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We discuss strategies for comparisons of nonperturbative QCD predictions for parton distribution
functions (PDFs) with high-energy experiments in the region of large partonic momentum fractions x.
Analytic functional forms for PDFs cannot be uniquely determined solely based on discrete experimental
measurements because of a mathematical property of mimicry of PDF parametrizations that we prove using
a representation based on Bézier curves. Predictions of nonperturbative QCD approaches for the x
dependence of PDFs instead should be cast in a form that enables decisive comparisons against
experimental measurements. Predictions for effective power laws of (1 − x) dependence of PDFs may
play this role. Expectations for PDFs in a proton based on quark counting rules are compared against the
effective power laws of (1 − x) dependence satisfied by CT18 next-to-next-to-leading-order parton
distributions. We comment on implications for studies of PDFs in a pion, in particular on the comparison
of nonperturbative approaches with phenomenological PDFs.
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I. INTRODUCTION

Quantum chromodynamics governs interactions of
strongly interacting particles and predicts the existence
of bound states of hadronic matter. The scale dependence of
the QCD coupling constant leads to the existence of two
regimes of the strong interaction—the nonperturbative and
perturbative—that result in formation of hadronic bound
states at low energies and in quasifree interactions of QCD
partonic degrees of freedom at high energies. While both
regimes require complex theoretical treatments, the pertur-
bative regime of QCD has the advantage of rendering
calculable predictions using the expansions in small
parameters such as the inverse hard energy scale of the
process and small QCD coupling constant. Experiments at
the Large Hadron Collider and other facilities test the
perturbative phase of QCD to high accuracy.
As for the nonperturbative regime, powerful approaches

characterize internal dynamics of hadrons based on the
models of the hadronic wave function (or the bound-state
amplitude) and the effective Lagrangian approaches

incorporating emergent low-energy symmetries. The pio-
neering studies of the hadron structure in nonperturbative
models (see, e.g., Refs. [1,2]) have paved the way for recent
rapid advancements, driven particularly by discretized
(lattice) QCD [3,4] as well as by other approaches such
as analytical representations (e.g., Ref. [5]) or Schwinger-
Dyson formalism (e.g., Ref. [6]). Of particular interest to
these studies are parton distribution functions (PDFs)—
universal functions quantifying probabilities for finding
partons in a fast-moving hadron probed at a factorization
scale μ ≫ 1 GeV.
The highly challenging computation of a PDF for an

arbitrary parton becomes more amenable when the parton
carries a significant fraction x of the hadron’s momentum,
of order 0.1 or more. Recent nonperturbative/lattice com-
putations provide many predictions for PDFs at x → 0.1, as
well as of the Mellin moments dominated by large-x PDFs
[4]. At x≳ 0.5, the flavor dependence of the proton wave
function further simplifies, with only the up and down
quarks having the appreciable PDFs. Furthermore, under
specific conditions outlined in Sec. II, notably requiring
that the parton entering the hard scattering carries nearly all
of the hadron’s momentum (i.e., when x → 1), the proton
wave function right before the hard scattering may
reduce to a small number of simplest quasifree partonic
Fock states, which in turn may allow one to predict the
x → 1 asymptotics of the PDFs probed at sufficiently high
μ. This physical picture gives rise to the famous quark
counting rules [7–9]. The x dependence of the PDFs at
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x > 0.5, the topic of interest for this paper, may open
avenues for appraising the predictiveness of nonperturba-
tive approaches.
On the phenomenological side, the PDFs are used to

predict long-distance contributions to hadronic cross
sections, when combined with perturbative parton scatter-
ing cross sections. Precise phenomenological parametriza-
tions of PDFs [10–17] for unpolarized protons are
determined by performing the global QCD analysis of
experimental measurements. A global QCD analysis is a
large-scale study involving fits of parametrized PDFs
to various experimental datasets in the framework of
perturbative QCD (PQCD). Flexible functional forms
for these PDFs are fitted to measured cross sections in
diverse high-energy processes, such as deeply inelastic
scattering and production of vector bosons and jets. We will
focus primarily on unpolarized proton PDFs, as they are
best constrained experimentally, although baryons are
not the simplest particles from the nonperturbative point
of view.
Phenomenological PDFs can provide (and have pro-

vided) useful guidance for models of nonperturbative
dynamics, e.g., by identifying the energy scale where
the model is applicable [18,19]. However, comparisons
of model and phenomenological PDFs must not be done
uncritically. On the one hand, the most common MS
PDFs enter a factorized approximation for the hadronic
scattering cross section that is valid up to process-
dependent power-suppressed terms. While the nonper-
turbative computations predict the PDFs in a free
hadron, the initial-state hadrons in high-energy scatter-
ing processes are not truly free. They interact with other
participating particles through soft QCD interactions.
Scale-dependent PDFs provide a logarithmic approxi-
mation to the process of collinear parton showering in
the initial state. The full radiation pattern also depends
on particle masses and kinematic constraints. The QCD
factorization formulas approximate the hadronic cross
sections in simple inclusive processes in a way that
accounts for soft and collinear contributions, and
neglects numerically small mass terms. The relation
of these formulas to the nonperturbative PDFs includes
power-suppressed terms that are not controlled to the
necessary extent.
On the other hand, the PDFs enter the fitted cross

sections through elaborate, flavor-dependent convolution
integrals and are determined from complex experimental
measurements. The global analysis of PDFs relies on the
critical assumption of universality, that the PDFs do not
depend on the hard-scattering process. Multiple factors
contribute to the final PDF uncertainty, as detailed, for
instance, in the recent reviews [20,21]. The question then
arises to which extent the phenomenological PDF analyses
can genuinely reproduce the features reflecting nonpertur-
bative dynamics.

To illustrate these issues, we will revisit a classical
problem in the PDF analysis, determination of the power
laws that govern the falloff of PDFs as x approaches 1.
Quark counting rules (QCRs), reviewed in Sec. II, are one
of the earliest predictions that the valence PDFs in the
proton fall off roughly like ð1 − xÞ3 for both the up and
down quarks. Remarkably, the power law predicted by the
QCRs as well as the asymptotic behavior of the dðxÞ=uðxÞ
at x → 1—a consequence of the spin-flavor extension of
the original QCRs [22]—are consistent with the behavior of
the actual phenomenological PDFs, although alternative
behaviors are not ruled out.
We will examine this (1 − x) falloff in the recent CT18

next-to-next-to-leading-order global analysis [23]. (For an
informative study of the empirical small-x and large-x power
laws in the neural network PDF (NNPDF) fit, which follows
a different methodology, see Ref. [24].) We start in Sec. II A
bybriefly reviewing the rationale for theQCRs and by stating
the conditions under which the QCRs are expected to hold.
Next, we revisit the connection between the PDFs and
factorized formulas for fitted hadronic cross sections in
Sec. II B.
Can the power laws predicted by the QCRs be tested by

experimental hadron measurements? We address this ques-
tion by presenting a mathematical argument in Sec. III A to
show that the polynomial functional form of the structure
functions or PDFs cannot be uniquely determined from
experimental observations. This conclusion follows from
basic properties of polynomial interpolation. As an alter-
native to the reconstruction of the analytic form, we
introduce an empirical power-law exponent for the proton
PDFs, as defined in Eq. (27). The empirical exponent
allows a phenomenologist to reliably confront theoretical
models with the observed behavior of hadronic cross
sections. We address the dependence of the empirical
power-law exponent on the functional form of the PDFs,
factorization scale, and the type of the scattering process in
the remainder of Sec. III.
Functional forms of phenomenological PDFs incorporate

various assumptions about the asymptotic behaviors of the
PDFs at x → 0 and 1, including flavor dependence. It is
important to understand compatibility of these assumptions
with the experimental data. This study also serves as a
sandbox problem illustrating broad aspects of comparisons
of phenomenological PDFs with the large-x predictions. In
particular, investigations of the x dependence of the PDFs in
pions and kaons have been proposed as a powerful
test to understand mechanisms for the emergence of the
hadronic mass [25]. Yet modern pion PDF analyses [26,27]
arrive at varied conclusions about thevalidity ofQCRs for the
pion, or theymay even appear to be at oddswith expectations
from nonperturbative approaches [28]. In Sec. IV, we com-
ment on the reconciliation of the physical pictures arising
from the perturbative and nonperturbative descriptions of
QCD and on implications for pion PDF studies.
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II. QUARK COUNTING RULES AND QCD
FACTORIZATION

A. Weakly coupled gauge theory

1. QCRs for structure functions

The QCRs for a structure function FðxB;Q2Þ in lepton-
hadron deeply inelastic scattering arise from the parton
model in gauge theories with small quark-boson coupling
constants, such as QED or asymptotically free QCD.
Consider a Feynman diagram in Fig. 1(a) in such a weakly
coupled theory with massless quarks. The diagram corre-
sponds to scattering of a virtual photon γ�ðqÞ on a highly
boosted “proton” pðPÞwhose lowest Fock state entering the
hard scattering (at momentum resolution scales somewhat
below Q2 ≡ −q2) consists of three weakly bound quarks.
(Alternatively, we could consider scattering on a “meson”
consisting of a quark and an antiquark.) ϕ is the low-energy
(long-distance) part of the hadronic wave function, describ-
ing the binding of quarks into the hadron at virtualities much
less thanQ2.H, the hard-scattering subgraph of the diagram,
can be approximated by the quark-photon bag diagram (the
squared tree-level amplitude of the γ�q scattering) if all
couplings are small. The diagram in Fig. 1(a) dominates
the cross section when the γ�p scattering energy W2 ¼
Q2ð1=xB − 1Þ þm2

p barely exceeds the mass m2
p of the

initial proton. This regime corresponds to the maximal
Bjorken variable, xB ≡Q2=ð2P · qÞ → 1. The contribution
of this diagram to the structure function at xB → 1 behaves as

F2ðxB;Q2Þ ⟶
xB→1

ð1−xBÞ2ns−1þ2jλq−λAj ·fconstþOð1−xBÞg;

ð1Þ

with ns being the number of spectator partons (two for a
baryon and one for ameson) and λA and λq denoting helicities
of the parent hadron and active (struck) quark. For spin-
averaged proton and pion structure functions, we obtain the
limits

lim
xB→1

Fp
2 ðxB;Q2Þ∝ ð1−xBÞ3; lim

xB→1
Fπ
2ðxB;Q2Þ∝ ð1−xBÞ2:

ð2Þ

The ð1 − xBÞ power law for F2ðxB;Q2Þ thus arises when
the ðns þ 1Þ-quark Fock state dominates in the xB → 1
limit. In this picture, the (1 − x) falloff is driven primarily
by semihard gluon propagators binding the ðns þ 1Þ quarks
before the hard scattering, on the top of long-distance
binding effects included in the nonperturbative wave
function ϕ. The QCRs were initially demonstrated based
on the examination of leading perturbative diagrams
[22,29,30] as well as analyticity of partial-wave amplitudes
[31] and including helicity dependence as in Eq. (1) [22].
They are also expected to apply in various nonperturbative
approaches; see examples in Sec. II B. Adding even more
gluon propagators to the graph in Fig. 1(a) suppresses the
rate both by additional powers of ð1 − xBÞ and by addi-
tional factors of the coupling constant. The term of order

(a) (b) (c)

(d)

ϕ ϕ* ϕ ϕ* ϕ ϕ*

ϕ ϕ*

FIG. 1. Leading radiative contributions giving rise to the counting rules for (a) valence quarks, (b) gluons, and (c) sea quarks. We
assume x → 1 and a very small coupling constant. (d) A “resolved photon” diagram that is non-negligible for small virtualities of the
photon.
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ð1 − xBÞ in curly brackets in Eq. (1) arises from these
higher-order radiative contributions. The extra suppression
power can be found by counting the added propagators.
Such contributions also introduce anomalous dimensions
that make the ð1 − xBÞ exponent dependent on the renorm-
alization scale Q [31,32].
We thus see that the QCRs are mostly directly formu-

lated for the structure functions; QCRs for the PDFs are
discussed below. Section III A argues on general grounds
that the power law introduced by the QCRs in Eq. (2)
cannot be directly tested. Instead, we construct an effective
power-law exponent that can be compared against exper-
imental measurements, as discussed in Sec. III B. In the
case of proton structure functions, Sec. III D demonstrates
that the effective power-law exponent predicted by the
QCRs is compatible with the global QCD analysis of
hadronic scattering data. See, in particular, the discussion
of Fig. 3.

2. QCRs for electromagnetic form factors

The described physics picture also applies to exclusive
processes [7–9]. Drell-Yan–West duality [33,34] relates
deep inelastic structure functions near the threshold,
xB → 1, to elastic electromagnetic form factors at large
momentum transfer, Q2 ≫ 1 GeV2. The scattering con-
tributions that dominate the large-xB limit of the deep
inelastic scattering (DIS) structure function are thus
expected to drive the 1=Q2 falloff of the elastic form
factor [29,31]. For example, in the parton model, the
inelastic structure function νW2ðxBÞ and electromagnetic
form factor F1ðQ2Þ, when both represented in terms of
the target wave function, are related through position-
dependent parton distributions which have an explicit
parton density interpretation [31], implying the inter-
dependent power laws for νW2ðxBÞ and F1ðQ2Þ. More
generally, the structure functions and form factors are
related via impact-parameter generalized parton distribu-
tions for the x region for which DGLAP evolution applies
(see, e.g., Ref. [35]).

3. QCRs for parton distribution functions:
DIS scheme

In real life QCD, computation of high-energy hadronic
cross sections involves factorization of long-distance and
short-distance QCD radiative contributions. The power-law
falloff of factorized structure functions translates into the
falloff of PDFs faðx;Q2Þ at large light-cone momentum
fractions x (which differ from the Bjorken variable xB
starting at the next-to-leading order).
The connection is most transparent in the DIS factori-

zation scheme [36], where the neutral-current DIS structure
function is given by the charge-weighted sum of quark
parton distributions to all orders in the QCD coupling
constant αs:

F2ðxB;Q2ÞjDIS scheme

¼ const ·
X

i¼u;d;…

e2i ðfDISi ðxB;Q2Þ þ fDISī ðxB;Q2ÞÞ

þOðM=QÞ: ð3Þ

For valence-quark DIS PDFs in the proton, this implies the
same falloff power as in Eqs. (1) and (2),

lim
x→1

fDISi=p ðx;Q2Þ ¼ ð1 − xÞA2i · fconstþOð1 − xÞg; ð4Þ

where

A2i ¼ 3 for i ¼ u and d; ð5Þ

if the diagram in Fig. 1(a) dominates. Note that the
predicted falloff power is the same for valence up and
down quarks.
Starting at the next order in αs, the cross sections receive

significant contributions from QCD radiation. DGLAP
evolution equations [37–40] implement a collinear approxi-
mation for initial-state QCD radiation, valid when Q2 is
much larger than 1 GeV2. The gluon and sea (anti)quark
PDFs are generated by collinear radiation off the valence-
quark lines, with the respective lowest-order diagrams
shown in Figs. 1(b) and 1(c). The splitting functions for
the q → g and g → q splittings in these diagrams are

Pg←qðxÞ ¼
αs
2π

CF

�
1þ ð1 − xÞ2

x

�
þ � � � ;

Pq←gðxÞ ¼
αs
2π

1

2
ðx2 þ ð1 − xÞ2Þ þ � � � : ð6Þ

By computing the convolutions of Pg←qðxÞ and Pq←gðxÞ
with the leading term of the valence PDF, Eq. (4), one
determines the lowest-order estimates for the falloff expo-
nents for sea (anti)quark and gluon PDFs in the proton:

A2i ¼ 4 for i ¼ g; Fig:1ðbÞ; ð7Þ

A2i ¼ 5 for ī ¼ ū; d̄;…; Fig:1ðcÞ: ð8Þ

If, instead, we solve the DGLAP differential equations
for the scale evolution, we exponentiate the cumulative
effect of collinear splittings from all αs orders. The solution
introduces anomalous dimensions for the leading asymp-
totic powers A2iðQ2Þ. In QCD, the respective anomalous
dimensions are positive [24]; A2iðQ2Þ grow withQ2. For an
arbitrary Q2, the QCRs thus predict

A2iðQ2Þ ≥ 3; 4; and 5 ð9Þ

for the valence, gluon, and sea quark PDFs in the proton,
respectively.
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The errors in these estimates critically depend on the size
of radiative corrections to the lowest Feynman diagrams in
Figs. 1(a)–1(c). These come from the higher powers in the
coupling constant as well as from the power-suppressed
contributions of order M=Q, as indicated in Eq. (3), where
M is a nonperturbative scale of order 1 GeV.
At x → 1, the main channel of QCD radiation is due to

emission of gluons off valence quarks, as described by the
nonsinglet DGLAP equation for the valence quark PDFs.
Contributions with radiation off initial-state sea (anti)
quarks and gluons are strongly suppressed by smallness
of their respective PDFs. The Q2 dependence of A2iðQ2Þ
computed based on the DGLAP equations thus reflects the
magnitude of higher-order corrections beyond the simplest
QCR picture.
Figure 1(d) presents an example of a contribution that is

normally not discussed in the derivations of the quark
counting rules, but may be an important part of the
inclusive FðxB;Q2Þ at relatively low Q2. In this diagram,
the photon splits into a qq̄ dipole that interacts with the
hadronic state. For highly virtual photons, this contribution
can be estimated perturbatively. At Q2 of order 1 GeV2 or
less, the resolved photon contribution is independent from
Fig. 1(a) and is not small. It requires an independent
“resolved photon” PDF.

4. QCRs for parton distribution functions:
MS scheme

Modern phenomenological PDFs are provided predomi-
nantly in the MS factorization scheme, which offers a
number of advantages compared to the DIS factorization
scheme. The MS PDFs are defined in a process-indepen-
dent way as summarized in the next subsection. In the MS
scheme, the leading-power Feynman integrals for DIS
inclusive cross sections are given by convolutions of
perturbative Wilson coefficients Ha and nonperturbative
PDFs fa=A (where A ¼ p or π) according to Eq. (10). In
Fig. 1, factorization of Feynman subgraphs is indicated by
the horizontal double dotted lines separating the hard and
PDF parts. We expect roughly the same falloff powers for
the MS PDFs as in Eq. (9). Differences between the DIS
and MS factorization schemes start at the next-to-leading
order in αs.

B. Large-x behavior of QCD processes

We see that the QCRs reflect a simplified picture of
hadron scattering, in which cross sections near the elastic
limit are dominated by the lowest-order diagrams like those
in Fig. 1. Is this simple depiction tethered to realistic
measurements?
Our view is that an arbitrary hadron scattering process is

likely to include substantial violations of the QCRs. Thus,
the QCRs need not be precisely obeyed by all processes
included in global PDF fits. However, there may be

processes where the kinematics favors the dominance of
the lowest diagrams, and the QCRs are more closely
followed. Specifically, when the initial hadron is “mini-
mally perturbed” by the hard scattering, the higher-order
Fock states may be better suppressed in the elastic limit.
Several factors may indicate the minimally perturbed
regime, including the smallness of the QCD coupling
constant and vanishing Q2 dependence of the effective
power laws preferred by the experimental measurement.
The key assumption of the QCRs, that the (1 − x)

dependence is determined mostly by scattering off a few
quarks knocked out of the parent hadron, suggests two
possible conditions under which the QCRs may hold. First,
a weakly bound incoming state may be required, so that
only the diagram with the minimal number of semihard
propagators gives an appreciable rate in the elastic limit. In
that case, each additional perturbative vertex introduces a
large suppression factor into the scattering rate.
Second, the hadron-parton vertex described by a bound-

state amplitude ϕ reflects the low-energy dynamics; i.e., the
long-distance interaction that cannot be approximated by a
few (semi)hard gluons. The respective part of the hadronic
correlator function can be evaluated consistently in a fully
nonperturbative approach to hadron binding, such as MIT
bag (e.g., Ref. [1]), Isgur-Karl (e.g., Ref. [41]), or chiral
quark soliton models (e.g., Ref. [42]) for the proton and
Nambu–Jona-Lasinio or chiral quark models (e.g., Ref. [2])
as well as Schwinger-Dyson equations (e.g., Ref. [43]) for
the pion. In such approaches, the proton correlator is
computed starting with the lowest-energy bound states
consisting of three quark fields. The coupling here is large,
but the analyticity of partial-wave amplitudes [31] indicates
that the power-law falloff may be realized in a variety of
theories that lead to asymptotic freedom at short distances.
The dominance of final Fock states with lowest parton
multiplicities is essential for realizing the QCRs in both
cases. In the latter case, the QCRs may be more evident in a
subsample of DIS events in which the final-state hadron
multiplicity is low.
Exclusive processes like the deeply virtual Compton

scattering with a photon that minimally perturbs the proton,
and with the QCD coupling constant and mass terms tuned
down, should satisfy the QCRs, as shown in the original
derivation of Brodsky and Farrar. In particular, we must
assume that the QCD radiation is weak enough so that the
excited intermediate Fock states with five or more partons
(or equivalently, the correlator contributions with sea
partons, or with disconnected topologies) are negligible.
The QCRs do not directly hold if there are excited Fock
states.
Neither picture—a weak coupling or a minimally per-

turbed hadron—applies automatically in typical experi-
mental measurements used in the proton PDF fits. Indeed, a
typical inclusive hadronic observable used to determine the
phenomenological PDFs includes high-multiplicity events.
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But we may spot the trace of the QCRs in some kinematic
regime, when final-state multiplicities are small, and the
impact of other corrections is minimal.
We will further argue in Sec. IV B that the conditions

supporting QCRs may be easier to achieve in pion
scattering than in nucleon scattering.
We take neutral-current DIS on a proton as an example.

In this process, two scales control the QCD radiation, the
photon-proton center-of-mass energy W2 (equal to the
invariant mass squared of the hadronic final state) and
the photon virtuality Q2. For any reasonable choice of W2

and Q2—with the Bjorken regime limited by W2 > m2
p

with W2 ¼ m2
p þ ð1 − xBÞ=xBQ2—the proton bound state

is not minimally perturbed. There is no region of W2 and
Q2 where both the QCD coupling αsðQ2Þ is small and
initial-state radiation into final states with more than three
partons can be neglected. Now, consider three relevant
kinematic regions of DIS:

(i) In the elastic limit, i.e., when W2 → m2
p ∼ 1 GeV2,

the proton mass m2
p is not negligible. The relevant

three quark degrees of freedom are not massless and
free, and some modification of the original Brodsky-
Farrar motivation is necessary.

(ii) When W2 increases up to about 4 GeV2, the proton
mass terms eventually become negligible, but the
behavior of the DIS cross section is initially complex
in this region because of the resonant contributions.
Globally, one may expect that the picture based on
scattering of quasifree partons approximates the DIS
cross section on average because of the Bloom-
Gilman parton-hadron duality [44]. However, over
small intervals of W2, the cross section can exhibit
very complex resonant behavior that does not satisfy
the QCRs [45,46].

(iii) At even higher W2, the power-suppressed terms
become small. The leading-power contribution
dominates a DIS structure function FðxB; Q2Þ and
can be factorized in terms of the PDFs fa=p and
coefficient functions Ha as

FðxB; Q2Þ ¼
X
a

Z
1

xB

dx
x
fa=pðx; μ2ÞHa

�
xB
x
;
μ2

Q2

�

þOðM=QÞ; ð10Þ
where Ha consists of a delta function for quark a at
the zeroth order of αs and of respective higher-order
radiative contributions for a ¼ q, g at higher orders.
The quark PDFs fa=p, with their dependence on the
partonic momentum fraction x and factorization
scale μ, are defined in the MS scheme as

fa=pðx; μ2Þ ¼
1

4π

Z
dy−e−ixP

þy−hPjψ̄að0; y−; 0Þ

× γþWðy−; 0Þψað0ÞjPi; ð11Þ

where

Wðy−; 0Þ ¼ P exp

�
−ig

Z
y−

0

dȳ−Âþð0þ; ȳ−; 0⃗TÞ
�

ð12Þ

is the Wilson eikonal line and we have used the
light-cone coordinates; see, e.g., Ref. [21]. At these
W2 and Q2, we can finally talk about scattering on
nearly independent initial-state partons, which
nevertheless feel some long-distance interaction
with other particles mediated by long-wavelength
gluon fields. The factorization formula captures this
interaction in two places, through the insertion of the
eikonal line Wðy−; 0Þ in fa=Aðx; μ2Þ to approximate
the interaction of the initial-state quark field with
the soft gluon field ÂðyÞ connecting to the other
particles, and through nonfactorizable terms in the
power-suppressed correction OðM=QÞ.

The inelastic cross section grows quickly in this
region ofW2, indicating that final stateswithmultiple
partons are now easily produced. This effect is
captured in the leading-power logarithmic approxi-
mation by the scale dependence of fa=Aðx; μ2Þ. These
multiparton final states violate the naive prediction of
the QCRs. One indication of this violation is signifi-
cant Q2 dependence of the effective power law.

1. Threshold resummation

The collinear factorization formula (10) is based on a
highly nontrivial proof [47,48] that separates the leading-
power convolution integral from power-suppressed terms
OðM=QÞ such as target-mass corrections. The collinear
formula is perturbatively stable when W2 is of order Q2.
When x → 1, the inclusive DIS cross section becomes
sensitive to soft interactions among various particles that
are not necessarily associated with the PDF(s). A different
factorization formula, including a soft exponential factor,
replaces the collinear factorization (10) in this limit. Soft
radiation can be reliably approximated by a resummed all-
order series of large logarithms if Q is much larger than
1 GeV. At Q of a few GeV, when the perturbative
logarithms are not large, the threshold behavior is most
sensitive to the nonperturbative part of the soft factor that
should be fitted together with the PDFs. In either case,
radiation of multiple soft partons modifies the x depend-
ence of the DIS and Drell-Yan (DY) cross sections at x → 1
as compared to the QCR-based estimates.

2. QCD factorization for other processes

To determine phenomenological functional forms for
MS PDFs of various flavors, a global QCD analysis
includes a comprehensive combination of experimental
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measurements in DIS, production of lepton pairs, jets, tt̄
pairs, and other processes. As in the case of DIS, the
connection between PDFs and inclusive cross sections
relies on factorization theorems, and those are known with
less confidence for more complex measurements. The cross
sections used in the PDF fits are usually evaluated at a fixed
order in αs and often neglecting power-suppressed terms.
The QCRs demonstrated for inclusive DIS cross sections

do not translate automatically to the other processes. For
example, while the leading-power collinear factorization
for the DY pair production cross section,

σ ¼
X
a;b

Z
dxa

Z
dxbfa=Aðxa; μ2FÞfb=Bðxb; μ2FÞHa;b;xa;xb;μ2F

þOðM=QÞ; ð13Þ

is structurally similar to that in inclusive DIS, as given in
Eq. (10), the underlying scattering processes and factoriza-
tion proofs are drastically different between two processes.
In the Drell-Yan process, the underlying hadronic activity
from multiperipheral scattering of two parent hadron rem-
nants plays a far more prominent role and creates difficulties
in proving the factorization [47]. The parent hadrons are
more perturbed by soft interactions in hadron-hadron
scattering than in DIS. Any factorization formula holds
up to power-suppressed terms which are different in the
collinear and threshold factorization formalisms and which
are different at some level in DIS and DY, or between
different hadron and heavy nuclei parent species.1

To summarize, in realistic QCD processes that determine
the PDFs, the large-x behavior is modified compared to the
predictions of the massless parton model. The scope of
modifications in the large-x power laws introduced by
higher Fock states, mass terms, resonant contributions, and
nuclear effects varies by the scattering process. It is
reasonable to expect large modifications of parton-model
predictions in events with high final-state parton multiplic-
ities. Still, there can be situations that are close to realizing
the assumptions that underlie the QCRs, such as when one
tests the internal structure of a meson or looks at a
subsample of DIS events with low final-state hadronic
multiplicities.

III. TESTING LARGE-x PDFS IN
EXPERIMENTAL MEASUREMENTS

A. Bézier curves as polynomial interpolations
of discrete data

Models of the hadron structure make concrete predic-
tions for the x dependence of the structure functions and

PDFs. One can straightforwardly check the agreement of a
given model with an experimental observation within the
uncertainties. A stronger assertion, that the experiment
demands the 1 − x dependence of the PDFs to follow a
specific power law, is difficult to demonstrate since the
functional forms of the PDFs are not known exactly. This is
clearly not possible in the presence of local or resonant
structures that disagree with the global trend. Even when
the PDF functional forms are restricted to be polynomial,
the discrete experimental data can be compatible with
multiple functional forms.
To illustrate why, consider an idealized example, in

which we seek a polynomial function fðnÞðxÞ of degree n to
interpolate kþ 1 data points fx0; p0g; fx1; p1g,..., fxk; pkg
that have no uncertainty. Our points satisfy 0 ≤ xi ≤ 1.
From mathematics, we know that the existence and number
of the interpolating solutions depend on the degree n of the
polynomial.
If n ¼ k, the unisolvence theorem guarantees that there

exists a unique interpolating polynomial going through all
points: fðnÞðxiÞ ¼ pi. Two equivalent closed-form solu-
tions for the interpolating polynomial are given by the
Lagrange polynomial,

LðnÞðxÞ≡Xk
i¼0

pi

Yk
m¼1
m≠i

x − xm
xi − xm

for n ¼ k; ð14Þ

and by a Bézier curve of degree n,

BðnÞðxÞ ¼
Xn
l¼0

clBn;lðxÞ; ð15Þ

constructed from Bernstein basis polynomials

Bn;lðxÞ≡
�

l

n

�
xlð1 − xÞn−l: ð16Þ

Denote the vector BðnÞðxiÞ as B. This vector can be
written in a matrix form [50,51],

B ¼ T ·M · C; ð17Þ

where C≡ kclk;
M ≡ kmlpk with

mlp ¼
8<
:

ð−1Þp−l
�
l

n

��
n − p

n − l

�
; l ≤ p

0; l > p

; ð18Þ

and T ≡ ktipkwith tip ¼ xpi . Here, i runs from 0 to k, and l,
p run from 0 to n.
Given the matrix P≡ kpik of data values, the matrix C

for the Bézier curve BðnÞðxÞ going through all points
satisfies [51]

1A well-known example of loss of universality of factoriza-
tion is T-odd distributions in transverse momentum distribu-
tions factorization, which have opposite signs in DIS and DY
process [49].
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C ¼ M−1 · T−1 · P for n ¼ k: ð19Þ

This equation shows that kþ 1 data points uniquely
determine the polynomial of order n ¼ k, assuming no
experimental errors.
If n < k, an interpolating solution that goes through all

points may not exist. Rather, there is a Bézier curve that
minimizes the total squared distance to pi,

χ2ðP;BÞ ¼
Xk
i¼0

ðBðnÞðxiÞ − piÞ2

¼ ðP − T ·M · CÞT · ðP − T ·M · CÞ: ð20Þ

The matrix of the coefficients of this Bézier curve is

C ¼ M−1 · ðTTTÞ−1 · TT · P for n < k: ð21Þ

The total squared distance from this special curve to pi is

min χ2ðP;BÞ ¼ PT · KT · K · P for n < k; ð22Þ

where

K ≡ Iðkþ1Þ×ðkþ1Þ − T · ðTT · TÞ−1 · TT: ð23Þ

If we set n ¼ k in Eq. (21), it reduces to Eq. (19). We also
get K ¼ 0 and min χ2ðP; BÞ ¼ 0.
Finally, if n > k, an infinite number of polynomial

solutions have min χ2ðP;BÞ ¼ 0. They can be constructed
by adding n − k arbitrary points to the Lagrange poly-
nomial (14) found for n ¼ k.
Equations (19) and (21) for the coefficients of the Bézier

curve are readily solvable and can be used to explore
strategies for experimental determination of the x depend-
ence of the PDFs. The numerical solution for the inter-
polating polynomial is generally unstable for large n. The
Bézier form is more stable compared to the other forms,
sometimes allowing us to get stable interpolation for n as
large as 10 or 15. In our equations, numerical instabilities
may arise from the inversion of matrix T if T is ill
conditioned when n is large (especially if k > n), or when
some points are spaced too closely in x.
Once found from the data, the Bézier curve (15) can be

expanded into the monomial (Taylor) power series of
(1 − x),

BðnÞðxÞ ¼
Xn
l¼0

c̄lð1 − xÞl; ð24Þ

which in turn can be compared against the predictions of
the quark counting rules. The QCRs discussed in Sec. II
might predict that the empirically found coefficients c̄l
vanish when l ≤ A2ðQÞ. Alternatively the whole set of cl or
c̄l can be compared against predictions of a given model.

This comparison is impeded, however, by large can-
cellations between the terms with highest powers l in the
monomial expansion (24) when pi values are sampled
from a realistic PDF shape. The high-l monomial terms
tend to have alternating signs when interpolating such pi.
The monomial components with low l, signifying the
cutoff by the QCRs and sensitive to the high-l cancella-
tions, vary significantly depending on the range and
spacing of xi.
Figure 2 illustrates this feature by interpolating nine

points that are sampled from the functions fðxÞ specified
inside the subfigures. The interpolation is constructed using
the Bézier curve BðnÞðxÞ according to Eqs. (19) and (21).
We also show truncated monomial approximations for this
curve,

P
N
l¼0 c̄lð1 − xÞl with 0 ≤ N < n. The input PDFs

satisfy fðx ¼ 1Þ ¼ 0. We therefore expect the N ¼ 0
truncation to vanish if the Bézier interpolation is con-
structed properly, meaning that cn ¼ c̄0 ¼ 0. Indeed, the
N ¼ 0 truncation is consistent with zero in all subfigures
of Fig. 2.
Figure 2(a) showsBðnÞðxÞ for an input function given by a

fourth-degree polynomial, fðxÞ ¼ 30x2ð1 − xÞ2. The red
points denote fxi; pi ¼ fðxiÞg given by the exact input
function. The interpolating polynomial is readily found as
Bð4ÞðxÞusingEq. (21), or equivalently asBðnÞðxÞwith cl ¼ 0
for n; l > 4. The monomial term with a linear 1 − x
dependence, denoted asN ¼ 1, vanishes in this simple case.
For a more elaborate input function assumed in

Figs. 2(b), 2(c), and 2(d),

fðxÞ ¼ 200x2ð1 − xÞ2ð1 − 2.9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
þ 2.3xð1 − xÞÞ;

ð25Þ

we must resort to Bð8ÞðxÞ with n ¼ k ¼ 8 to obtain
interpolation that goes through all points pi according to
Eq. (19). One can see from the figures that linear terms
(N ¼ 1) are present in the respective monomial expansions,
even though the input function does not contain linear
terms. The slopes of the N ¼ 1 terms are different in the
three panels, and the monomial expansion converges too
slowly for x < 0.8. The coefficients of the linear and
higher-l terms depend on the ranges and spacings of xi,
which are varied in Figs. 2(b), 2(c), and 2(d). The
ambiguity in the N ¼ 1 term is introduced by the corre-
lation of the coefficient c̄1 with the coefficients c̄l with high
l. To pin down the linear term, we must restrict the fit to the
highest portion of the x range, such as x > 0.9. It appears
that finding the low-l monomial terms with good accuracy
requires one to fit precise data in the interval that extends
closely to the end point x ¼ 1, where higher-twist effects
are likely important.
With typical input PDF shapes and fewer than about ten

input points, we find that interpolation by Bézier curves is
numerically stable over the range x0 ≤ x ≤ xk: the Bézier
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curve goes through all input points and may differ from the
input function in high-order terms between the points.
Outside of the x range covered by the data points,
extrapolation can be unstable.

B. Effective large-x exponent

The example in Fig. 2 demonstrates that mimicry of the
fitted functional forms impedes determination of the lowest
powers in the monomial (1 − x) expansion even in an
idealized fit to a few “data” points without uncertainties. An
interpolation or fit by a high-degree polynomial may render
terms with low powers of (1 − x) that are not present in the
fitted function, and which depend on how the data are
sampled. In QCD, there is no reason to expect that

coefficients c̄l for high powers of (1 − x) are suppressed
in the PDFs. Statistical and systematic errors in the
measurements also get in the way of the determination
of the analytic (1 − x) dependence.
The remainder of the article will follow a less pretentious

path. Predictions of QCRs and various nonperturbative
models suggest that, in the xðBÞ → 1 limit, the structure
functions or PDFs, denoted collectively as F ðxðBÞ; Q2Þ,
behave as

F ðxðBÞ; Q2Þ ¼ ð1 − xðBÞÞA2 ×Φð1 − xðBÞÞ; ð26Þ

where Φð1 − xðBÞÞ is a slowly varied function. Based on
this observation, it is natural to define

FIG. 2. (a,b) Bézier and polynomial fits to nine discrete points sampled from the functions fðxÞ specified in the figures. (c,d) Same as
(b), for different ranges and spacings of x covered by the sampled points.
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Aeff
2 ½F ðxðBÞ; Q2Þ�≡ ∂ ln ðF ðxðBÞ; Q2ÞÞ

∂ ln ð1 − xðBÞÞ
; ð27Þ

with the expectation that Aeff
2 ≈ A2 when the logarithmic

derivative of Φð1 − xðBÞÞ is small.2 We will compare
theoretical predictions for A2 presented in Sec. II with
the Aeff

2 ½F ðxðBÞ; Q2Þ� values obtained from a phenomeno-
logical PDF ensemble.

C. CT18 PDF ensemble and estimation
of PDF uncertainty

In the present analysis, we focus on the results obtained
with the CT18 global QCD analysis [23]. The CT18 PDFs
are determined by fitting next-to-next-to-leading-order
(NNLO) theoretical cross sections to 40 experimental
datasets with a total of 3681 data points. The fitted
scattering processes—DIS, production of lepton pairs, jets,
and tt̄ pairs—cover a large kinematic region that extends up
to x ¼ 0.75 in the typical momentum fraction and down to
Q ¼ 2 GeV in the factorization scale.
The CT18 functional form is given by

fa=Aðx;Q2
0Þ ¼ xA1;að1 − xÞA2;a ×ΦaðxÞ: ð28Þ

Functions ΦaðxÞ are parametrized by Bézier curves BðnÞðyÞ
with n ¼ 4–5 and y≡ ffiffiffi

x
p

or a similar scaling function; see
Appendix C in Ref. [23]. At the initial scale of the fit,
Q0 ¼ 1.3 GeV, the functional forms provide the initial
condition for DGLAP equations that predict PDFs at an
arbitrary Q > Q0. Each interpolating polynomial ΦaðxÞ
reduces to a nonzero constant at x → 0 or 1, so that the
exponents A1;a and A2;a control the behavior of the
individual PDFs when approaching these limits. While
in principle all A2;a parameters can be determined from the
data, in practice, not all their combinations result in
non-negative PDFs or physically acceptable values of
flavor-dependent observables. The CT18 fit imposes a
requirement A2;uV

¼ A2;dV
to guarantee a finite value of

dðx;Q2Þ=uðx;Q2Þ at x → 1 or, equivalently, a nontrivial
asymptotic value of Fp

2 ðx;Q2Þ=Fn
2ðx;Q2Þ. We thus expect

lim
x→1

Aeff
2;dV

ðxÞ
Aeff
2;uV

ðxÞ ¼
A2;dV

A2;uV

¼ 1; ð29Þ

where the limit is reached only at very high x values that are
outside of the x region covered by the experimental
measurements.
On the other hand, at x values below 0.8, where a

sufficient amount of experimental data exists, the poly-
nomials ΦaðxÞ with a ¼ u or d are flexible enough to
allow a variety of functional behaviors of the u and d PDFs.

Therefore, at x < 0.8, Aeff
2;dV

ðxÞ can be quite different from
Aeff
2;uV

ðxÞ.
The CT18 ensemble consists of the central PDF set and

58 error PDF sets that can be used to estimate the PDF
uncertainty in Aeff

2 according to the master formulas of
Refs. [52,53]. A variety of sources contribute to this PDF
uncertainty, including experimental, theoretical, paramet-
rization, and methodological uncertainties [21]. Among
these, the uncertainty introduced by the choice of the PDF
functional forms has been examined in the CT18 study by
estimated the spread of the PDFs in 250 candidate fits with
alternative functional forms or methodological settings, as
explained in Sec. III. C. 3 of Ref. [23]. The tolerance on the
nominal Hessian error sets has been selected so as to cover,
on average, the spread of the best-fit values in the
alternative fits. Thus, the CT18 Hessian uncertainty covers
the spread of results with the alternative parametrization
choices, with the exception of the extrapolated x regions,
x > 0.7, where some of the explored best fits fall outside of
the nominal CT18 error band. We therefore quote the
uncertainty on Aeff

2 as the envelope constructed from the
CT18 Hessian uncertainty at the 68% probability level and
the extreme variations of Aeff

2 obtained with the extended
set of 363 alternative functional forms.

D. Effective exponent for a DIS structure function

In deep inelastic scattering, a structure function
FðxB;Q2Þ of the proton can be predicted in terms of
phenomenological PDFs fa=pðx; μ2Þ as in the QCD fac-
torization formula in Eq. (10). Figure 3 shows the effective
ð1 − xBÞ-power Aeff ½F2ðxB;Q2Þ� computed according to
Eq. (27) with the CT18 NNLO set [23] for three values of
Q2. These are leading-twist predictions for F2ðxB;Q2Þ that
reflect a combination of constraints from 40 diverse experi-
ments, and which may not be directly comparable to the
actual DIS data because of the limitations discussed in
Sec. II B. AtQ ¼ 2 GeV, the interval xB ≳ 0.8 corresponds
to DIS in the resonant region, see Sec. II B, where the
smooth behavior of F2ðxB;Q2Þ that we predict is modified
by complex local features that do not obey the QCRs. We
indicate the xB values lying in the resonant DIS region,
approximately corresponding to W2 < 2m2

p, by using the
semitransparent fill for a part of the error band
for Q ¼ 2 GeV.
Each error band in Fig. 3 consists of an inner (darker)

part, indicating the 68% probability level Hessian uncer-
tainty, and the outer (lighter) part, representing the envelope
formed by the Hessian uncertainty and the exponents (27)
for the alternative functional forms, as explained in
Sec. III C. We see that the magnitudes of the Hessian
and envelope uncertainties are similar for the region where
data are available, i.e., x < 0.75. On the other hand, in the
region in which the PDFs are unconstrained by the data, the
error reflecting the choice of parametrization dominates.2A similar definition was introduced in Ref. [24].
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The envelope indicated by the outer error band represents a
more conservative estimate of the uncertainty at each Q2.
We now compare the Aeff ½F2ðxB;Q2Þ� from the CT18 fit

to the prediction A2 ¼ 3 from the QCRs for F2ðxB;Q2Þ in a
proton given by Eq. (2). The Aeff

2 values for Q ¼ 2 GeV in
Fig. 3 clearly fall below the QCR prediction. On the other
hand, starting from a scale of about 4 GeV, the expected
exponent of 3 is attained at the highest x within the
error bands.
The Aeff

2 values in Fig. 3 substantially depend on xB and
Q2. The true limit of the QCRs would imply weak
dependence on either xB or Q2, indicating that neither
multiparticle final Fock states nor anomalous dimensions
are important. In accordance with the discussion in Sec. II,
the QCRs would be realized when the Feynman diagrams
in Fig. 1 dominate.
As we alluded to in Sec. II B, we do not expect the

conditions for the QCRs to be fully met in a global PDF fit.
Various simplifications in the fitted processes limit the
anticipated accuracy, for example, due to the neglect of
process-dependent power-suppressed terms. Nevertheless,
Fig. 3 shows that the CT18 values for Aeff ½F2ðxB;Q2Þ� are
consistent with the QCR prediction of 3 within about one

unit. Keep in mind that the bound-state wave function for
the hadronic target predicts parton distributions in a free
hadron. On the other hand, the nucleons—and a fortiori the
pions—probed in the global fits are not truly free at some
level; their partons feel the other hadrons present in the
scattering event before or after the hard scattering. At the
leading power, the effect of the soft QCD background field
created by spectator hadrons on the propagation of partons
entering the scattering is given by the Wilson line in theMS
PDF in Eq. (11). Additional radiation of this kind and
power-suppressed terms may modify the x dependence
compared to the QCR prediction.

E. Effective exponents for PDFs

We will now investigate effective exponents Aeff
2 for

individual PDFs. In the CT18 global fit, universal PDFs
enter theoretical cross sections for the fitted processes as
shown in Eqs. (10) and (13) for DIS and DY. The hadronic
cross sections are evaluated up to NNLO in αs. Equation (9)
states the QCR predictions for the A2 exponents for PDFs
of various flavors. These predictions can be compared with
Aeff
2 computed for the respective phenomenological PDFs.
First, we plot, in the left subfigure of Fig. 4, the nominal

parameters A2;uV
and A2;dV

in the parametrizations for u and
d valence quarks, introduced as in Eq. (28). As summarized
in Sec. III C, the CT18 fit assumes these parameters to be
the same. The figure shows the red line that corresponds to
the best-fit CT18 value for A2;uV

¼ A2;dV
and its 68% C.L.

Hessian uncertainty.
In the same subfigure, the green ellipse shows the

68% C.L. region for the effective exponents Aeff
2 computed

using the CT18 Hessian error PDF set at Q ¼ 1.3 GeV and
x ¼ 0.875 according to Eq. (27). Finally, blue scattered
points in the left subfigure are for the Aeff

2 combinations
obtained with 363 alternative parametrizations of CT18
PDFs. The lines indicate the QCR prediction of 3 for each
exponent.
We see in the left Fig. 4 that, at this high value of x and

the initial scale Q0, the nominal parameters A2;uV
and A2;dV

are consistent with the QCR predictions within the PDF
uncertainty. While the nominal A2;uV

and A2;dV
are set to be

equal in the initial functional forms, the effective coeffi-
cients for uV and dV at x ¼ 0.875 turn out to be slightly
different. The distribution of the scatter points is narrower
for the up valence than for the down valence, implying that
the PDF for dV is less constrained by the data at large x.
Figure 5 shows how Aeff

2 for uV and dV obtained with the
alternative parametrizations change when Q takes the
values of 1.3, 4, and 10 GeV, and x varies between
0.675 and 0.875. The left column, corresponding to
Q ¼ Q0 ¼ 1.3 GeV, illustrates the x dependence of Aeff

2

at the initial scale of DGLAP evolution. The scattered
clusters for uV become narrower toward smaller x values—
going down from the top to the bottom row. Going from the

FIG. 3. The effective exponent Aeff
2 for the structure function

F2ðxB; Q2Þ as a function of xB and for the Q values of 2,4, and
10 GeV represented in green, blue, and magenta, respectively.
The central curve of each error band represents the CT18 NNLO
central value, the dark shaded band is the asymmetric Hessian
error [52,53] at the 68% probability level. The extreme curves
correspond to the envelope of the Hessian and parametrization
uncertainties estimated as in Sec. III C. The transparent part of the
Q ¼ 2 GeV band corresponds to the region with W2 < 2m2

p,
approximately corresponding to the resonance region in DIS.
The reference prediction from the QCRs is shown by a line
at Aeff

2 ðF2Þ ¼ 3.
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left to the right in each row, we observe the effect of
DGLAP evolution when increasing Q. The shapes of the
point distributions are largely preserved when increasingQ,
while the distributions shift toward higher Aeff

2 as a whole.
The effective Aeff

2 ðuVðx;QÞÞ is larger than the expected
value of 3 for all the scales considered. On the other hand,
Aeff
2 ðdVðx;QÞÞ is as low as 2 for some parametric forms.

Overall, the figure demonstrates non-negligible depend-
ence of Aeff

2 on x (possibly caused by more Fock states
contributing to scattering at smaller x) and on Q (reflecting
the anomalous dimensions for the A2 exponents).
Similar plots for g and ūþ d̄ PDFs are shown in the right

Fig. 4 for the Aeff
2 values at Q0 ¼ 1.3 GeV and x ¼ 0.75

and in Fig. 6 for the x and Q dependence. These PDFs
quickly vanish at very large x; thus, we limit the respective
comparisons to the region x ≤ 0.75 to avoid numerical
issues.
Since the nominal A2 parameters are not constrained to

be the same for g and ūþ d̄, the 68% C.L. Hessian
uncertainty region in the right Fig. 4 is given by an ellipse
and not by a line. The Hessian uncertainty region (red
ellipse) on Aeff

2 values for these flavors agrees well with the
respective nominal A2 values (green ellipse), as well as with
the Aeff

2 obtained with alternative parametrizations.
According to Fig. 6, the Aeff

2 values for g and ūþ d̄
depend weakly on the x value, taken to be x ¼ 0.625, 0.7,
and 0.75. TheQ dependence is significant for the gluon Aeff

2

and much weaker for ūþ d̄. AtQ0 ¼ 1.3 GeV, neither Aeff
2

is truly compatible with the respective QCR predictions; the
gluon Aeff

2 of 2–4 is systematically lower than the QCR
prediction of 4, while the sea quark Aeff

2 of 6–9 tends to be
higher than 5.

TheQ dependence due to the singlet DGLAP evolution is
very pronounced for both types of PDFs. The gluon effective
exponent grows above 4 starting from about 4 GeV, now in
compliancewith the QCRs. The Aeff

2 for the sea combination
ūþ d̄ has a large uncertainty at Q0 but quickly correlates
with the gluon once the DGLAP evolution is turned on.
We can compare the effective exponents for CT18

NNLO PDFs with those computed for the MMHT14
and NNPDF3.0 sets. We find reasonable agreement
between the effective exponents obtained based on these
three PDF ensembles. We also broadly agree with the
observations presented in Ref. [24] for a low Q scale.3

We learn several things from these comparisons. The
phenomenological effective exponents and QCR predic-
tions better agree for the valence u and d quarks. The
agreement is not so good for the gluon and especially the
sea-quark PDFs.
The assumptions justifying the quark counting rules hold

when the scale dependence is small. In reality, Figs. 5 and 6
demonstrate pronounced scale dependence, suggesting that
higher-order QCD radiation, producing multiparton final
states, is not entirely negligible in the fitted processes.
Focusing on DIS for a moment, the numerical effect of

the multiparton final states at variousQ2 andW2 is twofold.
When Q2 is increased at a fixed x value, QCD radiation,
evaluated in the logarithmic approximation by DGLAP
equations, increases the effective power Aeff

2 for valence
quarks and gluons—see Ref. [24] and references therein.
The growth of the corresponding Aeff

2 in our figures is

FIG. 4. The effective exponent Aeff
2 for 363 alternative parametrizations of CT18 NNLO (blue points), compared to the CT18 NNLO

Hessian error ellipse at 68% C.L. for Aeff
2 ½CT18NNLO� (green ellipse) and the tabulated A2 parameters of the CT18NNLO error

ensemble at 68% C.L. (red line or red ellipse). Both plots are shown at Q0 ¼ 1.3 GeV. The left panel is for the PDF flavors uV vs dV at
x ¼ 0.875. The right panel is for g vs ūþ d̄ at x ¼ 0.75. The lines in the left subfigure show the expected values. The gray rectangle in
the right subfigure shows the region forbidden by the QCRs; see the text.

3Let us remark that the NNPDF3.0 results must be averaged, as
mentioned in the cited reference.
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consistent with this expectation, while the Q2 dependence
for antiquark Aeff

2 is less clear.
When W2 is increased (and xB is decreased) at a fixed

Q2, new final states may be produced and introduce terms
with high powers of 1 − x in the PDF expressions. As
discussed in Sec. III A, such terms can increase or reduce
the effective leading power Aeff

2 , as compared to the QCR
prediction, and introduce dependence of Aeff

2 on xðBÞ.

F. Process dependence of effective exponents

In Secs. III D and III E, we presented the effective
exponents Aeff

2 and their uncertainties for leading-power
DIS structure functions and PDFs determined based on the
totality of 40 experiments fitted in the CT18 global
analysis. We will now examine the agreement of individual
experimental datasets in their preferences for the large-x
behavior of PDFs quantified by Aeff

2 . Toward this goal,

FIG. 5. The effective exponent Aeff
2 for the alternative parametrizations for the PDF flavors uV vs dV . The x values, from the upper to

lower row, are 0.875,0.825,0.775,0.675. TheQ values, from left to right, are 1.3,4, and 10 GeV. The lines Aeff
2 ðuV; dVÞ ¼ 3 are shown for

reference.
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wewill employ a statistical indicator called theL2 sensitivity
[54], following its applications in the CT18 analysis [23] to
examine agreement between the experimental datasets. The
L2 sensitivity is constructed from the values Aeff

2 and
goodness-of-fit function χ2E for each fitted experiment E,
computed for each Hessian eigenvector set of the CT18
NNLO ensemble. See the relevant equations in Ref. [54].
Figure 7 plots the L2 sensitivity of several fitted experi-

ments to the effective Aeff
2 for the proton structure function,

Fp
2 ðxB;Q2Þ, evaluated at the xB values shown on the

horizontal axis, for Q ¼ 1.3 (top), 4 (lower left), and
10 GeV (lower right subfigure). The L2 sensitivity is
approximately equal to the variation in χ2E for experiment
E when Aeff

2 ½Fp
2 ðxB;Q2Þ� is increased by the 68% C.L.

Hessian uncertainty above its best-fit value at the specified
xB. In other words, we increase Aeff

2 ½Fp
2 ðxB;Q2Þ� to the

upper boundary of the dark error band for the respective Q
in Fig. 3 and ask how χ2E changes under this variation.

The curves in Fig. 7 are for several experiments in the
CT18 NNLO fit that show the highest sensitivity to
Aeff
2 ½Fp

2 ðxB;Q2Þ� at xB > 0.6. At Q ¼ 1.3 GeV, these are
BCDMS ep and ed DIS cross sections [55,56], the NMC
ratio of ep and ed DIS cross sections [57], CDHSW F2 and
F3 measurements for charged-current DIS on a heavy
nucleus [58], E866/NuSea pp Drell-Yan cross sections
[59], and CMS jet production cross sections at 7 and 8 TeV
[60,61]. Although the coverage by these data in the CT18
fit ends roughly at x ≈ 0.75, they predict Aeff

2 at larger x
values through extrapolation.
While there is a reasonable agreement between the experi-

ments on thevalue ofAeff
2 ½Fp

2 ðxB;Q2Þ�, the uncertainty bands
on Aeff

2 ½Fp
2 ðxB;Q2Þ� in Fig. 3 emerge as a compromise

between the opposite pulls of the contributing experiments.
AtQ ¼ 1.3 GeV and xB > 0.85 in the left Fig. 7, we observe
that the positive variation of Aeff

2 ½Fp
2 ðxB;Q2Þ� leads to a

decrease of χ2E for the BCDMS ep DIS and E866/NuSeA

FIG. 6. The effective exponent Aeff
2 for the PDF flavors g vs ūþ d̄. The x values, from the upper to lower row, are 0.75,0.7,0.625. The

Q values, from left to right, 1.3,4, and 10 GeV. The rectangle shows the region Aeff
2 ðgÞ < 4 and Aeff

2 ðūþ d̄Þ < 5 that is disfavored by
the QCRs.
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pp Drell-Yan cross sections by up to 10 units, while
at the same time, it increases χ2E for the BCDMS ed DIS
cross section by a comparable amount. At xB ¼ 0.6–0.7,
the E866/NuSeA data, together with BCDMS ed DIS and
CMS jet production datasets, prefer a larger-than-nominal
Aeff
2 ½Fp

2 ðxB;Q2Þ�, while they are opposed by downward pulls
on Aeff

2 ½Fp
2 ðxB;Q2Þ� from BCDMS ep DIS, CDHSW

charged-current DIS, NMC ep=ed ratio, and other
measurements.
At Q ¼ 4 and 10 GeV, the CDHSW datasets play a less

prominent role, while the combined HERA Iþ II DIS
dataset [62] imposes some constraints.
Next, we turn to the sensitivities to Aeff

2 of uV and dV

distributions at Q ¼ 1.3 GeV in Fig. 8. The pattern of

FIG. 7. L2 sensitivity to the effective exponent Aeff
2 for the proton structure function F2ðxB; Q2Þ evaluated with the CT18NNLO PDF

ensemble, as a function of xB for the Q values of 1.3,4, and 10 GeV.
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sensitivities to Aeff
2 of uV in the left panel is visually

similar to that for Fp
2 ðxB;Q2Þ at Q ¼ 4 GeV in the

second Fig. 7. Once again, competing pulls of the
BCDMS ep cross sections and E866/NuSea pp Drell-
Yan cross sections against the BCDMS ed DIS cross
sections stand out at x > 0.8. At x ¼ 0.6, the E866/
NuSea data and to some extent the HERA DIS data prefer
higher Aeff

2 than the BCDMS ed and NMC p=d DIS
measurements.
The pattern on the pulls on Aeff

2 is more elaborate for dV

in the right panel of Fig. 8. The dV is less constrained at
large x than uV because the relevant data in the global fit are
dominated by neutral-current DIS measurements that are
four times more sensitive to up-type quark PDFs than to
down-type ones. In Figs. 4 and 5, we observed a moderate
PDF uncertainty on Aeff

2 for uV and a much larger
uncertainty on dV , especially at x > 0.75 where the para-
metrization uncertainty dominates.
Since the published CT18 parametrization sets A2;dV

¼
A2;uV

, in the region x > 0.9 with no data, Aeff
2 for dV

essentially follows that for uV. Namely, its value reflects a
tradeoff between the opposing pulls of the BCDMS ep and
ed DIS datasets. At x < 0.9, we see a different pattern,
whereby a fairly strong upward pull on Aeff

2 by the NMC
p=d ratio, complemented by LHCb W=Z production at
8 TeV [63] and both BCDMS ep and edDIS, is opposed by
the combined HERA DIS, E866/NuSea pp, as well as by
CDHSW and CCFR [64] inclusive charged-current DIS
data on heavy nuclei.
In these comparisons, we see some differences between

the preferences of scattering experiments on the proton
versus deuteron and heavy-nuclei scattering. While these
differences do not rise to clear disagreements, they

nevertheless suggest importance of the treatment of nuclear
effects in future PDF fits.

IV. IMPLICATIONS FOR
LOW-ENERGY DYNAMICS

We can now address the question of whether phenom-
enological PDFs reflect manifestations of low-energy
dynamics, based on the discussion of the physical meaning
of PDFs in nonperturbative approaches and phenomeno-
logical fits in Sec. II B, the mathematical arguments of
Sec. III A, and numerical results in Secs. III D–III F. We
will focus on two points relevant for further analyses: the
relation between the nonperturbative approaches and phe-
nomenological PDFs and also studies of PDFs in the pion.

A. Relation to nonperturbative approaches

It seems appropriate to assume that the quark counting
rules are realized when the QCD coupling in semihard
scattering is reasonably small, so that the final Fock states
are dominated by contributions with a small number of
perturbative partons interacting through nearly perturbative
interactions. The reality is more complex: radiation in the
PQCD regime results in logarithmic evolution of the
partonic probability from large x at low Q2 toward smaller
x values at higher Q2, which in turn introduces Q2

dependence of the (1 − x) exponents quantified by their
anomalous dimensions [24,31,32]. The ideal window in
fx;Q2g for QCR studies overlaps with the resonance
region in DIS, from which the structure functions can still
be extracted, but the global fits of PDFs in this domain
must include target-mass corrections—a kinematic effect
dependent on a specific scattering process—and other

FIG. 8. L2 sensitivity to the effective exponent Aeff
2 for uVðx;Q2Þ (left) and dVðx;Q2Þ (right) vs x at Q ¼ 1.3 GeV.
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higher-twist terms [14]. Threshold resummation [65,66]
and related nonperturbative effects, such as the modified
running of the QCD coupling constant [67], are important
at the highest x.
Reconciliation of the nonperturbative and phenomeno-

logical definitions of PDFs runs into important differences
between the degrees of freedom adopted in various theo-
retical approaches. In the PQCD collinear factorization
framework exemplified by Eq. (10) for deep inelastic
scattering, universal PDFs correspond to the long-distance
part of the hadronic cross section that is perturbatively
expanded as a series of the small QCD coupling and power-
suppressed (twist) terms. Here, both expansions are made
possible by the presence of a scale Q > 1 GeV in the hard
cross section. Phenomenological PDFs are defined in an
MS or another factorization scheme introduced to separate
long- and short-distance radiative contributions.
Nonperturbative predictions for the hadron structure do

not have an inherent large energy scale that sets the small
expansion parameters. They describe the internal structure
at a low hadronic scale μ0 < 1 GeV and must be matched
to the factorized PQCD predictions at an intermediate scale
Q0 > μ0. The bridge between these two scales, namely the
one-to-one connection between the low-scale dynamic
degrees of freedom to the PQCD quarks and gluons,
remains an unsolved problem, with hints available in
Dyson-Schwinger approaches and lattice QCD, e.g., in
Refs. [6,68–70].
In the absence of such a clear connection at present, one

might resort to a model of the spin and flavor dependence
of the whole operator matrix element in the MS definition
(11) of fa=pðx;Q2Þ. Results obtained with an SUð6Þ-
symmetric wave function or an SUð6Þ-broken [71],
quark-diquark configuration [72–75], to name a few, reveal
useful hints about the x dependence of PDFs at large x. We
relied on these considerations when equating A2, the
(1 − x) exponents of the valence up and down quarks, in
the PDF parametrizations adopted in the CT18 analysis.
A similar spin-flavor consideration for the pion, dis-

cussed in the next subsection, seems less relevant at mild
energies due to the pion’s pseudo-Nambu–Goldstone
origin.

B. Pion case

In Refs. [22,29–31], the counting rules were also
formulated for the structure function of the pion, predicting
a ð1 − xÞ2 falloff near the threshold. This behavior is often
predicted based on the expression of the pion PDF, or
distribution amplitude, in terms of the long-distance pion
wave function ϕ and semihard scattering contribution
dominated by the qq̄ state, as reviewed in Sec. II A 2
and Fig. 1.
The pion structure provides a fascinating window on

QCD dynamics. Kinematics of the target meson in neutral-
current DIS (Sec. II B) takes a new meaning in light of the

pion mass generation, a key emerging feature for pion-
related observables. Chiral symmetry and its breaking
govern the pion structure at low to mid energies. The
nonperturbative quark-quark interaction cannot be replaced
by a hard-gluon exchange at energies at which manifes-
tations of chiral symmetry are substantial compared to
PQCD interactions. This point is also highlighted for a
related case of hard exclusive processes in Ref. [76]. The
latter are best understood by comparing a fully nonpertur-
bative approach for predicting the pion electromagnetic
form factor to a large-Q2 description in terms of distribu-
tion amplitudes and a hard-scattering part [9,77]. The
addition of nonperturbative effects to the hard-gluon
exchange in Ref. [76] improves the description of the
form factor at low/moderate Q2 and provides a better
transition to the asymptotic “perturbative” behavior [77]
associated with the QCRs for Q2 up to a least 10 GeV2.
The role played by the large-x distribution amplitude (or the
structure function) in the behavior of the pion electromag-
netic form factor at large Q2 has been emphasized
numerous times; see, e.g., Refs. [78–80]. In other words,
for the pion, the concepts of weak coupling and a loosely
bound initial state assumed in the QCR picture cannot be
approached without also considering the long-distance
effects induced by chiral symmetry.
Present and future experiments—at JLab, EIC, or

AMBER/COMPASS++—aim to unveil the pion structure
in DIS and Drell-Yan pair production. The questions
examined throughout this manuscript apply to the fits of
pion PDFs. Given the simpler valence structure of the pion
and the pion’s low mass, we anticipate considerable
simplifications with respect to the case of the proton.
The main experimental constraints on the pion PDFs at
large x for now come from the E615 Drell-Yan pair
production in pion-nucleus scattering [81]. In this process,
a large momentum fraction x1 for the pion corresponds to a
small x2 for a nucleus, except in the true threshold limit
when s ≈Q2, where no measurements currently exist. In
such kinematic regime, when the nuclear beam remnant
creates high hadronic multiplicities in the final state, one
must carefully revisit the justifications for PQCD factori-
zation for the Drell-Yan process presented at the end of
Sec. II B. Nuclear shadowing in the initial state and
interactions with the nuclear remnant in the final state
may elevate the power-suppressed contributions as com-
pared to the nucleon scattering. A concern about having a
genuinely free pion target arises in prompt photon pro-
duction in pion-proton scattering, as well as in leading
neutron electroproduction. On the positive side, the finely
binned E615 data points extend to x1 ¼ 0.99, very close to
the end point. Due to the smallness of the pion mass, target-
mass corrections for pion DIS are almost negligible [78].
Modern global analyses for the pion PDFs [26,27,82]

now apply advanced theoretical frameworks, e.g., threshold
resummation [65,83]. Depending on the theoretical

TESTING MOMENTUM DEPENDENCE OF THE … PHYS. REV. D 103, 054029 (2021)

054029-17



framework, the recent analyses find that the pion data are
compatible with a nominal (1 − x) or ð1 − xÞ2 behavior of
the PDF parametrization at Q0. When the large-x resum-
mation is included for the DY data, the authors [65,83] find
a fast falloff of the valence pion PDFs in (1 − x), consistent
with A2 ¼ 2. While threshold resummation must come into
play at large x, it is not a sufficient condition for testing that
the extracted PDFs fulfill the QCR predictions. None of
these analyses addresses the functional mimicry of high-
degree polynomial fits discussed in Sec. III A.
As we emphasized in that section, without knowing the

exact functional form of the PDFs, one must include the
end-point region, ideally x > 0.9, to pin down the low
powers of (1 − x) in the monomial expansion. Physical
uncertainties grow in the end-point region. For example, if
threshold resummation is necessary, one must account for
its uncertainties due to the choice of factorization scales,
matching on the fixed-order prediction, and power-sup-
pressed terms.
On the other hand, a fit that is restricted to smaller values

of x introduces a spurious correlation between the coef-
ficients with low and high powers of (1 − x). This corre-
lation depends on the fitted data sample and strongly
modifies the lowest-power monomial terms, as illustrated
in Figs. 2(b)–2(d).
An alternative approach in Sec. III B computes the

effective exponent Aeff
2 that can be compared against

theoretical predictions without reconstructing the analytic
form of the PDFs. The value of Aeff

2 depends on the range of
x. Its global trend, reflecting slow variations over x, must be
distinguished from the local one, existing in a small
neighborhood of the examined data bins. For complex
PDF parametrizations, like the ones used by NNPDF, the
effective exponent may have large local variations, due to
mimicry, and require averaging over PDF replicas and/or a
range of x in order to determine its x → 1 limit. For smooth
PDF parametrizations, like the CT18 or JAM ones, aver-
aging is not necessary; the Aeff

2 values computed based on
such PDFs follow smooth trends and can be determined for
comparisons against the QCRs at the momentum fractions
of about 0.8, as has been done in Fig. 3.
Analogous considerations apply to PDFs predicted by

low-energy models. Ideally, these models should provide
uncertainty bands for the cross sections or PDFs that can be
verified (or falsified) by the experimental data over the full
x range. Such uncertainties are difficult to estimate faith-
fully. In the absence of the uncertainty bands, one must
focus on the aspects of the low-energy predictions that are
preserved in hard scattering. For example, a low-energy
dynamic effect like the broadening of the parton distribu-
tions due to the emergence of dynamical mass [2,84–86]
may favor a particular (1 − x) falloff power, yet consistency
of this power with the experimental data in some kinematic
region is not sufficient for validating such a prediction as
the only viable one. The local trend quantified by the

empirical Aeff
2 values may differ from the global trend in

complex nonperturbative models. A comparison against the
QCRs requires experimental access to the end point x ¼ 1,
where additional dynamical effects are most pronounced.
Sections III D and III E demonstrate that Aeff

2 depends on
the factorization scale Q. The pion valence PDFs obey the
same nonsinglet evolution equation as the proton ones;
thus, Aeff

2 for the pion PDFs may change by 0.5–1 units
within the typical Q range, like in the proton case. The
evolution of a PDF that fulfills the QCRs at a low,
prefactorization scale may either increase or decrease
Aeff
2 at a higher Q, reflecting the functional mimicry.

V. CONCLUSIONS

Complementary to the constraints based on first princi-
ples, the quark counting rules offer predictions for DIS
structure functions and PDFs near the elastic threshold. In
this picture, when a hadron target is almost unperturbed,
and the strong coupling constant is small, the structure
functions in a nucleon exhibit a ð1 − xÞp falloff in the limit
x → 1, reflecting exchanges of semihard gluons between
the quarks in the incoming bound state, as discussed in
Sec. II A.
We examined two possible strategies for testing the

quark counting rules with experimental data. From a purely
mathematical point of view, the concept of polynomial
mimicry, demonstrated in Sec. III A by employing the
Bézier curve technique, reveals a limitation in reconstruct-
ing the exact functional forms of PDFs from discrete data,
whether based on an interpolation or a fit. It is not possible
to uniquely determine the powers of a (1 − x) monomial
expansion except very closely to the end point. Associated
uncertainties can be large.
As an alternative, Sec. III B showed that it is possible to

define an effective exponent to examine the large-x
behavior of any functional form for the PDFs. The
leading-power structure function Fp

2 ðx;Q2Þ reconstructed
within the CT18 NNLO global analysis [23] agrees, within
error bands at moderate scales Q, with the predicted power
law. However, a non-negligible shift in the effective
(1 − x)-exponent with increasing Q2 is observed in
Fig. 3, as expected from DGLAP evolution. Moreover,
the resonance region in DIS forbids a reliable analysis at
large-x values and photon virtuality of a few GeVs.
This has led us to our bottom line: exploration of the

relevance of quark counting rules for high-energy processes
must address various factors arising from both theory and
statistics. We have investigated the pertinent issues in the
case of PDFs for the nucleon, for which the situation is best
understood. These issues include differences between the
quark counting rules for hadronic observables, such as
F2ðx;Q2Þ, as opposed to MS PDFs; the universality of the
PDFs and the role of power-suppressed and soft correc-
tions; the phenomenological PDF uncertainty reflecting the
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scarcity of the data at large x as well as the choice of the
PDF parametrization. The latter point has been developed
by studying N ¼ 363 replicas of the CT18NNLO analysis;
see Sec. III C.
Global analyses are based on experimental data from

several processes, such as DIS and DY. When considering
the effective power laws at the PDF level in Sec. III E, we
have found that not all flavors behave on the same footing.
The valence up distribution is consistent with the running
exponent of 3, the valence down and gluon distributions on
average tend to have lower-than-expected exponents, and
the sea-quark exponent is too high; see Fig. 4. The ūþ d̄
exponent only slightly decreases withQ2. In the same spirit,
the preferred effective exponents depend at some level on the
fitted experimental process, as highlighted in Sec. III F.
In conclusion, we emphasize that the quark counting rules

emerge in the limit of weak coupling in processes with little
underlying hadronic activity. Violations of these conditions
in at least some high-energy processes put in question the
universality of the rules, which is especially relevant for uses
in global analyses. On the other hand, there may be
experimental measurements that favor the QCRs, such as
a subclass of DIS events with low final-state hadronic
multiplicities. The other possibility is offered by pion
scattering discussed in Sec. IV B, which is less affected
by collateral factors present in the nucleon or nuclear cases.

An experimental observation of the x dependence
predicted by a nonperturbative calculation constitutes an
insufficient, but nonredundant, condition for validating the
calculation. Functional forms of fitted PDFs are unneces-
sary but sufficient for describing the data. Only by
measuring the structure functions/PDFs near the end point
x ¼ 1, one may reveal evidence of the primordial power
law, as we have demonstrated in Sec. III A based on the
comparison of the monomial and Bézier expansions.
Reconciliation of the predictive phenomenological fits
and the interpretative nonperturbative approaches within
uncertainties will require more data at large x as well as
efforts to address theoretical issues that hinder our under-
standing of cross sections at the end point x ¼ 1.
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