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In this work, we investigate how the details of the quark-gluon interaction vertex affect the quantitative
description of chiral symmetry breaking through the gap equation for quarks. We start from two gluon
propagator models widely used in literature and constructed in direct connection with our gradually
improved understanding of infrared quantum chromodynamics coupled with its exact one-loop limit. The
gap equation is then solved by employing a variety of vertex Ansätze, which have been constructed in order
to implement some of the key aspects of quantum chromodynamics, namely, multiplicative renormaliz-
ability of the quark propagator, gauge invariance, matching with perturbation theory in the weak coupling
regime, independence from unphysical kinematic singularities as well as manifestly correct transformation
properties under charge conjugation and parity operations. On general grounds, all truncation schemes
exhibit the same qualitative and quantitative pattern of chiral symmetry breaking, ensuring the overall
robustness of this approach and its potentially reliable description of the hadron spectrum and properties.
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I. INTRODUCTION

If quantum chromodynamics (QCD) is the underlying
theory of strong interactions, we expect all hadronic
observables to be calculable from the complete knowledge
of the corresponding Green functions. There is an infinite
set of integral field theoretic equations which describe
these n-point functions in a coupled and highly nonlinear
manner. These are the well-known Schwinger-Dyson
equations (SDEs) [1–3]. Their structure is such that any
n-point function is related to at least one higher order Green
function; the two-point one-particle irreducible (1PI) Green
functions (propagators) are related to the three-point
functions (vertices), which in turn are entangled with the
four-point functions (scattering kernels), ad infinitum. In a
general formalism, not limited to the perturbative domain,
this infinite set must be truncated by introducing physically
reliable model(s) of some suitable set of Green functions
before a solution becomes tractable. The most favorite
choice, which lies on the borderline of a daunting computa-
tional complexity while still maintaining predictable explo-
ration of hadronic physics, is to model the three-point

vertices whether they be quark-photon or quark-gluon
interactions [4–19]. It is natural to demand any truncation
of SDEs to resemble the true dynamics of quarks and gluons
to the fullest extent possible, while successfully describing
the observable degrees of freedom, namely, mesons and
baryons. Several reviews describe the tremendous success of
the SDE approach to our continually improved understand-
ing ofQCD, hadron spectrumandproperties, see for example
[20–26]. Ideally, we can impose the following restrictions on
the quark-gluon vertex (QGV)which enters the gap equation
directly and also constrains the kernel of the Bethe-Salpeter
equation accordingly [27–29]:

(i) The QGV must satisfy the Slavnov-Taylor identity
(STI) [30,31]. This implies that the requirement of
gauge invariance fixes the longitudinal part of the
quark-gluon interaction, [19]. Its Abelian counter-
part is generally known as the Ball-Chiu vertex [4].
For most practical purposes and Abelian-like trun-
cations, one can start from the Ball-Chiu construc-
tion as the longitudinal one and push the remaining
information in the rich transverse part of it.

(ii) The transverse part is tightly constrained by the
requirements of the generalized Landau-Khalatni-
kov-Fradkin transformations (LKFT) [32–34] and
the transverse Takahashi identities (TTI) [9,35–40].

(iii) It should reduce to its perturbation theory Feynman
expansion. Note that a truncation scheme of the
complete set of SDEs, which maintains multiplicative
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renormalizability (MR) of the quark propagator and
gauge invariance at every level of approximation, is
perturbation theory. Therefore, we expect physically
meaningful solutions of the SDEs to agree with
perturbative results in the weak coupling regime
[18,41–45].

(iv) It should transform correctly under the discrete
symmetries of charge, conjugation, parity and time
reversal (C, P and T).

(v) It should be free of any kinematic singularities.
(vi) It should lead to physical observables which are

strictly gauge independent [6–9].
However, the fact remains that any truncation of the SDEs

can only be considered sensible if it is consistently able to
reproduce the experimental observations pertaining to QCD
and hadron physics. The leading-order symmetry-preserving
rainbow-ladder (RL) truncation achieves that goal quite
successfully when studying low lying mesons and baryons
[46–48]. For instance, since the dynamical chiral symmetry
breaking (DCSB) pattern of the pseudoscalar meson sector is
governed by a close relationship between the gap equation
and the Bethe-Salpeter kernel, supplied by the axial vector
Ward-Green-Fradkin-Takahashi identity (WGFTI) [49], it is
not a surprise that the RL truncation provides an excellent
description of these mesons.
For the gap equation, the usual practice is to employ

models for the gluon propagator, constructed by making
connections with lattice results, perturbation theory as well
as hadron phenomenology, instead of simultaneously
solving the corresponding SDEs. A popular choice is the
well-known Maris-Tandy (MT) model [50]. This model is
composed of two terms: an ultraviolet term, fixed from
perturbation theory, and an infrared enhancement term
whose strength is typically determined from the chiral
quark condensate. Notice that the MT model was put
forward before the SDE prediction for the massive gluon
solution [51] which was later confirmed in lattice studies
[52–55]. It supports a finite but infrared enhanced scalar
form factor of the gluon propagator, the so-called decou-
pling solution. It is also in agreement with subsequent SDE
and functional renormalization group results [56–63],
refined Gribov-Zwanziger formalism [64–66] and the ear-
lier suggestion of Cornwall [67]. Even if one includes the
effect of dynamical quarks [68–70], the qualitative behav-
ior of the gluon propagator remains the same and feeds
expected physics back into the gap equation [71]. Those
facets of the gluon propagator are confirmed in novel
combined continuum and lattice studies [72,73]. The Qin-
Chang (QC) model [28] conveniently captures these infra-
red qualitative features of the gluon propagator, while the
connection with one-loop perturbation theory is still
maintained just as it was incorporated in the MT model.
In this article, we employ the effective coupling of both the

MT and the QC models in association with a set of refined
Ansätze for the fermion-boson vertex: Ball-Chiu (BC) [4],
Curtis-Pennington (CP) [5], Kizilersu-Pennington (KP) [11]

and Bashir et al. (BB) [8]. For comparisonwith these refined
vertices and the sake of completeness, we have included the
results based upon the bare vertex as well.
The article is organized as follows: in Sec. II we discuss

the preliminaries of the gap equation, introducing the MT
and the QC models. In Sec. III, we explicitly discuss all
the vertex constructions we employ, highlighting, compar-
ing and contrasting their merits. Section IV details the
algebraic expressions for the kernels of the gap equation
that stem from the choice of each vertex and Sec. V
contains numerical results as well as a comparative analy-
sis. Finally, in Sec. VI, we summarize our conclusions and
discuss the scope and future applications of this work.

II. GAP EQUATION: PRELIMINARIES AND THE
GLUON PROPAGATOR

In order to investigate how DCSB is realized, we
naturally start from the renormalized SDE for the quark
propagator. This equation is depicted in Fig. 1 and can be
written in the following mathematical form:

S−1ðpÞ ¼ Z2ðiγ · pþm0Þ þ ΣðpÞ; ð1Þ
where ΣðpÞ is the quark self-energy defined as

ΣðpÞ ¼ Z1CF

Z
k
g2DμνðqÞγμSðkÞΓνðk; pÞ: ð2Þ

Here q ¼ k − p, CF ¼ 4=3 and
R
k ≡

R
Λ d4k

ð2πÞ4. Z1 and Z2 are

the renormalization constants for the QGV and the quark
propagator, respectively, which depend on the ultraviolet
regulator (Λ) and the renormalization point (μ). This
equation, also known as the gap equation, involves not
only the full quark propagator, SðpÞ, but also the full gluon
propagator, DμνðqÞ, and the fully dressed QGV, Γνðk; PÞ.
Each of these Green functions also depend on the renorm-
alization point. However, we have not explicitly displayed
this dependence for notational convenience. Moreover,
they obey their own SDEs. This intricate structure yields
an infinite tower of coupled equations, which must be
systematically truncated in order to extract the encoded
physics. Regardless of the truncation scheme, the full quark
propagator, representing a Dirac particle, can be defined in
terms of two scalar functions, namely the mass function,
Mðp2Þ, and the quark wave function renormalization,
Zðp2; μ2Þ, such that

FIG. 1. SDE of the full quark propagator. The blobs repre-
sent fully-dressed propagators and vertices, which obey their
own SDEs.
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Sðp; μÞ ¼ Zðp2; μ2Þ
iγ · pþMðp2Þ ; ð3Þ

in analogy to its bare counterpart

S0ðpÞ ¼
1

iγ · pþm0

;

where m0 is the bare mass of the quark. Equivalent useful
representations of Sðp; μÞ are

Sðp; μÞ ¼ −iγ · pσvðp2; μ2Þ þ σsðp2; μ2Þ;
S−1ðp; μÞ ¼ iγ · pAðp2; μ2Þ þ Bðp2; μ2Þ; ð4Þ

where the dressing functions involved are interrelated as

σsðk2; μ2Þ ¼
Bðk2; μ2Þ

A2ðk2; μ2Þk2 þ B2ðk2; μ2Þ ;

σvðk2; μ2Þ ¼
Aðk2; μ2Þ

A2ðk2; μ2Þk2 þ B2ðk2; μ2Þ ;

and one can easily identify

Mðp2Þ ¼ Bðp2; μ2Þ
Aðp2; μ2Þ ; Zðp2; μ2Þ ¼ 1

Aðp2; μ2Þ :

Notably, multiplicative renormalizability ensures that the
mass function does not depend on the renormalization
point. For the simplicity of notation, we will omit display-
ing the μ dependence altogether. The general form of the
gluon propagator is

DμνðqÞ ¼
Dðq2Þ
q2

�
δμν −

qμqν
q2

�
þ ξ

qμqν
q4

; ð5Þ

where Dðq2Þ is the gluon dressing function and ξ is the
covariant gauge parameter. Due to the corresponding Ward
identity, the longitudinal term proportional to ξ does not
get corrections at any order of perturbation theory. Hence
ξ ¼ 0 is an obvious first option to work with. It corresponds
to the Landau gauge, which is a convenient and natural
choice for several reasons. Among others, model dependent
differences between various Ansätze for the QGV are least
noticeable in this gauge [17]. Moreover, it is a covariant
gauge which is readily implemented in lattice QCD
simulations [74,75].
The first model of the gluon propagator employed herein

is the MT interaction [50], where the effective coupling,
αsðq2Þ≡ g2Dðq2Þ=4π, has the following form:

αsðq2Þ
q2

¼ πD
ω6

q2e−q
2=ω2 þ γmπFðq2Þ

1
2
ln½τ þ ð1þ q2=Λ2

QCDÞ2�
; ð6Þ

with Fðq2Þ ¼ f1 − e−q
2=½4m2

t �g=q2, τ ¼ e2 − 1, γm ¼ 12=
ð33 − 2NfÞ,Nf¼4,mt¼ 0.5GeV and ΛQCD¼ 0.234GeV.
The first term provides an infrared enhancement, controlled

by the parameters ω and D, while the second term
reproduces the one-loop renormalization group equation
of QCD.
The other model choice is the QC interaction [28]:

αsðq2Þ
q2

¼ 2πD
ω4

e−q
2=ω2 þ γmπFðq2Þ

1
2
ln½τ þ ð1þ q2=Λ2

QCDÞ2�
; ð7Þ

which differs from the MT model in the infrared enhance-
ment term. It ensures the behavior of the effective gluon is
in agreement with our modern understanding of QCD’s
gauge sector; in the minimal Landau gauge in 3þ 1
dimensions, the gluon propagator is a bounded, regular
function of spacelike momenta and is infrared enhanced
[76]. It has been confirmed that the hadron properties are
insensitive to small variations of ω ∈ ½0.4; 0.6�, so long as
the productm3

G ≡ ðωDÞ remains constant (typical values of
mG ∼ 0.4–0.8 GeV) [77,78]. These models have been
extensively employed to study hadron physics through
the SDEs of QCD, obtaining a wide range of predictions:
meson and baryon spectrum and properties [47,79,80],
parton distribution amplitudes [77], parton distribution
functions [81,82], electromagnetic elastic [83] and tran-
sition form factors [84–87], hadronic contribution to
the anomalous electromagnetic moment of the muon
[88–91], etc.

III. QUARK-GLUON VERTEX

For the 1PI QGV, the simplest choice is to replace the
fully dressed fermion-boson vertex by its tree level
counterpart. Along with the ladder approximation of the
meson Bethe-Salpeter equation, it corresponds to the
rainbow-ladder truncation. Even in the Abelian case of
QED, this (bare) vertexmanages to satisfy the corresponding
WGFTI [92–95] only in the chirally symmetric phase in the
Landau gauge and in the leading log approximation for
the wave-function renormalization [6]. For these particular
choices and limits, it ensuresZðp2; μ2Þ ¼ 1 andMðp2Þ ¼ 0.
The simplicity of this choice brings even further undesirable
features. It obviously lacks all those six basis structures
which are dynamically generated through DCSB.Moreover,
the associated dressed quark anomalous chromomagnetic
moment and electromagnetic distribution in the infrared,
associated with DCSB, is much less than what is required
from observed hadron phenomenology [96]. Some of these
drawbacks can be compensated by a proper choice of
parameters in the effective gluon propagator to render good
description of pseudoscalar and light vector meson spectra
[97]. However, this is not the case with axial vector mesons,
since the bare vertex lacks a proper enhancement of the spin-
orbit splitting in this channel.
In constructing a fully consistent fermion-boson vertex

Ansatz, many efforts have been made over the past few
decades. We choose to explore [4,5,8,11] for our numerical
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investigation. The general form of the vertex consists of 12
linearly independent structures, which can be obtained
from three vectors kμ, pμ, γμ and four spin scalars 1, γ · k,
γ · p, γ · kγ · p. A first step towards constructing a QGV is
employing the STI [30,31]. In addition to the quark
propagator, it also involves the ghost propagator and the
quark-quark-ghost-ghost scattering kernel. As we work
with infrared enhanced effective one gluon exchange
models, we can adopt the Abelian approximation of the
STI with impunity, namely, the WGFTI which entails

iqμΓμ ¼ S−1ðkÞ − S−1ðpÞ:

Following the usual arguments of Ball and Chiu, WGFTI
allows this vertex to be decomposed into a longitudinal and
a transverse part,

Γμðk; pÞ ¼ ΓL
μ ðk; pÞ þ ΓT

μ ðk; pÞ;

such that qμΓT
μ ¼ 0 and the longitudinal term (ΓL

μ ) is fixed
by the above WGFTI. In the so-called Ball-Chiu basis, ΓL

μ

is written as

ΓLðBCÞ
μ ðk;pÞ¼ λ1ðk2;p2Þγμ− iλ2ðk2;p2Þtμ

þλ3ðk2;p2Þtμγ · t=2þλ4ðk2;p2Þtνσμν; ð8Þ

where the dressing functions are

λ1ðk2; p2Þ ¼ Δ̄Aðk2; p2Þ;
λ2ðk2; p2Þ ¼ ΔBðk2; p2Þ;
λ3ðk2; p2Þ ¼ ΔAðk2; p2Þ;
λ4ðk2; p2Þ ¼ 0; ð9Þ

with t ¼ kþ p, ðk2 − p2ÞΔφðk2; p2Þ≡ φðk2Þ − φðp2Þ and
2Δ̄φðk2; p2Þ≡ φðk2Þ þ φðp2Þ. A generalization of the BC
vertex to the non-Abelian case can be found in [19]. Note
that although λ4 ¼ 0 for QED, the contribution coming
from the triple gluon vertex in QCD ensures that it is
nonzero for the latter case [41]. However, as we work with
the Abelian-ized version of QCD, we will stick to λ4 ¼ 0.
Notice also that λ2 carries an explicit dependence on the
mass function. It implies that its appearance in the chiral
limit owes itself entirely to DCSB. In the following, we will

take ΓL
μ ¼ ΓLðBCÞ

μ and discuss different choices of ΓT
μ .

The transverse part is decomposed as a linear combina-
tion of the eight basis vectors Tiμ, that is

ΓT
μ ¼

X8
i¼1

τiðk2; p2; q2ÞTiμðk; pÞ;

where τi are unknown scalar functions. Rather generally,
the basis vectors can be written as

T1μðk; pÞ ¼ i½pμðk · qÞ − kμðp · qÞ�;
T2μðk; pÞ ¼ ½pμðk · qÞ − kμðp · qÞ�γ · t;
T3μðk; pÞ ¼ q2γμ − qμγ · q;

T4μðk; pÞ ¼ iq2½γμγ · t − tμ� þ 2qμpνkλσνλ;

T5μðk; pÞ ¼ σμνqν;

T6μðk; pÞ ¼ γμðp2 − k2Þ þ tμγ · q;

T7μðk; pÞ ¼
i
2
ðk2 − p2Þ½γμγ · t − tμ� þ tμpνkλσνλ;

T8μðk; pÞ ¼ −iγμpνkλσνλ þ kμγ · p − pμγ · k: ð10Þ

Note that

qμTiμðk; pÞ ¼ 0 i ¼ 1;…; 8: ð11Þ

This basis is not the one employed in [4]. We choose to
work with a modification of this initial basis which was put
forward in [98] and later employed in [41] as well. This
latter, which we have adopted here, choice ensures all
transverse form factors of the vertex are independent of any
kinematic singularities in one-loop perturbation theory in
an arbitrary covariant gauge.
The determination of the coefficients τi is not arbitrary.

To a reasonable extent, they are constrained by the TTI,
LKFT, MR, freedom of kinematic singularities and the
adequate perturbation theory limit in the weak coupling
regime [4,9,38].
Curtis and Pennington [5] adopted a simple choice of the

transverse coefficients, which ensures MR of the massless
electron propagator in the quenched approximation of
quantum electrodynamics (QED). This transverse part of
the vertex, referred to as the CP vertex, is merely

ΓTðCPÞ
μ ¼ γμðk2 − p2Þ − tμγ · t

2dðk; pÞ ½Aðk2Þ − Aðp2Þ�; ð12Þ

where t ¼ kþ p and

dðk; pÞ ¼ ðk2 − p2Þ2 þ ½M2ðk2Þ þM2ðp2Þ�2
k2 þ p2

:

There is a peculiar ½M2ðk2Þ þM2ðp2Þ�2 factor in this
Ansatz. Notice that its absence introduces an unwanted
kinematic singularity. Moreover, it does not jeopardize the
MR of the massless electron propagator by construction.
In a subsequent work, Kizilersu and Pennington [11]

proposed two vertex constructions for the unquenched case,
in the chiral limit with nf ¼ 1. On using any of these two
Ansätze in the SDEs for the perturbative photon and
massless fermion propagators simultaneously, they get
the correct power law behavior for the photon dressing
function and the fermion wave-function renormalization.
Both proposals satisfy the same constraints and differ only
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beyond the leading logarithmic order, while also giving
similar results in the Landau gauge [11,99]. Thus, one
could use either. We choose to work with the following
KP construction:

ΓTðKPÞ
μ ¼ τ2T2μ þ τ3T3μ þ τ6T6μ þ τ8T8μ; ð13Þ

where the dressing functions are

τ2ðk2; p2; q2Þ ¼ −
4

3

1

k4 − p4
ðAðk2Þ − Aðp2ÞÞ

−
1

3

Aðk2Þ þ Aðp2Þ
ðk2 þ p2Þ2 ln

�
Aðk2ÞAðp2Þ
Aðq2Þ2

�
;

τ3ðk2; p2; q2Þ ¼ 5

12

1

k2 − p2
ðAðk2Þ − Aðp2ÞÞ

þ 1

6

Aðk2Þ þ Aðp2Þ
ðk2 þ p2Þ2 ln

�
Aðk2ÞAðp2Þ
Aðq2Þ2

�
;

τ6ðk2; p2; q2Þ ¼ −
1

4

1

k2 þ p2
ðAðk2Þ − Aðp2ÞÞ;

τ8ðk2; p2; q2Þ ¼ 0: ð14Þ

In 2012, Bashir et al. [8] put forward a family of fermion-
boson vertices expressed solely in terms of the vector and
scalar functions appearing in the fermion propagator.
Among other requirements, constraints on ai ensure the
Ansatz is consistent with one-loop perturbation theory. For
the sake of computational simplicity, the coefficients of the
transverse basis are chosen to be independent of the angle
between the relative momenta. Strikingly, it also has no
explicit dependence on the covariant-gauge parameter.
Residual freedom of choice for ai allows us to achieve
the gauge independence of the critical coupling in QED,
above which chiral symmetry is dynamically broken. The
set of scalar functions τi for this proposal is written as

τ1ðk; pÞ ¼
a1ΔBðk2; p2Þ
ðk2 þ p2Þ ;

τ2ðk; pÞ ¼
a2ΔAðk2; p2Þ
ðk2 þ p2Þ ;

τ3ðk; pÞ ¼ a3ΔAðk2; p2Þ;

τ4ðk; pÞ ¼
a4ΔBðk2; p2Þ

½k2 þM2ðk2Þ�½p2 þM2ðp2Þ�
k2 − p2

4
;

τ5ðk; pÞ ¼ þa5ΔBðk2; p2Þ;

τ6ðk; pÞ ¼ −
a6ðk4 − p4ÞΔAðk2; p2Þ

½ðk2 − p2Þ2 þ ðM2ðk2Þ þM2ðp2ÞÞ2� ;

τ7ðk; pÞ ¼ þ
�

a7
ðk2 þ p2Þ þ

2ðk − pÞ2
k2 − p2

τ4

�
ΔBðk2; p2Þ;

τ8ðk; pÞ ¼ a8ΔAðk2; p2Þ; ð15Þ

where ai are momentum-independent constants whose
values are listed in Table I. Such constants are intercon-
nected by numerous constraints from perturbation theory
and gauge covariance. The fixing procedure can be found in
Refs. [8,9]. We call this proposal the BB vertex. In the next
section we shall discuss the gap equation with all these
vertices.

IV. GAP EQUATION

Dressing functions Bðk2Þ and Aðk2Þ can be decoupled
through proper projections of Eq. (1), viz., multiplying
Eq. (1) by 1 and p, respectively, and then taking traces.

A. The bare vertex

For this approximation Γμ ¼ γμ, quark self-energy of
Eq. (2) acquires the following simple form:

ΣðpÞ ¼ Z1CF

Z
k
g2DμνðqÞγμSðkÞðZ2γνÞ: ð16Þ

Using the steps suggested above, one arrives at the
expressions

Bðp2Þ ¼ m0Z2 þ 16πZ2
2

Z
k

αsðq2Þ
q2

σsðk2Þ; ð17Þ

Aðp2Þ ¼ Z2 þ
16π

3p2
Z2
2

Z
k

αsðq2Þ
q2

× σvðk2Þ
�
k · pþ 2k · qp · q

q2

�
: ð18Þ

This minimal Ansatz neglects any non-Abelian contribution
to theQGVTherefore, for the sake of consistency, we equate
Z1 ¼ Z2. In fact, we can continue to use it with impunity for
the BC,CP, KP and BB vertices as they were all proposed in
anAbelian setup.Note that this reasoning is no longer valid if
the QGV employed is constructed from the corresponding
STI because this extended identity incorporates the effects
coming from the non-Abelian ghost-gluon sector. However,
note that the renormalization boundary condition, independ-
ently of the truncation, entails

S−1ðpÞjp2¼μ2 ¼ iγ · pþmðμÞ;

where mðμÞ ¼ Mðμ2Þ is the scale dependent running quark
mass. The above condition implies Aðp2 ¼ μ2Þ ¼ 1 and

TABLE I. A choice of momentum and gauge-independent
coefficients of the transverse basis in the BB fermion-boson
vertex [8,9].

Constant a1 a2 a3 a4 a5 a6 a7 a8

Value 0 3.4 1 1 −4=3 −1=2 2.167 −3.7
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Bðp2 ¼ μ2Þ ¼ mðμÞ. One can thus define a convenient
renormalization point invariant mass as follows:

m̂ ¼ mðμÞ
�
1

2
ln

�
μ2

Λ2
QCD

��
γm
: ð19Þ

B. The BC vertex

Returning to the gap equation and the QGV, if one
employs the BC vertex, Eq. (17) modifies as

Bðp2Þ ¼ m0Z2 þ
16π

3
Z2

Z
k

αsðq2Þ
q2

× fσsðk2Þ½IBCB1 þ IBCB2 � þ σvðk2Þ½IBCB3 �g; ð20Þ

where IBCB1 , I
BC
B2 and IBCB3 are the integrands related to the BC

vertex, such that

IBCB1 ¼ 3
Aðk2Þ þ Aðp2Þ

2
;

IBCB2 ¼ ΔAðk2; p2Þ
�
t2q2 − ðt · qÞ2

2q2

�
;

IBCB3 ¼ ΔBðk2; p2Þ
�
q2t · k − t · qq · k

q2

�
:

Analogously, the corresponding equation for Aðp2Þ is

Aðp2Þ ¼ Z2 þ
16π

3
Z2

Z
k

αsðq2Þ
q2

× fσvðk2Þ½IBCA1 − IBCA2 � þ σsðk2Þ½IBCA3 �g; ð21Þ

where the integrands are written as

IBCA1 ¼ Aðk2Þ þ Aðp2Þ
2

1

p2

×

�
k · pq2 þ 2½ðk2 þ p2Þk · p − k2p2 − k · p2�

q2

�
;

IBCA2 ¼ 1

2p2
ΔAðk2; p2Þ

×

�
½p2kþ k2p� · t − p2t · qk · q − k2t · qp · q

q2

�
;

IBCA3 ¼ ΔBðk2; p2Þ 1

p2

�
t · qp · q − t · pq2

q2

�
:

C. The CP vertex

By taking into account the transverse CP vertex, one
arrives at

Bðp2Þ ¼ m0Z2 þ
16π

3
Z2

Z
k

αsðq2Þ
q2

×

�
σsðk2Þ½IBCB1 þ IBCB2 � þ σvðk2Þ½IBCB3 �

þ 3

2
σsðk2Þðk2 þ p2ÞLðk2 þ p2Þ

�
; ð22Þ

where L≡ Lðk2; p2Þ is defined as

L ¼ ½A2ðk2ÞA2ðp2Þ�2ΔAðk2; p2Þ
½A2ðk2ÞA2ðp2Þ�2 þ ½A2ðp2ÞB2ðk2Þ þ A2ðk2ÞB2ðp2Þ�2 :

On the other hand, the analogous expression for Aðp2Þ
reads as

Aðp2Þ ¼ Z2 þ
16π

3
Z2

Z
k

αsðq2Þ
q2

×

�
σvðk2Þ½IBCA1 − IBCA2 � þ σsðk2Þ½IBCA3 �

þ 2σvðk2Þ
k2 þ p2

k2 − p2
½ICPA1 þ ICPA2 �Lðk2; p2Þ

�
: ð23Þ

The integrands ICPA1 and ICPA2 , related to the CP term, are

ICPA1 ¼ ðk2 − p2Þ
�
3ðk2 þ p2Þk · p − 2k2p2 − 4k · p2

q2

�
;

ICPA2 ¼ k2t · p − p2t · kþ p2t · qk · q − k2t · qp · q
q2

:

D. The KP vertex

The KP vertex Ansatz yields the following equation for
Bðp2Þ:

Bðp2Þ ¼ m0Z2 þ
16π

3
Z2

Z
k

αsðq2Þ
q2

× fσsðk2Þ½IBCB1 þ IBCB2 � þ σvðk2Þ½IBCB3 �
þ σsðk2Þ½IKPB1 − IKPB2 − IKPB3 �g: ð24Þ

The integrands related specifically to the KP vertex, IKPB1 ,
IKPB2 and IKPB3 , can be expressed as
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IKPB1 ¼ 2ðk · p2 − k2p2Þ
�
4

3

Aðk2Þ − Aðp2Þ
k4 − p4

þ 1

3

Aðk2Þ þ Aðp2Þ
ðk2 þ p2Þ2 ln

�
Aðk2ÞAðp2Þ
A2ðq2Þ

��
;

IKPB2 ¼ q2
�
5

4
ΔAðk2; p2Þ;þ 1

2

Aðk2Þ þ Aðp2Þ
k2 þ p2

ln

�
Aðk2ÞAðp2Þ
A2ðq2Þ

��
;

IKPB3 ¼ 3

4
ðk2 − p2ÞAðk

2Þ − Aðp2Þ
k2 þ p2

:

The corresponding equation for Aðp2Þ, for KP vertex, is

Aðp2Þ ¼ Z2 þ Z2

16π

3

Z
k

αsðq2Þ
q2

fσvðk2Þ½IBCA1 − IBCA2 � þ σsðk2Þ½IBCA3 � þ σvðk2ÞðIKPA1 þ IKPA2 − IKPA3 Þg; ð25Þ

where the related integrands are

IKPA1 ¼ ðk2 þ p2Þðk2p2 − k:p2Þ
p2

�
4

3

Aðk2Þ − Aðp2Þ
k4 − p4

þ 1

3

Aðk2Þ þ Aðp2Þ
ðk2 þ p2Þ2 ln

�
Aðk2ÞAðp2Þ
A2ðq2Þ

��
;

IKPA2 ¼ k · pð4k · p − 3p2Þ þ k2ð2p2 − 3k · pÞ
p2

�
5

12
ΔAðk2; p2Þ þ 1

6

Aðk2Þ þ Aðp2Þ
k2 þ p2

ln

�
Aðk2ÞAðp2Þ
A2ðq2Þ

��
;

IKPA3 ¼ 3

4
Aðk2Þ½Aðk2Þ − Aðp2Þ� ðk

2 − p2Þ
ðk2 þ p2Þ

k · p
p2

:

Unlike the other vertex Ansätze, the transverse part of the KP vertex introduces a nontrivial angular dependence, in
connection to the logarithmic terms which contain Aðq2Þ. Thus, the numerical evaluation of such integrals is considerably
more complicated.

E. The BB vertex

Finally, the integral equations for the scalar functions Bðp2Þ and Aðp2Þ, using the BB vertex [8] are written as

Bðp2Þ ¼ rhs of Eq: ð20Þ − 16π

3
Z2

Z
k

αsðq2Þ
q2

1

k2A2ðk2Þ þ B2ðk2Þ
�
Aðk2Þððk · pÞ2 − k2p2Þτ1

þ 2Bðk2Þððk · pÞ2 − k2p2Þτ2 − 3Bðk2Þðk2 þ p2 − 2k · pÞτ3 þ Aðk2Þ½k2ðp2 − 3k · pÞ
þ k · pð3p2 − 4k · pÞ þ 3k4�τ4 þ 3Aðk2Þðk2 − k · pÞτ5 þ 3Bðk2Þðk2 − p2Þτ6
þ Aðk2Þ

2
½k2ð3k · p − p2Þ − k · pð2k · pþ 3p2Þ þ 3k4Þ�τ7

þ 3a8Bðk2Þk · pΔAðk2; p2Þ
�
; ð26Þ

Aðp2Þ ¼ rhs of Eq: 21 −
16π

3
Z2

Z
k

αsðq2Þ
q2

1

k2A2ðk2Þ þ B2ðk2Þ
1

p2

�
Bðk2Þððk · pÞ2 − k2p2Þτ1 þ Aðk2Þðk2ðp4 − ðk · pÞ2Þ

− p2ðk · pÞ2 þ k4p2Þτ2 − Aðk2Þðk2ð3k · p − 2p2Þ þ k · pð3p2 − 4k · pÞÞτ3 − Bðk2Þ½−4ðk · pÞ2 − 3p2ðk · pÞ
þ k2ð3k · pþ p2Þ þ 3p4�τ4 þ 3Bðk2Þðp2 − k · pÞτ5 þ 3Aðk2Þðk2 − p2Þðk · pÞτ6
−
Bðk2Þ
2

½2ðk · pÞ2 − 3p2ðk · pÞ þ k2ð3k · pþ p2Þ − 3p4�τ7 − 2Aðk2Þððk · pÞ2 − k2p2Þτ8
�
: ð27Þ

In the next section, we present and discuss the numerical results obtained from employing different vertex Ansätzewe chose
to study the gap equation with.

EFFECT OF THE QUARK-GLUON VERTEX ON DYNAMICAL … PHYS. REV. D 103, 054036 (2021)

054036-7



V. RESULTS

We solve the gap equation for a few largely employed
quark-gluon vertices suggested in literature over the past
three decades. This exercise is carried out in conjunction
with effective MTand QC models for the gluon propagator.
The renormalization point is set to μ≡ μ3 ¼ 2.86 GeV.
The infrared strength of the gluon models is fixed from the
chiral quark condensate [100], as we now explain. Note that
the chiral limit is defined when m̂ ¼ 0 (μ → ∞) in Eq. (19)
and we label it asmq. In this limit, we can express the chiral
quark condensate as follows:

−hq̄qi0μ ¼ Z4NcTr
Z
k
Sm̂ðk; μÞ: ð28Þ

We can thus define a renormalization point invariant
condensate hq̄qi as

mðμÞhq̄qi0μ ¼ m̂hq̄qi: ð29Þ
It is an order parameter of DCSB and, as explained

elsewhere [101,102], it is also the chiral limit value of the
in-meson condensate. Therefore, it is natural to fix the
effective gluon strength to produce a reasonable value of
the chiral quark condensate and study its impact on other
quantities. We fix MT and QC gluon model parameters, ω
and the product ωD, to obtain −hq̄qi0μ3 ¼ ð0.256 GeVÞ3.
Along with Eq. (29), this value yields −hq̄qi0μ2 ¼
ð0.250 GeVÞ3 and−hq̄qi0μ19 ¼ð0.280GeVÞ3 (whereμ2;19 ¼
2, 19 GeV), in agreement with modern estimates [87]. The
specific choice of parameters is displayed in Table II. The
resulting chiral limit mass functions are shown in Figs. 2
and 3, alongwith those obtained for different nonzero current
quark masses: mðμÞ ¼ 0.004, 0.1, 1.0, 4.1 GeV, labeled as
mu=d; ms;mc and mb, respectively (the mu=d results are not
displayed, in order to avoid overlap with the chiral limit
results). In an intermediate range of momenta, Figs. 4 and 5
show a more pronounced comparison of chiral limit results
for different Ansätze of the QGV.
The mass functions exhibit the expected features;

namely, saturation at a finite value as p2 → 0 and a
monotonic decrease as p2 increases. The saturation value,

Mð0Þ, in comparison with the current quark mass, is expect-
edly much larger in the case of the light quarks and it
decreases sharply with increasing p2, whereas it exhibits far
less steep running for the heavy quarks. It is clear that
dynamical mass generation via strong-interaction processes
(DCSB) is the dominant mass generating mechanism in the
light sector, while the heavy sector is largely overshadowed
by its predominant coupling to the Higgs field.
Also readily observed is the fact that bare vertex cal-

culations tend to produce larger values of Mð0Þ [although
the asymptotic behavior of Mðp2Þ for p2 → ∞ is reached
faster]. This is a consequence of the artificial enhancement
of the effective coupling in order to produce a sufficient
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FIG. 2. (MT model) Mass functions for different current
quark masses and QGV Ansätze. The boundaries of the bands
are given by the lowest and highest produced values of Mðp2Þ,
for the different vertices: BC, CP, KP, BB and the bare vertex.
The purple band with dotted boundaries corresponds to the chiral
limit. Blue (dot dashed boundary), green (dashed boundary) and
red (solid boundary) bands correspond to ms ¼ 0.1 GeV,
mc ¼ 1 GeV and mb ¼ 4.1 GeV, respectively. Mass func-
tions or each quark flavor have been normalized such that
Mmaxð0Þ ¼ 1. Bare vertex results are highlighted with a thicker
line which forms the top edge of each band.
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FIG. 3. (QC model) Mass functions for different current quark
masses and QGV Ansätze. Bands and curves have the same
meaning as in Fig. 2.

TABLE II. Gluon model parameters ω and mG ¼ ðωDÞ1=3
for each vertex Ansatz. Dimensioned quantities are expressed
in GeV.

Vertex ω mG ω mG

MT model [50] QC model [28]

Bare 0.4 0.728 0.4 0.744
BC [4] 0.4 0.528 0.48 0.583
CP [5] 0.4 0.516 0.4 0.529
KP [11] 0.4 0.528 0.46 0.551
BB [8] 0.4 0.544 0.4 0.562
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amount of phenomenologically required DCSB.1 In fact, if
the infrared gluon model were enhanced just as much as
with the other vertices, chiral condensate and Mð0Þ would
decrease 40%–60%. Moreover, had we omitted the bare
vertex results, the bands in Figs. 2 and 3 would have
become much narrower. This is exactly what is displayed in
Figs. 6 and 7. It clearly indicates that the results obtained
from properly constructed quark-gluon vertices are more
robust and less sensitive to the gluon model parameters.
Another important feature of the mass function is its

asymptotic behavior. In the chiral limit [100,103],

Mðp2 → ∞Þ ∼ ln ½p2=Λ2
QCD�γm−1

p2
: ð30Þ

Naturally, since bare vertex is the leading order term in the
perturbative expansion, mass function reaches this behavior
faster in such case. It is followed (consistently with both MT
and QC interactions) by CP, BC, KP and BB vertices,
respectively. Beyond the chiral limit, Eq. (30) is modified by
including an extra term, which is proportional to the current
quark mass [100,103], but the overall pattern persists.
To further understand the interplay between explicit and

dynamical mass generation, let us define the following
quantity:

M̄ðmÞ ¼
����ME −mðμÞ

ME

����; ð31Þ

where ME, the constituent Euclidian mass, is defined
through

M2
E ≡ fp2jp2 ¼ M2ðp2Þg:
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FIG. 4. (MT model) Chiral limit mass functions from dif-
ferent QGV Ansätze. Bare (black, solid), Ball-Chiu (blue, long
dashed), Curtis-Pennington (green, dashed), Kizilerzu-Penning-
ton (Red, dot dashed) and Bashir-Bermudez (purple, dotted)
vertex Ansätze.
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FIG. 5. (QC model) Chiral limit mass functions from different
QGV Ansätze. Curves are labeled as in Fig. 4.
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FIG. 6. (MT model) Mass functions for different current quark
masses and QGV Ansätze. Bands and curves have the same
meaning as in Fig. 2. However, the bare vertex results have been
omitted in this figure.
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FIG. 7. (QC model) Mass functions for different current quark
masses andQGVAnsätze. Bands and curveshave the samemeaning
as in Fig. 2. The bare vertex results have again been excluded to
bring out the robustness of the results for the dressed vertices.

1It provides the strength needed to simultaneously produce
reasonable values of vacuum quark condensate, mass spectrum
and decay constants.
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Naturally, M̄ðmÞ → 1 as mðμÞ → 0, while M̄ðmÞ smoothly
approaches zero with increasing current quark mass,
as the explicit mass generation becomes dominant.
Therefore, one can interpret the vicinity around mcrit,
mcrit ≡ fmðμÞjM̄ðmÞ ¼ 1=2g, as the region in which the
strengths of explicit anddynamical chiral symmetrybreaking
are comparable. We find that mcrit ≈ 0.284 GeV, consistent
with that obtained in [104], fromdifferent criteria.Notice that
mcrit lies between charm and strange quarkmasses, but closer
to the latter; thus, strange quark can be considered as the
boundary between the strong and weak mass generation
mechanism being dominant [87]. Explicit values of Mð0Þ
and ME for a set of current quark masses (mq;mu=d;
ms;mc;mb) are listed in Tables III and IV. Figure 8 shows
M̄ðmÞ in a range of values of mðμÞ. Notably, M̄ðmÞ is
practically insensitive to the choice of the fully dressed QGV
(and gluon models), while those obtained from the bare

vertex lie closely.Ourobservations are thus practicallymodel
independent statements.
Another interesting measure of DCSB is given by the

pseudoscalar meson leptonic decay constant, fπ . The chiral
limit value can be easily computed from [103]:

f2π ¼
3

4π2

Z
dp2

p2Zðp2ÞMðp2Þ
½p2 þM2ðp2Þ�2

�
Mðp2Þ − p2

2
M0ðp2Þ

�

ð32Þ

and from the improved Pagels-Stokar-Cornwall formula
derived in [105]:

f2π ¼
3

8π2

Z
dp2p2B2ðp2Þðσ2v − 2½σsσ0s þ p2σvσ

0
v�

− p2½σsσ00s − σ0sσ0s� − p4½σvσ00v − σ0vσ0v�Þ; ð33Þ

where the dependence of σs;v on p2 has been omitted for
notational convenience. We denote Eqs. (32) and (33) as
F.1 and F.2, respectively. The obtained values are shown in
Table V. Unsurprisingly, for all dressed vertices employed

TABLE III. Calculated constituent quark masses Mð0Þ for
different current quark masses and QGV Ansätze. Dimensioned
quantities are expressed in GeV. Gluon model parameters are
shown in Table II.

Vertex mq mu=d ms mc mb

MT model [50]
Bare 0.484 0.492 0.649 1.464 4.228
BC [4] 0.331 0.337 0.468 1.284 4.186
CP [5] 0.315 0.323 0.468 1.279 4.184
KP [11] 0.306 0.315 0.471 1.297 4.186
BB [8] 0.353 0.356 0.483 1.186 4.072

QC model [28]
Bare 0.573 0.581 0.730 1.520 4.240
BC [4] 0.360 0.366 0.485 1.295 4.188
CP [5] 0.399 0.403 0.502 1.284 4.185
KP [11] 0.330 0.339 0.479 1.296 4.187
BB [8] 0.435 0.438 0.512 1.186 4.055

TABLE IV. Calculated Euclidean constituent quark massesME
for different current quark masses and QGV Ansätze. Dimen-
sioned quantities are expressed in GeV. Gluon model parameters
are shown in Table II.

Vertex mq mu=d ms mc mb

MT model [50]
Bare 0.388 0.395 0.523 1.274 4.016
BC [4] 0.301 0.307 0.417 1.184 4.037
CP [5] 0.290 0.297 0.419 1.181 4.038
KP [11] 0.280 0.287 0.430 1.198 4.036
BB [8] 0.344 0.347 0.445 1.186 4.072

QC model [50]
Bare 0.442 0.449 0.574 1.303 4.009
BC [4] 0.319 0.324 0.429 1.191 4.036
CP [5] 0.347 0.352 0.439 1.183 4.038
KP [11] 0.302 0.310 0.435 1.199 4.036
BB [8] 0.390 0.391 0.449 1.173 4.055
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FIG. 8. Dynamical versus explicit mass generation as defined in
Eq. (31). The narrow darker regions correspond to the uncertainty
coming from the choice of the QGV (BC, CP, KP, BB) and
effective coupling (MT or QC). The horizontal line at the 50%
mark corresponds to mðμÞ ¼ mcrit ≈ 0.284 GeV. It lies between
the strange and charm quark masses. It corresponds to the ratio of
dynamical vs explicit mass generation being M̄ðmÞ ¼ 1=2.

TABLE V. Chiral limit decay constants computed from
Eqs. (32) and (33) (F.1 and F.2, respectively). Dimensioned
quantities are expressed in GeV.

Vertex F.1 F.2 F.1 F.2

MT model [50] QC model [28]
Bare 0.088 0.101 0.088 0.106
BC [4] 0.083 0.093 0.079 0.093
CP [5] 0.082 0.091 0.082 0.094
KP [11] 0.080 0.090 0.078 0.090
BB [8] 0.085 0.100 0.088 0.103
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herein, F.2 provides a better estimate of the chiral limit
value of fπ (≈0.09 GeV). For the BB vertex, both formulas
produce very similar values (with a relative difference of
∼2%–4%), while those obtained with BC and KP differ up
to 12%–16%. In general, as can be inferred from Tables III
to V, BB vertex results exhibit less sensitivity to the choice
of MT or QC interaction models. If the bare vertex is
employed instead, F.1 gives better estimates than the more
accurate F.2, which overestimates fπ by 12%–14%. In
analogy to the relative largeness ofMð0Þ of the light quarks
(of the bare vertex results with respect to the others), this
feature could arise from the fact that the rainbow approxi-
mation requires larger infrared enhancement from the gluon
model. To address this fact, we rewrite QC interaction as
follows:

αsðq2Þ
q2

→
α̃sðq2Þ

q2 þm2
gðq2Þ

; m2
gðq2Þ ¼

m4
0

q2 þm2
0

; ð34Þ

where α̃sðq2Þ is parametrized as suggested in the combined
SDE and lattice study [106] such that mgðq2Þ acts as a
running-mass-like term and provides us with a gluon mass
scale. Figure 9 clearly shows that a considerable enhance-
ment of the coupling αð0Þ=π is needed for the bare vertex. It
is 3.5–5.5 times larger than the corresponding values of the
coupling for the other vertices to produce observed phe-
nomenology. Note that it is despite the fact that mgð0Þ lies
within a typical range ≈0.4–0.6 GeV in all cases, Fig. 10.
Finally, motivated by the GellMann-Oakes-Renner rela-

tionship (see [102], for example) and our values of chiral
condensate and decay constants, one could argue that mπ

can be accurately obtained from realistic solutions of the
Bethe-Salpeter equation, with a fully-consistent symmetry-
preserving kernel. This is an outstanding challenge that we
shall address elsewhere.

VI. CONCLUSIONS AND SCOPE

We have investigated the features of the dressed QGV
and their impact on DCSB through the SDE for the quark
propagator. Within a small phenomenologically sensible
variation of the MT and QC model parameters, fixed solely
by the chiral quark condensate, the results obtained from
the refined vertex Ansätze exhibit very similar quantitative
behavior. The robustness of the momentum-dependent
mass function and the pion decay constant suggests that
hadron observables could be accurately reproduced.
Though the bare vertex results for the condensate and
the decay constant compare well with other truncations, a
notorious infrared enhancement (in the gluon models) is
required. First, recall that half of the structures which define
the QGV can only contribute if chiral symmetry is
dynamically broken. Second, there is a natural interplay
between the role of the gluon propagator and the QGV. In
order to generate required amount of DCSB, the bare vertex
result depends on large infrared enhancement of the gluon
propagator as it receives no such contribution from the
dynamically generated vertex structures which are left out
in this truncation scheme. A realistic and currently con-
verging understanding of the gluon propagator can generate
an acceptable running quark mass, via QCD’s gap equation,
only as long as the QGVexhibits material infrared enhance-
ment itself. Thus an intimate connection between the QGV
and the DCSB is established. In this article, employing the
MTand QC gluon models, we solve the gap equation using
the following vertex Ansätze: bare, BC, CP, KP and BB.
All truncations described herein point towards the same
qualitative pattern of DCSB. Expectedly, apart from the
bare vertex, the infrared enhancement band of the mass
function for all the other Ansätze is rather narrow. Its width
is what we expect to introduce error bars when we predict
hadron observables using this formalism.

10–3 10–2 10–1 1 10 102 103
0

5

10

15

q2 [GeV2]

(q
2
)/

FIG. 9. (QC model) Effective coupling parametrized as in
Eq. (34). The black line corresponds to the effective coupling
associated with the bare vertex. Results for the other vertices lie
within the band whose height is considerably diminished.
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FIG. 10. (QC model) The gluon running mass from Eq. (34).
The black line corresponds to the effective coupling associated
with the bare vertex. Results for the other vertices lie within
the band.
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The light quarks, weakly coupled to the Higgs field, owe
their mass primarily to the infrared QCD dynamics. As one
moves towards the heavy sector, weak mass generation
commensurates with that coming from QCD’s strong
interactions; it is between the strange and charm quark
masses (but closer to the former) that emergent and explicit
mass generation have equal strength. These are qualita-
tively robust features of the SDE studies [87,104], inde-
pendent of the details of the truncation.
To enhance the connection with hadron physics, it would

be worth investigating if the vertex Ansätze studied in this
work are suitable for use in the nonperturbative studies of
sophisticated hadron physics phenomenology in its fine
details, the electromagnetic and transition form factors.
An immediate task would be writing a consistent Bethe-

Salpeter kernel for all those vertices. It is known that, along
with the bare QGV, a ladder-like kernel is sufficient for
many needs, providing an accurate description of light
pseudoscalars and vector mesons (see for example,
[77,84,86,107]). Nevertheless, for a fully-dressed QGV,
the construction of a consistent Bethe-Salpeter kernel could

be the next challenge [27,29]. Moreover, DCSB generates a
momentum-dependent dressed-quark anomalous chromo-
magnetic moment, which is large at infrared momenta and
has an impact on the mass splitting between parity partners
[8,96,108]. Thus, we strongly believe that the truncations
which go beyond RL should be relevant for a variety of
hadron properties, including the spectrum of the excited
states, and the nucleon electromagnetic elastic and tran-
sition form factors such as [47,48,109,110]. Some of those
aspects are currently being investigated and will be reported
elsewhere.
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