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1CPHT, CNRS, École polytechnique, IP Paris, F-91128 Palaiseau, France
2Department of Physics, Columbia University, New York, New York 10027, USA

(Received 10 November 2020; accepted 23 February 2021; published 24 March 2021)

In the scattering of a small onium off a large nucleus at high center-of-mass energies, when the
parameters are set in such a way that the cross section at a fixed impact parameter is small, events are
triggered by rare partonic fluctuations of the onium, which are very deformed with respect to typical
configurations. Using the color dipole picture of high-energy interactions in quantum chromodynamics, in
which the quantum states of the onium are represented by sets of dipoles generated by a branching process,
we describe the typical scattering configurations as seen from different reference frames, from the rest
frame of the nucleus to frames in which the rapidity is shared between the projectile onium and the nucleus.
We show that taking advantage of the freedom to select a frame in the latter class makes it possible to derive
complete asymptotic expressions for some boost-invariant quantities, beyond the total cross section, from a
procedure which leverages the limited available knowledge on the properties of the solutions to the
Balitsky-Kovchegov equation that governs the rapidity dependence of total cross sections. We obtain, in
this way, an analytic expression for the rapidity distribution of the first branching of the slowest parent
dipole of the set of those which scatter. This distribution provides an estimator of the correlations of the
interacting dipoles and is also known to be related to the rapidity-gap distribution in diffractive dissociation,
an observable measurable at a future electron-ion collider. Furthermore, our result may be formulated as a
more general conjecture that we expect to hold true for any one-dimensional branching random walk
model, on the branching time of the most recent common ancestor of all the particles that end up to the right
of a given position.
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I. INTRODUCTION

Onium-nucleus scattering is an outstanding process to
understand theoretically: first, because it is the simplest
interaction process between a (model) hadron and a nucleus,
and second, for its potential phenomenological applications.
Indeed, if the center-of-mass energy is sufficiently large, this
process can easily be factorized from deep-inelastic electron-
nucleus scattering cross sections [1,2]. The latter will be
measured at the future electron-ion collider (EIC) [3], which
will be built at the Brookhaven National Laboratory within
the next decade, and at still higher-energy proposed DIS
experiments, such as the Large Hadron-Electron Collider
(LHeC) at CERN and the Future Circular Collider (FCC) in
electron-hadron mode (FCC-eh) [4]. On the other hand, in
proton-nucleus collisions, it turns out that an appropriate
Fourier transform of the onium-nucleus total cross section is
mathematically identical to the differential cross section for

producing a semihard jet of given transverse momentum [5],
at least at next-to-leading logarithmic accuracy [6]. An
onium may also be a good starting point to model dilute
systems, such as heavy mesons, or maybe even specific
states of protons, in order to understand theoretically some of
their universal properties.1

The center-of-mass energy (or, equivalently, total rap-
idity) dependence of onium-nucleus forward elastic scat-
tering amplitudes is encoded in the Balitsky-Kovchegov
(BK) evolution equation [8,9] established in the framework
of quantum chromodynamics (QCD). When restricted to
the relevant regime for the calculation of total scattering
cross sections involving a small onium, the latter belongs to
the wide universality class of nonlinear diffusion equations,
the main representant of which is the well-known Fisher
[10] and Kolmogorov-Petrovsky-Piscounov [11] (FKPP)
equation. (For background on the FKPP equation, see, for
example, the reports [12,13]; for a review on how the FKPP
equation appears in QCD, see, e.g., [14].) This fact can be
understood quite simply from a physical point of view. On
one hand, the forward scattering amplitude, the evolution ofPublished by the American Physical Society under the terms of
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1For a review of scattering in quantum chromodynamics in the
regime of high energies, see, e.g., Ref. [7].
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which is described by the BK equation, is tantamount to
the probability that at least one gluon in the Fock state of
the onium at the time of the interaction, produced by a
cascade of gluon branchings, is absorbed by the nucleus.
On the other hand, with an appropriate initial condition,
the solution to the FKPP equation is the probability
that there is at least one particle generated by a one-
dimensional branching-diffusion process in space that has
a position larger than some predefined number. At the
level of the evolution equations, the asymptotic equiv-
alence between the BK and the FKPP equations becomes
manifest after the identification of the time variable in the
latter with the rapidity variable in the former, of the space
variable with (the logarithm of) the transverse dipole
size, and after taking the appropriate limit of the BK
equation [15]. At the level of the underlying stochastic
processes, the QCD evolution towards very high energies
is a gluon branching process which, when the large-
number-of-color limit is taken, boils down to the iteration
of independent one-to-two color dipole splittings [16].
This process results in realizations of a specific branching
random walk.
Other observables, such as diffractive cross sections, can

be formulated with the help of a system of BK equations, as
was first shown by Kovchegov and Levin [17].
In this paper, we shall analyze the scattering cross

section per impact parameter for onium-nucleus collisions
in the region in which it is much smaller than unity,
namely when the size of the onium is very small compared
to the saturation radius and more specifically, in the so-
called “scaling region”, which is a well-known parametric
region in which the cross section does not depend on the
rapidity and on the size of the onium independently, but
through a scaling variable function of the latter two [18].
In particular, we shall study the interpretation of that cross
section in the framework of the parton model, in terms of
fluctuations of the partonic content of the onium, in
different reference frames related to each other through
longitudinal boosts.
Our motivation is twofold. First, boost invariance is a

fundamental symmetry of scattering amplitudes, and it is
interesting to understand theoretically how it is realized
microscopically in this particular regime of QCD, in which
the interacting objects may be thought of as sets of
independent partons generated by a branching process.
Second, it is already well-known that using boost-
invariance of the scattering amplitudes2 helps to

formulate the calculation of observables. For example,
the simplest proof of the BK equation consists in writing
down the change of the partonic content of the onium in an
infinitesimal boost, starting from the rest frame of the
onium. Here, we will take advantage of boost invariance to
select a specific class of frames in which we will be able to
evaluate a particular probability distribution, which is
a priori very difficult to calculate, with the help of the
limited available knowledge of the solution to the BK
equation.
The main outcome of our work is a partonic picture of

the scattering in different frames, which turns out to enable
the derivation of an expression of the asymptotics of the
probability distribution of the rapidity at which the slowest
ancestor of all dipoles that interact with the nucleus has
branched. The latter quantity characterizes the correlations
of the interacting dipoles. While it is not directly an
observable, it was shown to be related to the rapidity
gap distribution in diffractive dissociation events [20,21].
Last but not least, it is a quantity of more general interest in
the study of branching random walks.
We shall start (Sec. II) by formulating the scattering

amplitude as well as the distribution of the branching
rapidity in two different ways: a formulation (in terms of
evolution equations) that can be implemented numerically,
and a formulation that will set the basis for an approxi-
mation scheme exposed in Sec. III and used to arrive at
analytical asymptotic expressions. In Sec. IV, we compare
our analytical predictions to numerical solutions to the
complete equations, and we present our conclusions and
some prospects in Sec. V. Appendix A outlines the
evaluation of a useful integral, and Appendix B presents
an alternative numerical model.

II. TWO FORMULATIONS FOR THE
AMPLITUDES

In this paper, we shall address the following quantities:
(i) The forward elastic scattering amplitude T1 of the

onium off the nucleus at a fixed impact parameter,
or equivalently, the corresponding S-matrix element
S≡ 1 − T1;

(ii) The probability T2 that at least two dipoles
present in the Fock state of the onium in the
considered frame at the time of the interaction
are involved in the scattering as well as a particular
differential G: The probability distribution of the
rapidity relative to the nucleus at which the slowest
common ancestor of all interacting dipoles has
branched.

The most straightforward formulation of the calculation
of T1, T2, and G consists in writing down evolution
equations with respect to the total rapidity (Sec. II A).
We shall then introduce frame-dependent representations of
the solutions to such equations (Sec. II B).

2Of course, generally speaking, the existence of a symmetry
implies constraints on observables and on theories. Interestingly
enough, in the context of (toy models for) high-energy scattering,
boost invariance led to stringent constraints on the form of the
elementary processes (such as parton recombination or other
nonlinear processes that slow down parton evolution in the very
high-density regime), which should be taken into account at
ultrahigh energies [19].
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A. Exact evolution equations in the dipole model

1. Forward elastic amplitude and
the Balitsky-Kovchegov equation

The S-matrix element for the forward elastic interaction
of a color dipole of transverse (two-dimensional) size r
with a nucleus at relative rapidity Y obeys the Balitsky-
Kovchegov (BK) equation [8,9],

∂YSðY; rÞ ¼ ᾱ

Z
d2r0

2π

r2

r02ðr − r0Þ2
× ½SðY; r0ÞSðY; jr − r0jÞ − SðY; rÞ�; ð1Þ

where we have assumed homogeneity and isotropy (S only
depends on the modulus r of r, not on its orientation nor on
the absolute position of the dipole in the transverse plane).
In practice, this holds for nearly central collisions of small
dipoles with very extended nuclei. Furthermore, this very
equation is the lowest-order approximation of the QCD
evolution3 in the limit of large Y, large atomic number, and
large number of colors Nc. The constant ᾱ that controls the
pace of the evolution reads ᾱ≡ αsNc=π, with αs being the
QCD coupling.
The simplest way to derive this evolution equation is to

start from the rest frame of the onium in which the nucleus
is evolved at a rapidity Y and to interpret SðY; rÞ as the
probability that an onium of size r, in its bare state, does not
interact with the nucleus. Then, one increases the total
scattering rapidity boosting the onium by dY, keeping the
rapidity of the nucleus fixed. In the QCD dipole model
[16], the scattering configuration of the initial onium may
then either become a set of two color dipoles of sizes r0 and
r − r0 (up to d2r0), with a probability,

ᾱdYdp1→2ðr; r0Þ≡ ᾱdY
d2r0

2π

r2

r02ðr − r0Þ2 ; ð2Þ

or may stay a single dipole, with a probability4

1 − ᾱdY
R
r0 dp1→2ðr; r0Þ. Hence,

SðY þ dY; rÞ ¼
�
1− ᾱdY

Z
r0
dp1→2ðr; r0Þ

�
SðY; rÞ

þ ᾱdY
Z
r0
dp1→2ðr; r0ÞSðY; r0ÞSðY; jr− r0jÞ;

ð3Þ

from which Eq. (1) easily follows.

The constant ᾱ always enters as a scaling factor of the
rapidity: therefore, it is convenient to absorb it into the
rapidity variable, defining y≡ ᾱY. From now on, we will
exclusively use this rescaled rapidity, which we will
nevertheless keep calling “rapidity.” With the help of these
notations, the BK equation reads

∂ySðy; rÞ ¼
Z
r0
dp1→2ðr; r0Þ½Sðy; r0ÞSðy; jr− r0jÞ− Sðy; rÞ�:

ð4Þ

The initial condition at rapidity y ¼ 0 corresponds to the
scattering amplitude of the dipole with an unevolved
nucleus: it is usually assumed to have the McLerran-
Venugopalan form [22],

Sðy ¼ 0; rÞ ¼ exp

�
−
r2Q2

A

4
ln

�
eþ 1

r2Λ2
QCD

��
; ð5Þ

where the momentum QA, called the “saturation momen-
tum,” is characteristic of the nucleus. (Its value is of the
order of 1 GeV for a large nucleus.) In this model, the
amplitude T1 ≡ 1 − S is steeply falling from 1 to 0 as r
becomes smaller, especially since the relevant scale for the
dipole sizes is logarithmic: as a matter of fact, it is a
Gaussian function of this variable. The typical value of r
at which the transition between S ¼ 0 and S ¼ 1 happens
is r ∼ 1=QA. The function S is almost tantamount to a
Heaviside distribution,

Sðy ¼ 0; rÞ ≃ Θð− ln r2Q2
AÞ: ð6Þ

The solution to the BK equation is known asymptotically
[15,23],5

T1ðy; rÞ ¼ 1 − Sðy; rÞ

≃ const × ln
1

r2Q2
sðyÞ

½rQsðyÞ�2γ0

× exp

�
−
ln2½r2Q2

sðyÞ�
2χ00ðγ0Þy

�
; ð7Þ

where χðγÞ≡ 2ψð1Þ − ψðγÞ − ψð1 − γÞ, γ0 solves χ0ðγ0Þ ¼
χðγ0Þ=γ0, and

ln
Q2

sðyÞ
Q2

A
¼ χ0ðγ0Þy −

3

2γ0
ln y; ð8Þ

up to an additive constant of order unity, which, in the
limits of interest here, may always be absorbed into a
rescaling of the overall constant in T1. This expression is

3In the considered limit, we keep only the largest terms in the
perturbative expansion of S when Y is large and ᾱY ∼ 1, which
turn out to be the set of powers of ᾱY.

4An ultraviolet cutoff is understood in all integrations over the
dipole sizes, which can eventually be set to zero in the equations
for the physical observables.

5Some subleading corrections to Eq. (7) are also known; see,
e.g., Refs. [24] and [25] for an extensive numerical study; but we
will not need them in the present work.

NUCLEAR SCATTERING CONFIGURATIONS OF ONIA IN … PHYS. REV. D 103, 054031 (2021)

054031-3



correct for very large values of y. In particular, the
logarithmic singularity for y → 0 would be regularized
after resummation of higher orders, in such a way that
lnðQ2

sðyÞ=Q2
AÞ !

y→0
0.QsðyÞ is the saturation momentum of

the nucleus at rapidity y, namely 1=QsðyÞ is the typical
value of the transverse size of a dipole that interacts with
it at the rapidity above which the dipole gets absorbed
with probability of order unity. Equation (7) is only valid
for 1 < ln2½r2Q2

sðyÞ� ≲ χ00ðγ0Þy, which, up to strong
inequalities, defines the scaling region. The numerical
values of the parameters γ0, χ0ðγ0Þ, χ00ðγ0Þ can be found,
e.g., in Ref. [23]. They are not relevant in our discussions:
the only important point is that they are all of order 1.
Note that the BK equation is also the evolution equation

for the probability that there is no dipole larger than 1=QA
in the state of the onium evolved to the rapidity y, when
the initial condition is taken to be exactly the Heaviside
distribution (6).

2. Multiple scatterings

The set of dipoles which interact with the nucleus
necessarily stem from the branchings of a single dipole:
their “last common ancestor.” This is because we start the
evolution with a single dipole (the onium), and because, as

manifest in a Hamiltonian formulation of QCD, in the
absence of recombination mechanism, partons evolve with
rapidity through elementary 1 → 2 splitting processes.6 We
want to compute the distribution of the rapidity y1, with
respect to the nucleus, at which this ancestor has branched.
Let us call Gðy; r; y1Þdy1 the joint probability that the

onium of initial size r interact with the nucleus and that
the splitting rapidity of the last common ancestor be y1 up
to dy1, the total rapidity of the interaction being y. An
evolution equation may be obtained, using the same
method as for S. One starts with the frame in which the
nucleus is boosted to the rapidity y ≥ y1, while the onium
of size r is at rest. One then increases the total rapidity by
dy, keeping y1 fixed, through an infinitesimal boost of the
onium. In this rapidity interval, the onium may split to two
dipoles with a probability dp1→2ðr; r0Þdy, or stay a single
dipole with a probability 1 −

R
dp1→2ðr; r0Þdy.

For an ensemble of events restricted to those without
branching,Gðyþ dy; r; y1Þ is just Gðy; r; y1Þ. For events in
which, instead, the initial dipole branches, one and only one
of the offspring dipoles may scatter. So in this case,
Gðy; r; y1Þ is replaced by two terms each consisting in
the product of a factor G and a factor S, the arguments of
which are either r0 or jr − r0j. Taking the sum over all
possible events weighted by their probabilities, we get

Gðyþ dy; r; y1Þ ¼
�
1 − dy

Z
r0
dp1→2ðr; r0Þ

�
Gðy; r; y1Þ

þ dy
Z
r0
dp1→2ðr; r0Þ½Gðy; r0; y1ÞSðy; jr − r0jÞ þ Gðy; jr − r0j; y1ÞSðy; r0Þ�: ð9Þ

Enforcing the limit dy → 0, we obtain the evolution in the form of the following integrodifferential equation:

∂yGðy; r; y1Þ ¼
Z
r0
dp1→2ðr; r0Þ½Gðy; r0; y1ÞSðy; jr − r0jÞ þ Gðy; jr − r0j; y1ÞSðy; r0Þ − Gðy; r; y1Þ�: ð10Þ

The initial condition has to be set when the total rapidity coincides with the splitting rapidity of the common ancestor:
y ¼ y1. In this case, there is no choice: the onium has to branch at this very rapidity y1, and each offspring must scatter. This
translates into the following equation:

Gðy1; r; y1Þ ¼
Z
r0
dp1→2ðr; r0Þ½1 − Sðy1; r0Þ�½1 − Sðy1; jr − r0jÞ�: ð11Þ

The Eqs. (10), (11) for G were written for the first time in Refs. [26,27]. They were compared to the Kovchegov-Levin
equations for the rapidity-gap distribution in diffractive dissociation and solved numerically.
Let us introduce the probability T2 that there are at least two scatterings with the nucleus boosted to the rapidity y0. This is

just an integral of G over y1,

T2ðy; r; y0Þ ¼
Z

y

y0

dy1Gðy; r; y1Þ: ð12Þ

6There is also a 1 → 3 process at next-to-leading order, but it would not fundamentally change our discussion.
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A similar quantity has recently been identified as an estimator of the contribution of higher twists to total cross sections [28].
(Note that evidence for higher-twist effects was also found earlier in the DESY-HERA data for diffractive deep-inelastic
scattering; see, e.g., Ref. [29].)
T2 actually obeys an evolution equation straightforward to deduce from the evolution equation for G, which we may

write as

∂yT2ðy; r; y0Þ ¼
Z
r0
dp1→2ðr; r0Þ½T2ðy; r0; y0Þ þ T2ðy; jr − r0j; y0Þ − T2ðy; r; y0Þ

− T2ðy; r0; y0ÞT1ðy; jr − r0jÞ − T1ðy; r0ÞT2ðy; jr − r0j; y0Þ þ T1ðy; r0ÞT1ðy; jr − r0jÞ�; ð13Þ

with the initial condition at y ¼ y0, which reads
T2ðy0; r; y0Þ ¼ 0.
The evolution equations (10) and (13) for G and T2,

respectively, may be solved numerically [with the help of a
solution to the BK equation (7)], but no analytical expres-
sion is known. As we will see, we can however obtain exact
asymptotic expressions for these quantities (actually for the
ratios G=T1 and T2=T1) in a model expected to capture
the main features of the QCD dipole model and of more
general branching random walks. The starting point will be
a useful representation of T2 in terms of dipole densities
and of the dipole-nucleus scattering amplitude T1, that we
shall expose in the next section.

B. Frame-dependent representations

In this section, we discuss a representation of the
solutions to these evolution equations which will prove
useful to set up approximation schemes, from which we
shall find asymptotic expressions.
Let us choose a frame in which the nucleus is boosted at

rapidity y0 and the onium at rapidity ỹ0 ≡ y − y0 in the
opposite sense. We will consider frames defined by a large
y0, but ỹ0 will not be smaller than a non-negligible fraction
of the total rapidity y.
Instead of using as variables the sizes r of the dipoles or

the saturation momentum at rapidity y, QsðyÞ, we shall

express all functions with the help of the logarithms of
these sizes and of the momentum, defining

x≡ ln
1

r2Q2
A

and Xy ≡ ln
Q2

sðyÞ
Q2

A
: ð14Þ

1. S-matrix element

The following formula is an exact representation of the
solution to Eq. (4):

Sðy; xÞ ¼
�Y

fxig
Sðy0; xiÞ

�
ỹ0;x

; ð15Þ

where the averaging is over all the dipole configurations
of the onium at rapidity ỹ0 (with respect to the onium),
represented by the set of log-sizes fxig. The functions S
that appear left and right are the same, but evaluated at two
different rapidities. Because of boost invariance, S in the
left-hand side must be independent of y0 chosen in the
right-hand side.
S defined in Eq. (15) obeys the BK equation (4). To

check this statement, it is enough to see that increasing y
by dy amounts to increasing ỹ0 by the same dy, and to
decomposing the averaging over the dipole configurations
at ỹ0 þ dy as

�Y
fxig

Sðy0; xiÞ
�

ỹ0þdy;x¼ln 1

r2Q2
A

¼
�
1 − dy

Z
r0
dp1→2ðr; r0Þ

��Y
fxig

Sðy0; xiÞ
�

ỹ0;x¼ln 1

r2Q2
A

þ dy
Z
r0
dp1→2ðr; r0Þ

�Y
fx0ig

Sðy0; x0iÞ
�

ỹ0;x0≡ln 1

r02Q2
A

�Y
fx00i g

Sðy0; x00i Þ
�

ỹ0;x00≡ln 1

ðr−r0Þ2Q2
A

; ð16Þ

where the sets fx0ig and fx00i g represent the dipole configu-
rations at rapidity ỹ0 of initial dipoles of respective sizes r0

and r − r0. Simple manipulations and replacements lead to
Eq. (4), after the limit dy → 0 has been taken.
We may rewrite Eq. (15) with the help of the number

density nðxÞ of dipoles of log-size x,

Sðy; xÞ ¼
�Y

x0
½Sðy0; x0Þ�nðx0Þdx0

�
ỹ0;x

; ð17Þ

where the product is now over all the bins in dipole size,
of width dx0. Note that nðx0Þ is a random density, the
distribution of which depends on the size of the initial
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dipole and on the evolution rapidity ỹ0. This equation can
be expressed for T1,

T1ðy; xÞ ¼
�
1− exp

�Z
dx0nðx0Þ ln ½1− T1ðy0; x0Þ�

	�
ỹ0;x

:

ð18Þ

Now, we assume that the dipoles that effectively con-
tribute to the integral all have log-sizes x0, such that
T1ðy0; x0Þ ≪ 1. This is verified if the onium configurations
which contain individual dipoles larger than the inverse
saturation scale of the nucleus only bring a negligible
contribution to the overall amplitude. We will check
a posteriori that it is a consistent assumption. In the
framework of this approximation, we can expand the
logarithm in Eq. (18) and deduce an elegant formula for
the amplitude T1 ¼ 1 − S,

T1ðy; xÞ ¼ h1 − e−Iðy0Þiỹ0;x; ð19Þ

where we have introduced the notation,

Iðy0Þ ¼
Z

dx0nðx0ÞT1ðy0; x0Þ; ð20Þ

for the overlap of the dipole-nucleus scattering amplitude
and the dipole density in the onium.

2. Contribution of multiple scatterings

Let us compute the amplitude for scattering with at least
two exchanges between the configuration of the onium at
rapidity ỹ0 and the nucleus evolved to the rapidity y0. The
exact formula reads

T2ðy; x; y0Þ

¼
�
1 −

�
1þ

X
fxig

T1ðy0; xiÞ
Sðy0; xiÞ

�Y
fxig

Sðy0; xiÞ
�

ỹ0;x

:

ð21Þ

In the same way as in the case of the S-matrix element, we
can show that the right-hand side of Eq. (21) obeys the
evolution equation (13).
T2 obviously depends on y0. G instead, which is

formally a rapidity derivative of T2,

Gðy; r; y1Þ ¼ −
∂
∂y0 T2ðy; r; y0Þjy0¼y1 ; ð22Þ

will be independent of the choice of frame.
Assuming again that Sðy0; xiÞ ≃ 1 for all dipoles in the

relevant configurations, we get

T2ðy; x; y0Þ ¼ h1 − ½1þ Iðy0Þ�e−Iðy0Þiỹ0;x: ð23Þ

We are now going to evaluate the right-hand sides
of Eqs. (19) and (23). This cannot be done through a
straightforward calculation, but a simple model for the
realizations of branching random walks/dipole evolution
can be used.

III. ASYMPTOTIC AMPLITUDES FROM THE
PHENOMENOLOGICAL MODEL FOR FRONT

FLUCTUATIONS

In the following, we will stick to the large-rapidity limit
and pick the size of the initial onium in the so-called scaling
region. This means that

1 ≪ ln2
1

r2Q2
sðyÞ

≪ y; namely 1 ≪ ðx − XyÞ2 ≪ y:

ð24Þ

[A χ00ðγ0Þ factor would multiply y, but it is of order 1,
so it does not modify these strong inequalities.] We shall
actually take a slightly stronger condition on the lower
bound on x − Xy: We will always assume that it is much
larger than the logarithms of the rapidities y and y0.
Setting r much smaller than 1=QsðyÞ, as encoded in the

first strong inequality, implies that a typical realization of
the dipole evolution would interact with very small
probability. So we need fluctuations to create larger dipoles.
We shall now introduce a model for these fluctuations and
apply it to the evaluation of T1, T2, G.

A. Model for the dipole distribution

We present here a slightly modified formulation of the
model for the evolution of branching random walks, and in
particular for the QCD dipole evolution, that was initially
developed in Ref. [30] and applied to particle physics
in Ref. [31].
We assume that the evolution process develops essen-

tially in a deterministic, “mean-field” way, such that the
density of dipoles of log-size x0 at a rapidity yi with respect
to the nucleus, namely after evolution over the rapidity
range ỹi, reads

n̄ðỹi; x0 − xÞ ¼ C1ðx0 − x − X̃ỹiÞeγ0ðx
0−x−X̃ỹi

Þ

× exp

�
−
ðx0 − x − X̃ỹiÞ2

2χ00ðγ0Þỹi

�
Θðx0 − x − X̃ỹiÞ;

ð25Þ

where

X̃ỹi ¼ −χ0ðγ0Þỹi þ
3

2γ0
ln ỹi: ð26Þ
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There may be an additive constant of order 1 in X̃ỹi , but to
the accuracy we are considering, it can be absorbed into
the overall constant C1. Again, if this formula is to be
extrapolated to the nonasymptotic regime of ỹi, the loga-
rithm has to be regularized in such a way that X̃0 ¼ 0.
This formula represents the dipole density in a typical

realization of the dipole evolution, in the absence of a
large fluctuation, in a region of size of order

ffiffiffiffi
ỹi

p
near the

typical log size of the largest dipole, which is such that
ln 1

r2largestQ
2
A
¼ xþ X̃ỹi . In practice, it is obtained from the

solution of a linearized BK (or FKPP) equation with a
cutoff that simulates the effect on the evolution of the
discreteness of the dipoles in realizations; see Ref. [30].
On top of this deterministic particle density, we assume

that one single fluctuation occurs after some random
evolution rapidity ỹ1 and that this fluctuation consists of
a dipole of size larger than the largest dipole in typical
configurations by a factor eδ=2. After this fluctuation has
occurred, the large produced dipole builds up into a second
front in a deterministic way upon further rapidity evolution.
We need the distribution of δ. We guess that it coincides

with the probability of observing the largest dipole with a
log size shifted by (−δ) with respect to the mean-field tip of
the distribution. This probability solves the BK equation
(see the remark at the end of Sec. II A 1) and thus, has the
same form as Eq. (7). The rate at evolution rapidity ỹ1
reads, asymptotically for large ỹ1 and δ,

pðδ; ỹ1Þ ¼ Cδe−γ0δ exp
�
−

δ2

2χ00ðγ0Þỹ1

�
ΘðδÞ: ð27Þ

In the kinematical region we consider, the mean-field
evolution of the initial onium would not alone trigger a
scattering: hence, the onium always scatters exclusively
through the smaller front that stems from the fluctuation.
Each dipole in the state of the onium at the interaction
rapidity scatters independently, with an amplitude
T̄1ðy0; x0Þ that solves the BK equation (4) with S substituted
with 1 − T̄1. We shall denote by

Xy0 ¼ χ0ðγ0Þy0 −
3

2γ0
ln y0 ð28Þ

the log-saturation scale of the nucleus front at rapidity y0;
see Eq. (8) with the notation (14).
Let us now express T1 and T2 in this model. The overlap

of the amplitude T̄1 and of the dipole number density n̄ that
appear in Eqs. (19) and (23) reads, in this model,

Iðy0; δ; y1Þ≡
Z

dx0n̄ðỹ0 − ỹ1; x0 − Ξδ;ỹ1ÞT̄1ðy0; x0Þ; ð29Þ

where Ξδ;ỹ1 ≡ xþ X̃ỹ1 − δ is the log size of the lead dipole
at rapidity ỹ1. Then

T1ðy; xÞ ¼
Z

y

y0

dy1

Z
∞

0

dδpðδ; ỹ1Þð1 − e−Iðy0;δ;y1ÞÞ; ð30Þ

and

T2ðy; x;y0Þ ¼
Z

y

y0

dy1

Z
∞

0

dδpðδ; ỹ1Þf1− ½1þ Iðy0;δ; y1Þ�

× e−Iðy0;δ;y1Þg: ð31Þ

We can also obtain a formula for G itself in the
framework of the phenomenological model. It is enough
to use Eq. (22), from which one sees that the analytical
expressions of T2 and G only differ by the presence of the
integration over y1 in the expression of the former, a fact
which is easy to understand. Indeed, the essence of the
phenomenological model is to single out one dipole in the
state of the onium evolved to the rapidity ỹ1 that will stand
for the common ancestor of all dipoles which scatter after
evolution to the rapidity ỹ0. When the y1 integration in
Eq. (31) is left undone, then G reads

Gðy; x; y1Þ

¼
Z

∞

0

dδpðδ; ỹ1Þf1 − ½1þ Iðy0; δ; y1Þ�e−Iðy0;δ;y1Þg:

ð32Þ
Let us introduce the distance, at the scattering rapidity,

between the tip of the dipole distribution and the top of
the nucleus front,

Δðy0; δ; y1Þ≡ X̃ỹ0−ỹ1 þ Ξδ;ỹ1 − Xy0 : ð33Þ
In other words, Δðy0; δ; y1Þ is the logarithm of the squared
ratio of the size of the smallest dipole which would scatter
with probability of order unity with the nucleus in a
scattering of relative rapidity y0, and of the size of the
largest dipole in the actual state of the onium at rapidity ỹ0.
It may be rewritten as

Δðy0; δ; y1Þ ¼ x − Xy − δþ 3

2γ0
ln
ðỹ0 − ỹ1Þy0ỹ1

y
: ð34Þ

As commented above [see, e.g., after Eq. (25)], the
logarithmic term must be regularized in the limits y1 → y0
and y1 → y. Furthermore, with the considered choice of
frame and parameters, this logarithmic term is always small
compared to x − Xy.
We shall first show that we may restrict ourselves to

fluctuations such that Δ ≥ 0. To this aim, we evaluate
parametrically the contribution to T1ðy; xÞ of the
integration region Δ ≤ 0, namely δ ≥ δ0 ≡ x − Xy þ
3
2γ0

ln ðỹ0−ỹ1Þy0ỹ1
y . Starting from Eq. (30), we see that we

have the following upper bound on the contribution of this
region to T1:
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T1ðy; xÞjΔ≤0 ≤
Z

y

y0

dy1

Z
∞

δ0

dδpðδ; ỹ1Þ: ð35Þ

The Gaussian factor in pmay be replaced by an effective upper cutoff on the integration over δ, set at δ1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2χ00ðγ0Þỹ1

p
, and

the integration over δ can then be performed. The condition δ0 ≤ δ1 for this integral not to be null implies that
y1 ≤ y − ðx − XyÞ2=½2χ00ðγ0Þ�. All in all, we get a further bound on T1,

T1ðy; xÞjΔ≤0 ≤
C
γ0

1

y3=20

ðx − XyÞe−γ0ðx−XyÞ ×
Z

y−ðx−XyÞ2=½2χ00ðγ0Þ�

y0

dy1

�
y

ðy − y1Þðy1 − y0Þ
�

3=2
����
regularized

; ð36Þ

where we have reminded that the apparent singularity at the lower bound of the integral over y1 needs to be regularized, in
such a way that the integrand remains finite of order 1. The integral is now at most of order one. Hence, we see that T1 is
suppressed by at least a factor y3=20 ≫ 1 with respect to the expected result; see Eq. (7). This proves that the region Δ ≤ 0

can be neglected. From now on, we will only consider the integration region in which Δ ≥ 0; i.e., δ ≤ δ0.
Actually, a closer look would show that only the region in which Δ≳ 3

2γ0
ln y0 contributes significantly. This means

physically that the scattering amplitude of all the individual dipoles in the fluctuation, at rapidity ỹ0, is very small,
consistently with the assumption that led to Eqs. (30), (31).
We see that all the functions T1, T2 and G are written in terms of p and I. So let us express I in the phenomenological

model. The function n̄ that appears in Eq. (29) is replaced by the expression given in Eq. (25). As for T̄1, since only the
region x0 > Xy0 will be probed, we can use the solution (7) of the BK equation reexpressed in appropriate variables, namely,

T̄1ðy0; x0Þ ¼ C2ðx0 − Xy0Þe−γ0ðx
0−Xy0

Þ exp
�
−
ðx0 − Xy0Þ2
2χ00ðγ0Þy0

�
Θðx0 − Xy0Þ: ð37Þ

We get

Iðy0; δ; y1Þ ¼ C1C2e
γ0ðXy0

−X̃ỹ0−ỹ1−Ξδ;ỹ1
Þ
Z

dx0ðx0 − X̃ỹ0−ỹ1 − Ξδ;ỹ1Þðx0 − Xy0Þ

× exp

�
−
ðx0 − X̃ỹ0−ỹ1 − Ξδ;ỹ1Þ2
2χ00ðγ0Þðỹ0 − ỹ1Þ

−
ðx0 − Xy0Þ2
2χ00ðγ0Þy0

�
Θðx0 − X̃ỹ0−ỹ1 − Ξδ;ỹ1ÞΘðx0 − Xy0Þ: ð38Þ

We shall now compute the different quantities in the framework of the phenomenological model. T2 is explicitly frame
dependent, and although T1 and G are boost invariant, their evaluation will depend upon the chosen frame.

B. Amplitudes in a frame in which the nucleus is highly boosted

In this section, we choose the frame in which the nucleus is boosted to rapidity y0 such that

y0 ≫ ðx − XyÞ2 ≫ 1: ð39Þ

We shift the integration variable x, defining x̄≡ x0 − X̃ỹ0−ỹ1 − Ξδ;ỹ1 , the log size of the dipoles relative to the log size of
the largest dipole, at the tip of the particle distribution. The overlap integral then reads

Iðy0; δ; y1Þ ¼ C1C2e−γ0Δðy0;δ;y1Þ exp
�
−
Δ2ðy0; δ; y1Þ
2χ00ðγ0Þy1

�

×
Z þ∞

0

dx̄ x̄½x̄þ Δðy0; δ; y1Þ� exp
�
−

y1
2χ00ðγ0Þy0ðỹ0 − ỹ1Þ

�
x̄þ y1 − y0

y1
Δðy0; δ; y1Þ

�
2
�
: ð40Þ

We observe that the integral is determined by a large integration region, up to x̄ ∼ ffiffiffiffiffi
y0

p
. When ðx − X̄yÞ2 ≪ y0, we can

neglectΔðy0; δ; y1Þ compared to x̄, and the integral takes a simpler form, which can be integrated exactly. Moreover, wewill
check a posteriori that typically, ỹ1 ≪ y; hence, y1 ∼ y, and the Gaussian factor involving Δðy0; δ; y1Þ can be set to unity.
Then we find
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Iðy0; δ; y1Þ

¼ C1C2e−γ0Δðy0;δ;y1Þ
ffiffiffi
π

p
4

�
2χ00ðγ0Þy0ðỹ0 − ỹ1Þ

y1

�
3=2

: ð41Þ

Replacing Δðy0; δ; y1Þ by its expression (34), we arrive at

Iðy0; δ; y1Þ ¼ C1C2

ffiffiffi
π

2

r
½χ00ðγ0Þ�3=2e−γ0ðx−XyÞ

×

�
y

y1ỹ1

�
3=2

eγ0δ: ð42Þ

We see that I turns out to be independent of y0. Let us
introduce the following notation:

p1 ≡ C1C2

ffiffiffi
π

2

r
½χ00ðγ0Þ�3=2e−γ0ðx−XyÞ: ð43Þ

p1eγ0δ is just the overlap of the front of the nucleus with
that of an onium if the latter were evolved in a purely
deterministic way and starting at a log size x − δ.

1. Forward elastic scattering amplitude T1

The amplitude T1 is obtained by substituting Eq. (42)
into Eq. (30), with the restriction on δ imposed by the
condition Δ ≥ 0,

T1ðy; xÞ ¼ C
Z

y

y0

dy1

Z
δ0

0

dδ δe−γ0δ exp

�
−

δ2

2χ00ðγ0Þỹ1

��
1 − exp

�
−p1

�
y

y1ỹ1

�
3=2

eγ0δ
�	

: ð44Þ

We shift δ, defining the new integration variable δ0 ≡ δþ 3
2γ0

ln y
y1ỹ1

. Due to the e−γ0ðx−XyÞ factor in p1, the integration domain
extends effectively to δ0 ≲ x − Xy, a region much larger than the logarithm of any rapidity appearing in this problem. Hence,
the lower integration bound on δ0 may be kept to 0, δ can just be identified to δ0 in the Gaussian factor, and the upper bound
on δ can be released since the region δ > δ0 ≃ x − Xy gets anyway cut off by the factors in the integrand. We get

T1ðy; xÞ ¼ C
Z

∞

0

dδ0δ0e−γ0δ0 ½1 − exp ð−p1eγ0δ
0 Þ�

Z
ỹ0

0

dỹ1

�
y

y1ỹ1

�
3=2

exp

�
−

δ02

2χ00ðγ0Þỹ1

�
: ð45Þ

The ỹ1 integration can be performed up to a correction of
order 1=

ffiffiffi
y

p
, noticing that the integral is dominated by the

region ỹ1 ≪ y, hence y1 ≃ y. One can in particular replace
the upper bound by ∞,

Z
∞

0

dỹ1
ỹ3=21

exp

�
−

δ02

2χ00ðγ0Þỹ1

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ00ðγ0Þ

p
δ0

: ð46Þ

What remains is an integration over δ0,

T1ðy; xÞ ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ00ðγ0Þ

p Z
∞

0

dδ0e−γ0δ0 ½1 − exp ð−p1eγ0δ
0 Þ�:

ð47Þ

This expression can be interpreted as the scattering am-
plitude of an onium the state of which was determined by a
front fluctuation in the terminology of Refs. [30,31], which
is meant to be a fluctuation in the beginning of the
evolution that essentially shifts the whole dipole distribu-
tion towards larger sizes. The size of this class of fluctua-
tions was assigned an exponential distribution ∝ e−γ0δ

0
for

large δ0: this is precisely the weight of δ0 that appears in the
remaining integration.
Equation (47) may be rewritten with the help of the

integral I1 defined and evaluated in Appendix A,

T1ðy; xÞ ¼
C
γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ00ðγ0Þ

p
× I1ðp1Þ: ð48Þ

Using Eq. (A7) and replacing p1 by its definition in
Eq. (42), the final result reads

T1ðy; xÞ ≃ CC1C2π½χ00ðγ0Þ�2ðx − XyÞe−γ0ðx−XyÞ: ð49Þ

We have just recovered the scaling limit of the known
solution to the BK equation; see Eq. (7). We have assumed
throughout ðx − XyÞ2 ≪ y, so we cannot get consistently
the finite-y corrections that appear in the form of an
exponential of the ratio of the first over the second scale
multiplied by a negative constant factor. We have learned
from this calculation that, in the considered frame, the
realizations of the Fock states which trigger events look like
typical realizations, as far as their shapes is concerned, but
overall shifted towards larger dipole sizes by a multipli-
cative factor, through a fluctuation occurring at the very
beginning of the evolution.

2. Multiple scatterings: G and T2

As for the calculation of G, we start with Eq. (32), and
substitute I by the expression obtained in Eq. (42),
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Gðy; x; y1Þ ¼ C
Z

δ0

0

dδ δe−γ0δ exp

�
−

δ2

2χ00ðγ0Þỹ1

�
×

�
1 −

�
1þ p1

�
y

y1ỹ1

�
3=2

eγ0δ
�
exp

�
−p1

�
y

y1ỹ1

�
3=2

eγ0δ
�	

: ð50Þ

Again, because of the form of the integrand, δ does not exceed x − Xy. This implies that the upper bound δ0 can be replaced
byþ∞. Furthermore, x − Xy is assumed, as a consequence of our choice of frame, to be much less than

ffiffiffiffiffi
y0

p
. Hence, if one

restricts oneself to values of ỹ1 ≡ y − y1 not smaller than y0, the Gaussian factor can be set to 1. Then, performing the
change of variable t≡ eγ0δ, G boils down to an integral computed in Appendix A, up to an overall factor,

Gðy; x; y1Þ ¼
C
γ20

× I02

�
p1

�
y

y1ỹ1

�
3=2

�
: ð51Þ

It follows that

Gðy; x; y1Þ ≃
C
γ20

× p1

�
y

y1ỹ1

�
3=2

ln

�
1

p1

�
y1ỹ1
y

�
3=2

�

≃
CC1C2

γ0

ffiffiffi
π

2

r
½χ00ðγ0Þ�3=2

�
y

y1ỹ1

�
3=2

ðx − XyÞe−γ0ðx−XyÞ; ð52Þ

where we neglected additive constants and slowly
varying logarithms of the rapidities, which are small
compared to x − Xy. Since ðx − XyÞe−γ0ðx−XyÞ ≃ T1ðy; xÞ×
fCC1C2π½χ00ðγ0Þ�2g−1 [see Eq. (49)], we arrive at the
following expression for the distribution of y1 normalized
to the amplitude T1:

Gðy; x; y1Þ
T1ðy; xÞ

¼ 1

γ0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ00ðγ0Þ

p �
y

y1ðy − y1Þ
�

3=2
: ð53Þ

We see that the small-ỹ1 region is highly singular, but the
singularity has to be cut off by a factor that is subleading
when ỹ1 is taken on the order of y. This region would
correspond to the production of a large dipole in the very
beginning of the evolution of the onium, but this is sup-
pressed. Indeed, the mechanism leading to a particle away
from the mean position of the lead particle is diffusive, and
the diffusion radius grows like

ffiffiffiffiffi
ỹ1

p
. Consequently, one may

expect the expression (53) to be supplemented by a
multiplicative factor Dðx − Xy; y − y1Þ, where

DðΔX;ΔyÞ≡ exp

�
−

ΔX2

2χ00ðγ0ÞΔy
�
: ð54Þ

The scattering amplitude conditioned to having at least
two scatterings between the state of the onium evolved to
rapidity ỹ0 and the nucleus, T2, is an integral of G over y1.
Starting with Eq. (50), its evaluation goes along the same
lines as that of T1 above. The y1 integration can be
performed in the first place. We are then left with an
integral over δ, which takes the form,

T2ðy; x; y0Þ ¼
C
γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ00ðγ0Þ

p
× I2ðp1Þ: ð55Þ

Using the evaluation of I2 in Appendix A, Eq. (A8), and
replacing p1 by its expression (43), we find a very simple
relation between T1 and T2 in this frame,

T2ðy; x; y0Þ
T1ðy; xÞ

¼
y0≫ðx−XyÞ2

1

γ0ðx − XyÞ
: ð56Þ

It turns out that we would have got the same result by
integrating Eq. (53) supplemented with the diffusive factor
Dðx − Xy; ỹ1Þ defined in Eq. (54), which cuts off the very
small y1 region.
We note that the overall constant in front of the ratios

T2=T1 and G=T1 is sensitive to the detailed form of the
interaction between the dipoles and the nucleus, which
was not the case for T1. Within the assumptions of the
phenomenological model, this form is unambiguous: the
number of scatterings at the time of the interaction obeys a
Poisson law of parameter I. Whether the overall constant
found in this model is the correct one for branching random
walks and for the QCD dipole model depends on the ability
of the phenomenological model to capture accurately
enough the features of the latter models: we will need
numerical calculations to check it (see Sec. IV below).
Finally, for the same arguments as the ones presented

in Sec. III A, the assumption that no single dipole has a
significant probability to scatter also proves correct
a posteriori.

C. What happens in a frame in which the nucleus
is less boosted?

The choice of the reference frame was very important in
the calculation above: we chose a frame in which the
nucleus is highly boosted, such that y0 ≫ ðx − XyÞ2. Such
a choice implies that the scattering configurations are
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dominated by fluctuations that occur very early in the
rapidity evolution. This is a perfectly valid choice, as long
as we pick x in the scaling region, i.e., ðx − XyÞ2 ≪ y.
However, any other frame should be allowed. We shall
investigate the scattering picture in frames in which the
nucleus is at rest or close to rest.

1. Nucleus rest frame

The amplitude T1 was analyzed in the rest frame of the
nucleus (y0 ¼ 0) in Ref. [31]. In that frame, the nucleus has
not developed a universal front: the scattering amplitude of
a dipole becomes very small as soon as the size of this
dipole gets smaller than the inverse saturation scale 1=QA;
see Eq. (5). Therefore, in all events, the fluctuations of the
partonic content of the onium must produce at least one
dipole that will be completely absorbed by the nucleus,
namely, which has a size larger than 1=QA. The formulation
of T1 simply reads

T1ðy; xÞjy0¼0 ¼
Z

dx0pðx − x0; yÞT1ð0; x0Þ; ð57Þ

where T1ð0;x0Þ¼1−Sð0;x0Þ is the McLerran-Venugopalan
amplitude given in Eq. (5) that we may approximate by a
Heaviside distribution with support the set of negative real
numbers.
The leading term in the integral over x0 can then be

obtained quite easily. The integration over x0 is dominated
by a region of log size of order 1 around x0 ¼ 0. The result
is proportional to

T1ðy; xÞjy0¼0 ∝ cðx − XyÞe−γ0ðx−XyÞ; ð58Þ

which is of course what is expected at the parametric level.
However, the overall constant c cannot be easily related to
C, C1, and C2 of the phenomenological model. This is

because the latter are unambiguously defined for an
evolved front, once a convention for the definition of the
front position/saturation scale has been chosen, but the
transition between the initial condition and the well-
developed front is not controlled analytically in the initial
stages of the evolution.
T2 andG cannot be calculated in this frame. Indeed, their

evaluation requires the precise understanding of the particle
distribution in fluctuations happening near the boundary of
the BRW, which is still an unsolved problem.

2. Slightly boosted nucleus

We now investigate the case of the frame in which
the nucleus is boosted only slightly. We shall choose a
frame in which the rapidity of the nucleus satisfies, para-
metrically,

1 ≪ y0 ≪ ðx − XyÞ2: ð59Þ

While for the opposite ordering between y0 and ðx − XyÞ2
one could perform a relatively straightforward calculation,
this case is much trickier. We shall show how the
calculations of T1 and T2 go, which will enable us to
understand what the typical state of the onium looks like
when viewed from this particular frame.
Calculation of T1. Anticipating that the main contribu-

tion will come from the configurations which do not
overlap with the saturation region of the nucleus, we
expand the exponential in Eq. (30),

T1ðy;xÞ ¼
Z

y

y0

dy1

Z
δ0

0

dδpðδ; ỹ1ÞIðy0;δ; y1ÞΘðx−Xy− δÞ.

ð60Þ

Substituting I, we get

T1ðy; xÞ ¼
CC1C2

y3=20

e−γ0ðx−XyÞ
Z

x−Xy

0

dδδ
Z

y

y0

dy1

Z
∞

X̃ỹ0−ỹ1þΞδ;ỹ1

dx0ðx0 − Xy0Þexp
�
−
ðx0 − Xy0Þ2
2χ00ðγ0Þy0

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIÞ

×

�
y

ỹ1ðỹ0 − ỹ1Þ
�

3=2
ðx0 − X̃ỹ0−ỹ1 − Ξδ;ỹ1Þexp

�
−
ðx0 − X̃ỹ0−ỹ1 − Ξδ;ỹ1Þ2
2χ00ðγ0Þðỹ0 − ỹ1Þ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIIÞ

exp

�
−

δ2

2χ00ðγ0Þỹ1

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIIIÞ

: ð61Þ

It is not possible to perform these nested integrals exactly,
but we can extract the asymptotic expression of T1 in a
definite limit.
The Gaussian factors (I),(II),(III) set effective cutoffs:

their analysis enables us to assess which subdomains of the
integration region will give the dominant contribution and
thus to judge which approximations we may afford without

altering the value of the integral in the asymptotic limits of
interest here.
The presence of the factor (I) implies that x0 − Xy0 must

be at most of an order
ffiffiffiffiffi
y0

p
. Since x0 is larger than the

position of the leftmost tip of the dipole distribution,
Δðy0; δ; y1Þ, defined in Eq. (33), is also at most of orderffiffiffiffiffi
y0

p
. This in turn implies that the size of the fluctuation be
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δ ∼ x − Xy, up to Oð ffiffiffiffiffi
y0

p Þ. The factor (II) forces
ỹ0 − ỹ1 ≲ y0, i.e., ỹ1 ≃ y up to corrections of order y0.
So whenever a factor ỹ1 appears, one can safely replace it
by y. The last factor (III) is always of the order unity since δ
is of order x − Xy and since we have chosen to stick to the
scaling region, defined by x − Xy ≪

ffiffiffi
y

p ∼
ffiffiffiffiffi
ỹ1

p
. We further

observe that the ỹ1 dependence of X̃ỹ0−ỹ1 þ Ξδ;ỹ1 is only
logarithmic; hence, it can be neglected here, given that
these terms do not appear in exponential factors that would
have enhanced their contribution. In other words, one can
afford the approximation,

Δðy0; δ; y1Þ ≃ x − Xy − δ: ð62Þ

Once this approximation is implemented, one can perform
the integral over y1. Taking into account that the dominant
region is such that y1 is close to y0, we set the upper
boundary to þ∞ and replace y=ỹ1 by 1. It just gives a
number,Z þ∞

y0

dy1
ðỹ0 − ỹ1Þ3=2

ðx0 − X̃ỹ0−ỹ1 − Ξδ;ỹ1Þ

× exp

�
−
ðx0 − X̃ỹ0−ỹ1 − Ξδ;ỹ1Þ2
2χ00ðγ0Þðỹ0 − ỹ1Þ

�
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ00ðγ0Þ

p
: ð63Þ

Further, the integral over x0 boils down to the integral of an
exponential. After the change of integration variable
x̄≡ x − Xy0 , it readsZ þ∞

x−Xy−δ
dx̄ x̄ exp

�
−

x̄2

2χ00ðγ0Þy0

�

¼ χ00ðγ0Þy0 × exp

�
−
ðx − Xy − δÞ2
2χ00ðγ0Þy0

�
: ð64Þ

Finally, the integration over δ is dominated by a region of
size

ffiffiffiffiffi
y0

p
close to x − Xy, namely,

Z
x−Xy

0

dδ δ exp

�
−
ðx − Xy − δÞ2
2χ00ðγ0Þy0

�

≃
ffiffiffi
π

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ00ðγ0Þy0

p
× ðx − XyÞ: ð65Þ

Putting all factors together, we get Eq. (49), the overall
multiplicative constants being identical,

T1ðy; xÞjy0≫ðx−XyÞ2 ¼ T1ðy; xÞj1≪y0≪ðx−XyÞ2 : ð66Þ

Hence, we have checked explicitly that boost invariance
holds.
Interestingly enough, the physical pictures in both

frames are very different. Indeed, from the analysis of
the integration domain, we see that in the frame in which

y0 ≪ ðx − XyÞ2, the fluctuation occurs typically late in
the onium evolution, at the rapidity ỹ1 close to the
scattering rapidity ỹ0. It takes place in a window of a size
of an order y0 in such a way that the overlap with the
front of the nucleus, of size

ffiffiffiffiffi
y0

p
, may be significant.

This is necessary since the fluctuation needs to extend
far out of the “mean field” region and thus, requires a
large rapidity range to develop. The particle front that
interacts with the nucleus, which results from the
evolution of the fluctuation, is of a size

ffiffiffiffiffi
y0

p
, that is,

it has just the right size to have an optimal overlap with
the front of the nucleus.
Calculation of T2. This quantity is significantly more

difficult to compute. First, unlike in the case of T1,
expanding the exponential in Eq. (31) is not licit and leads
to a loss of control of the constant factors multiplying the
leading term.
What happens physically is that requiring at least two

scatterings pushes δ to take a value for which Iðδ; y1Þ ∼ 1 in
each event, which limits the possible values of δ to a narrow
interval. Hence, the integral over δ does not bring a factorffiffiffiffiffi
y0

p
reflecting the size of the integration region. This is

essentially the difference between the calculation of T1

and that of T2 in this regime. This reasoning leads to the
following estimate of its parametric form:

T2ðy; x; y0Þj1≪y0≪ðx−XyÞ2 ∼
T1ðy; xÞffiffiffiffiffi

y0
p : ð67Þ

In order to get a more complete expression, we may
recognize that G=T1 is boost invariant and integrate its
expression obtained in Eq. (53), supplemented with the
Gaussian factor (54), over y1. In this case, the integral is
dominated by the region close to y1 ∼ y0, i.e., ỹ1 ≃ y. The
result has the same parametric form as the one just guessed,
but the overall constant is completely determined,

T2ðy; x; y0Þ
T1ðy; xÞ

¼
1≪y0≪ðx−XyÞ2

1

γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πχ00ðγ0Þ

s
1ffiffiffiffiffi
y0

p : ð68Þ

IV. COMPARING THE MODEL PREDICTIONS
WITH THE SOLUTIONS TO THE EXACT

EQUATIONS

We shall now check the results we have obtained using
the phenomenological model by solving numerically the
exact equations. In order to compare more easily different
values of y, it is useful to introduce the overlap q≡ ỹ1=y,
representing the fraction of the total rapidity over which
there is a unique common ancestor of the dipoles that
eventually interact. Its distribution is just given byG=T1, up
to the change of the variable and the corresponding
Jacobian,
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π∞ðqÞ ¼
1ffiffiffi
y

p 1

γ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ00ðγ0Þ

p 1

q3=2ð1 − qÞ3=2 : ð69Þ

The y dependence of this asymptotic result is very
simple, consisting only in the multiplicative factor
1=

ffiffiffi
y

p
: Therefore, we shall keep it implicit in the definition

of the asymptotic distribution. The “∞” subscript reminds
us that this expression is valid for asymptotic values of y.
We shall not use the QCD dipole model but use the

simpler branching random walk introduced in Ref. [32] and
further investigated in Ref. [33]. Indeed, it is known that the
form of the asymptotics is the same for all models in the
universality class of branching diffusion. Only the param-
eters γ0, χ0ðγ0Þ, and χ00ðγ0Þ, which depend on the detailed
elementary processes, need to be substituted.

A. Definition of the implemented model

We consider a branching random walk in discrete space
and time, defined by the following processes. Between the
rapidities y and yþ δy, a particle on site x may jump to the
site on the left (i.e., at position x − δx) or on the right
(xþ δx) with respective probabilities 1

2
ð1 − δyÞ, or may

branch into two particles on the same site x with proba-
bility δy.
The main differences with respect to the QCD dipole

model is that in the latter, the diffusion and the branching
actually happen at the same time through a single process,
and that QCD is a theory in the continuum. But these
differences should not affect the asymptotics of the observ-
ables we are considering.
The fundamental quantity for us is the probability that

there is no particle to the right of the site at some positionX.
This is the equivalent of the S-matrix element in the QCD
case. It evolves in rapidity according to the equivalent of
the BK equation (4) for this model, which is the finite-
difference equation,

Sðyþ δy; xÞ ¼ 1

2
ð1 − δyÞ½Sðy; x − δxÞ þ Sðy; xþ δxÞ�

þ δy½Sðy; xÞ�2; ð70Þ

with the initial condition Sðy ¼ 0; x ≤ 0Þ ¼ 0 and
Sðy ¼ 0; x > 0Þ ¼ 1. In the numerical calculation, we shall
take the following values for the parameters:

δy ¼ 0.01; δx ¼ 0.1: ð71Þ

The values of γ0, χ0ðγ0Þ, χ00ðγ0Þ are obtained from the
general solution to Eq. (70) linearized near S ∼ 1. For this
model, we find [33]

γ0 ¼ 1.4319525 � � � ; χ0ðγ0Þ ¼ 1.3943622 � � � ;
χ00ðγ0Þ ¼ 0.96095291 � � � ð72Þ

B. Numerical calculation of the distribution of the
splitting rapidity of the parent dipole

The equation to solve to get the equivalent of G in the
framework of this model is the following:

Gðyþ δy; x; y1Þ ¼
1

2
ð1 − δyÞ½Gðy; x − δx; y1Þ

þ Gðy; xþ δx; y1Þ�
þ 2δyGðy; x; y1ÞSðy; xÞ; ð73Þ

with

Gðy1; x; y1Þ ¼ ½1 − Sðy1; xÞ�2: ð74Þ

[Compare to Eq. (10) and (11), respectively, obtained in the
dipole model].
In order to satisfy in some optimal way the double

constraint in Eq. (24), we set x to a value X such that

X ≃ Xy þ
ffiffiffi
κ

p
y1=4; ð75Þ

where κ is a constant that we shall pick in the set f1; 2; 4g.
In general, we cannot achieve the equality because X is the
position of a lattice site, so it is discrete, while the rhs is a
real number. We have picked the closest site to the left of
the position in the rhs. Up to a numerical factor, the rhs
is the geometric average of the two bounds on X–Xy in
Eq. (24). Varying this constant enables one to go more or
less deep in the scaling region.
We have collected data for y up to Oð106Þ. We plot the

distribution πyðqÞ at a finite rapidity rescaled by
ffiffiffi
y

p
for

different y and κ in Fig. 1, together with the expected
infinite-y asymptotic distribution π∞ðqÞ.
In order to appreciate the convergence quantitatively, we

pick a point of fixed q, and we compare the measured πyðqÞ
at finite rapidity to the expected one π∞ðqÞ at y ¼ ∞. In
practice, we have chosen q ¼ 0.5, but we have also tried
other values and got similar results for this ratio. We plot

FIG. 1. Distribution of the overlaps for different values of y (set
of full lines, y ¼ 100 × 4k with k ¼ 1…6 increasing from bottom
to top) and X − Xy set to

ffiffiffi
2

p
y1=4, together with the expected

asymptotics given in Eq. (69) (dashed line).
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the complementary to one of this ratio against ln y=
ffiffiffi
y

p
in

Fig. 2. We expect a curve that goes through the origin: we
see a quite good convergence of 1 − πyðqÞ=π∞ðqÞ to 0
when y → ∞.
Note that some nonsmooth structures appear. They just

reflect the discreteness of the model, which forces us to set
X to discrete values according to the procedure described
above. The discretization step in x is δx ¼ 0.1 in this
model, which is not that small compared to y1=4, even for
very large y. So moving X by δx can lead to sizable
differences in πyðqÞ. Of course, these differences should get
smaller and smaller as y → ∞.
In order to guide the eye, we superimpose the following

function to the data:

1 −
πyðq ¼ 0.5Þ
π∞ðq ¼ 0.5Þ ¼

fit
aþ b11 ln yþ b12ffiffiffi

y
p : ð76Þ

We fit the parameters a, b11, b12, to the numerical
calculations. We get reasonable values for all these param-
eters for the considered choices of X: b11 and b12 are of
order 1, while a is found close to zero; see Table I. The
constant a is of the order of a percent, when we expect it to
vanish. But we can hardly aim for better, because of the
structures induced by the discreteness of the model, which
makes the fitting procedure by a smooth function depen-
dent on the choice of the points. Therefore, we conclude

that our analytical formula (69) is well-supported by this
numerical calculation.
However, these results show that the finite-y corrections

are definitely very large, and the convergence slow.
Although we have computed πy for values of y on the
order of 106, we have not managed to approach the
asymptotics by better than about 3%. Figure 2 and
the fitted formula (76) seem to indicate that the correction
to π∞ðqÞ may take the form of a multiplicative factor
ð1þ const × ln y=

ffiffiffi
y

p Þ. But we have no theory that may
enable us neither to understand nor to guess the form of
πyðqÞ beyond the leading term in the limit of large y.
We have also implemented independently another

branching random walk model, and we have reached the
same conclusion; see Appendix B for a presentation of the
model and of the obtained results.

V. SUMMARY AND OUTLOOK

In onium-nucleus scattering, in a frame in which the
onium moves with a large rapidity ỹ0, the latter interacts
through a typically dense quantum state made of gluons,
that we represent by a set of color dipoles. Only a subset of
these dipoles actually exchange energy with the nucleus.
Having at least one dipole in this set is necessary to have a
scattering event: this requirement defines the forward
elastic scattering amplitude T1. Calculating the joint
probability T2 to have a scattering and at least two dipoles
in the set makes possible to get quantitative information on
the correlations of the dipoles involved in the interaction.
In this paper, we have shown that the shape of the

partonic configurations of an onium that interacts with a
large nucleus depends qualitatively on the chosen reference
frame. If the nucleus is highly boosted, namely if its
rapidity y0 is much larger than ln2½r2Q2

sðyÞ�, then the
dipole distribution at the time of the interaction with the
nucleus looks like a typical (“mean-field”) distribution just
shifted (through a “front fluctuation” occurring in the very
beginning of the evolution) towards larger sizes. If instead
the nucleus is less boosted, 1 ≪ y0 ≪ ln2½r2Q2

sðyÞ�, then
the dipoles which interact with it stem from a tip fluctuation
occurring at much larger rapidities ỹ1 in the onium
evolution, of an order y such that y1 ∼ y0.
Choosing a frame such that the tip fluctuation, the

offspring of which scatter with the nucleus, is sufficiently
developed, we were able to calculate the asymptotics of the
distribution of the splitting rapidity of the slowest ancestor
of the set of dipoles that effectively interact with the
nucleus, including the overall constant. We have found
that its ratio to the total rapidity of the scattering, a quantity
that we denote by q, is distributed as

π∞ðqÞ ¼
1ffiffiffi
y

p 1

γ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ00ðγ0Þ

p 1

q3=2ð1 − qÞ3=2 : ð77Þ

FIG. 2. Complementary to one of the ratios between the
probability of an overlap q ¼ 0.5 for different values of the total
rapidity y as a function of ln y=

ffiffiffi
y

p
. The points stem from the

numerical integration of the evolution equations (70), (73), (74).
The continuous lines, meant to guide the eye, represent the
function (76) fitted to these points, and the dotted lines are
extrapolations outside the domain in which the fit is performed.

TABLE I. Values of the parameters in Eq. (76) obtained from a
fit to the numerical data shown in Fig. 2.

X − Xy a (×10−2) b11 b12

y1=4 1.26 1.10 −0.519ffiffiffi
2

p
y1=4 0.909 0.896 −1.17

2y1=4 0.587 0.813 −1.28

LE, MUELLER, and MUNIER PHYS. REV. D 103, 054031 (2021)

054031-14



This expression holds when the size r of the onium is
chosen in the so-called scaling region, defined as

1 ≪ ln2
1

r2Q2
sðyÞ

≪ y; namely; 1 ≪ ðx − XyÞ2 ≪ y;

ð78Þ

where x and Xy just correspond to 1=r and QsðyÞ,
respectively, when measured on a logarithmic scale [see
Eq. (14)], and Xy ¼ χ0ðγ0Þy − 3

2γ0
ln y. Equation (77) is our

main quantitative result. A particular realization of the
model introduced in Sec. IVand used to check numerically
the calculations is shown in Fig. 3.
After identification of the rapidity with a time variable,

we expect this expression to represent the distribution
of the relative branching time of the most recent
common ancestor of all particles that end up to the right
of some predefined position x for any branching random
walk—provided that x is chosen in the scaling region.
(This q is also called “overlap” in the statistical physics
literature). The constants that appear in these expressions
are easily calculated from the detailed form of the
elementary processes, which define the branching ran-
dom walk.
We observe that our result coincides with a conjecture by

Derrida and Mottishaw [34] for a slightly different geneal-
ogy problem in the context of general branching random
walks: They computed the distribution of the branching
time of the most recent common ancestor of two particles

of predefined order number counted from the tip of the
particle distribution at some given large time. To make
contact between our Eq. (77) and the formula (6) they wrote
down in Ref. [34], we just need to identify our πðqÞ with
their pðqÞ, y with the total evolution time t, γ0 with βc, and
χ00ðγ0Þ with βcv00ðβcÞ. The constant χ0ðγ0Þ, that enters the
validity condition, is just to be identified with the critical
FKPP front velocity vðβcÞ.
While this expression was established in [34] through a

calculation in the framework of the generalized random
energy model [35], we have derived it in the context of the
problem we were addressing from the phenomenological
model for branching random walks, which just assumes
that the time evolution is essentially deterministic, except
for one single fluctuation. Proving our result for the
genealogies rigorously, establishing a framework for the
systematic calculation of corrections, crucial for appli-
cations since the approach to the asymptotics turns out
to be very slow, are problems of general interest for
branching processes and exciting challenges for further
investigations.
Also, our method would not apply to the specific

genealogy problems Derrida-Mottishaw were addressing:
while the y (or t) dependence would turn out correct, the
overall constant could not be obtained. The reason for this
is that we do not have a sufficient understanding of the
particle distributions and of their correlations very close
to the lead particle. Trying to build a good picture of the
latter [32,33,36] is a long-term program that deserves more
efforts.
As for the more specialized diffraction problem, which

was the initial motivation for the present work, we also
intend to try and extend our calculation to the rate of
rapidity gaps in high-energy onium-nucleus scattering. The
main crucial difference is that the latter, being a quantum
mechanical observable, has no interpretation in purely
classical probabilistic terms. However, preliminary inves-
tigations seem to indicate that the technical tools developed
here can be applied also to that observable, which will be
measurable at a future electron-ion collider. Of course, the
finite-rapidity y subasymptotics (presumably of relative
order ln y=

ffiffiffi
y

p
) will also be significant for these observables

in the kinematics of actual experiments. The systematic
calculation of such corrections is presently not within
reach, but it would be an exciting and useful interdiscipli-
nary program.
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FIG. 3. One particular realization of the toy model described
in Sec. IVevolved up to y¼400 that turns out to possess several
particles to the right of the position X≃Xy¼400þ

ffiffiffi
2

p
×4001=4.

The grey zone is the set of nonempty lattice sites for all values
of the rapidity. The black lines represent the worldlines of all
the particles that end up with a position not less than X at the
final rapidity y ¼ 400. The common ancestor of these particles
splits at y1 ¼ 192.43. The inset is a zoom on the branching
region around the branching rapidity y1, illustrating that this
common ancestor indeed stems from a large fluctuation
occurring at a rapidity close to y1, as assumed in the phenom-
enological model. This rare realization was generated using the
algorithm proposed in Ref. [33].
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APPENDIX A: A FEW USEFUL INTEGRALS

The calculations presented in the body of this paper
require to perform a few integrals. Let us introduce the
following notations:

IkðAÞ≡
Z

∞

1

dt
t2

�
1 −

Xk−1
i¼0

ðAtÞi
i!

e−At
�

and

I0kðAÞ≡
Z

∞

1

dt
t2
ln t

�
1 −

Xk−1
i¼0

ðAtÞi
i!

e−At
�
: ðA1Þ

We will study the following particular cases:

I1ðAÞ≡
Z

∞

1

dt
t2
ð1 − e−AtÞ

I01ðAÞ≡
Z

∞

1

dt
t2
ln tð1 − e−AtÞ ðA2Þ

I2ðAÞ≡
Z

∞

1

dt
t2
½1 − ð1þ AtÞe−At�

I02ðAÞ≡
Z

∞

1

dt
t2
ln t½1 − ð1þ AtÞe−At�: ðA3Þ

Although these integrals have exact expressions in terms of
special functions, only the small-A limits will be relevant
for our purpose.
These integrals can be deduced from more general ones,

I1;εðAÞ≡
Z

∞

1

dt
t2−ε

ð1 − e−AtÞ

¼ 1

1 − ε
½1 − e−A þ Γðε; AÞA1−ε�;

I2;εðAÞ≡
Z

∞

1

dt
t2−ε

½1 − ð1þ AtÞe−At�

¼ 1

1 − ε
½1 − e−A þ εΓðε; AÞA1−ε�; ðA4Þ

where Γ is the incomplete Gamma function,

Γðε; AÞ≡
Z

∞

A
dt̄t̄ε−1e−t̄: ðA5Þ

We want to calculate the leading term in the small-A limit
of the expansion of these integrals to order ε. To this aim,
we write

Γðε; AÞ ¼ 1

ε
½Γð1þ εÞ − Aε þOðAÞ�

¼ ln
1

A
− γE þOðAÞ þ ε

2

�
ψ 0ð1Þ − ln2

1

A
þOðAÞ

�
þ � � � ðA6Þ

Thus,

I1ðAÞ ¼ A ln
1

A
þOðAÞ and

I01ðAÞ ¼
A
2
ln

1

A

�
ln

1

A
þ 2ðψð1Þ þ 1Þ

�
þOðAÞ: ðA7Þ

Note that the factor A is dimensional, while 1=A in the
argument of the logarithm is just the size of the relevant
integration region, which extends to ∼1=A. Actually, the
integral could also be performed by simply restricting the
integration region to ½1; κ=A�, where κ ∼Oð1Þ, and expand-
ing the exponential. The overall normalization of the
leading term for A ≪ 1 would be identical to the one
found from the exact calculation. The details of how the
integration region is effectively cut off in the integrand do
not matter.
As for I2 and I02, we expand I2;ε to order ε. We arrive at

the following exact expressions, together with their expan-
sion at lowest order for A ≪ 1:

I2ðAÞ ¼ 1 − e−A ≃ A½1þOðAÞ� and

I02ðAÞ ¼ AΓð0; AÞ ≃ A ln
1

A
þOðAÞ: ðA8Þ

Note that I1 and I02 are identical for small A. However,
I02 is not a logarithmic integral, and therefore, the overall
constant factor of the leading term in the limit A ≪ 1 of
interest here is sensitive to the detailed form of the
integrand.

APPENDIX B: NUMERICAL CALCULATIONS
IN AN ALTERNATIVE MODEL

The branching random walk model defined and studied
in Sec. IV was actually a particular discretization, in space
and time, of a branching Brownian motion. The FKPP
equation [10,11], that is solved, e.g., by the probability that
there is at least a particle to the right of some predefined X,
when the diffusion constant of the Brownian process is set
to D, reads

∂yT1 ¼ D∂2
xT1 þ T1ð1 − T1Þ: ðB1Þ

Equation (70) for S ¼ 1 − T1 is a particular lattice dis-
cretization of (B1), with D ¼ 1

2
.

In this Appendix, we shall study an alternative discre-
tization, namely,

T1ðyþ δy; xÞ − T1ðy; xÞ

¼ δy
δx2

½T1ðy; xþ δxÞ − 2T1ðy; xÞ þ T1ðy; x − δxÞ�
þ δyT1ðy; xÞ½1 − T1ðy; xÞ�: ðB2Þ

We would recover Eq. (B1) with D ¼ 1 in the joint limit
δy, δx → 0.
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The underlying branching random walks are actually
quite different in the two discretization schemes. In the
present scheme, a particle on a given site has a probability
to move, either left or right, of order δy, which is taken
small. In the previous scheme instead, it had a probability
1 − δy to move.
In this new scheme, the evolution equation for G reads,

for y > y1,

Gðyþ δy; x; y1Þ −Gðy; x; y1Þ

¼ δy
δx2

½Gðy; xþ δx; y1Þ − 2Gðy; x; y1Þ
þ Gðy; x − δx; y; y1Þ� þ δyGðy; x; y1Þ½1 − 2T1ðy; xÞ�;

ðB3Þ

and the initial condition is the same as in the previous
model; see Eq. (74).
We have set δy ¼ 0.02 and δx ¼ 0.25, which leads to the

following value of the constants entering the asymptotic
quantities of interest:

γ0 ¼ 1.0120279 � � � ; χ0ðγ0Þ ¼ 1.9659159 � � � ;
χ00ðγ0Þ ¼ 1.9065278 � � � ðB4Þ

These parameters are quite different from those of the first
model; compare to Eq. (72). We have also chosen a
different initial condition: T1ðy ¼ 0; xÞ ¼ 1 − expðe−4γ0xÞ.
Our implementation of these evolution equations is

independent of the one of the first model, and the very

numerical methods used are different. As for the model
exposed here, we evolve lnT1 and lnG instead of T1 and G
directly, at variance with the first model, in order to make
sure that we treat accurately enough the crucial region in
which these functions take very small values (see, e.g., [30]
for a description of such a numerical method).
The overlaps πyðqÞ, shown in Fig. 4 for y ∈ f103;

4 × 103; 1.6 × 104g, are compatible with a convergence
to the expected asymptotics (69)—although it is more
difficult to judge than for the first numerical model. The
maximum value of y for which we have been able to
perform the calculation is more than one order of magni-
tude smaller than in the case of the latter.
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