PHYSICAL REVIEW D 103, 054038 (2021)

Magnetic field dependence of the neutral pion mass in the linear sigma
model with quarks: The strong field case
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We use the linear sigma model with quarks to find the magnetic-field-induced modifications to the
neutral pion mass at one-loop level. The magnetic field effects are introduced by using charged particle
propagators in the presence of a magnetic background in the strong field regime. We show that, when
accounting for the effects of the magnetic field on the model couplings, the vacuum sigma field, and the
neutral pion self-energy, the neutral pion mass decreases monotonically as a function of the field strength.
We find an excellent qualitative and quantitative agreement with recent lattice QCD calculations,
reproducing the monotonically decreasing trend with the field strength as well as the decrease when
lattice data approach the physical vacuum pion mass from larger values.
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I. INTRODUCTION

Electromagnetic fields play a relevant role for the dynam-
ics of strongly interacting systems. For instance, it is well
known that an external magnetic field helps to catalyze the
breaking of chiral symmetry, producing a stronger quark-
antiquark condensate [1]. On the other hand, when temper-
ature is taken into account, magnetic fields inhibit the
condensate formation, producing the opposite -effect
whereby the pseudocritical temperature for the chiral phase
transition is reduced; it is the so-called inverse magnetic
catalysis [2-16]. In this context, the properties of hadron
degrees of freedom in the presence of magnetic fields have
become a subject of intense study [17-66].

Given that, from the hadron sector, the dynamics of
chiral symmetry breaking is dominated by pions, it
becomes important to study the influence of magnetic
fields on pion properties such as masses and form factors.
On general grounds, charged and neutral pions behave
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differently under the influence of an external magnetic
field. Charged pions with mass m, and at rest in the
direction of the magnetic field have an energy spectrum
given by E?> = m} + (2n + 1)|eB|, where |eB| is the field
strength and n labels the nth Landau level. The lowest-
energy state can be interpreted as the magnetic-field-
dependent mass, which is then given by m% = m3 + |eB|.
In contrast, neutral pions do not experience directly the
effects of a magnetic background, and, thus, their mass
remains at first sight unaffected. Interactions with other
particles that populate the strongly interacting vacuum can
change this picture. In fact, the magnetic-field-driven
modifications of the neutral pion mass were first computed
by lattice QCD (LQCD) calculations in Refs. [67,68]. These
works found contradictory results: Whereas Ref. [68]
obtains a neutral pion mass that monotonically decreases
with the field strength, Ref. [67] finds a dip at an inter-
mediate value and then an increase for larger field strengths.
This discrepancy was analyzed in Refs. [69,70], where the
monotonic decrease of the pion mass as a function of the
field strength was confirmed.

The problem has been also addressed from the point of
view of effective models. Working within the linear sigma
model with quarks (LSMq) in the weak field limit, Ref. [7]
has shown that the neutral pion mass starts off decreasing as
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a function of the field strength. An important element for
this finding is to account for the magnetic-field-driven
modification of the boson self-coupling. Within the same
model and also with magnetic-field-modified couplings,
Ref. [71] finds that the neutral pion mass starts off
decreasing to then increase at an intermediate value of
the field strength, becoming even larger than the mass
at zero field strength. A similar behavior is found in
Refs. [72,73] using the Nambu-Jona-Lasinio model.

The results of Ref. [71], which are in contrast with the
most recent LQCD results [69,70], may be due to the use
of a procedure, advocated in Ref. [73], to remove the
vacuum, which in Ref. [7] has been shown to not describe
the large magnetic field strength limit, generating a
discrepancy with the well-established lowest Landau level
(LLL) result. Moreover, since the effective boson-fermion
coupling in Ref. [71] is computed from the magnetic field
corrections to the quark mass, it is not clear what, if any, is
the role of Schwinger’s phase factor when this effective
coupling is computed from the one-loop triangle pertur-
bative correction.

In order to assess whether the use of one-loop magnetic-
field-modified couplings can account for the behavior of
the recent LQCD results for the magnetic field dependence
of the neutral pion mass, in Ref. [74] we made a detailed
study of the magnetic field modifications to the boson self-
coupling and boson-fermion coupling in the LSMq. We
found that the couplings experience a monotonic decrease
as a function of the field strength. The pending question is,
thus, to clarify what are the overall ingredients that can
explain the neutral pion mass monotonic decrease as a
function of the field strength. In this work, we address this
question within the LSMq, showing that the elements
driving the neutral pion mass behavior are the properly
combined effects of the magnetic field corrections to the
couplings together with the contribution from charged
particles to the one-loop pion self-energy and to the vacuum
expectation value of the sigma field.

The work is organized as follows: In Sec. II, we intro-
duce the linear sigma model with quarks. In Sec. III, we
make a quick survey of the way magnetic field effects are
introduced into the propagators of charged bosons and
fermions. In Sec. IV, we compute the necessary elements to
obtain the magnetic modification of the pion mass to one-
loop order, namely, the neutral pion self-energy, the
vacuum expectation value of the sigma field from the
effective potential, and the correction to the couplings. In
Sec. V, we compute the magnetic corrections to the
neutral pion mass and compare to recent LQCD calcu-
lations, showing that the monotonic decrease with the
field strength can be reproduced. We finally summarize
and conclude in Sec VI. We reserve for the Appendixes
the explicit calculation details for the one-loop corrections
to both the neutral pion self-energy and the effective
potential.

II. LINEAR SIGMA MODEL WITH QUARKS

The LSMq is an effective model that describes the low-
energy regime of QCD, incorporating the spontaneous
breaking of chiral symmetry. The Lagrangian for the
LSMq can be written as

=Yoo+ Lo+ L+ ) AP+ )
2 H 2N H 2 4

+ Wy — igr W T -my — gy, (1)

Pions are described by an isospin triplet: 7 = (7, 7,, 713).
Two species of quarks are represented by an SU(2) isospin
doublet . The ¢ scalar is included by means of an isospin
singlet. Also, 4 is the boson self-coupling, and g is the
fermion-boson coupling. a®> > 0 is the mass parameter.

To allow for spontaneous symmetry breaking, we let the
o field develop a vacuum expectation value v:

1 1
L= 3 0,000 + 3 Oymod'my + Oym_Frm,.

1 1
- Emgaz - Em(z)ﬂ(z) —min_n, + gy
2
_ a A
—mﬂ//ll"f'?lfz _ZU4+£imv (2)

where the charged pion fields can be expressed as

ri = (m,  im) 3)

V2

and the interaction Lagrangian is defined as

A
Ly =— 1 ot — o — e — Ae’n_n, — 2von_n,

A
2 2.2 2 4
—Zo0°ny — Aorny — AnZn — An_m ng — -7

2 4
+ a*ve — gpwo — igrp(t,m, + 1o + 3wy

(4)

2.2

In order to include a finite vacuum pion mass 1, one adds
an explicit symmetry-breaking term in the Lagrangian of
Eq. (2) such that

m2
£—>£’:£+701)(0'+v). (5)

As can be seen from Egs. (2) and (4), there are new terms
which depend on v, and all fields develop masses
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m2 = 3% — a?,

m} = ? - a?,
my = gv. (6)
Using Egs. (2) and (5), the tree-level potential is given by

2 2
a+m A
y/tree — _ 0,2 7~ 4. 7

(v) 5V + 2? (7)
This potential develops a minimum, called the vacuum
expectation value of the o field, namely,

la® + m}
Vg = TO (8)

Therefore, the masses evaluated at v, are

m2(vg) = 2a* + 3mj,

mg(vy) = mg. ©)

Finally, an external magnetic field, uniform in space and
constant in time, can be included in the model introducing a
covariant derivative in the Lagrangian density, Eq. (2),
namely,

9, = D, = 9, + iqA,, (10)

where A* is the vector potential corresponding to an
external magnetic field directed along the Z axis. In the
symmetric gauge, this is given by

1
=% (11)

A(x)
and couples only to the charged pions and to the quarks.
Notice that, in order to consider the propagation of
charged particles, one can resort to introducing Schwinger
propagators which can be expressed either in terms of their
proper time representation or as a sum over Landau Levels.
For completeness of the presentation, we now proceed to
briefly discuss the properties of these propagators.

III. MAGNETIC-FIELD-DEPENDENT BOSON AND
FERMION PROPAGATORS

In order to consider the propagation of charged particles
within a magnetized background, we use Schwinger’s
proper time representation. The fermion propagator can
be written as [75]

Se(x,x') = e®ES (x = x), (12)

where ®(x, x’) is the Schwinger phase given by

o) =q [ dg @+ ypre-]. 03)

where g is the particle electric charge. ®(x, x’) corresponds
to the translationally noninvariant and gauge-dependent
part of the propagator. On the other hand, S;(x —x') is
translationally and gauge invariant and can be expressed in
terms of its Fourier transform as

S;(x—x) = / LD g (et (14)
f (271)4 f ’
where
o0 ds
S = _—¢
1(P) / cos(q, BJs)
x [(cos<|qu|s> T 11y sin(lg,Bls)sen(g,B))

_L
cos<|qu|s>]' (15)

In a similar fashion, for a charged scalar field we have

is(pt=p? [tan(|q/Bls)/|qy B|s]-m}-+ie)

x (my+ p))

D(x,x') = ) D(x — x'),

d4 /
= / —lp-(x—x ), (16)

with

- ©  ds is(p?—p? [tan(|q, Bs), |q, Bls]—m2+ie)
D — pH Pl qpbI1S)/1qpD|S|—my 16’
() = | cos([4,B5) ¢

(17)

where the boson and fermion masses and electric charges
are m;, and g, and m; and gy, respectively.

The propagators in Eqgs. (15) and (17) can also be
expanded as a sum over Landau levels. In this case, the
expressions for the charged fermion and scalar propagators
are given by [76,77]

. D,(p)
iS;(p) = ie -p3/lasB| (18)
P ;pH —mf 2n|qu| +ie’
-1 nLO ZPL
iDy(p) = 2ieP1/|9B| Z ) (‘qhB‘) —,
p OPH_mb (2n +1)|q,B| + ie

(19)

respectively, where
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2p? >
D,(p) =2 O*LY L

2p?
—-2(py+m (’)‘LS_( l)
(A +my) \J¢,B

2p2
49, L = 20

and L!"(x) are the generalized Laguerre polynomials. Also,
in Eq. (20), the operators O are defined as

O* = (1 £ irir2sgn(gB)). (21)

| =

We now use these ingredients to compute the elements
necessary to obtain the magnetic modification of the neutral
pion mass.

IV. ONE-LOOP MAGNETIC CORRECTIONS

In order to compute the magnetic-field-induced modifi-
cation to the neutral pion mass, the starting point is the
equation defining its dispersion relation in the presence of
the magnetic field, namely,

g5 — |q* — m§(B) — Re[[I(B, ¢ Az, gp. v5)] = 0. (22)

where I is the neutral pion self-energy and A3, g, and vp
represent the magnetic-field-dependent boson-self cou-
pling, boson-fermion coupling, and vacuum expectation
value, respectively. The computation requires knowledge of
each of these elements as functions of the field strength. vp
can be computed finding the minimum of the magnetic-
field-dependent one-loop effective potential. This can be
analytically computed using the full magnetic field depend-
ence of the charged particle propagators. For the neutral
pion self-energy and the magnetic field corrections to the
couplings, we work in the large field limit and, thus, resort
to use propagators in the LLL approximation.

A. Neutral pion self-energy

We first compute the neutral pion self-energy:
T(B.q) = » M;3(B.q) + - (B) + I+ (B) + M + T,
f

(23)

The five terms on the right-hand side of Eq. (23) correspond
to the Feynman diagrams contributing to this self-energy at
one-loop order. The subindices represent the kind of
particles in the loop. The contributions to this self-energy
are the quark-antiquark loop I1; depicted in Fig. 1 and the
boson loops IL .+, I, and II,. The Feynman diagram
corresponding to I1,- is depicted in Fig. 2, and we single it
out from the neutral boson loops, since this diagram,

k+q f
ﬁ
0 Vi
e (R o o
q q
“
f

FIG. 1. Feynman diagram showing the one-loop contribution
from fermions to the neutral pion self-energy in the LSMq.

0 "
— —
q q

FIG. 2. Feynman diagram showing the one-loop contribution
from charged pions to the neutral pion self-energy in the LSMq.

together with the diagram corresponding to its charge
conjugate (CC) II,+, are the only ones modified by the
presence of the magnetic field. Diagrams with neutral
bosons in the loop contribute only to vacuum renormaliza-
tion and not to the magnetic properties of the system.
Therefore, hereafter we do not consider the latter for the
description of the magnetic modifications of the pion self-
energy.

We first concentrate on the contribution from the
quark-antiquark loop for a single quark species, given
explicitly by

—~ill,;7(B.q) = —gz/%Tr[ysiSf(k)ysiSf(k +9)]

+CC. (24)

Notice that, since both particles flow with the same charge
around the loop, the Schwinger phase vanishes. The quark
propagator in the presence of a magnetic field, iSy, is
written in the strong field limit using the LLL contribution,
namely,

bitme o

iSy — iSLLL (k) = 2ie~ki/lasBl (25)

According to the explicit computation in Appendix A, the
fermion contribution to the pion self-energy is given by

2
. ig*|qB| —1/2q,8)¢ [ 1
2 2
IR ETh DI i 26
<M2 4 20
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where A; = x(x 1)q” +mf and p is the ultraviolet

renormalization scale.

In order to capture the overall magnetic field effects for
on-shell and nonmoving pions, we resort to computing the
fermion contribution to the pion self-energy in the static
limit, namely, g, = mp and ¢ = 0. As also thoroughly
discussed in Appendix A, working with the MS renorm-
alization scheme, this is explicitly given by

B 4m? 2my m
Hff_g|q,; | 2 2f—1arccsc( )—Hn( f)
27 myg mpg u

8m?> 2m
-1 arcesc (—f> : (27)
mpg 4m12£ —m3 Mp

Notice that Eq. (27) has an explicit dependence on u.
This is a general feature of one-loop calculations where,
in order to regulate the integration, such a scale needs to
be introduced. As discussed in Ref. [74], when working
in the LLL, x4 needs to be chosen in such a way that this
becomes the largest of all energy scales, larger than the
gap +/2|eB|, between the LLL and the first excited
Landau level, where |e| is the absolute value of the
electron charge. To accomplish this constraint, we chose
u? = 2|eB| + m3 [74]. With this choice, the contribution
from the quark-antiquark loop for a single quark species
becomes

’|q+B 4m? 2
Hfj = g |qf | lZ S 1arccsc( mf)
m

2 2
27 B mp

1 ]
n ——
+ 2|eB| + m3

8m? 2
—— 1 arcese <ﬂ> ] . (28)

2 2 m
4mf —my B

We now proceed to compute the charged boson loop
contribution to the pion self-energy. This can be written as

] = d'k iA)i
-znﬂi_/(z 3 (200D, (1) (29)

Notice that since the initial and final loop space-time points
in the tadpole Feynman diagram coincide, the Schwinger
phase vanishes. To compute Eq. (29) in the strong field
limit, we use the charged boson propagator in LLL
approximation, namely,

Die—k./14sB|

lgpB| + i

iD 'DLLLk
iD), — iD}; (k) = kﬁ_mb

The procedure to compute this contribution is shown in
Appendix A. Choosing u? = 2|eB| + m} [74], the result
can be expressed as

AleB B z
M. = - |e2|ln e |+m°2 . (31)
4z 2|eB| + mg

With the expression for the pion self-energy at hand, we
now turn our attention to computing the rest of the
ingredients, starting from the magnetic corrections to the
vacuum expectation value.

B. Magnetic corrections to the vacuum
expectation value

The magnetic correction to the vacuum expectation value
can be obtained finding the minimum for the effective
potential in the presence of the magnetic background, vp.
For the LSMq in a magnetized medium, the effective
potential at one-loop contains fermion as well as boson
contributions which modify the location of the minimum as
a function of the field strength.

The effective potential up to one-loop order has six
contributions, namely,

yeff — ytree V,]T+ 4 V;]r‘ + V:[O + Vé + ZV}C (32)
f

The first term on the right-hand side of Eq. (32) represents the
classical or tree-level potential. This can be read off from
Eq. (7). The second and third terms correspond to the charged
boson contribution, the fourth and fifth are the neutral
contributions associated to the neutral pion and sigma,
respectively, and the last one is the fermion contribution.

The contribution to the effective potential from a charged
boson with mass m,, is given by the expression

Vi==5 [ GalDiw) Gy

where the charged boson propagator is given by Eq. (19).
The computation of Eq. (33) is performed in Appendix B.
An explicit analytical expression for an arbitrary magnetic
field strength can, in fact, be found. Working in the MS
renormalization scheme and setting the boson mass to be
the charged pion mass in vacuum, m, this expression is
given by

1 1 m3 1
V)= e [2|eB|2 _2<2+2eOB|> —§|eB|m(2)ln(27r)
4 2 4 2
mg [ myg mj
Mo (K) Z My , 34
4 (m> (i) o

where 2 (x) is the Polygamma function of the order of —2
and y is the renormalization scale. Notice that, in the limit
B — 0, Eq. (34) becomes
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mé 3 u?

which corresponds to the contribution to the effective
potential from a neutral boson with mass m, [78]. We
thus use this last expression to account for the contribution
coming from the fourth and fifth terms of Eq. (32), and,
thus, the purely magnetic contribution from Eq. (34) is
obtained by subtracting Eq. (35) from Eq. (34) and is
given by

1 (1 m 1
Vi = 62 [2|eB|2 2<2+2|eB|) —§|eB|m(2)ln(2ﬂ)
4 2 4
myg mg 3my
-2 0. 36
o(gex) 5 o)

The contribution from a single fermion species can be
obtained from the expression

VL =iN / 'k Trin [S7!(k)] (37)
=1 —_— s

f c (2”)4 f

where N, is the number of colors and iS,(k) is given by
Egs. (18) and (20). The explicit computation is shown in
Appendix B. Once again, the result can be provided for an

arbitrary field strength. Working with the MS renormaliza-
tion scheme, this is given by

N m2 m u?
! 8ﬂ2< lasBly (2|qu| 2 "\m?

m;‘c m}
2
ln<2|q B|> — m3|q;B] [1 + In(27)

w(rs)]) )

In the limit B — 0, Eq. (38) becomes

m* 3 2
_ f H
Vi = Ne g [5““(@)} (39)

which corresponds to the contribution to the effective
potential from a fermion in the absence of the magnetic
field. Thus, the purely magnetic contribution from Eq. (38)
is given by

N, m;
yL = B|2y2 f
=g 2( Kl (2|qu|

my [ m;
——1 —m2lg,B||1+1n(2
2 “(2|qu|) myld '[ T In(2)

) )

When the tree-level effective potential is modified by one-loop
corrections, the curvature (or, equivalently, the vacuum o
mass) and the position of the minimum are bound to change.
The changes are driven both from purely vacuum contribu-
tions as well as from magnetic field effects. The vacuum
changes need to be absorbed with a redefinition of the vacuum
terms so as to make sure that any change in the position of the
minimum truly comes from the magnetized background. This
is accomplished by enforcing the vacuum stability conditions
[79], introducing counterterms in such a way that

ytree — _

(a* +m} +8a?) 2 (A+64) ,

Vtree 5vtree — ,
+ ) 1 v

(41)

where 8a? and 61 are to be determined from the conditions

1 dvve
— -0,
2v dv |,
JZ‘/vac
=1,

VV# contains the contribution from the three pions, the ¢ and
the three color charges for the two light quarks, in the limit
B — 0, namely,

Vvac:_(a2+m3+5a2)02+(/1+5/1)v4
2 4
4 2 4 2
mg (3 U 3 u
~+In(5 In
64 2{ i <m%)] 6 2[ i (mﬂ
m* 2
3 H
+ 2N, 2[ +1n < )} (43)
16 mf

With this procedure, we obtain

1
Sa? = T {Sazg“NC +8¢*miN. — 64°2* — 12m3 2>
Vs

2 2
3221 3222 2 )|, (44
+a n(m0> +oa n<2a2 + Sm% (44)

1 2 : 2 s
51 = 3221 02|t
1672 [ n<m0> + n<2a2 n 3m3)

(2] w5

Thus, once the vacuum terms—evaluated at the vacuum
expectation value—are included into the effective potential,
the modifications to the minimum come exclusively from
magnetic effects, namely, from the contribution of charged
pions and fermions. As a result, the one-loop effective
potential in a magnetized medium can be written as
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2 2 2 4
gy @ tmg) 5 Sat 5 Aoy Bh o mp(vo)
VEB) = - stk A g 3
mj(vo) [3 v m;(v0)
- 5~ |5+ 1In{— + 2N, 5
647 |2 mz(vg) 7 lor
2 4
mg(v) 3mg(v)
2leB|2w2 0 0
[" ( T 3leB)) T8
2
m4(v) 3 m
4)q |2 —2< f >+—m4(1))— ;
f |: / 2|qu| 4 !
[ ee T
0.0010r
[ Wee[u=0.3 GeV]
0.0008f ... WaC[u=1 GeV]
[ 1 o= 2
0.0008} ™" Vef[jeB|=1 GeV?]
0ooo0af o,
0.0002] Y
o0000f e
0.00 0.05
FIG. 3. Comparison between the position and curvature of the

minimum of V"¢ and V¥* computed with ¢ = 0.3 and 1 GeV,
after implementing the vacuum stability conditions. Also shown
an example of the position of the minimum for Ve, v, computed
with [eB| = 1 GeV?2. For the calculation we use m, = 140 MeV,
A =3.67, and g = 0.46 and, correspondingly, m, = 435 MeV,
a =256 MeV, and vy = 152 MeV.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

2.5¢

VB/ Vo

1.5¢

1.0f

“““““““““““““““““““

leB| [GeV?]

FIG. 4. Magnetic modification to the vacuum expectation value
vB as a function of the field strength. For the calculation, we use

= 140 MeV, 1 =3.67, and g = 0.46 and, correspondingly,
m, = 435 MeV, a =256 MeV, and vy = 152 MeV.

1
—§|eB|m%(v) In(27)

05 )

et
)
()

—m2(0)lg;B| + m2()]q,B ln(

iam)|

(40)

[

Figure 3 shows the tree-level potential V"¢ and the vacuum
one-loop potential V¥* computed for 4 = 0.3 and 1 GeV,
after implementing the stability conditions. Also shown in
the figure is the magnetic-field-modified position of the
minimum when adding the magnetic effects to VY*, for
leB| = 1 GeV?. Notice that, after the vacuum stability
conditions are implemented, the vacuum position and cur-
vature remain at their tree-level values and that these
quantities are independent of the choice of the renormaliza-
tion scale p. Figure 4 shows the position of the minimum vy
as a function of the field strength. Notice that, as expected, vy
grows with the field strength, signaling magnetic catalysis.

C. Magnetic modifications to the boson self-coupling
and boson-fermion coupling

The magnetic-field-induced corrections to the boson self-
coupling 4 and the boson-fermion coupling g have been
recently obtained in Ref. [74]. Working in the strong field
limit, the explicit expressions for these corrections are given by

A B
FIZLL =-— |Qb | > (47)
67* |q,B| + mj
and
FLLL I—'LLL + FLLL + F%ZL’ (48)
where
[ g*leB| y (2—u)u
Y 16w m? u? +a(l—u) W +a(l—u)l’
ik — du dklkle 3k /|eB|
(2—uu ]
X 1+ ,
uw’ +ﬁ(1—u){ W+ p(1—u)
LLL du dklk =3k /|eB

(2 - u)u } @)

Xu2+y<1—u>{ 2+ y(1—u)
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FIG. 5. Magnetic modification to the boson-fermion coupling
(dotted red line) and to the boson self-coupling (solid blue line) as
a function of the field strength. For the calculation, we use
my = 140 MeV, 1 = 3.67, and g = 0.46 and, correspondingly,
m, = 435 MeV, a = 256 MeV, and v, = 152 MeV.

with a = (m§ + |eB|)/m}, p= (k1 + mj)/m7, and y =
(K5 + m3)/ms.

The magnetic modified boson self-coupling and boson-
fermion coupling are, thus, given, respectively, by

Ag = A(1 4 TEHE),
g5 = g(1 +T5™). (50)

Figure 5 shows the magnetic field dependence of these
couplings, normalized to their vacuum values. Notice that
the couplings show a monotonic, albeit modest, decrease
with the field strength.

V. MAGNETIC MODIFICATION TO THE
NEUTRAL PION MASS

With all the elements at hand, we can now find the
magnetic-field-dependent neutral pion mass from the
dispersion relation [Eq. (22)] in the limit where g — 0
and gg — mp, namely,

m3 = m}(B) + II(B., qp = mp. § = 0; A3, g5, vp).,  (51)

where, in order to incorporate the magnetic-field-dependent
boson self-coupling and vacuum expectation value in the
tree-level pion mass, we write

m}(B) = Agvy — a°. (52)

To reduce the parameter space, we consider that, in the
absence of baryons, the constituent quark mass is such that
my = 2m. With this choice, the only free parameters are 1
and ¢g. We have explored a large range for these para-
meters, and hereby we show the results for the set that

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

0.0 0.5 1.0 15 2.0 25 3.0 35
|eB| [GeV?]

FIG. 6. Magnetic modification to the neutral pion mass, for two
different cases: Blue diamonds correspond to tree-level cou-
plings, and black dots correspond to magnetic-field-dependent
couplings. Notice that, whereas the calculation using tree-level
couplings starts off decreasing to later on increase, the calculation
using magnetic-field-dependent couplings decreases monotoni-
cally as a function of the field strength. For the calculation, we
use my = 140 MeV, 1= 3.67, and g = 0.46 and, correspond-
ingly, m, = 435 MeV, a = 256 MeV, and v, = 152 MeV.

best describes simultaneously the LQCD data of
Refs. [69,70]. Moreover, the values we use as initial inputs
for g and A produce, for the lowest vacuum pion mass
considered, values of v, larger than f, only by a factor
~1.5, which we take as an indication of consistency within
the limitations of an effective theory such as the LSMq.
Since Refs. [69,70] report their findings for different values
of the vacuum pion mass, we also vary this mass, and,
consequently, the rest of the dependent parameters have to
be changed to suit these choices. In particular, a larger
vacuum pion mass implies a larger ¢ mass. Thus, in the
strong field limit, our results are restricted to the domain
where |eB| > m2.

Figure 6 shows the magnetic-field-dependent neutral
pion mass as a function of the field strength computed for
two cases: with (black dots) and without (blue diamonds)
magnetic-field-dependent couplings, using as inputs my =
140 MeV, 1 =3.67, and g = 0.46 and, correspondingly,
m, = 435 MeV, a =256 MeV, and v, = 152 MeV. Notice
that, whereas the former shows a monotonic decrease, the
latter starts off decreasing to later on increase as a function
of the field strength. This result signals the importance
of including magnetic field corrections to the couplings in
the calculation of the magnetic-field-dependent neutral
pion mass.

In order to compare with LQCD simulations, which are
implemented for different values of the vacuum pion mass,
Fig. 7 shows the magnetic-field-dependent neutral pion
mass as a function of the field strength when varying the
input vacuum pion mass. Shown are three cases: my =
140 MeV (black dots), my = 220 MeV (blue triangles),
and my =415 MeV (red diamonds). Notice that, as the
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FIG. 7. Magnetic modification to the neutral pion mass for

three different values of pion mass in vacuum: black dots,
mqy = 140 MeV; blue triangles, my = 220 MeV; red diamonds,
my = 415 MeV. Notice that, as the vacuum pion mass decreases,
the corresponding magnetic-field-dependent pion mass also
decreases and that all cases show a monotonic decrease as a
function of the field strength, in agreement with the recent LQCD
findings.

vacuum pion mass decreases, the corresponding magnetic-
field-dependent pion mass also decreases and that all cases
show a monotonic decrease as a function of the field
strength, in agreement with the LQCD findings.

To make direct contact with LQCD data, Fig. 8 shows
the results for the magnetic-field-dependent neutral pion
mass as a function of the field strength using as input my =
415 MeV and with 4 =3.67 and g = 0.46, compared to
the results from Ref. [69]. The data points correspond to the
;4 (blue diamonds) and 7z, (red diamonds) masses com-
puted also using as input my, = 415 MeV. Notice that our
calculation does a nice description of the data average,

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

o 77y Ref[69] |
1.0p * + T, Ref[69] |
r o my=415MeV -
0.8 1
% | % ®ehoccee (XYYYYY IY
IS L ]
0.6 1
0.4f
00 05 10 15 20 25 30 35
leB| [GeV?]
FIG. 8. Magnetic modification to the neutral pion mass. Blue

and red diamonds correspond to the masses of z, and =z, res-
pectively, reported by LQCD in Ref. [69] with m, = 415 MeV.
Black dots are the result from Eq. (51) with my = 415 MeV,
A =3.67, and g = 0.46 and, correspondingly, m, = 1291 MeV,
a =758 MeV, and v, = 451 MeV.

R o mMo=220 MeV ]
1.0fyy, 1
Hv'y
v v
v v
r v
osr v Y v
\§ I vao.v N
@Q .... v
g r v L X FYY 1
o6l v voooéooo‘.......‘h'
0. 4: v 11y Ref[70]
r v 1, Ref.[70]
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FIG. 9. Magnetic modification to the neutral pion mass. Blue
and red diamonds correspond to the masses of 7z, and =z, res-
pectively, reported by LQCD in Ref. [70] with my, = 220 MeV.
Black dots are the result from Eq. (51) with my = 220 MeV,
A =3.67, and g = 0.46 and, correspondingly, m, = 684 MeV,
a =402 MeV, and v, = 239 MeV.

particularly for the largest field strengths. Figure 9 shows
also a comparison of our calculation with the LQCD
calculation of Ref. [70], this time computed with my =
220 MeV as input together with 1 = 3.67 and g = 0.46.
The data points correspond to the 7z, (blue diamonds) and
7, (red diamonds) masses computed also using as input
mqy = 220 MeV. Once again, we notice that our calculation
does a nice job describing the average of the LQCD masses,
particularly for large values of the field strength.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I « 715 Ref.[69] |

1.0 !’:'v i + Ty Ref.[69] |
S 4

08} v

; A
®e v v

b oq v v ]

0.6l 00...7....v v v i

mg/mo
[ ]

0 4: v 714 Ref[70] |
b v 7, Ref[70] o This work 1
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5
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FIG. 10. Magnetic modification to the neutral pion mass. Blue
and red diamonds correspond to the masses of z,; and =z,, res-
pectively, reported by LQCD in Ref. [69] with my = 415 MeV.
Green and gray triangles correspond to the masses of 7z, and 7,
respectively, reported by LQCD in Ref. [70] with mgy =
220 MeV. Black dots are the result of Eq. (51) with my =
140 MeV, 12=3.67, and ¢g=0.46 and, correspondingly,
my, = 435 MeV, a =256 MeV, and v, = 152 MeV. Notice
that, as expected, when for the calculation we use as input the
physical pion mass mgy = 140 MeV, the theoretical curve lies
below the LQCD data which were obtained using larger vacuum
pion masses.

054038-9



ALEJANDRO AYALA et al.

PHYS. REV. D 103, 054038 (2021)

Finally, Fig. 10 shows a comparison of our calculation
with the results of the LQCD calculations from Refs. [69,70].
The data points correspond to the lowest reached values of
each LQCD calculation: my = 415 MeV for the former and
mg = 220 MeV for the latter. The calculation (black dots) is
performed with my = 140 MeV as input, together with 1 =
3.67 and g = 0.46. Notice that the result of the calculation
using as input the physical pion mass in vacuum lies below
the LQCD points. In this sense, this result can be considered
as our prediction when and if LQCD techniques can be
performed for a physical vacuum pion mass.

VI. SUMMARY AND CONCLUSIONS

In this work, we have used the LSMq to find the
magnetic-field-induced modifications to the neutral pion
mass at one-loop level. The magnetic field effects are
introduced by using charged particle propagators in the
presence of a magnetic background in the strong field limit.
We found that the approach is able to reproduce the
qualitative and quantitative magnetic field dependence of
the neutral pion mass reported by recent LQCD calcula-
tions. The important ingredients for the calculation are the
proper inclusion of the magnetic field effects on the model
couplings, the ¢ vacuum expectation value, and the neutral
pion self-energy. As shown, the magnetic field effects
produce that the model couplings monotonically decrease
as a function of the field strength. When this behavior is not
accounted for, we have shown that the neutral pion mass
starts off decreasing to then increase at an intermediate
value of the field strength. We have also shown that, by
accounting for the vacuum stability conditions, the mag-
netic-field-dependent vacuum expectation value of the o
field increases as a function of the field strength, which is to
be expected on general grounds given the well-established
magnetic catalysis phenomenon of the condensate in a
magnetized medium. This increase is, however, outdone by
the behavior of the pion self-energy as a function of the
field strength such that, overall, the neutral pion mass
monotonically decreases as a function of the field strength.
By comparing to the LQCD calculations performed for the
smallest pion mass allowed by that technique, we show
that, when the physical vacuum pion mass is used, the
magnetic-field-dependent neutral pion mass curve lies a bit
below the LQCD data. In this sense, this result is our
prediction for when and if the LQCD techniques allow for
calculations using the physical vacuum pion mass.

An interesting question is whether our approach can also
reproduce the magnetic field behavior of the charged pion
mass as well as that of the mass of other mesons such as the
neutral and charged p mesons. This is work in progress and
will be reported elsewhere.
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APPENDIX A: MAGNETIC CORRECTIONS TO
THE NEUTRAL PION SELF-ENERGY

Consider the quark loop which can be made either of
quarks u or d, as depicted in Fig. 1. The contribution from a
quark flavor f is given by

—ill;7(B. q) = —¢* / (;lﬂ]; Trly iS;(k)y°iSs(k + q)]

(A1)

+ CC,

where we used that the Schwinger phase vanishes. We now
use Eq. (25) to account for the strong field limit, and the
properties of the Dirac matrices

Oy = ) O,
O:t},s — ySO:t
O+ + O_ - I4><4,
(Oi)Q — Oi,
i =—dy. (A2)

where aﬁ = (a9.0,0,a3) and ¢ = ay,y*. Adding up the
contribution from the CC diagram, we get

_ill,; — 4g? (621:;4 o+t lasBl %, (A3)
where we define
N =Tr[(my — k) (K + ) + mp)].
A= (k+q)j —m3 + e,
B = kﬁ - m?- + ie. (Ad)

We proceed to integrate over the perpendicular coordinates
relative to the magnetic field. The result is given by

|q /B . [ APk N
i = 2 19B 20080 / N
Mg =g "] @n)AB

(AS)

We introduce the Feynman parametrization
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1 1 dx
i S — A6
AB A [Ax + B(1 — x)]? (A6)
The denominator of Eq. (AS) can be written as
Ax+B(1 —x) = (k+xq))* — A +ie, (A7)

where A; = x(x — )qH +m} and € - 0. We make the
change of variables k| = [ — xg such that the numerator

N can be expressed as

N =d4m7; — 4lﬁ +4x(1 - )qﬁ (A8)

Notice that we have taken into account that the trace of an
odd number of Dirac matrices vanishes and that the linear
term /| will vanish in the integration. Thus, the contribution
to the self-energy becomes

. 247 quBI _ & ln I
Ml = (1/24,B)¢% / / [ar

x(1 —x)q” + mf}
(F—a)?

(A9)

In order to find the integral over parallel coordinates
relative to the magnetic field, we proceed using dimen-
sional regularization:

d*ky ., [dTCkg [ &Pk,
iTH -2 20
(27) (27) (27)
where we use d = 4 — 2¢. In order to perform the integral
over dle, we use that

(A10)

a [ 477 1
W | sy a0l (a1

dd—ZI [ .
4—-d l Il _ ! In (4 -1
o | G N e -
A
ln< > + O(e )} (A12)
u?
According to Egs. (Al1) and (A12),
ig’lq Bl
—ill;; = zﬂf ~(1/2la;50) qL/ dx[ +1n(47) — yg

1n<j>—1+W].

In the static limit g = 0 and setting the zeroth component of
the momentum equal to the neutral pion mass, g, = mp,

(A13)

one can solve Eq. (51) self-consistently. We proceed using

the MS renormalization scheme to obtain a finite expres-
sion given by

_Hf

ig quB\ [m} - Dmj

~ x(x—l)m%imf -
ln< )]

5 (A14)

u

The integration over the Feynman parameter can be
performed provided that 4m} > mg; this condition is the

threshold relation for this process, and it must remain valid
upon the choice of the set of parameters. Substituting and
reducing terms, we get

B m> 2my m>
Hf}» 92|qf2 | 2f — 1l arccsc <f> + In <§>
2z my Mp U

8m?> 2m
S N— arccsc( f) )
mgy /4m% — m? Mp

7~ M

(A15)

Setting *> = 2|eB| + m3, we obtain

4m? 2
2”—2]0— 1arccsc< mf)
mpg mpg
m
In(——F
i <2|e8|+m0>

8m? 2m
S E— arccsc( f) )
mp [ 4m; — my Mg

B

L.— 7’lqB|
ff— 271.2

(A16)

Finally, we compute the contribution from the tadpole in
Fig. 2. Its explicit expression is given by

] = d'k iA)i
_,n,[i_/( (=2iA)iD (k).

P (A17)

where we used that the Schwinger phase vanishes. In the
strong field limit, we use the boson propagator in Eq. (30).
The contribution from the two charged pions can be
written as

Ak ie—ki/|e3\
27) I = [eB]

—i(Tlye +T1,-) = —Si/l/ (

- m}+ i€’
(A18)

We proceed with the integration over the perpendicular
coordinates relative to the magnetic field to obtain
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2/1|€B|/ d k” 1

I+ +11,- , Al19
il + 2r)? k2 A, +ie (AL9)
where A, = |eB| +m3 and e — 0. Using dimensional

regularization as in Eq. (A10), the integration over the
parallel coordinates of momentum relative to the magnetic
field direction can be found to be

a1 i [1
- H _
2 d/ Qn) 2P —A 4z [ +In(dr) —7p

ol

According to Eq. (A20) and taking € — 0, we have

(A20)

—illeB
—i(Hﬂ.+ + Hﬂ—) | | |: +In (47[) -
2n?
B
_ m(@)} (A21)
U
Using the MS renormalization scheme, we obtain
AleB B 2
M, + 10, =— |e2|1n<|e | ;“m()) (A22)
b p
Setting y? = 2|eB| + m3, we get
AleB| leB| + m3
IT - =- 1 . A23
s 27? n<2|eB| +m3 (A23)

APPENDIX B: MAGNETIC CORRECTIONS TO
THE EFFECTIVE POTENTIAL

Consider the contribution from a single charged boson to
the effective potential at one-loop order, given by

; 4
L Bl
Vi==5 [ GainlDitl )
which can also be written as [78]
1 d*k
== 2| —iD B2
s [t [ G, @2)

Using the boson propagator expanded over Landau levels
in Eq. (19), taking a Wick rotation k, — ik4, and using a
Schwinger parameter, we get

dky [ &
Ve [ [ o | as Yo
n=0

L() < 2ki e—s[kEH+m(2)+(2n+1)\q;,8|—ie]
"\|gsB] '

Using the definitions

S1 = 2k2
rl — _e_zs‘qu"
alkg)) = ki + mj, — ie, (B4)
we write
Vi :/dmz/&/wdsf:r”Lo(sl)
b b (2”)4 0 " 1~n
e—slatke))+ayBl| o~k /la,B| (BS)

Using the generating function of Laguerre polynomials

S L) L mi-nls . (Be)
n=0 _rl
we have
1 2 o0 e_slqu‘
Vi — / dm? / dsS——1,()1)(s).  (B)
0 1
where we define
I.(s) = / LhL i /g (1-20)
(27)?
d2k
I — A-d E| —sa(kEH)
I(s) =u (27)72
1
n(s) = ez‘qu—“H’ (B8)

note that we can take ¢ — 0 and use dimensional regulari-
zation. Once we carry out the integration, 7, (s) and /;(s)
can be written, respectively, as

9,8
I R e S,
1) = 4 tanh (jg,Bls)
3 1 —Ssm,
Iu(s)zuh(m)l_ge . (BY)

Using the explicit expressions in Eq. (B9), we get

|QbB| ,1'42‘e —sm2
V) d s
b / mb/ 8ﬂsmh (|gpB|s) (4zs)'=¢ '
(B10)
By writing
I —(2n+1) |qu| B11
sinh ( |qu| Z (BL)

054038-12



MAGNETIC FIELD DEPENDENCE OF THE NEUTRAL PION ...

PHYS. REV. D 103, 054038 (2021)

we can perform the integration over ds such that

B 4y \ ¢ el ;
16z 2|q,B| “2 2|‘]hB|

(B12)

Considering an expansion for € — 0, we have
V] . |QbB |

1 m? 1
= dm 0,—+-—2 - In (4
T {§< 2 2|qu|)[ ve+In{4r)

2 2
u 1 mj,

+ln< >]+§<1-0>< + >} B13
2|q,B| "2 2|q,B| (BI3)

where {(s, ¢) is the Hurwitz zeta function defined for ¢ > 0
and R[s| > 1 and by analytic continuation to other s # 1
and

d
— (s, ¢)|yo = £19(0, c). (B14)
ds
Using the following identities:
(0.0 =
,€) ==—c,
2
¢10(0, ¢) = In [(27)~'/?T(c)], (B15)
we get
1 1 u?
vi= “30.2 dmbmb{—— ve +1n(47) + In <2|qu|>
2|Qb | |: 1 (1 m3,
2m)7 0 ( 5 4 52 B16
mj, o |G 2 2|q,B| (B16)

Considering the MS renormalization scheme, we have

1 2|q,B| 1 m?
1 _ 2.2 b
Vi = 3277 dmbmb{ m I 2" 2|q,B|

2
mb 2|q,B|

solving the integral for dm?2, we get the final result

(B17)

2
my

1 1 1
Vi= g (2P (54 5 ) = 5l n2e)

~En(am))
2|‘ZbB|

where 2 (x) is the Polygamma function of the order of
—2. In the context of the LSMq, we have to consider the
contribution of both charged pions, such as the magnetic
correction from bosons in this model can be written as

(B18)

1 1 m?
V1+ V17: 2 2,2 0
eV 82%6' <2+2|B|

2 é :“2
——|eB|m2In(2 1 Bl
2‘6 |y In(27) - n<2|eB|)] (B19)

The magnetic corrections from the fermion contribution to
the effective potential can be computed from

zN/

in a similar fashion to the boson case, it can be shown that

VL = -2iN Z/drrﬂ/ a'k (
! Co-:il ! (2ﬂ>4 n=0

0 2k%
n(m)
j—mi—Q2n+1+o0)+ie

7 Trin[S (k)]; (B20)

1)ne~*i/lasB|

X B21

- (B21)
where we consider the particle-antiparticle contributions
and a sum over the polarizations with respect to the mag-

netic field direction, . Making a Wick rotation and con-
sidering a Schwinger proper time parametrization, we have

oo d*k &
Vpmoan 3 fan [ [ et
0 ( 7[) n=0

o==+1

» LO< 2](3_ >e [kEH+mf+(2n+1+n')\qu\—ie]. (B22)
|qsB]
Using the following definitions:
S2 = 2k2L/|QfB|’
r2 = _e_zs‘qut
Blhg)) = ki + m7 — ie, (B23)

we get

o d ©
Vi=an Y [an [Tas [ 25> rnds)
o=l (2n)* 1=

=Sl ) +layBl+alasBl) 42 /lq,B]

X e (B24)

Using the generating function of Laguerre polynomials

Z LY(s,) e~lr2/(1=r)lsy (B25)
n=0 - 1’2
we obtain
d*k e—slasBl
1 _
Vi = —2Ncgzﬂ/dmf/ ds/ T
X e_“'|’1fB|Jl(s)JH (s), (B26)
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where, after introducing dimensional regularization, we use
the definitions

d’k
Ji(s) = / J‘ze_(

(27)

0 [ ATk
Jy(s) = u "/(2 =L

K /la BN (1-20,(5)),

1

Ry, (B27)

ny(s) =

where we have considered ¢ — 0. Once we carry out the
integration, J | (s) and J)|(s) can be written, respectively, as

|q,B]
J =
1(s) 4z tanh (|q,Bls)
1
J” (S) = MZSW U (B28)
Using the identity
Z e™*47Bl = 2 cosh (|gB|s), (B29)
o==+1
we have
/B T
= —2N d Smf
/ mf/ Sax tanh (|gB|s) (4ms)'~ ¢
(B30)

We now use that

—2n|q;Bls —(2n+2)|q,Bls B31
g 2 e (B21)
n=0 n=0

to integrate over ds such that

N.|q,B 4au® \ ¢ mj
_ |CI]2‘ ‘ dm% U F(é‘) cle r

+§( mj + 1)]
e, .
2|q,B|

1
V=

(B32)

Considering an expansion when & — 0, we get
)
dmz»{ {C(O,—f + 1)
! 2|qyB|
m> 1 /,tz
+C<0, ! )} [——7 + In(4x +ln<—>}
2lq,1) | e 77E TN I

m2 m2-
1 ¢(10) (O, f > + ¢(1.0) <(), A 1) }
2|qB] 2|qB]

(B33)

vl — _NelgsBl
f ]2

Using the identities in Eq. (B15), we have

N 1 u?
1 _ N 2.2
Vi= o dmfmf{g_ ve + In(4x) + ln<2|qu|)
|q,B|

ma 2|g,B m>
(g =S | ()|
my 2|qu| my; 2|qu|
|q /B

- ln(Zﬂ)}.

After the MS renormalization scheme is implemented,
we get

- (B34)

N m3
vie—2< [ am{|qB|In( =) —|q,B|In(2
b= =gas [ ami{ a1 (5105 ) Bl

2 W mjz”
—miln{ —— +2qB|ln{F< )]}
; (2|qu|) 4B Tl 5

(B35)
Finally, integrating over dm%, we obtain
N. m2 m u?
Vi = 4 22 LA
A Cr 204, B]

_r
2
2
2

— m2|qB] (1 + In(27) _1n<2|ZB|>>]. (B36)
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