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We investigate fluctuations of the net-baryon number density in hot hadronic matter. We discuss the
interplay between chiral dynamics and repulsive interactions and their influence on the properties of these
fluctuations near the chiral crossover. The chiral dynamics is modeled by the parity doublet Lagrangian that
incorporates the attractive and repulsive interactions mediated via the exchange of scalar and vector
mesons, respectively. The mean-field approximation is employed to account for chiral criticality. We focus
on the qualitative properties and systematics of the cumulants of the net-baryon number density up to the
sixth order. It is shown that the higher-order cumulants exhibit a substantial suppression in the vicinity of
the chiral phase transition due to the presence of repulsive interactions. We find, however, that the
characteristic properties of cumulants near the chiral crossover observed in lattice QCD results are entirely
linked to the critical chiral dynamics and, in general, cannot be reproduced in phenomenological models,
which account only for effective repulsive interactions via excluded-volume corrections or van der Waals–
type interactions. Consequently, a description of the higher-order cumulants of the net-baryon density in
the chiral crossover requires a self-consistent treatment of the chiral in-medium effects and repulsive
interactions.

DOI: 10.1103/PhysRevD.103.054035

I. INTRODUCTION

Establishing the thermodynamic properties of strongly
interacting matter, described by quantum chromodynamics
(QCD), is one of the key directions in modern high-energy
physics. At vanishing density, the first-principles calcula-
tions of lattice QCD (LQCD) provide a reliable description
of the equation of state (EOS) and fluctuations of conserved
charges [1–4]. There, the EOS exhibits a smooth crossover
from confined hadronic matter to a deconfined quark-gluon
plasma, which is linked to the color deconfinement and the
restoration of chiral symmetry [5,6]. However, the nature of
the EOS at finite density is still not resolved by LQCD,
owing to the sign problem, and remains an open question.
The LQCD results [7–9] exhibit a clear manifestation of

the parity-doubling structure for the low-lying baryons
around the chiral crossover. The masses of the positive-
parity ground states are found to be rather temperature
independent, while the masses of negative-parity states
drop substantially when approaching the chiral crossover
temperature Tc. The parity doublet states become almost

degenerate with a finite mass in the vicinity of the chiral
crossover. Even though these LQCD results are still not
obtained in the physical limit, the observed behavior of
parity partners is likely an imprint of the chiral symmetry
restoration in the baryonic sector of QCD. Such properties
of the chiral partners can be described in the framework of
the parity doublet model [10–12]. The model has been
applied to hot and dense hadronic matter and neutron stars,
as well as the vacuum phenomenology of QCD [13–39].
It is already confirmed that, at small net-baryon number

density, the thermodynamics of the confined phase of QCD
is well described by the hadron resonance gas (HRG)
model [40,41]. Since the fundamental quarks and gluons
are confined, it is to be expected that at low temperatures
the QCD partition function is dominated by the contribu-
tion of hadrons. The HRG model describes well the LQCD
data below the crossover transition to a quark-gluon
plasma, as well as the hadron yields in heavy-ion collisions
[41]. Different extensions of the HRG model have been
proposed to quantify the LQCD EOS and various fluc-
tuation observable up to near chiral crossover. They
account for consistent implementation of hadronic inter-
actions within the S-matrix approach [42–46], a more
complete implementation or a continuously growing expo-
nential mass spectrum and/or possible repulsive inter-
actions among constituents [47–53]. Recently, an
interesting suggestion was made that deviations of the
LQCD data on higher-order fluctuations of net-baryon
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number density from the HRG baseline in the near vicinity
of the chiral transition can be attributed to repulsive
interactions among constituent hadrons [54].
Fluctuations of conserved charges are known to be

auspicious observables for the search of the chiral-critical
behavior at the QCD phase boundary [55–57] and chemical
freeze-out of produced hadrons in heavy-ion collisions
[58–63]. In particular, fluctuations have been proposed to
probe the QCD critical point in the beam energy scan
programs at the Relativistic Heavy Ion Collider at
Brookhaven National Laboratory and the Super Proton
Synchrotron at CERN, as well as the remnants of the Oð4Þ
criticality at vanishing and finite baryon densities [63–66].
In this work, we analyze the qualitative properties and

systematics of the fluctuations of conserved charges in the
context of the parity doublet model, which incorporates the
chiral symmetry restoration and repulsive interactions via
the exchange of the scalar and vector mesons, respectively.
To account for critical behavior, the mean-field approxi-
mation is employed, which contains basic features of the
Oð4Þ criticality, albeit with different critical exponents. We
study the behavior of the second- and higher-order cumu-
lants of the net-baryon number density up to the sixth order,
as well as the bulk equation of state. It is systematically
examined to what extent the thermal behaviors are domi-
nated by the chiral criticality and repulsive interactions.
This paper is organized as follows. In Sec. II, we

introduce the parity doublet model. In Sec. III, we discuss
the structure of the higher-order cumulants of the net-
baryon number density. In Sec. IV, we present results on the
equation of state and the higher-order cumulants of the net-
baryon number density. Finally, Sec. V is devoted to
summary and conclusions.

II. PARITY DOUBLET MODEL

In the conventional Gell-Mann–Levy model of mesons
and nucleons [67], the nucleon mass is entirely generated
by the nonvanishing expectation value of the sigma field.
Thus, the nucleon inevitably becomes massless when the
chiral symmetry gets restored. This is led by the particular
chirality assignment to the nucleon parity doublers, where
the nucleons are assumed to be transformed in the same
way as the quarks are under chiral rotations.
More general allocation of the left- and right-handed

chiralities to the nucleons, the mirror assignment, was
proposed in [10]. This allows an explicit mass term for the
nucleons, and, consequently, the nucleons staymassive at the
chiral restoration point. For more details, see Refs. [10–12].
In the mirror assignment, under SUð2ÞL × SUð2ÞR rota-

tion, two chiral fields ψ1 and ψ2 are transformed as follows:

ψ1L → Lψ1L; ψ1R → Rψ1R;

ψ2L → Rψ2L; ψ2R → Lψ2R; ð1Þ

where ψ i ¼ ψ iL þ ψ iR, L ∈ SUð2ÞL and R ∈ SUð2ÞR. The
nucleon part of the Lagrangian in the mirror model reads

LN ¼ iψ̄1∂ψ1 þ iψ̄2∂ψ2 þm0ðψ̄1γ5ψ2 − ψ̄2γ5ψ1Þ
þ g1ψ̄1ðσ þ iγ5τ · πÞψ1 þ g2ψ̄2ðσ − iγ5τ · πÞψ2

− gωψ̄1=ωψ1 − gωψ̄2=ωψ2; ð2Þ

where g1, g2, and gω are the baryon-to-meson coupling
constants and m0 is a mass parameter.
The mesonic part of the Lagrangian reads

LM ¼ 1

2
ð∂μσÞ2 þ

1

2
ð∂μπÞ2 −

1

4
ðωμνÞ2 − Vσ − Vω; ð3Þ

whereωμν ¼ ∂μων − ∂νωμ is the field-strength tensor of the
vector field, and the potentials read

Vσ ¼ −
λ2
2
Σþ λ4

4
Σ2 −

λ6
6
Σ3 − ϵσ; ð4aÞ

Vω ¼ −
m2

ω

2
ωμω

μ; ð4bÞ

where Σ¼σ2þπ2, λ2 ¼ λ4f2π − λ6f4π −m2
π, and ϵ ¼ m2

πfπ .
mπ andmω are the π and ωmeson masses, respectively, and
fπ is the pion decay constant. Note that the chiral symmetry
is explicitly broken by the linear term in σ in Eq. (4a).
The full Lagrangian of the parity doublet model is then

L ¼ LN þ LM: ð5Þ

In the diagonal basis, the masses of the chiral partners
N� are given by

m� ¼ 1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg1 þ g2Þ2σ2 þ 4m2

0

q
∓ ðg1 − g2ÞσÞ: ð6Þ

From Eq. (6), it is clear that, in contrast to the naive
assignment under chiral symmetry, the chiral symmetry
breaking generates only the splitting between the two
masses. When the symmetry is restored, the masses become
degenerate: m�ðσ ¼ 0Þ ¼ m0.
To investigate the properties of strongly interacting

matter, we adopt a mean-field approximation [68].
Rotational invariance requires that the spatial component
of the ωμ field vanishes, namely hωi ¼ 0.1 Parity con-
servation on the other hand dictates hπi ¼ 0. The mean-
field thermodynamic potential of the parity doublet model
reads

Ω ¼
X
x¼�

Ωx þ Vσ þ Vω; ð7Þ

1Since ω0 is the only nonzero component in the mean-field
approximation, we simply denote it by ω0 ≡ ω.
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with

Ωx ¼ γx

Z
d3p
ð2πÞ3 T½ln ð1 − fxÞ þ ln ð1 − f̄xÞ�; ð8Þ

where γ� ¼ 2 × 2 denotes the spin-isospin degeneracy
factor for both parity partners and fx ðf̄xÞ is the particle
(antiparticle) Fermi-Dirac distribution function:

fx ¼
1

1þ eβðEx−μ�Þ ;

f̄x ¼
1

1þ eβðExþμ�Þ ; ð9Þ

with β being the inverse temperature, the dispersion relation
Ex ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

x

p
and the effective chemical poten-

tial μ� ¼ μB − gωω.
In-medium profiles of the mean fields are obtained by

extremizing the thermodynamic potential in Eq. (7), lead-
ing to the following gap equations:

0 ¼ ∂Ω
∂σ ¼ ∂Vσ

∂σ þ sþ
∂mþ
∂σ þ s−

∂m−

∂σ ;

0 ¼ ∂Ω
∂ω ¼ ∂Vω

∂ω þ gωðnþ þ n−Þ; ð10Þ

where the scalar and vector densities are

s� ¼ γ�

Z
d3p
ð2πÞ3

m�
E�

ðf� þ f̄�Þ ð11Þ

and

n� ¼ γ�

Z
d3p
ð2πÞ3 ðf� − f̄�Þ; ð12Þ

respectively.
In the grand canonical ensemble, the thermodynamic

pressure reads

P ¼ −Ωþ Ω0; ð13Þ

where Ω0 is the value of the thermodynamic potential in
the vacuum, and the net-baryon number density can be
calculated as follows:

nB ¼ ∂PðT; μBÞ
∂μB : ð14Þ

The positive-parity state Nþ corresponds to the nucleon
Nð938Þ. Its negative-parity partner is identified with
Nð1535Þ. Their vacuum masses are shown in Table I.
The value of the parameter m0 has to be chosen so that a
chiral crossover transition is featured at finite temperature
and vanishing chemical potential. The model predicts the
chiral transition to be a crossover for m0 ≳ 700 MeV.
Following the previous studies of the parity-doublet-based
models [13–39], as well as recent lattice QCD results [7–9],
we choose a rather large value: m0 ¼ 850 MeV. We note
that the results presented in Sec. IV qualitatively do not
depend on the choice of m0, as long as chiral crossover
transition is featured. The parameters g1 and g2 are
determined by the aforementioned vacuum nucleon masses
and the chirally invariant mass m0 via Eq. (6). The
parameters gω, λ4 and λ6 are fixed by the properties of
the nuclear ground state at zero temperature, i.e., the
saturation density, binding energy and compressibility
parameter at μB ¼ 923 MeV. The constraints are as
follows:

nB ¼ 0.16 fm−3; ð15aÞ

E=A −mþ ¼ −16 MeV; ð15bÞ

K ¼ 9n2B
∂2ðE=AÞ
∂n2B ¼ 240 MeV: ð15cÞ

We note that the six-point scalar interaction term in
Eq. (4a) is essential in order to reproduce the empirical
value of the compressibility in Eq. (15c) [38]. The
parameters used in this paper are tabulated in Table I.
For this set of parameters, we obtain the critical temperature
of the chiral crossover transition at vanishing chemical
potential: Tc ¼ 208.7 MeV.
In the following, we will also compare our results with

the HRG [48,49,69–72] model formulation of the thermo-
dynamics of the confined phase of QCD. The thermody-
namic potential of the HRG model is given as a sum of
uncorrelated ideal-gas particles:

ΩHRG ¼
X
x¼�

Ωx; ð16Þ

withΩx given by Eq. (8), where the masses of N� are taken
to be the vacuummasses (see Table I) and μ� ¼ μB. We will

TABLE I. Physical vacuum inputs and the parity doublet model parameters used in this work. See Sec. II for details.

m0 [MeV] mþ [MeV] m− [MeV] mπ [MeV] fπ [MeV] mω [MeV] mρ [MeV] λ4 λ6f2π gω g1 g2

850 939 1500 140 93 783 775 13.15 4.67 4.64 12.42 6.39
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also consider a modification of the HRG model, σHRG,
where the thermodynamic potential is given as in Eq. (16),
but the vacuum masses of N� are substituted by the in-
medium masses obtained by solving the parity doublet
model. In both models, the pressure and net-baryon density
are obtained through Eqs. (13) and (14), respectively.
In the next section, we discuss the general structure of

the higher-order cumulants of the net-baryon number.

III. HIGHER-ORDER CUMULANTS OF THE
NET-BARYON NUMBER

The fluctuations of conserved charges reveal more
information about the matter composition than the equation
of state and can be used as probes of a phase boundary. The
critical properties of chiral models, within the functional
renormalization group (FRG) approach [73–76], are gov-
erned by the same universality classes as QCD; i.e., the
chiral transition belongs to Oð4Þ universality class, which,
at large values of the baryon chemical potential, may
develop a Zð2Þ critical point, followed by the first-order
phase transition [77–79]. This criticality is naturally
encoded in the hadronic parity doublet model, as well as
in quark-based models [64,80–83], although the mean-field
treatment yields different critical exponents.
The main objective of the present studies is to analyze

and delineate the contribution to thermodynamics from
chiral dynamics and repulsive baryon-baryon interactions.
To this end, we analyze the fluctuations of the net-baryon
number at finite temperature and vanishing chemical
potential.
In the grand canonical ensemble, the cumulants of the

net-baryon number, χn, are commonly defined as temper-
ature-normalized derivatives with respect to the baryon
chemical potential,

χnðT; μBÞ ¼ Tn−4 ∂n−1nBðT; μBÞ
∂μn−1B

; ð17Þ

where nB is defined in Eq. (14).
In the mean-field approximation, the net-baryon number

density, as well as any other thermodynamic quantity,
contains explicit dependence on the mean fields. Here,
we consider only σ and ω mean fields [cf. Eq. (7)]; thus,
nB ¼ nBðT; μB; σðT; μBÞ;ωðT; μBÞÞ. Consequently, from
Eq. (17) one derives the following general form of the
second-order cumulant:

χ2 ¼ χid2 βrep þ
∂nB
∂σ

∂σ
∂μB ; ð18Þ

where χid2 ¼ χid2 ðT; μB; σðT; μBÞ;ωðT; μBÞÞ is the ideal-gas
expression for the net-baryon number susceptibility and

βrep ¼ 1 − gω
∂ω
∂μB ð19Þ

is the suppression factor due to repulsive interactions. From
Eq. (18) it is clear that the noninteracting ideal-gas result is
retrieved when the mean-field contribution is neglected.
At vanishing chemical potential, Eq. (18) reduces to

χ2 ¼ χid2 βrep: ð20Þ

We note that, depending on the details of the model, χid2 in
Eqs. (18) and (20) contains also dependence on the σ and ω
mean fields. However, at vanishing μB, the expectation
value of ω vanishes as well; i.e., the effective chemical
potential is μ� ¼ 0. Thus, χid2 contains only the contribution
from the σ mean field. Therefore, it encodes the informa-
tion about attractive interactions, while the information
about repulsive interactions is contained in the suppression
factor βrep. To some extent, such separation is qualitatively
similar to that of the excluded-volume approach. We note
that the expression for the second-order cumulant in
Eq. (20) is exact at vanishing chemical potential.
In similar spirit, one derives the higher-order cumulants as

χn ¼ χidn β
n−1
rep þ � � � ; ð21Þ

where χidn is the ideal-gas expression for the nth-order
cumulant. For n > 2, Eq. (21) contains extra terms, as
explained in the Appendix. Nevertheless, keeping the first
term provides a relatively good approximation to the full
expression.2 We note that the general structure of χn derived
in Eq. (21) is the same in any kind of σ − ωmodel under the
mean-field approximation and is independent of the details
of the model.
From Eq. (21), keeping only the first term, we may also

estimate the ratio of the cumulants:

χn
χm

¼ χidn
χidm

βn−mrep þ � � � : ð22Þ

Clearly, the separation of the attractive and repulsive
contributions persists in the approximation of the higher-
order cumulants, as well as in their ratios. This allows one to
precisely delineate the contribution of chiral symmetry
restoration and repulsive interaction to the critical behavior
of the cumulants in the vicinity of the chiral phase transition.
In the following, we quantify and discuss the properties

of the obtained equation of state, as well as the higher-order
cumulants of the net-baryon number density at vanishing
chemical potential in order to identify the importance of the
repulsive interactions near the chiral crossover transition.

2In the Appendix, we present the evaluation of the higher-order
cumulants and discuss the comparison of the full expressions and
approximations used in this study.
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IV. RESULTS

In the left panel of Fig. 1, we show the numerical results on
the temperature-normalized thermodynamic pressure at van-
ishing baryon chemical potential. The pressure obtained in
the HRG model increases monotonically and does not
resemble any critical behavior. This is expected because
ΩHRG is just a sumof uncorrelated particles [cf. Eq. (16)]with
vacuum hadron masses. There are clear deviations of the
parity doublet model result on thermodynamic pressure from
the corresponding ideal HRG. The increase of the pressure is
a bulk consequence of an interplay between critical chiral
dynamics with in-medium hadron masses and repulsive
interactions. The influence of in-medium hadron masses is
identifiedwhen considering the pressurePσHRG of the σHRG
model which increases around Tc. This is evidently linked to
the in-medium shift of baryonmasses due to chiral symmetry
restoration.We note thatPσHRG is systematically higher than
the parity doublet pressure. The reason is that the partition
function of uncorrelated particles does not contain the mean-
field potentials which provide a negative contribution to the
pressure, as seen in the parity doubletmodel fromEq. (7). All
pressures shown in Fig. 1 converge to the Stefan-Boltzmann
limit at high temperatures.
In the right panel of Fig. 1, we show the second-order

cumulant χ2. We note that at vanishing chemical potential
the expectation value of ω is zero; thus, χidn are equivalent to
the σHRG formulation. Similarly to the case of pressure,
the result for σHRG lies systematically above the ideal-gas
result. χ2 in HRG and σHRG models converge to the
Stefan-Boltzmann limit at high temperatures. In contrast,
the parity doublet result saturates above Tc and monoton-
ically decreases to zero at high temperature. From
Eq. (20), it is clear that the difference between σHRG
and parity doublet results is due to the suppression
originating from βrep.

In Fig. 2, we show the suppression factor βrep. It changes
gradually from unity at low temperatures to zero at high
temperatures. This indicates that the repulsive forces
become more important with increasing temperature. At
the critical temperature, βrep ≃ 0.8. Consequently, χid2 is
reduced by 20% due to repulsive interactions. From
Eq. (21) one may also estimate the suppression of the
higher-order cumulants. At T ≃ Tc, the suppression of χ4
and χ6 due to repulsive interactions amounts to 41% and
67%, respectively.
In the left panel of Fig. 3, we show the net-baryon

kurtosis χ4=χ2 and the ratio χ6=χ2. For the ideal HRG
model, these ratios are equal to unity due to the expected
Skellam probability distribution of the net-baryon density
[40]. The chiral dynamics and repulsive interactions imple-
mented in the parity doublet model imply strong deviations

FIG. 1. Thermodynamic pressure (left), and the second-order cumulant of the net-baryon number density (right), calculated under
different schemes; see text. The temperature is expressed in the units of the chiral-critical temperature Tc ¼ TcðμB ¼ 0Þ.

FIG. 2. The suppression factor βrep from Eq. (21) for different
temperatures, expressed in the units of the chiral-critical temper-
ature Tc ¼ TcðμB ¼ 0Þ.
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of these fluctuation ratios from the Skellam baseline. The
kurtosis exhibits a peak around the transition temperature,
after which it drastically drops below unity. This is in
contrast to the σHRG result, where the peak structure
appears as well; however, the result converges back to the
Skellam distribution limit at higher temperatures. Thus, the
appearance of the peak in the kurtosis is attributed to
remnants of the chiral symmetry restoration, whereas
strong suppression around T ≃ Tc is due to repulsive
interactions between baryons. We note that at vanishing
chemical potential and in the chiral limit χn cumulants are
noncritical up to n < 6 order [64]. Thus, the peak of the
kurtosis stays finite at the chiral phase transition, and its
strength is strongly model dependent. It is known that when
including quantum and thermal fluctuations in effective
chiral models within the FRG approach such a peak
essentially disappears leaving the kurtosis nearly unaf-
fected by the chiral symmetry restoration [64,80–82]. The
influence of repulsive interactions, however, can imply
suppression of kurtosis near the chiral crossover below the
Skellam baseline. In this model calculations, such sup-
pression at T ≃ Tc is of the order of 35%. The kurtosis of
net-baryon number density was introduced as an excellent
probe of quark deconfinement, and outside the critical
region was shown to be quantified by the square of the
baryon number carried by medium constituents [84,85].
Such an interpretation of kurtosis is not accessible in the
present hadronic chiral model since it does not contain
quarks degrees of freedom. Thus, the parity doublet model
can be only applicable up to the near vicinity of the chiral
crossover.
The ratio χ6=χ2 exhibits a strong sensitivity to dynamical

effects related to chiral symmetry restoration, as shown in
the right panel of Fig. 3. The characteristic S-type structure
of this ratio obtained in the parity doublet model with a

well-pronounced peak followed by a dip at negative values
in the near vicinity of Tc is expected as an imprint of the
chiral criticality [64]. The leading role of the chiral
symmetry restoration on the properties of χ6=χ2 is also
seen by comparing the full parity doublet and σHRGmodel
results in Fig. 3. In both cases, the S-type structure of this
ratio is preserved, albeit with some quantitative differences
which are linked to repulsive interactions. Indeed, as
already discussed in the context of the kurtosis, the
presence of repulsive interactions suppresses χ6=χ2 when
compared to the σHRG results. Nevertheless, the qualita-
tive structure of this ratio remains the same.
The magnitude of the peak-dip structure observed in

χ6=χ2 is a direct consequence of the mean-field approxi-
mation employed in our calculations. We note that the
inclusion of mesonic fluctuations weakens the critical
behavior. This was presented in other models exhibiting
Oð4Þ chiral criticality, e.g., quark-meson [86] and Polyakov
loop-extended quark-meson [64,80,81,83] models within
FRG approach. In these models, the χ4=χ2 ratio decreases
monotonically with temperature and practically no peak
structure is exhibited neat Tc. In contrast, the general peak-
dip structure of χ6=χ2 obtained in the mean-field approxi-
mation prevails when mesonic fluctuations are included.
This highly nonmonotonic behavior is also seen in lattice
QCD simulations. In particular, the peak in χ6=χ2 is seen,
despite huge systematic error at low temperatures [2,3].
Lastly, we compare the properties of χ4=χ2 and χ6=χ2

fluctuation ratios with the excluded-volume formulation of
the repulsive interactions. The effect of excluded volume on
thermodynamic properties of a hadronic medium was
extensively studied [42,48,49,72,87–89]. We consider the
common formulation of the excluded-volume effect, in
which it is considered for the bulk pressure of the system.
In Ref. [89], it was pointed out that this may not be a robust

FIG. 3. Ratio of different higher-order cumulants of the net-baryon number density fluctuations, χ4=χ2 (left) and χ6=χ2 (right),
calculated under different schemes; see text. The temperature is expressed in the units of the chiral-critical temperature
Tc ¼ TcðμB ¼ 0Þ.
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gauge of the repulsion in the individual interaction
channels.
The thermodynamic pressure in the excluded-volume

approach is given by a thermodynamically self-consistent
equation:

PexðT; μ⋆Þ ¼
X
k

PidðT; μkÞ; ð23Þ

with μk ¼ �μB − v0PexðT; μ⋆Þ, and Pid is the ideal-gas
pressure. The (�) sign applies to particles and antiparticles,
respectively. The summation over k goes over particles and
antiparticles. The constant eigenvolume

v0 ¼
16

3
πr30; ð24Þ

where r0¼0.3 fm. Once the excluded volume v0 is speci-
fied, the pressure can be obtained by solving Eq. (23)
self-consistently. From this, higher-order cumulants are
obtained numerically.
In Fig. 3, we show the ratios of cumulants χ4=χ2 and

χ6=χ2 obtained in the excluded-volume approach labeled as
exHRG. For consistency, the temperature is normalized to
the critical temperature Tc obtained in the parity doublet
model. The excluded-volume model shows a swift decrease
from the ideal HRG behavior at low temperature and turns
negative at around 1.35Tc. Recently, it was suggested that
this behavior may call into question the connection to
deconfinement transition in QCD [54]. For χ6=χ2 the
excluded-volume approach deviates from the ideal HRG
result, turns negative, and predicts a dip above Tc. Very
similar behavior is also observed in models incorporating
van der Waals–type formulation of repulsive and attractive
interactions between hadrons [54].
Clearly, the results of the excluded-volume and the parity

doublet models are qualitatively different. However, our
consistent chiral model calculations confirmed that indeed
repulsive interactions between hadrons imply suppression
of χ4=χ2 and χ6=χ2 fluctuation ratios near the chiral
crossover as pointed out in Ref. [54]. Thus, the phenom-
enological hadronic models that account for repulsive and
attractive interactions between constituents can be success-
ful in describing some deviations of net-charge fluctuations
from the HRG baseline observed in LQCD. However, this
is not the case if such fluctuation observables are affected
by the chiral criticality. This is very transparent when
considering χ6=χ2 ratio shown in Fig. 3. The lack of in-
medium effects due to the chiral symmetry restoration in
the excluded-volume approach directly implies that such a
model is not capable of reproducing a characteristic
structure of this ratio near the chiral crossover. This
indicates that in order to fully describe the properties of
cumulants of net-baryon number fluctuations near the
chiral crossover, it is not sufficient to account only for
repulsive interactions, but it is essential to formulate a

consistent framework that implements the chiral in-medium
effects and repulsive interactions simultaneously.

V. SUMMARY

We have discussed the qualitative role of attractive and
repulsive nucleon-nucleon interactions on the thermody-
namic and chiral-critical properties of a strongly interacting
hadronic medium at finite temperature. To this end, we
have used the parity doublet model in the mean-field
approximation. We have analyzed the thermodynamic
pressure and the cumulants of the net-baryon number
density χn up to the sixth order, as well as their ratios.
We have shown that, at vanishing chemical potential,

the second-order cumulant factorizes as a product of
a term that is directly linked to attractive scalar interactions
and a suppression factor due to repulsive interactions.
Furthermore, we have found that, to a good approximation,
a similar separation also holds for higher-order cumulants.
This allowed to consistently delineate different in-medium
effects and to identify the role of repulsive interactions near
the chiral crossover transition.
We have pointed out that even a moderate influence of

the repulsive interactions between hadrons on the equation
of state becomes more readily exposed in the quantitative
structure of the cumulants with increasing their order.
Consequently, in the phenomenological description of
cumulants of net-baryon density fluctuations calculated
in LQCD or measured in heavy-ion collisions, attention is
to be given to account for possible repulsive interactions
between baryons.
A frequently used approach to account for repulsive

hadronic interactions is the hard-core repulsion or van der
Waals–type interaction model. We have compared our
results for the nth-order cumulants of net-baryon number
fluctuations with an excluded-volume formulation of the
repulsive interactions. Such a phenomenological model
provides suppression of cumulants with increasing temper-
ature due to hadronic repulsion. In particular, the kurtosis
χ4=χ2 in this model is reduced from the Skellam limit
toward the chiral crossover, as observed in LQCD results.
However, when considering the χ6=χ2 fluctuation ratio,
which exhibits a dominant contribution from the chiral
criticality, such a phenomenological model fails to capture
the characteristic properties of this ratio. Consequently, a
description of the higher-order cumulants of the net-baryon
density in the chiral crossover requires a consistent frame-
work that accounts for a self-consistent treatment of the
chiral in-medium effects and repulsive interactions.
At low temperature, the parity doublet model predicts

sequential liquid-gas and chiral phase transitions in the
baryon-rich matter, with critical end points of both tran-
sitions at moderate temperatures of tens of MeV [18,31]. It
is challenging to identify the role of in-medium effects and
hadronic interactions on the properties of higher-order
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cumulants near these distinct phase transitions. Work in this
direction is in progress.
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APPENDIX: EVALUATION OF THE
HIGHER-ORDER CUMULANTS

From the definition of the nth-order cumulant of the net-
baryon number density,

χn ¼ Tn−4 ∂n−1nB
∂μn−1B

; ðA1Þ

one can derive the following relation:

χnþ1 ¼
∂χnðT; μB; σðT; μBÞ;ωðT; μBÞÞ

∂μB
¼ ∂χn

∂μB þ ∂χn
∂ω

∂ω
∂μB þ ∂χn

∂σ
∂σ
∂μB

¼ ∂χn
∂μ�

∂μ�
∂μB þ ∂χn

∂μ�
∂μ�
∂ω

∂ω
∂μB þ ∂χn

∂σ
∂σ
∂μB

¼ χidnþ1 − gωχidnþ1

∂ω
∂μB þ ∂χn

∂σ
∂σ
∂μB

¼ χidnþ1βrep þ
∂χn
∂σ

∂σ
∂μB ; ðA2Þ

where χidnþ1 is the ideal-gas expression for the (nþ 1)th-
order cumulant, βrep ¼ 1 − gω∂ω=∂μB, and μ� ¼ μB − gωω
is the effective chemical potential. Applying Eq. (A2) to
the net-baryon density, one obtains the second-order
cumulant as

χ2 ¼ χid2 βrep þ
∂nB
∂σ

∂σ
∂μB : ðA3Þ

At μB ¼ 0, nB vanishes, owing to particle-antiparticle
symmetry. Hence, the last term in Eq. (A3) vanishes and
one obtains Eq. (20).
Higher-order cumulants are obtained by applying

Eq. (A2) iteratively. In particular, the third- and fourth-
order cumulants read, respectively,

χ3 ¼ χid3 β
2
rep þ 2

∂χid2
∂σ

∂σ
∂μB βrep − gωχid2

∂2ω

∂μ2B þ ∂2nB
∂σ2

� ∂σ
∂μB

�
2

þ ∂nB
∂σ

∂2σ

∂μ2B ; ðA4aÞ

χ4 ¼ χid4 β
3
rep þ 3

∂χid3
∂σ

∂σ
∂μB β

2
rep

− 3gωχid3
∂2ω

∂μ2B βrep þ 3
∂2χid2
∂σ2

� ∂σ
∂μB

�
2

βrep

þ 3
∂χid2
∂σ

�∂2σ

∂μ2B βrep − gω
∂σ
∂μB

∂2ω

∂μ2B
�

− gωχid2
∂3ω

∂μ3B þ ∂3nB
∂σ3

� ∂σ
∂μB

�
3

þ 3
∂2nB
∂σ2

∂σ
∂μB

∂2σ

∂μ2B þ ∂nB
∂σ

∂3σ

∂μ3B : ðA4bÞ

FIG. 4. Fourth- and sixth-order cumulants of the net-baryon number obtained in the parity doublet model and their approximations at
μB ¼ 0; see text. The temperature is expressed in the units of the chiral-critical temperature Tc ¼ TcðμB ¼ 0Þ.
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We note that σðT; μBÞ ¼ σðT;−μBÞ and ωðT; μBÞ ¼
−ωðT;−μBÞ. Thus, the odd derivatives of σ and even
derivatives of ω with respect to μB vanish, i.e.,

∂2kþ1σ

∂μ2kþ1
B

����
μB¼0

¼ 0;
∂2kω

∂μ2kB
����
μB¼0

¼ 0: ðA5Þ

Consequently, at μB ¼ 0, each term in χ3 vanishes
separately; thus, χ3ðT; μB ¼ 0Þ ¼ 0. On the other hand,
the even-order cumulants χ2 and χ4 are reduced, respec-
tively, to

χ2 ¼ χid2 βrep; ðA6aÞ

χ4 ¼ χid4 β
3
rep þ 3

∂χid2
∂σ

∂2σ

∂μ2B βrep − gωχid2
∂3ω

∂μ3B : ðA6bÞ

The higher-order cumulants are calculated following a
similar method as explained above. The approximations
used in Eqs. (20) and (21) are obtained by dropping
all terms except the first one. In Fig. 4, we present a direct
comparison of the exact results for the fourth- and sixth-
order cumulants and their approximations given in
Eq. (21). The agreement is quite satisfactory for temper-
atures T ≤ 1.1Tc, keeping the basic properties of the
cumulants.
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