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We use the linear sigma model with quarks to find the magnetic-field-induced modifications to the
neutral pion mass at one-loop level. The magnetic field effects are introduced by using charged particle
propagators in the presence of a magnetic background in the strong field regime. We show that, when
accounting for the effects of the magnetic field on the model couplings, the vacuum sigma field, and the
neutral pion self-energy, the neutral pion mass decreases monotonically as a function of the field strength.
We find an excellent qualitative and quantitative agreement with recent lattice QCD calculations,
reproducing the monotonically decreasing trend with the field strength as well as the decrease when
lattice data approach the physical vacuum pion mass from larger values.
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I. INTRODUCTION

Electromagnetic fields play a relevant role for the dynam-
ics of strongly interacting systems. For instance, it is well
known that an external magnetic field helps to catalyze the
breaking of chiral symmetry, producing a stronger quark-
antiquark condensate [1]. On the other hand, when temper-
ature is taken into account, magnetic fields inhibit the
condensate formation, producing the opposite effect
whereby the pseudocritical temperature for the chiral phase
transition is reduced; it is the so-called inverse magnetic
catalysis [2–16]. In this context, the properties of hadron
degrees of freedom in the presence of magnetic fields have
become a subject of intense study [17–66].
Given that, from the hadron sector, the dynamics of

chiral symmetry breaking is dominated by pions, it
becomes important to study the influence of magnetic
fields on pion properties such as masses and form factors.
On general grounds, charged and neutral pions behave

differently under the influence of an external magnetic
field. Charged pions with mass m0 and at rest in the
direction of the magnetic field have an energy spectrum
given by E2 ¼ m2

0 þ ð2nþ 1ÞjeBj, where jeBj is the field
strength and n labels the nth Landau level. The lowest-
energy state can be interpreted as the magnetic-field-
dependent mass, which is then given by m2

B ¼m2
0þ jeBj.

In contrast, neutral pions do not experience directly the
effects of a magnetic background, and, thus, their mass
remains at first sight unaffected. Interactions with other
particles that populate the strongly interacting vacuum can
change this picture. In fact, the magnetic-field-driven
modifications of the neutral pion mass were first computed
by lattice QCD (LQCD) calculations in Refs. [67,68]. These
works found contradictory results: Whereas Ref. [68]
obtains a neutral pion mass that monotonically decreases
with the field strength, Ref. [67] finds a dip at an inter-
mediate value and then an increase for larger field strengths.
This discrepancy was analyzed in Refs. [69,70], where the
monotonic decrease of the pion mass as a function of the
field strength was confirmed.
The problem has been also addressed from the point of

view of effective models. Working within the linear sigma
model with quarks (LSMq) in the weak field limit, Ref. [7]
has shown that the neutral pion mass starts off decreasing as
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a function of the field strength. An important element for
this finding is to account for the magnetic-field-driven
modification of the boson self-coupling. Within the same
model and also with magnetic-field-modified couplings,
Ref. [71] finds that the neutral pion mass starts off
decreasing to then increase at an intermediate value of
the field strength, becoming even larger than the mass
at zero field strength. A similar behavior is found in
Refs. [72,73] using the Nambu-Jona-Lasinio model.
The results of Ref. [71], which are in contrast with the

most recent LQCD results [69,70], may be due to the use
of a procedure, advocated in Ref. [73], to remove the
vacuum, which in Ref. [7] has been shown to not describe
the large magnetic field strength limit, generating a
discrepancy with the well-established lowest Landau level
(LLL) result. Moreover, since the effective boson-fermion
coupling in Ref. [71] is computed from the magnetic field
corrections to the quark mass, it is not clear what, if any, is
the role of Schwinger’s phase factor when this effective
coupling is computed from the one-loop triangle pertur-
bative correction.
In order to assess whether the use of one-loop magnetic-

field-modified couplings can account for the behavior of
the recent LQCD results for the magnetic field dependence
of the neutral pion mass, in Ref. [74] we made a detailed
study of the magnetic field modifications to the boson self-
coupling and boson-fermion coupling in the LSMq. We
found that the couplings experience a monotonic decrease
as a function of the field strength. The pending question is,
thus, to clarify what are the overall ingredients that can
explain the neutral pion mass monotonic decrease as a
function of the field strength. In this work, we address this
question within the LSMq, showing that the elements
driving the neutral pion mass behavior are the properly
combined effects of the magnetic field corrections to the
couplings together with the contribution from charged
particles to the one-loop pion self-energy and to the vacuum
expectation value of the sigma field.
The work is organized as follows: In Sec. II, we intro-

duce the linear sigma model with quarks. In Sec. III, we
make a quick survey of the way magnetic field effects are
introduced into the propagators of charged bosons and
fermions. In Sec. IV, we compute the necessary elements to
obtain the magnetic modification of the pion mass to one-
loop order, namely, the neutral pion self-energy, the
vacuum expectation value of the sigma field from the
effective potential, and the correction to the couplings. In
Sec. V, we compute the magnetic corrections to the
neutral pion mass and compare to recent LQCD calcu-
lations, showing that the monotonic decrease with the
field strength can be reproduced. We finally summarize
and conclude in Sec VI. We reserve for the Appendixes
the explicit calculation details for the one-loop corrections
to both the neutral pion self-energy and the effective
potential.

II. LINEAR SIGMA MODEL WITH QUARKS

The LSMq is an effective model that describes the low-
energy regime of QCD, incorporating the spontaneous
breaking of chiral symmetry. The Lagrangian for the
LSMq can be written as

L ¼ 1

2
ð∂μσÞ2 þ

1

2
ð∂μπ⃗Þ2 þ

a2

2
ðσ2 þ π⃗2Þ − λ

4
ðσ2 þ π⃗2Þ2

þ iψ̄γμ∂μψ − igγ5ψ̄ τ⃗ ·π⃗ψ − gψ̄ψσ: ð1Þ

Pions are described by an isospin triplet: π⃗ ¼ ðπ1; π2; π3Þ.
Two species of quarks are represented by an SUð2Þ isospin
doublet ψ . The σ scalar is included by means of an isospin
singlet. Also, λ is the boson self-coupling, and g is the
fermion-boson coupling. a2 > 0 is the mass parameter.
To allow for spontaneous symmetry breaking, we let the

σ field develop a vacuum expectation value v:

L ¼ 1

2
∂μσ∂μσ þ 1

2
∂μπ0∂μπ0 þ ∂μπ−∂μπþ

−
1

2
m2

σσ
2 −

1

2
m2

0π
2
0 −m2

0π−πþ þ iψ̄=∂ψ

−mfψ̄ψ þ a2

2
v2 −

λ

4
v4 þ Lint; ð2Þ

where the charged pion fields can be expressed as

π� ¼ 1ffiffiffi
2

p ðπ1 � iπ2Þ ð3Þ

and the interaction Lagrangian is defined as

Lint ¼ −
λ

4
σ4 − λvσ3 − λv3σ − λσ2π−πþ − 2λvσπ−πþ

−
λ

2
σ2π20 − λvσπ20 − λπ2−π

2þ − λπ−πþπ20 −
λ

4
π40

þ a2vσ − gψ̄ψσ − igγ5ψ̄ðτþπþ þ τ−π− þ τ3π0Þψ :
ð4Þ

In order to include a finite vacuum pion mass m0, one adds
an explicit symmetry-breaking term in the Lagrangian of
Eq. (2) such that

L → L0 ¼ Lþm2
0

2
vðσ þ vÞ: ð5Þ

As can be seen from Eqs. (2) and (4), there are new terms
which depend on v, and all fields develop masses
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m2
σ ¼ 3λv2 − a2;

m2
0 ¼ λv2 − a2;

mf ¼ gv: ð6Þ

Using Eqs. (2) and (5), the tree-level potential is given by

V treeðvÞ ¼ −
a2 þm2

0

2
v2 þ λ

4
v4: ð7Þ

This potential develops a minimum, called the vacuum
expectation value of the σ field, namely,

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þm2

0

λ

r
: ð8Þ

Therefore, the masses evaluated at v0 are

mfðv0Þ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þm2

0

λ

r
;

m2
σðv0Þ ¼ 2a2 þ 3m2

0;

m2
0ðv0Þ ¼ m2

0: ð9Þ

Finally, an external magnetic field, uniform in space and
constant in time, can be included in the model introducing a
covariant derivative in the Lagrangian density, Eq. (2),
namely,

∂μ → Dμ ¼ ∂μ þ iqAμ; ð10Þ

where Aμ is the vector potential corresponding to an
external magnetic field directed along the ẑ axis. In the
symmetric gauge, this is given by

AμðxÞ ¼ 1

2
xνFνμ ð11Þ

and couples only to the charged pions and to the quarks.
Notice that, in order to consider the propagation of

charged particles, one can resort to introducing Schwinger
propagators which can be expressed either in terms of their
proper time representation or as a sum over Landau Levels.
For completeness of the presentation, we now proceed to
briefly discuss the properties of these propagators.

III. MAGNETIC-FIELD-DEPENDENT BOSON AND
FERMION PROPAGATORS

In order to consider the propagation of charged particles
within a magnetized background, we use Schwinger’s
proper time representation. The fermion propagator can
be written as [75]

Sfðx; x0Þ ¼ eiΦðx;x0ÞSfðx − x0Þ; ð12Þ

where Φðx; x0Þ is the Schwinger phase given by

Φðx; x0Þ ¼ q
Z

x0

x
dξμ

�
AμðξÞ þ 1

2
Fμνðξ − x0Þν

�
; ð13Þ

where q is the particle electric charge. Φðx; x0Þ corresponds
to the translationally noninvariant and gauge-dependent
part of the propagator. On the other hand, Sfðx − x0Þ is
translationally and gauge invariant and can be expressed in
terms of its Fourier transform as

Sfðx − x0Þ ¼
Z

d4p
ð2πÞ4 SfðpÞe

−ip·ðx−x0Þ; ð14Þ

where

iSfðpÞ ¼
Z

∞

0

ds
cosðjqfBjsÞ

eisðp
2
k−p

2⊥½tanðjqfBjsÞ=jqfBjs�−m2
fþiϵÞ

×

�
ðcosðjqfBjsÞ þ γ1γ2 sinðjqfBjsÞsgnðqfBÞÞ

× ðmf þ =pkÞ −
=p⊥

cosðjqfBjsÞ
�
: ð15Þ

In a similar fashion, for a charged scalar field we have

Dðx; x0Þ ¼ eiΦðx;x0ÞDðx − x0Þ;

Dðx − x0Þ ¼
Z

d4p
ð2πÞ4DðpÞe−ip·ðx−x0Þ; ð16Þ

with

iDðpÞ ¼
Z

∞

0

ds
cosðjqbBjsÞ

eisðp
2
k−p

2⊥½tanðjqbBjsÞ=jqbBjs�−m2
bþiϵÞ;

ð17Þ

where the boson and fermion masses and electric charges
are mb and qb and mf and qf, respectively.
The propagators in Eqs. (15) and (17) can also be

expanded as a sum over Landau levels. In this case, the
expressions for the charged fermion and scalar propagators
are given by [76,77]

iSfðpÞ ¼ ie−p
2⊥=jqfBj

X∞
n¼0

ð−1ÞnDnðpÞ
p2
k −m2

f − 2njqfBj þ iϵ
; ð18Þ

iDbðpÞ ¼ 2ie−p
2⊥=jqbBj

X∞
n¼0

ð−1ÞnL0
nð 2p

2⊥
jqbBjÞ

p2
k −m2

b − ð2nþ 1ÞjqbBj þ iϵ
;

ð19Þ

respectively, where
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DnðpÞ ¼ 2ð=pk þmfÞOþL0
n

�
2p2⊥
jqfBj

�

− 2ð=pk þmfÞO−L0
n−1

�
2p2⊥
jqfBj

�

þ 4=p⊥L1
n−1

�
2p2⊥
jqfBj

�
ð20Þ

and Lm
n ðxÞ are the generalized Laguerre polynomials. Also,

in Eq. (20), the operators O� are defined as

O� ¼ 1

2
ð1� iγ1γ2sgnðqBÞÞ: ð21Þ

We now use these ingredients to compute the elements
necessary to obtain the magnetic modification of the neutral
pion mass.

IV. ONE-LOOP MAGNETIC CORRECTIONS

In order to compute the magnetic-field-induced modifi-
cation to the neutral pion mass, the starting point is the
equation defining its dispersion relation in the presence of
the magnetic field, namely,

q20 − jq⃗j2 −m2
0ðBÞ − Re½ΠðB; q; λB; gB; vBÞ� ¼ 0; ð22Þ

where Π is the neutral pion self-energy and λB, gB, and vB
represent the magnetic-field-dependent boson-self cou-
pling, boson-fermion coupling, and vacuum expectation
value, respectively. The computation requires knowledge of
each of these elements as functions of the field strength. vB
can be computed finding the minimum of the magnetic-
field-dependent one-loop effective potential. This can be
analytically computed using the full magnetic field depend-
ence of the charged particle propagators. For the neutral
pion self-energy and the magnetic field corrections to the
couplings, we work in the large field limit and, thus, resort
to use propagators in the LLL approximation.

A. Neutral pion self-energy

We first compute the neutral pion self-energy:

ΠðB; qÞ ¼
X
f

Πff̄ðB; qÞ þ Ππ−ðBÞ þ ΠπþðBÞ þ Ππ0 þ Πσ:

ð23Þ

The five terms on the right-hand side of Eq. (23) correspond
to the Feynman diagrams contributing to this self-energy at
one-loop order. The subindices represent the kind of
particles in the loop. The contributions to this self-energy
are the quark-antiquark loop Πff̄ depicted in Fig. 1 and the
boson loops Ππ� , Ππ0 , and Πσ . The Feynman diagram
corresponding to Ππ− is depicted in Fig. 2, and we single it
out from the neutral boson loops, since this diagram,

together with the diagram corresponding to its charge
conjugate (CC) Ππþ , are the only ones modified by the
presence of the magnetic field. Diagrams with neutral
bosons in the loop contribute only to vacuum renormaliza-
tion and not to the magnetic properties of the system.
Therefore, hereafter we do not consider the latter for the
description of the magnetic modifications of the pion self-
energy.
We first concentrate on the contribution from the

quark-antiquark loop for a single quark species, given
explicitly by

−iΠff̄ðB; qÞ ¼ −g2
Z

d4k
ð2πÞ4 Tr½γ5iSfðkÞγ5iSfðkþ qÞ�

þ CC: ð24Þ

Notice that, since both particles flow with the same charge
around the loop, the Schwinger phase vanishes. The quark
propagator in the presence of a magnetic field, iSf, is
written in the strong field limit using the LLL contribution,
namely,

iSf → iSLLLf ðkÞ ¼ 2ie−k
2⊥=jqfBj

=kk þmf

k2k −m2
f þ iϵ

O�: ð25Þ

According to the explicit computation in Appendix A, the
fermion contribution to the pion self-energy is given by

−iΠff̄ ¼
ig2jqfBj
2π2

eð−1=2jqfBjÞq2⊥
Z

1

0

dx

�
1

ε
þ ln ð4πÞ − γE

− ln

�
Δ1

μ2

�
− 1þ

xð1 − xÞq2k þm2
f

Δ1

�
; ð26Þ

FIG. 1. Feynman diagram showing the one-loop contribution
from fermions to the neutral pion self-energy in the LSMq.

FIG. 2. Feynman diagram showing the one-loop contribution
from charged pions to the neutral pion self-energy in the LSMq.
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where Δ1 ¼ xðx − 1Þq2k þm2
f and μ is the ultraviolet

renormalization scale.
In order to capture the overall magnetic field effects for

on-shell and nonmoving pions, we resort to computing the
fermion contribution to the pion self-energy in the static
limit, namely, q0 ¼ mB and q⃗ ¼ 0⃗. As also thoroughly
discussed in Appendix A, working with the MS renorm-
alization scheme, this is explicitly given by

Πff̄ ¼ g2jqfBj
2π2

"
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

f

m2
B
− 1

s
arccsc

�
2mf

mB

�
þ ln

�
m2

f

μ2

�

−
8m2

f

mB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

f −m2
B

q arccsc

�
2mf

mB

�#
: ð27Þ

Notice that Eq. (27) has an explicit dependence on μ.
This is a general feature of one-loop calculations where,
in order to regulate the integration, such a scale needs to
be introduced. As discussed in Ref. [74], when working
in the LLL, μ needs to be chosen in such a way that this
becomes the largest of all energy scales, larger than the
gap

ffiffiffiffiffiffiffiffiffiffiffi
2jeBjp

, between the LLL and the first excited
Landau level, where jej is the absolute value of the
electron charge. To accomplish this constraint, we chose
μ2 ¼ 2jeBj þm2

0 [74]. With this choice, the contribution
from the quark-antiquark loop for a single quark species
becomes

Πff̄ ¼ g2jqfBj
2π2

"
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

f

m2
B
− 1

s
arccsc

�
2mf

mB

�

þ ln

�
m2

f

2jeBj þm2
0

�

−
8m2

f

mB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

f −m2
B

q arccsc

�
2mf

mB

�#
: ð28Þ

We now proceed to compute the charged boson loop
contribution to the pion self-energy. This can be written as

−iΠπ� ¼
Z

d4k
ð2πÞ4 ð−2iλÞiDπ�ðkÞ: ð29Þ

Notice that since the initial and final loop space-time points
in the tadpole Feynman diagram coincide, the Schwinger
phase vanishes. To compute Eq. (29) in the strong field
limit, we use the charged boson propagator in LLL
approximation, namely,

iDb → iDLLL
b ðkÞ ¼ 2ie−k

2⊥=jqbBj

k2k −m2
b − jqbBj þ iϵ

: ð30Þ

The procedure to compute this contribution is shown in
Appendix A. Choosing μ2 ¼ 2jeBj þm2

0 [74], the result
can be expressed as

Ππ� ¼ −
λjeBj
4π2

ln

� jeBj þm2
0

2jeBj þm2
0

�
: ð31Þ

With the expression for the pion self-energy at hand, we
now turn our attention to computing the rest of the
ingredients, starting from the magnetic corrections to the
vacuum expectation value.

B. Magnetic corrections to the vacuum
expectation value

The magnetic correction to the vacuum expectation value
can be obtained finding the minimum for the effective
potential in the presence of the magnetic background, vB.
For the LSMq in a magnetized medium, the effective
potential at one-loop contains fermion as well as boson
contributions which modify the location of the minimum as
a function of the field strength.
The effective potential up to one-loop order has six

contributions, namely,

Veff ¼ V tree þ V1
πþ þ V1

π− þ V1
π0
þ V1

σ þ
X
f

V1
f: ð32Þ

The first termon the right-hand side of Eq. (32) represents the
classical or tree-level potential. This can be read off from
Eq. (7). The second and third terms correspond to the charged
boson contribution, the fourth and fifth are the neutral
contributions associated to the neutral pion and sigma,
respectively, and the last one is the fermion contribution.
The contribution to the effective potential from a charged

boson with mass mb is given by the expression

V1
b ¼ −

i
2

Z
d4k
ð2πÞ4 ln ½−D

−1
b ðkÞ� ð33Þ

where the charged boson propagator is given by Eq. (19).
The computation of Eq. (33) is performed in Appendix B.
An explicit analytical expression for an arbitrary magnetic
field strength can, in fact, be found. Working in the MS
renormalization scheme and setting the boson mass to be
the charged pion mass in vacuum, m0, this expression is
given by

V1
b ¼

1

16π2

�
2jeBj2ψ−2

�
1

2
þ m2

0

2jeBj
�
−
1

2
jeBjm2

0 lnð2πÞ

−
m4

0

4
ln

�
μ2

m2
0

�
−
m4

0

4
ln

�
m2

0

2jeBj
��

; ð34Þ

where ψ−2ðxÞ is the Polygamma function of the order of −2
and μ is the renormalization scale. Notice that, in the limit
B → 0, Eq. (34) becomes
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V1
b → V1

b0 ¼ −
m4

0

64π2

�
3

2
þ ln

�
μ2

m2
0

��
; ð35Þ

which corresponds to the contribution to the effective
potential from a neutral boson with mass m0 [78]. We
thus use this last expression to account for the contribution
coming from the fourth and fifth terms of Eq. (32), and,
thus, the purely magnetic contribution from Eq. (34) is
obtained by subtracting Eq. (35) from Eq. (34) and is
given by

V1
bðBÞ ¼

1

16π2

�
2jeBj2ψ−2

�
1

2
þ m2

0

2jeBj
�
−
1

2
jeBjm2

0 lnð2πÞ

−
m4

0

4
ln

�
m2

0

2jeBj
�
þ 3m4

0

8

�
: ð36Þ

The contribution from a single fermion species can be
obtained from the expression

V1
f ¼ iNc

Z
d4k
ð2πÞ4 Tr ln ½S

−1
f ðkÞ�; ð37Þ

where Nc is the number of colors and iSfðkÞ is given by
Eqs. (18) and (20). The explicit computation is shown in
Appendix B. Once again, the result can be provided for an
arbitrary field strength. Working with the MS renormaliza-
tion scheme, this is given by

V1
f ¼ −

Nc

8π2

�
4jqfBj2ψ−2

�
m2

f

2jqfBj
�
−
m4

f

2
ln

�
μ2

m2
f

�

−
m4

f

2
ln

�
m2

f

2jqfBj
�
−m2

fjqfBj
�
1þ lnð2πÞ

− ln

�
m2

f

2jqfBj
���

: ð38Þ

In the limit B → 0, Eq. (38) becomes

V1
f ¼ Nc

m4
f

16π2

�
3

2
þ ln

�
μ2

m2
f

��
; ð39Þ

which corresponds to the contribution to the effective
potential from a fermion in the absence of the magnetic
field. Thus, the purely magnetic contribution from Eq. (38)
is given by

V1
fðBÞ ¼ −

Nc

8π2

�
4jqfBj2ψ−2

�
m2

f

2jqfBj
�

−
m4

f

2
ln

�
m2

f

2jqfBj
�
−m2

fjqfBj
�
1þ lnð2πÞ

− ln

�
m2

f

2jqfBj
��

þ 3m4
f

4

�
: ð40Þ

Whenthe tree-level effectivepotential ismodifiedbyone-loop
corrections, the curvature (or, equivalently, the vacuum σ
mass) and the position of the minimum are bound to change.
The changes are driven both from purely vacuum contribu-
tions as well as from magnetic field effects. The vacuum
changes need to be absorbedwith a redefinitionof thevacuum
terms so as to make sure that any change in the position of the
minimum truly comes from themagnetized background. This
is accomplished by enforcing the vacuum stability conditions
[79], introducing counterterms in such a way that

V tree ¼−
ða2þm2

0Þ
2

v2þ λ

4
v4

→

V treeþ δV tree ¼−
ða2þm2

0þ δa2Þ
2

v2þðλþ δλÞ
4

v4; ð41Þ

where δa2 and δλ are to be determined from the conditions

1

2v
dVvac

dv

����
v¼v0

¼ 0;

d2Vvac

dv2

����
v¼v0

¼ 2a2 þ 2m2
0: ð42Þ

Vvac contains the contribution from the three pions, the σ and
the three color charges for the two light quarks, in the limit
B → 0, namely,

Vvac ¼ −
ða2 þm2

0 þ δa2Þ
2

v2 þ ðλþ δλÞ
4

v4

− 3
m4

0

64π2

�
3

2
þ ln

�
μ2

m2
0

��
−

m4
σ

64π2

�
3

2
þ ln

�
μ2

m2
σ

��

þ 2Nc

m4
f

16π2

�
3

2
þ ln

�
μ2

m2
f

��
: ð43Þ

With this procedure, we obtain

δa2 ¼ 1

16π2λ

�
8a2g4Nc þ 8g4m2

0Nc − 6a2λ2 − 12m2
0λ

2

þ 3a2λ2 ln

�
μ2

m2
0

�
þ 3a2λ2 ln

�
μ2

2a2 þ 3m2
0

��
; ð44Þ

δλ ¼ 1

16π2

�
3λ2 ln

�
μ2

m2
0

�
þ 9λ2 ln

�
μ2

2a2 þ 3m2
0

�

− 8g4Nc ln

�
λμ2

g2ða2 þm2
0Þ
��

: ð45Þ

Thus, once the vacuum terms—evaluated at the vacuum
expectation value—are included into the effective potential,
the modifications to the minimum come exclusively from
magnetic effects, namely, from the contribution of charged
pions and fermions. As a result, the one-loop effective
potential in a magnetized medium can be written as
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VeffðBÞ ¼ −
ða2 þm2

0Þ
2

v2 −
δa2

2
v20 þ

λ

4
v4 þ δλ

4
v40 − 3

m4
0ðv0Þ
64π2

�
3

2
þ ln

�
μ2

m2
0ðv0Þ

��

−
m4

σðv0Þ
64π2

�
3

2
þ ln

�
μ2

m2
σðv0Þ

��
þ 2Nc

X
f

m4
fðv0Þ
16π2

�
3

2
þ ln

�
μ2

m2
fðv0Þ

��

þ 2

16π2

�
2jeBj2ψ−2

�
1

2
þm2

0ðvÞ
2jeBj

�
þ 3m4

0ðvÞ
8

−
1

2
jeBjm2

0ðvÞ lnð2πÞ −
m4

0ðvÞ
4

ln

�
m2

0ðvÞ
2jeBj

��

−
Nc

8π2
X
f

�
4jqfBj2ψ−2

�
m2

fðvÞ
2jqfBj

�
þ 3

4
m4

fðvÞ −
m4

fðvÞ
2

ln

�
m2

fðvÞ
2jqfBj

�
−m2

fðvÞjqfBj þm2
fðvÞjqfBj ln

�
m2

fðvÞ
4πjqfBj

��
:

ð46Þ

Figure 3 shows the tree-level potential V tree and the vacuum
one-loop potential Vvac computed for μ ¼ 0.3 and 1 GeV,
after implementing the stability conditions. Also shown in
the figure is the magnetic-field-modified position of the
minimum when adding the magnetic effects to Vvac, for
jeBj ¼ 1 GeV2. Notice that, after the vacuum stability
conditions are implemented, the vacuum position and cur-
vature remain at their tree-level values and that these
quantities are independent of the choice of the renormaliza-
tion scale μ. Figure 4 shows the position of the minimum vB
as a function of the field strength.Notice that, as expected,vB
grows with the field strength, signaling magnetic catalysis.

C. Magnetic modifications to the boson self-coupling
and boson-fermion coupling

The magnetic-field-induced corrections to the boson self-
coupling λ and the boson-fermion coupling g have been
recently obtained in Ref. [74]. Working in the strong field
limit, the explicit expressions for these corrections aregivenby

ΓLLL
λ ¼ −

λ

6π2
jqbBj

jqbBj þm2
0

ð47Þ

and

ΓLLL
g ¼ ΓLLL

1;g þ ΓLLL
2;g þ ΓLLL

3;g ; ð48Þ
where

ΓLLL
1;g ¼ g2jeBj

16π2m2
f

Z
1

0

du
u

u2 þ αð1− uÞ
�
1þ ð2− uÞu

u2 þ αð1− uÞ
�
;

ΓLLL
2;g ¼ −

g2

2π2m2
f

Z
1

0

du
Z

∞

0

dk⊥k⊥e−3k
2⊥=jeBj

×
u

u2 þ βð1− uÞ
�
1þ ð2− uÞu

u2 þ βð1− uÞ
�
;

ΓLLL
3;g ¼ g2

2π2m2
f

Z
1

0

du
Z

∞

0

dk⊥k⊥e−3k
2⊥=jeBj

×
u

u2 þ γð1− uÞ
�
1þ ð2− uÞu

u2 þ γð1− uÞ
�
; ð49Þ

FIG. 3. Comparison between the position and curvature of the
minimum of V tree and Vvac computed with μ ¼ 0.3 and 1 GeV,
after implementing the vacuum stability conditions. Also shown
an example of the position of the minimum for Veff, vB, computed
with jeBj ¼ 1 GeV2. For the calculation we use m0 ¼ 140 MeV,
λ ¼ 3.67, and g ¼ 0.46 and, correspondingly, mσ ¼ 435 MeV,
a ¼ 256 MeV, and v0 ¼ 152 MeV.

FIG. 4. Magnetic modification to the vacuum expectation value
vB as a function of the field strength. For the calculation, we use
m0 ¼ 140 MeV, λ ¼ 3.67, and g ¼ 0.46 and, correspondingly,
mσ ¼ 435 MeV, a ¼ 256 MeV, and v0 ¼ 152 MeV.
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with α ¼ ðm2
0 þ jeBjÞ=m2

f, β ¼ ðk2⊥ þm2
0Þ=m2

f, and γ ¼
ðk2⊥ þm2

σÞ=m2
f.

The magnetic modified boson self-coupling and boson-
fermion coupling are, thus, given, respectively, by

λB ¼ λð1þ ΓLLL
λ Þ;

gB ¼ gð1þ ΓLLL
g Þ: ð50Þ

Figure 5 shows the magnetic field dependence of these
couplings, normalized to their vacuum values. Notice that
the couplings show a monotonic, albeit modest, decrease
with the field strength.

V. MAGNETIC MODIFICATION TO THE
NEUTRAL PION MASS

With all the elements at hand, we can now find the
magnetic-field-dependent neutral pion mass from the
dispersion relation [Eq. (22)] in the limit where q⃗ → 0
and q0 → mB, namely,

m2
B ¼ m2

0ðBÞ þ ΠðB; q0 ¼ mB; q⃗ ¼ 0; λB; gB; vBÞ; ð51Þ

where, in order to incorporate the magnetic-field-dependent
boson self-coupling and vacuum expectation value in the
tree-level pion mass, we write

m2
0ðBÞ ¼ λBv2B − a2: ð52Þ

To reduce the parameter space, we consider that, in the
absence of baryons, the constituent quark mass is such that
m0 ¼ 2mf. With this choice, the only free parameters are λ
and g. We have explored a large range for these para-
meters, and hereby we show the results for the set that

best describes simultaneously the LQCD data of
Refs. [69,70]. Moreover, the values we use as initial inputs
for g and λ produce, for the lowest vacuum pion mass
considered, values of v0 larger than fπ only by a factor
∼1.5, which we take as an indication of consistency within
the limitations of an effective theory such as the LSMq.
Since Refs. [69,70] report their findings for different values
of the vacuum pion mass, we also vary this mass, and,
consequently, the rest of the dependent parameters have to
be changed to suit these choices. In particular, a larger
vacuum pion mass implies a larger σ mass. Thus, in the
strong field limit, our results are restricted to the domain
where jeBj > m2

σ .
Figure 6 shows the magnetic-field-dependent neutral

pion mass as a function of the field strength computed for
two cases: with (black dots) and without (blue diamonds)
magnetic-field-dependent couplings, using as inputs m0 ¼
140 MeV, λ ¼ 3.67, and g ¼ 0.46 and, correspondingly,
mσ ¼ 435 MeV, a¼ 256MeV, and v0 ¼ 152MeV. Notice
that, whereas the former shows a monotonic decrease, the
latter starts off decreasing to later on increase as a function
of the field strength. This result signals the importance
of including magnetic field corrections to the couplings in
the calculation of the magnetic-field-dependent neutral
pion mass.
In order to compare with LQCD simulations, which are

implemented for different values of the vacuum pion mass,
Fig. 7 shows the magnetic-field-dependent neutral pion
mass as a function of the field strength when varying the
input vacuum pion mass. Shown are three cases: m0 ¼
140 MeV (black dots), m0 ¼ 220 MeV (blue triangles),
and m0 ¼ 415 MeV (red diamonds). Notice that, as the

FIG. 5. Magnetic modification to the boson-fermion coupling
(dotted red line) and to the boson self-coupling (solid blue line) as
a function of the field strength. For the calculation, we use
m0 ¼ 140 MeV, λ ¼ 3.67, and g ¼ 0.46 and, correspondingly,
mσ ¼ 435 MeV, a ¼ 256 MeV, and v0 ¼ 152 MeV.

FIG. 6. Magnetic modification to the neutral pion mass, for two
different cases: Blue diamonds correspond to tree-level cou-
plings, and black dots correspond to magnetic-field-dependent
couplings. Notice that, whereas the calculation using tree-level
couplings starts off decreasing to later on increase, the calculation
using magnetic-field-dependent couplings decreases monotoni-
cally as a function of the field strength. For the calculation, we
use m0 ¼ 140 MeV, λ ¼ 3.67, and g ¼ 0.46 and, correspond-
ingly, mσ ¼ 435 MeV, a ¼ 256 MeV, and v0 ¼ 152 MeV.
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vacuum pion mass decreases, the corresponding magnetic-
field-dependent pion mass also decreases and that all cases
show a monotonic decrease as a function of the field
strength, in agreement with the LQCD findings.
To make direct contact with LQCD data, Fig. 8 shows

the results for the magnetic-field-dependent neutral pion
mass as a function of the field strength using as inputm0 ¼
415 MeV and with λ ¼ 3.67 and g ¼ 0.46, compared to
the results from Ref. [69]. The data points correspond to the
πd (blue diamonds) and πu (red diamonds) masses com-
puted also using as input m0 ¼ 415 MeV. Notice that our
calculation does a nice description of the data average,

particularly for the largest field strengths. Figure 9 shows
also a comparison of our calculation with the LQCD
calculation of Ref. [70], this time computed with m0 ¼
220 MeV as input together with λ ¼ 3.67 and g ¼ 0.46.
The data points correspond to the πd (blue diamonds) and
πu (red diamonds) masses computed also using as input
m0 ¼ 220 MeV. Once again, we notice that our calculation
does a nice job describing the average of the LQCDmasses,
particularly for large values of the field strength.

FIG. 8. Magnetic modification to the neutral pion mass. Blue
and red diamonds correspond to the masses of πd and πu, res-
pectively, reported by LQCD in Ref. [69] with m0 ¼ 415 MeV.
Black dots are the result from Eq. (51) with m0 ¼ 415 MeV,
λ ¼ 3.67, and g ¼ 0.46 and, correspondingly, mσ ¼ 1291 MeV,
a ¼ 758 MeV, and v0 ¼ 451 MeV.

FIG. 9. Magnetic modification to the neutral pion mass. Blue
and red diamonds correspond to the masses of πd and πu, res-
pectively, reported by LQCD in Ref. [70] with m0 ¼ 220 MeV.
Black dots are the result from Eq. (51) with m0 ¼ 220 MeV,
λ ¼ 3.67, and g ¼ 0.46 and, correspondingly, mσ ¼ 684 MeV,
a ¼ 402 MeV, and v0 ¼ 239 MeV.

FIG. 7. Magnetic modification to the neutral pion mass for
three different values of pion mass in vacuum: black dots,
m0 ¼ 140 MeV; blue triangles, m0 ¼ 220 MeV; red diamonds,
m0 ¼ 415 MeV. Notice that, as the vacuum pion mass decreases,
the corresponding magnetic-field-dependent pion mass also
decreases and that all cases show a monotonic decrease as a
function of the field strength, in agreement with the recent LQCD
findings.

FIG. 10. Magnetic modification to the neutral pion mass. Blue
and red diamonds correspond to the masses of πd and πu, res-
pectively, reported by LQCD in Ref. [69] with m0 ¼ 415 MeV.
Green and gray triangles correspond to the masses of πd and πu,
respectively, reported by LQCD in Ref. [70] with m0 ¼
220 MeV. Black dots are the result of Eq. (51) with m0 ¼
140 MeV, λ ¼ 3.67, and g ¼ 0.46 and, correspondingly,
mσ ¼ 435 MeV, a ¼ 256 MeV, and v0 ¼ 152 MeV. Notice
that, as expected, when for the calculation we use as input the
physical pion mass m0 ¼ 140 MeV, the theoretical curve lies
below the LQCD data which were obtained using larger vacuum
pion masses.
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Finally, Fig. 10 shows a comparison of our calculation
with the results of the LQCDcalculations fromRefs. [69,70].
The data points correspond to the lowest reached values of
each LQCD calculation:m0 ¼ 415 MeV for the former and
m0 ¼ 220 MeV for the latter. The calculation (black dots) is
performed with m0 ¼ 140 MeV as input, together with λ ¼
3.67 and g ¼ 0.46. Notice that the result of the calculation
using as input the physical pion mass in vacuum lies below
the LQCD points. In this sense, this result can be considered
as our prediction when and if LQCD techniques can be
performed for a physical vacuum pion mass.

VI. SUMMARY AND CONCLUSIONS

In this work, we have used the LSMq to find the
magnetic-field-induced modifications to the neutral pion
mass at one-loop level. The magnetic field effects are
introduced by using charged particle propagators in the
presence of a magnetic background in the strong field limit.
We found that the approach is able to reproduce the
qualitative and quantitative magnetic field dependence of
the neutral pion mass reported by recent LQCD calcula-
tions. The important ingredients for the calculation are the
proper inclusion of the magnetic field effects on the model
couplings, the σ vacuum expectation value, and the neutral
pion self-energy. As shown, the magnetic field effects
produce that the model couplings monotonically decrease
as a function of the field strength. When this behavior is not
accounted for, we have shown that the neutral pion mass
starts off decreasing to then increase at an intermediate
value of the field strength. We have also shown that, by
accounting for the vacuum stability conditions, the mag-
netic-field-dependent vacuum expectation value of the σ
field increases as a function of the field strength, which is to
be expected on general grounds given the well-established
magnetic catalysis phenomenon of the condensate in a
magnetized medium. This increase is, however, outdone by
the behavior of the pion self-energy as a function of the
field strength such that, overall, the neutral pion mass
monotonically decreases as a function of the field strength.
By comparing to the LQCD calculations performed for the
smallest pion mass allowed by that technique, we show
that, when the physical vacuum pion mass is used, the
magnetic-field-dependent neutral pion mass curve lies a bit
below the LQCD data. In this sense, this result is our
prediction for when and if the LQCD techniques allow for
calculations using the physical vacuum pion mass.
An interesting question is whether our approach can also

reproduce the magnetic field behavior of the charged pion
mass as well as that of the mass of other mesons such as the
neutral and charged ρmesons. This is work in progress and
will be reported elsewhere.
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APPENDIX A: MAGNETIC CORRECTIONS TO
THE NEUTRAL PION SELF-ENERGY

Consider the quark loop which can be made either of
quarks u or d, as depicted in Fig. 1. The contribution from a
quark flavor f is given by

−iΠff̄ðB; qÞ ¼ −g2
Z

d4k
ð2πÞ4 Tr½γ

5iSfðkÞγ5iSfðkþ qÞ�

þ CC; ðA1Þ
where we used that the Schwinger phase vanishes. We now
use Eq. (25) to account for the strong field limit, and the
properties of the Dirac matrices

O�=ak ¼ =akO�;

O�γ5 ¼ γ5O�;

Oþ þO− ¼ I4×4;

ðO�Þ2 ¼ O�;

γ5=ak ¼ −=akγ5; ðA2Þ
where aμk ¼ ða0; 0; 0; a3Þ and =ak ¼ akμγμ. Adding up the

contribution from the CC diagram, we get

−iΠff̄ ¼ 4g2
Z

d4k
ð2πÞ4 e

−½k2⊥þðkþqÞ2⊥�=jqfBj N
AB

; ðA3Þ

where we define

N ≡ Tr½ðmf − =kkÞðð=kþ =qÞk þmfÞ�;
A ¼ ðkþ qÞ2k −m2

f þ iϵ;

B ¼ k2k −m2
f þ iϵ: ðA4Þ

We proceed to integrate over the perpendicular coordinates
relative to the magnetic field. The result is given by

−iΠff̄ ¼ g2
jqfBj
2π

e−ð1=2jqfBjÞq2⊥
Z

d2kk
ð2πÞ2

N
AB

: ðA5Þ

We introduce the Feynman parametrization
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1

AB
¼

Z
1

0

dx
½Axþ Bð1 − xÞ�2 : ðA6Þ

The denominator of Eq. (A5) can be written as

Axþ Bð1 − xÞ ¼ ðkþ xqkÞ2 − Δ1 þ iϵ; ðA7Þ

where Δ1 ¼ xðx − 1Þq2k þm2
f and ϵ → 0. We make the

change of variables kk ¼ lk − xqk such that the numerator
N can be expressed as

N ¼ 4m2
f − 4l2k þ 4xð1 − xÞq2k: ðA8Þ

Notice that we have taken into account that the trace of an
odd number of Dirac matrices vanishes and that the linear
term lk will vanish in the integration. Thus, the contribution
to the self-energy becomes

−iΠff̄ ¼
2g2jqfBj

π
e−ð1=2jqfBjÞq2⊥

Z
1

0

dx
Z

d2lk
ð2πÞ2

� −l2k
ðl2k−Δ1Þ2

þ
xð1− xÞq2k þm2

f

ðl2k−Δ1Þ2
�
: ðA9Þ

In order to find the integral over parallel coordinates
relative to the magnetic field, we proceed using dimen-
sional regularization:

Z
d4kE
ð2πÞ4 → μ4−d

Z
dd−2kEk
ð2πÞd−2

Z
d2k⊥
ð2πÞ2 ; ðA10Þ

where we use d ¼ 4 − 2ε. In order to perform the integral
over d2lk, we use that

μ4−d
Z

dd−2lk
ð2πÞd−2

1

ðl2k − ΔÞ2 ¼
i

4πΔ
½1þOðεÞ�; ðA11Þ

μ4−d
Z

dd−2lk
ð2πÞd−2

l2k
ðl2k − ΔÞ2 ¼ −

i
4π

�
1

ε
þ ln ð4πÞ − γE − 1

− ln

�
Δ
μ2

�
þOðεÞ

�
: ðA12Þ

According to Eqs. (A11) and (A12),

−iΠff̄ ¼
ig2jqfBj
2π2

e−ð1=2jqfBjÞq2⊥
Z

1

0

dx

�
1

ε
þ ln ð4πÞ − γE

− ln

�
Δ
μ2

�
− 1þ

xð1 − xÞq2k þm2
f

Δ

�
: ðA13Þ

In the static limit q⃗ ¼ 0⃗ and setting the zeroth component of
the momentum equal to the neutral pion mass, q0 ¼ mB,

one can solve Eq. (51) self-consistently. We proceed using
the MS renormalization scheme to obtain a finite expres-
sion given by

−iΠff̄ ¼
ig2jqfBj
2π2

Z
1

0

dx

�
m2

f − xðx − 1Þm2
B

m2
f þ xðx − 1Þm2

B
− 1

− ln

�
xðx − 1Þm2

B þm2
f

μ2

��
: ðA14Þ

The integration over the Feynman parameter can be
performed provided that 4m2

f > m2
B; this condition is the

threshold relation for this process, and it must remain valid
upon the choice of the set of parameters. Substituting and
reducing terms, we get

Πff̄ ¼ g2jqfBj
2π2

"
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

f

m2
B
− 1

s
arccsc

�
2mf

MB

�
þ ln

�
m2

f

μ2

�

−
8m2

f

mB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

f −m2
B

q arccsc

�
2mf

mB

�#
: ðA15Þ

Setting μ2 ¼ 2jeBj þm2
0, we obtain

Πff̄ ¼ g2jqfBj
2π2

"
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

f

m2
B
− 1

s
arccsc

�
2mf

mB

�

þ ln

�
m2

f

2jeBj þm2
0

�

−
8m2

f

mB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

f −m2
B

q arccsc

�
2mf

mB

�#
: ðA16Þ

Finally, we compute the contribution from the tadpole in
Fig. 2. Its explicit expression is given by

−iΠπ� ¼
Z

d4k
ð2πÞ4 ð−2iλÞiDπ�ðkÞ; ðA17Þ

where we used that the Schwinger phase vanishes. In the
strong field limit, we use the boson propagator in Eq. (30).
The contribution from the two charged pions can be
written as

−iðΠπþ þ Ππ−Þ ¼ −8iλ
Z

d4k
ð2πÞ4

ie−k
2⊥=jeBj

k2k − jeBj −m2
0 þ iϵ

:

ðA18Þ

We proceed with the integration over the perpendicular
coordinates relative to the magnetic field to obtain
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−iðΠπþ þ Ππ−Þ ¼
2λjeBj

π

Z
d2kk
ð2πÞ2

1

k2k − Δ2 þ iϵ
; ðA19Þ

where Δ2 ¼ jeBj þm2
0 and ϵ → 0. Using dimensional

regularization as in Eq. (A10), the integration over the
parallel coordinates of momentum relative to the magnetic
field direction can be found to be

μ4−d
Z

dd−2lk
ð2πÞd−2

1

l2k − Δ
¼ −

i
4π

�
1

ε
þ lnð4πÞ − γE

− ln

�
Δ
μ2

�
þOðεÞ

�
: ðA20Þ

According to Eq. (A20) and taking ε → 0, we have

−iðΠπþ þ Ππ−Þ ¼
−iλjeBj
2π2

�
1

ε
þ lnð4πÞ − γE

− ln

�jeBj þm2
0

μ2

��
: ðA21Þ

Using the MS renormalization scheme, we obtain

Ππþ þ Ππ− ¼ −
λjeBj
2π2

ln

�jeBj þm2
0

μ2

�
: ðA22Þ

Setting μ2 ¼ 2jeBj þm2
0, we get

Ππþ þ Ππ− ¼ −
λjeBj
2π2

ln

� jeBj þm2
0

2jeBj þm2
0

�
: ðA23Þ

APPENDIX B: MAGNETIC CORRECTIONS TO
THE EFFECTIVE POTENTIAL

Consider the contribution from a single charged boson to
the effective potential at one-loop order, given by

V1
b ¼ −

i
2

Z
d4k
ð2πÞ4 ln ½−D

−1
b ðkÞ�; ðB1Þ

which can also be written as [78]

V1
b ¼

1

2

Z
dm2

b

Z
d4k
ð2πÞ4 iDbðkÞ: ðB2Þ

Using the boson propagator expanded over Landau levels
in Eq. (19), taking a Wick rotation k0 → ik4, and using a
Schwinger parameter, we get

V1
b ¼

Z
dm2

b

Z
d4kE
ð2πÞ4

Z
∞

0

ds
X∞
n¼0

ð−1Þne−k2⊥=jqbBj

× L0
n

�
2k2⊥
jqbBj

�
e−s½k

2
Ekþm2

0
þð2nþ1ÞjqbBj−iϵ�: ðB3Þ

Using the definitions

s1 ¼ 2k2⊥=jqbBj;
r1 ¼ −e−2sjqbBj;

αðkEkÞ ¼ k2Ek þm2
b − iϵ; ðB4Þ

we write

V1
b ¼

Z
dm2

b

Z
d4kE
ð2πÞ4

Z
∞

0

ds
X∞
n¼0

rn1L
0
nðs1Þ

× e−s½αðkEkÞþjqbBj�e−k2⊥=jqbBj: ðB5Þ

Using the generating function of Laguerre polynomials

X∞
n¼0

rn1L
0
nðs1Þ ¼

1

1 − r1
e−½r1=ð1−r1Þ�s1 ; ðB6Þ

we have

V1
b ¼

Z
dm2

b

Z
∞

0

ds
e−sjqbBj

1 − r1
I⊥ðsÞIkðsÞ; ðB7Þ

where we define

I⊥ðsÞ ¼
Z

d2k⊥
ð2πÞ2 e

−ðk2⊥=jqbBjÞð1−2ηbðsÞÞ;

IkðsÞ ¼ μ4−d
Z

dd−2kEk
ð2πÞd−2 e

−sαðkEkÞ;

ηbðsÞ ¼
1

e2jqbBjs þ 1
; ðB8Þ

note that we can take ϵ → 0 and use dimensional regulari-
zation. Once we carry out the integration, I⊥ðsÞ and IkðsÞ
can be written, respectively, as

I⊥ðsÞ ¼
jqbBj

4π tanh ðjqbBjsÞ
;

IkðsÞ ¼ μ2ε
1

ð4πsÞ1−ε e
−sm2

0 : ðB9Þ

Using the explicit expressions in Eq. (B9), we get

V1
b ¼

Z
dm2

b

Z
∞

0

ds
jqbBj

8π sinh ðjqbBjsÞ
μ2ε

ð4πsÞ1−ε e
−sm2

0 :

ðB10Þ

By writing

1

sinh ðjqbBjsÞ
¼ 2

X∞
n¼0

e−ð2nþ1ÞjqbBjs; ðB11Þ
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we can perform the integration over ds such that

V1
b ¼

jqbBj
16π2

Z
dm2

b

�
4πμ2

2jqbBj
�

ε

ΓðεÞζ
�
ε;
1

2
þ m2

b

2jqbBj
�
:

ðB12Þ

Considering an expansion for ε → 0, we have

V1
b ¼

jqbBj
16π2

Z
dm2

b

�
ζ

�
0;
1

2
þ m2

b

2jqbBj
��

1

ε
− γE þ ln ð4πÞ

þ ln

�
μ2

2jqbBj
��

þ ζð1;0Þ
�
0;
1

2
þ m2

b

2jqbBj
�	

; ðB13Þ

where ζðs; cÞ is the Hurwitz zeta function defined for c > 0
and R½s� > 1 and by analytic continuation to other s ≠ 1
and

d
ds

ζðs; cÞjs¼0 ¼ ζð1;0Þð0; cÞ: ðB14Þ

Using the following identities:

ζð0; cÞ ¼ 1

2
− c;

ζð1;0Þð0; cÞ ¼ ln ½ð2πÞ−1=2ΓðcÞ�; ðB15Þ

we get

V1
b ¼ −

1

32π2

Z
dm2

bm
2
b

�
1

ε
− γE þ ln ð4πÞ þ ln

�
μ2

2jqbBj
�

−
2jqbBj
m2

b

ln

�
ð2πÞ−1=2Γ

�
1

2
þ m2

b

2jqbBj
��	

: ðB16Þ

Considering the MS renormalization scheme, we have

V1
b ¼

1

32π2

Z
dm2

bm
2
b

�
2jqbBj
m2

b

ln

�
Γ
�
1

2
þ m2

b

2jqbBj
��

−
jqbBj
m2

b

ln ð2πÞ − ln

�
μ2

2jqbBj
�	

; ðB17Þ

solving the integral for dm2
b, we get the final result

V1
b ¼

1

16π2

�
2jqbBj2ψ−2

�
1

2
þ m2

b

2jqbBj
�
−
1

2
jqbBjm2

b lnð2πÞ

−
m4

b

4
ln
�

μ2

2jqbBj
��

; ðB18Þ

where ψ−2ðxÞ is the Polygamma function of the order of
−2. In the context of the LSMq, we have to consider the
contribution of both charged pions, such as the magnetic
correction from bosons in this model can be written as

V1
πþ þV1

π− ¼
1

8π2

�
2jeBj2ψ−2

�
1

2
þ m2

0

2jeBj
�

−
1

2
jeBjm2

0 lnð2πÞ−
m4

0

4
ln

�
μ2

2jeBj
��

: ðB19Þ

The magnetic corrections from the fermion contribution to
the effective potential can be computed from

V1
f ¼ iNc

Z
d4k
ð2πÞ4 Tr ln ½S

−1
f ðkÞ�; ðB20Þ

in a similar fashion to the boson case, it can be shown that

V1
f ¼ −2iNc

X
σ¼�1

Z
dm2

f

Z
d4k
ð2πÞ4

X
n¼0

ð−1Þne−k2⊥=jqfBj

×
L0
nð 2k2⊥

jqfBjÞ
k2k −m2

f − ð2nþ 1þ σÞ þ iϵ
; ðB21Þ

where we consider the particle-antiparticle contributions
and a sum over the polarizations with respect to the mag-
netic field direction, σ. Making a Wick rotation and con-
sidering a Schwinger proper time parametrization, we have

V1
f ¼−2Nc

X
σ¼�1

Z
dm2

f

Z
∞

0

ds
Z

d4k
ð2πÞ4

X∞
n¼0

ð−1Þne−k2⊥=jqfBj

×L0
n

�
2k2⊥
jqfBj

�
e−s½k

2
Ekþm2

fþð2nþ1þσÞjqfBj−iϵ�: ðB22Þ

Using the following definitions:

s2 ¼ 2k2⊥=jqfBj;
r2 ¼ −e−2sjqfBj;

βðkEkÞ ¼ k2Ek þm2
f − iϵ; ðB23Þ

we get

V1
f ¼ −2Nc

X
σ¼�1

Z
dm2

f

Z
∞

0

ds
Z

d4k
ð2πÞ4

X∞
n¼0

rn2L
0
nðs2Þ

× e−s½βðk
2
EkÞþjqfBjþσjqfBj�e−k2⊥=jqfBj: ðB24Þ

Using the generating function of Laguerre polynomials

X∞
n¼0

rn2L
0
nðs2Þ ¼

1

1 − r2
e−½r2=ð1−r2Þ�s2 ; ðB25Þ

we obtain

V1
f ¼ −2Nc

X
σ¼�1

Z
dm2

f

Z
∞

0

ds
Z

d4k
ð2πÞ4

e−sjqfBj

1 − r2

× e−sjqfBjJ⊥ðsÞJkðsÞ; ðB26Þ
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where, after introducing dimensional regularization, we use
the definitions

J⊥ðsÞ ¼
Z

d2k⊥
ð2πÞ2 e

−ðk2⊥=jqfBjÞð1−2ηfðsÞÞ;

JkðsÞ ¼ μ4−d
Z

dd−2kEk
ð2πÞd−2 e

−sβðkEkÞ;

ηfðsÞ ¼
1

e2jqfBjs þ 1
; ðB27Þ

where we have considered ϵ → 0. Once we carry out the
integration, J⊥ðsÞ and JkðsÞ can be written, respectively, as

J⊥ðsÞ ¼
jqfBj

4π tanh ðjqfBjsÞ
;

JkðsÞ ¼ μ2ε
1

ð4πsÞ1−ε e
−sm2

f : ðB28Þ

Using the identityX
σ¼�1

e−sjqfBj ¼ 2 cosh ðjqfBjsÞ; ðB29Þ

we have

V1
f ¼ −2Nc

Z
dm2

f

Z
∞

0

ds
jqfBj

4π tanh ðjqfBjsÞ
μ2ε

ð4πsÞ1−ε e
−sm2

f :

ðB30Þ
We now use that

1

tanh ðjqfBjsÞ
¼

X∞
n¼0

e−2njqfBjs þ
X∞
n¼0

e−ð2nþ2ÞjqfBjs ðB31Þ

to integrate over ds such that

V1
f ¼ −

NcjqfBj
8π2

Z
dm2

f

�
4πμ2

2jqfBj
�

ε

ΓðεÞ
�
ζ

�
ε;

m2
f

2jqfBj
�

þ ζ

�
ε;

m2
f

2jqfBj
þ 1

��
: ðB32Þ

Considering an expansion when ε → 0, we get

V1
f ¼ −

NcjqfBj
8π2

Z
dm2

f

��
ζ

�
0;

m2
f

2jqfBj
þ 1

�

þ ζ

�
0;

m2
f

2jqfBj
���

1

ε
− γE þ lnð4πÞ þ ln

�
μ2

2jqfBj
��

þ ζð1;0Þ
�
0;

m2
f

2jqfBj
�
þ ζð1;0Þ

�
0;

m2
f

2jqfBj
þ 1

�	
:

ðB33Þ
Using the identities in Eq. (B15), we have

V1
f ¼

Nc

8π2

Z
dm2

fm
2
f

�
1

ε
− γE þ lnð4πÞ þ ln

�
μ2

2jqfBj
�

−
jqfBj
m2

f

ln

�
m2

f

2jqfBj
�
−
2jqfBj
m2

f

ln

�
Γ
�

m2
f

2jqfBj
��

þ jqfBj
m2

f

lnð2πÞ
	
: ðB34Þ

After the MS renormalization scheme is implemented,
we get

V1
f ¼ −

Nc

8π2

Z
dm2

f

�
jqfBj ln

�
m2

f

2jqfBj
�
− jqfBj lnð2πÞ

−m2
f ln

�
μ2

2jqfBj
�
þ 2jqfBj ln

�
Γ
�

m2
f

2jqfBj
��	

:

ðB35Þ

Finally, integrating over dm2
f, we obtain

V1
f ¼ −

Nc

8π2

�
4jqfBj2ψ−2

�
m2

f

2jqfBj
�
−
m4

f

2
ln

�
μ2

2jqfBj
�

−m2
fjqfBj

�
1þ lnð2πÞ − ln

�
m2

f

2jqfBj
���

: ðB36Þ
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