðxÞCρσðxÞ�; ð35Þ

and uses a discretization of the gauge strength tensor in
terms of a “clover leaf” path Cμν, made by the sum of the
plaquettes PμνðxÞ centered in x and with all the possible
orientations in the μν-plane, i.e.,

CμνðxÞ ¼
1

4
Im½PμνðxÞ þ Pν;−μðxÞ þ P−μ;−νðxÞ þ P−ν;μðxÞ�:

ð36Þ

This operator is even under parity transformations and
exhibits Oða2Þ discretization effects. We use the gradient
flow [63] in order to suppress the UV fluctuations of the
gauge field defining the topological charge. The smoothing
action employed in the flow equation is the standardWilson
action. The elementary integration step is ϵ ¼ 0.01 and the
topological charge is computed on the smoothed fields at
multiples of Δτflow ¼ 0.1. The flow time must be chosen
large enough such that discretization effects are canceled
but to keep the topological properties of the gauge field
unchanged. For this reason we study the dependence of our
final quantities on τflow searching for a plateau region.
According to Ref. [63] we expect that this happens
for a

ffiffiffiffiffiffiffiffiffiffiffi
8τflow

p
∼Oð0.1 fmÞ.

In addition, we use a second definition of the topological
charge based on spectral projectors as described in
Refs. [38,39]. This definition allows one to extract the
topological charge from the spectrum of the hermitian
Wilson-Dirac operator D†

WDW, by employing the relation

Q0 ¼
Xλi<M2

0

i

u†i γ5ui; ð37Þ

where ui is the eigenvector related to the ith eigenvalue λi,
Q0 is the bare topological charge, andM0 is the bare spectral
threshold. It bounds the modes that enter into the sum in
Eq. (37) by requiring λi < M2

0. According to Ref. [39], the
renormalization of these quantities are given by

Q ¼ ZS

ZP
Q0; Mthr ¼ Z−1

P M0; ð38Þ

where ZP, ZS are the renormalization constants of the
pseudoscalar and scalar densities, respectively. We calculate
the lowest 200 eigenvalues of the squared twistedmassDirac
operator using the implicitly restarted Lanczos method
(IRLM) where polynomial acceleration is employed.
The renormalization constants are computed in a

massless renormalization scheme, employing the Rome-
Southampton method or the so-called RI0 scheme [64]. We
use five Nf ¼ 4 ensembles generated exclusively for the
renormalization program at the same β value as that of the
ensemble of interest. The five ensembles are generated at
different pion masses in the range of 366 MeV to 519 MeV
using a lattice volume of 243 × 48. This enables us to
perform the chiral extrapolation to extract the Z-factors at
the chiral limit [33]. For the nonperturbative calculation of
the vertex functions we use momentum sources [65] that
allow us to reach per mil statistical accuracy with Oð10Þ
configurations [66,67]. For the renormalization we need ZP
and ZS, which are scheme and scale dependent. We use the
MS-scheme, which is commonly used in experimental and
phenomenological studies. The conversion procedure is
applied on the Z-factors obtained on each initial RI0 scale
ðaμ0Þ, with a simultaneous evolution to an MS scale,
chosen to be μ̄ ¼ 2 GeV. For the conversion and evolution
we employ the intermediate renormalization group invari-
ant (RGI) scheme, which is scale independent and connects
the Z-factors between the two schemes. For more details
about our renormalization program see Refs. [32,33,68].
We find that ZP ¼ 0.462ð4Þ [33] and ZS ¼ 0.620ð4Þ.1
With these values of the renormalization constants,

changing the upper limit in Eq. (37) up to the maximum
200 lowest eigenvalues corresponds to a thresholdMthr that
varies in the range 0 ÷ 65 MeV.
In the rest of the paper, we will refer to the definition of

Eq. (35) as “gluonic” or “field theoretic” definition of the
topological charge, while the one defined by Eq. (38) will
be referred to as the “fermionic” or “spectral projectors”
definition.

1We would like to thank M. Constantinou for providing this
value.
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A. Topological susceptibility and scale setting

Before presenting results on theCP-odd form factors, we
investigate the topological properties of the cB211.72.64
gauge ensemble. In the left panel of Fig. 2 we show the
Monte Carlo (MC) history of the topological charge using
the two definitions. One can observe that the autocorrela-
tion time of Q is not critical, i.e., no topological freezing
occurs at this lattice spacing, and the configurations explore
several topological sectors. Moreover, there is a correlation
of 72(2)% between results obtained using the gluonic and
fermionic definitions. These results are computed at
τflow ¼ 3.5, and Mthr ¼ 64.98 MeV but similar observa-
tions hold also for other values of the smoothing and cutoff
scales.
In the right panel of Fig. 2, histograms of Q are

compared. Both definitions lead to a Gaussian-like distri-
bution with a mean value of the topological charge
compatible with zero within errors with, however, different
widths. In particular, the value of the topological charge

extracted via spectral projectors shows less fluctuations
and, thus, exhibits a narrow distribution. This impacts the
values of the topological susceptibility defined as hQ2i=V
that differs between the two definitions, as can be seen
from Fig. 3. This mismatch is actually expected, due to the
fact that the spectral projectors definition shows milder
cutoff effects with respect to hQ2i=V computed via the field
theoretical definition. This was already observed in
Ref. [35]. Also autocorrelation is taken into account, by
monitoring how the change in the bin size of the jackknife
resampling affects the uncertainty on our observables. The
results can be seen in Fig. 4, where we show the absolute
error of hQ2i as a function of the bin size, using both
definitions of the topological charge. The error stabilizes
after about bin size 8. The nucleon correlation functions
show smaller autocorrelation, as can be seen in Fig. 4,
where we show theF3 form factor for which no correlations
appear already for bin size 1. Taking configurations
separated by 4 trajectories each, which is what is done

FIG. 2. Monte Carlo history of Q (left panel), and resulting histogram (right panel) computed on 750 configurations (selected every
fourth trajectory), using the gluonic τflow ¼ 3.5 (blue) and fermionic with Mthr ¼ 64.98 MeV (red) definitions.

FIG. 3. Topological susceptibility with the two definitions ofQ using the gluonic definition (left) as a function of the time flow and the
fermionic (right).
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in this work, is thus enough for a proper estimation of the
electric dipole moment. Details about the calculation of F3

will be provided in the next section; in the rest of this
section we discuss the choice of the parameters in the two
definitions of Q.
Another observation that emerges from Fig. 3 is that,

while the susceptibility computed using the field theoretical
definition is essentially flat as a function of the time flow,
the one computed using spectral projectors depends
strongly on the threshold Mthr. The absence of a plateau
for the window of eigenvalues computed makes it harder to
properly justify a good choice ofMthr. In principle, there is
no reason to expect to obtain a plateau for a large value of
the renormalized cutoff. Actually, the results from Ref. [36]
suggest that for the particular lattice spacing we cannot
observe a plateau for cutoffs up to 180 MeV.
However, the fact that we do not observe a plateau is not

a problem di per se. Indeed, the particular choice of Mthr
becomes irrelevant once one takes the continuum limit, as
long as the renormalized value of the threshold in physical
units is kept fixed. Since in this work we use one gauge
ensemble, the question that arises is what are the discre-
tization errors that result from taking a threshold that is not
in the plateau region.
To give a qualitative answer we use the results obtained

in the work of Ref. [35]. In Fig. 5, we show the continuum
extrapolation of the topological susceptibility for three
values of the threshold used in Ref. [35], plus a fourth
value, at Mthr ¼ 60 MeV. What can be seen is that, even if
the slope of the continuum limit increases when we
decrease the threshold, it is still milder than the slope of
the susceptibility computed via the gluonic definition.
Thus, the error in taking the value at finite a instead of

its continuum extrapolation, is negligible with respect to the
one coming from cutoff effects of the gluonic definition.
Therefore, based on this observation, we use the maximum
value of the threshold accessible with the current number of
eigenvalues computed, i.e., Mthr ¼ 64.98 MeV. We can
reasonably expect that similar considerations also hold for
the quantities entering the determination of the nEDM, i.e.,
the two- and three-point function correlated with Q. Their
dependence on the smoothing scale (τflow and cut-off Mthr)
is investigated in the following section.

V. RESULTS

A. Nucleon mixing angle

For the determination of the CP-odd form factor F3ðQ2Þ,
one requires the knowledge of the mixing angle αN . We
extract it from the following ratio of two-point functions at
zero-momentum

αN ¼ lim
tf→∞

G2pt;QðΓ5; 0⃗; tfÞ
G2ptðΓ0; 0⃗; tfÞ

: ð39Þ

We take ti ¼ 0 and thus suppress the dependence on ti. We
seek for an interval for which the ratio becomes time-
independent as a function of tf (plateau region). The time
evolution of the ratio of Eq. (39) is illustrated in Fig. 6 as a
function of tf=a. We use both the gluonic (left panel) and
the fermionic (right panel) definitions for the topological
charge that enters in the computation of αN . In particular,
the one in the left panel is computed at timeflow
τflow ¼ 3.5, while for the fermionic one, we used a cutoff
of Mthr ¼ 64.98 MeV.

FIG. 4. Absolute error of hQ2i using blue circles for the field
theoretic definition of Q and orange for the spectral projectors
and the corresponding results for the F3 form factor with green
and red, respectively, as a function of the bin size of the jackknife
resampling. All errors are rescaled with the error at bin size 1, for
readability.

FIG. 5. Continuum extrapolation of topological susceptibility
taken from Ref. [35], with the adjoint of points at Mthr ¼
60 MeV. Lattice spacing used in that work corresponds to
a=r0 ¼ 0.035. Discretization errors coming from different
choices of Mthr are negligible in respect to the ones that affect
the field theoretical definition.
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We identify a plateau region in the range tf=a ∈ ½9; 18�
and tf=a ∈ ½10; 18� for the gluonic and fermionic defini-
tions, respectively. Fitting to a constant, we find αN ¼
0.202ð20Þð4Þ for the gluonic topological charge and αN ¼
0.128ð9Þð3Þ for the fermionic one. Errors are respectively
the statistical and the systematic coming from the choice of
the plateau range. The latter is computed by varying the
initial time slice in the range [8, 12] and the final time slice
in the interval [17, 20], and taking the largest difference
between mean values. For both definitions of Q, it is
negligible if compared to the statistical uncertainty. To
account for a residual time-dependence we consider the
contribution of the first excited state too. As shown in
Fig. 6, both Ansätze give compatible results and further
validate the choice of the plateau region.
In Fig. 7, we show the dependence of αN on the

smoothing scale of the gluonic definition of the topological

charge. Values reported are extracted using a constant fit in
the plateau region. As can be seen, from τflow ¼ 3, our
resulting value of αN does not depend on τflow. In the same
figure we also show the dependence of αN on the threshold
Mthr computed using the spectral projectors for the topo-
logical charge and a constant fit. This shows a stronger
dependence on Mthr. Such a behavior is reminiscent of the
one exhibited by the topological charge as discussed in
Sec. IVA.

B. Determination of the CP-odd form factor F3ðQ2Þ
In order to extract the CP-odd form factor F3ðQ2Þ, we

construct an appropriate ratio of the relevant three-point
function given in Eq. (32) and a combination of two-point
functions so that unknown overlaps and the exponential
time dependence cancel in the large time limit of tf and tins.
This ratio is given by

FIG. 6. Value of the ratio in Eq. (39), as a function of tf=a, using the two definitions of the topological charge, gluonic definition of
Eq. (35) (left) and fermionic definition of Eq. (38) (right). With the blue (left) and red (right) bands we show the result of a constant fit
within the plateau. With the grey band we show the corresponding fits when using for the fit a constant plus an exponential term which
takes into account the first excited state.

FIG. 7. Dependence of the nucleon mixing angle αN on the smoothing scale τflow and cut-offMthr. Left, using the gluonic definition of
the topological charge and right, using spectral projectors. In both cases αN is extracted using a constant fit within the plateau region of
the ratio of Eq. (39).
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Πμk
3pt;Qðq⃗Þ≡ lim

tf;tins→∞

Gμ
3pt;QðΓk; q⃗; tf; tinsÞ
G2ptðΓ0; 0⃗; tfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ptðΓ0; q⃗; tf − tinsÞG2ptðΓ0; 0⃗; tinsÞG2ptðΓ0; 0⃗; tfÞ
G2ptðΓ0; 0⃗; tf − tinsÞG2ptðΓ0; q⃗; tinsÞG2ptðΓ0; q⃗; tfÞ

vuut ; ð40Þ

where p⃗f ¼ 0⃗. The form factor F3ðQ2Þ is then extracted
from

Π0k
3pt;Qðq⃗Þ¼

iqkC
2mN

�
αNGEðQ2Þ−F3ðQ2Þ

2mN
ðEN þmNÞ

�
;

ð41Þ

where EN is the initial energy of the nucleon, C ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m2

NÞ=ðENðEN þmNÞÞ
p

is a kinematic factor and
GEðQ2Þ ¼ F1ðQ2Þ þ ðq2=ð2m2

NÞÞF2ðQ2Þ is the electric
Sachs form factor. F1ðQ2Þ and F2ðQ2Þ are the Pauli and
Dirac form factors. We note that Eq. (41) derives from
Eq. (55) of Ref. [61] with the correction given in Ref. [51].

FIG. 8. Ratio of Eq. (40) as a function of insertion time tins at fixed sink-source time separation tf ¼ 12a. The three smallest values of
the momentum transfer squared are shown. In the left column, we show results using the gluonic definition of Q and τflow ¼ 3.5, while
in the right column, the results are obtained using the spectral projectors for the computation of Q and Mthr ¼ 64.98 MeV. The bands
are the result of a constant fit in the plateau region excluding symmetrically 3 and 4 time slices for the gluonic (left) and fermionic (right)
definition of Q, respectively.
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The neutron electric form factor GEðQ2Þ is extracted from
Π00

3pt (see Eq. (A4) of Ref. [34])

Π00
3pt ¼ C

EN þmN

2mN
GEðQ2Þ: ð42Þ

We note that Eq. (41) is not the only way to extract the
F3ðQ2Þ form factor. Similar relations can be written that
express the Πkk

3pt;Q and Πj≠k
3pt;Q components as linear

combinations of F1, F2 and F3. We verified that they lead
to worse signal-to-noise ratios, and thus we opt to use
Eq. (41) in this work.
In Fig. 8, we show the ratio defined in Eq. (40) as a

function of the insertion time tins at fixed sink-source time
separation tf ¼ 12a, for the smallest three nonzero values
of the momentum transfer squared, i.e., Q2 ¼ 0.056 GeV2,
Q2 ¼ 0.111 GeV2 and Q2 ¼ 0.164 GeV2. The results
shown for Π0k

3pt;Q are averaged among momenta with
nonzero k-component in all k-directions. Despite the large
statistics employed (∼40000 samples), the errors are large
and do not allow to increase further the sink-source time
separation. We fit the ratio in symmetric intervals ½−tfit; tfit�
and vary the fit ranges, taking tfit ¼ 2, 3, 4. The resulting
values are all compatible within our current statistical
accuracy. It is worth to be noting that the results extracted
using the fermionic definition of the topological charge
show a significant error reduction with respect to the
gluonic counterpart. Nevertheless, a zero value cannot be
excluded for all three momentum transfers. This is made
even more evident in Fig. 9, where the values of F3 at
different Q2 are reported. In order to extract F3ð0Þ and thus
dθN , we extrapolate to Q2 ¼ 0 by considering the weighted
average of the values at the three smallest Q2 values. Other

fit forms, such as the dipole Ansatz and the z-expansion
[69], or even the momentum elimination technique [70], are
not viable with this level of uncertainty. Our final results are

field theoretical or gluonic definition

jdθN j ¼ 0.0018ð56Þθ e · fm; ð43Þ

fermionic definition via spectral projectors

jdθN j ¼ 0.0009ð24Þθ e · fm: ð44Þ
As can be seen, the fermionic definition based on

spectral projectors of the topological charge provides a
more accurate determination than the gluonic definition.
Considering the absolute error as a bound for the magnitude
of the nEDM, what we have is an improvement by a factor
∼2 when using the fermionic definition. Therefore, the
additional cost coming from the computation of the
eigenmodes for the fermionic definition of Q, is compen-
sated by the increased precision, leading to a large payoff in
terms of the computational cost. Moreover, the choice of
maximum cut-off in the number of eigenmodes, i.e.,
Mthr ¼ 64.98 MeV, employed in the computation of the
results presented, is in some sense the most conservative
choice. Indeed, by looking at the dependence of the
extrapolated value of F3ð0Þ as a function of Mthr, shown
in the bottom row of Fig. 10, it can be seen that the mean
value of the form factor does not depend on Mthr and only
the error increases with increasing Mthr. This is in contrast
with what is observed for the mixing angle αN , that instead
changes significantly with Mthr. This is because the
changes in αN are small as compared to the uncertainty
of Π0k

3pt;Q and are thus not visible in F3 at the current level
of precision.

FIG. 9. F3ðQ2Þ as a function of Q2, using a the field theoretical or gluonic definition of the topological charge (left panel) and the
fermionic definition based on spectral projectors (right panel). The blue (left) and red (right) bands represent the weighted average of the
values at three smaller values of Q2.
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VI. COMPARISON WITH OTHER
DETERMINATIONS OF NEDM

In Fig. 11 we provide a comparison of our result with
those of other lattice QCD studies for a similar lattice
spacing. We observe that our value has a statistical error

that is comparable with the recent results in Ref. [42] that
were, however, computed at much larger values of the pion
mass. Since the errors grow with decreasing pion mass and
so does the computational cost, achieving such an accuracy
it is a major outcome of this work. We note that the authors

FIG. 10. Dependence of the F3ð0Þ on the smoothing scale τflow for the gluonic (upper row) and cutoff Mthr for the fermionic (bottom
row) definitions used in computation of the topological charge, for the three smaller values of the momentum transfer squared.

FIG. 11. Comparison with other recent lattice QCD determinations of nEDM. We show values from Refs. [42] (blue filled squares),
[46] (red filled rhombus), [50] (green filled downwards pointing triangles) and [61] (purple filled circles). The yellow filled upwards
pointing triangle is the result from this work. Errors shown by dashed lines are not the ones from the original papers but are taken from
Table III of Ref. [51], where the spurious contribution coming from F2ðQ2Þ is subtracted. See Ref. [51] for further details.
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of Ref. [42] using their results at these heavy pion masses
perform a chiral extrapolation and find a nonzero value of
jdθN j ¼ 0.00152ð71Þθ e · fm at the physical point. The
accuracy of their determination is due to the chiral
extrapolation where systematic errors from using chiral
expressions cannot be determined. It is worth mentioning
that their actual data have uncertainties similar to this work.
Our result computed directly at the physical point does not
exclude a zero value, but provide a significant bound to the
value of nEDM.

VII. SUMMARY AND CONCLUSIONS

We compute the neutron electric dipole moment using an
ensemble of Nf ¼ 2þ 1þ 1 twisted mass fermions simu-
lated at the physical point and with a lattice spacing of
a ≃ 0.08 fm. The extraction of the CP-violating form
factor F3 with the approach adopted in this work requires
the calculation of the topological charge. For this reason we
made use of a gluonic definition of the topological charge
as well as a fermionic definition by means of gradient flow
and spectral projectors, respectively. This enables us to test
what effect different definitions of the topological charge
may have on the nEDM. F3ðQ2Þ cannot be extracted
directly from the nucleon matrix element due to the
presence of momentum appearing multiplicatively in front
of the form factor. The usual approach is to compute
F3ðQ2Þ for finite Q2 and then extrapolate to Q2 ¼ 0 using
some fitting form. We would like to highlight the following
three crucial aspects of our investigation of the CP-odd
form factor:

(i) Determination of nEDM directly at the physical
point: We perform the computation directly at the
physical value of the pion avoiding uncontrolled
errors that a chiral extrapolation may result in. We
study F3ðQ2Þ as a function of the momentum
transfer Q2, and show that there is no noticeable
dependence on low values of Q2 within our current
statistical accuracy. We, thus, perform a weighted
average on the three lowest ones to extract the value
of the form factors at Q2 ¼ 0.

(ii) Definition of the topological charge: The approach
is based on using spectral projectors to determine the
topological susceptibility yielding a statistical error
that is twice smaller than when using a gluonic
definition whether using gradient flow, link smear-
ing, or cooling are applied [35,36]. Furthermore, it
has been shown that the topological susceptibility
calculated using the spectral projectors approach
shows milder lattice artifacts than when using a
gluonic definition [35]. Both these observations
have led us to investigate the approach based on
spectral projectors for the definition of the topologi-
cal charge entering the evaluation of the nEDM since
we expected that these features would also hold by

secondary quantities involving the topological
charge. The necessity to reduce as much as possible
the lattice cut-off effects stem from the fact that
currently we do not have three ensembles with
different lattice spacings at the physical point to
enable us to take the continuum limit. Therefore,
while F3ð0Þ extracted using the fermionic definition
is consistent with the value extracted using the
gluonic definition, the statistical errors of the former
are about half as compared to those when using the
gluonic definition and the cutoff effects are expected
from the above consideration to be milder. We, thus,
quote as our final value of nEDM the one resulting
from using spectral projectors to define the topo-
logical charge. We find

jdθN j ¼ 0.0009ð24Þθ e; fm ð45Þ

which is compatible with zero.
There is a subtlety that we would like to clarify at

this point, namely the fact that we do not observe a
clear plateau for αN when using spectral projectors
as a function of Mthr. This is an artifact of carrying
out the investigation at one lattice spacing. Only
after a continuum extrapolation keeping the renor-
malised cutoff Mthr in physical units fixed one can
extract physical observables that are independent of
the cutoff. The same holds for the field theoretic
definition for which the gradient flow time in
physical units must be fixed as one takes the
continuum limit. This is illustrated in Fig. 3 for
the susceptibility, where only after the continuum
limit is taken there is an agreement among the
approaches.

A question arises as of why when using the
gradient flow with the Wilson smoothing action we
obtain quantities such as the topological suscep-
tibility and αN that have a very mild dependence on
the scale τflow leading to a fast convergence to a
plateau. This can be understood within the follow-
ing context. On the semiclassical level, gradient
flow smooths out small instantons corresponding to
ultraviolet (UV) contributions. This happens even
at small flow times and, thus, we are left with a
topological content which remains unaltered until
the smoother starts affecting the large instantons
contributing to the topological structure of the
theory. On the other hand, the same quantities
extracted using the spectral projectors reveal a
behavior that depends much stronger on the asso-
ciated cutoff. This is because, for a theory that
breaks chiral symmetry, as we sum up eigenvalues
of the squared Dirac matrix, the summation will
keep increasing. This observation is fully supported
by the results on the topological susceptibility
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demonstrated in Ref. [35]. One may argue that the
existence of a plateau enables to reliably quote a
value of a quantity at a given lattice spacing; this is
of course true but has no physical importance since
in the end a continuum extrapolation is needed in
order to get rid of discretization effects. Never-
theless, we observe that, when using spectral
projectors, F3 appears to exhibit a plateau versus
Mthr coupled with the extra benefit of reduction in
the statistical uncertainty.

(iii) Alternative approaches of extracting the θ-induced
nEDM. The current investigation reveals the diffi-
culty of this particular method to deliver a sta-
tistically significant result. Practically, one needs to
increase measurements of at least an order of
magnitude to reduce the error significantly hopping
to exclude a zero value. Employment of techniques,
such as volume clustering [24,71] or spectral pro-
jectors as a definition of the topological charge
as done in this work, help but do not solve the
problem.
Another possibility is the investigation of the

nEDM using configurations generated with an
imaginary θ-term. Since the nEDM depends on
contributions from nontrivial topological sectors,
introducing a dynamical θ-term one may improve
the importance sampling for the nEDM signal
inducing nonzero average topological charge. Ex-
ploratory investigations using this method with a

field theoretic definition of the topological charge
are under way.
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