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The existing theory of hard exclusive QCD processes is based on two assumptions: (i) factorization into
a hard block convoluted with the light front distribution amplitudes; (ii) use of perturbative gluon
exchanges within the hard block. However, unlike deep inelastic scattering and jet physics, the
characteristic momentum transfer Q involved in the factorized block is not large enough for this theory
to be phenomenologically successful. In this work, we revisit the latter assumption (ii), by explicitly
calculating the instanton-induced contributions to the hard block, and show that they contribute
substantially to the vector, scalar, and gravitational form factors of the pseudoscalar, scalar, and vector
mesons, over a wide range of momentum transfer.
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I. INTRODUCTION

A. The main goals and plan of the paper

The field of hadronic physics going back to the pioneer-
ing theoretical and experimental works of the 1960s,
continues to be a field of active development till today.
Remarkably, it remains still deeply divided along two
conceptually different approaches.
One approach is focused on the nontrivial vacuum

properties, with more specifically the central aspects of
chiral symmetry breaking and confinement. The discovery
of instantons and the development of numerical lattice
gauge theory have put the Euclidean formulation of QCD at
the center stage. The theory and phenomenology of
multiple Euclidean correlation functions became the pri-
mary source of information about quark-quark interactions.
The interrelation of perturbative and nonperturbative con-
tributions in various channels, as a function of the distance
between the operators, was clarified already in the 1990s
(see e.g., a review [1]). Models, with “constituent quark”
masses, confining and “residual” 4-fermion forces, pro-
vided a good description of most aspects of hadronic
spectroscopy. More recently, the discussion has shifted
to the properties of operators made of 4-, 5-, and 6-quarks
and their mixture with gluons.
Another approach is focused on partonic physics, with

more specifically inclusive and exclusive reactions. The
reader hardly needs to be reminded of the importance of

deep inelastic scattering (DIS) and jet physics, where
perturbatively calculated hard cross sections are assumed
to factor out from the structure and fragmentation func-
tions, which are empirically fitted to a large sample of
data. These functions, defined on a light front, are not
readily amenable to an Euclidean formulation. The light
front distribution amplitudes of the lightest hadrons have
been discussed in the context of the QCD sum rules [2],
bottom-up holographic models [3], bound state resumma-
tions [4], basis light front quantization [5,6], and covariant
constituent quark models [7–9]. Recently, an Euclidean
formulation was put forth to extract the light front dis-
tributions from equal-time quasidistributions [10,11]. Its
implementation on the lattice [12] and in the random
instanton vacuum model [13] has been reasonably suc-
cessful, providing a first principle approach.
The theory of exclusive QCD reactions (the subject of

this work) follows a similar reasoning; see the early works
[14–16]. It is also based on two assumptions:

(i) the separation of scales, based on the assumption
that the momentum transferQ (the scale in the “hard
block”), is large compared to the typical quark mass
and transverse momenta inside hadrons;

(ii) the hard block can be calculated perturbatively using
gluon exchanges.

However, the theory based on these two assumptions is
insofar not successful, as there remains a wide gap between
the semihard domain of Q in which experimental/lattice
results are available and the “asymptotic” theory atQ → ∞.
(The latest lattice results with very fine lattices that we will
discuss at the end of the paper are starting to fill this gap.) The
empirical values of the mesonic form factors times Q2 are
well above the one-gluon exchange predictions, even with
(what we consider maximally possible) flat distribution
amplitudes and higher twist contributions included.
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This is not surprising, as there is an important difference
between the scales inDIS and jet physics on the one hand and
exclusive processes on the other. The former operates in the
range Q2 ¼ 102 − 104 GeV2, while the exclusive processes
operate in a different range with Q2 ¼ 2–10 GeV2 (some-
times referred to as a semihard regime).
We accept the assumption (i) mentioned above: the Q2

scale is indeed large compared to the typical squared
transverse momentum hp2⊥i ∼ 0.1 GeV2 within a hadron,
or the constituent quark mass M2

Q ∼ 0.1–0.15 GeV2. In the
Breit frame description of the form factors, conventional
“collinear” kinematics should still hold. So we still have a
notion of a “hard block operator,” sandwiched between two
wave functions.
Yet we do not accept the second assumption (ii), showing

that at such momentum transfer Q, the nonperturbative
quark interactions are not at all negligible in comparison to
gluon exchanges. Therefore a purely perturbative treatment
of the hard block needs to be supplemented by calculations
of leading nonperturbative contributions from first prin-
ciples, and this paper makes the first steps in this direction.
Among various exclusive reactions, the recent literature

is focused mainly on decays of heavy quark mesons such as
D- and B-mesons, much studied at electron colliders.
However, in this work we restrict our analysis to only
elastic form factors of light mesons. We will consider two
types of hard blocks, induced by either virtual photons or
scalars. (Of course, scattering of Higgs bosons cannot be
experimentally achieved, but it has been studied on the
lattice, and it is rather interesting.)
Before we outline the content of this work, let us

comment on other approaches aimed at the mesonic form
factors. Instead of discussing on-shell light-cone distribu-
tion amplitudes, one may start with two- or three-point
correlation functions, containing the electromagnetic cur-
rent and two local currents with meson quantum numbers.
One of them or both may carry large virtuality, in which
case the three points probed are all close to each other. After
evaluating the correlation functions in the deeply virtual
regimes, one relates them to on-shell form factors via
dispersion relations or QCD sum rules.
For the pion form factor these approaches can be split into

two categories, based on the different pion currents used. The
first one (e.g., [17]) uses theaxial currents ðd̄γμγ5uÞ,while the
second one uses the pseudoscalar one ðd̄γ5uÞ. Note that in the
former both quarks carry the same chirality (LLþ RR),while
in the latter they carry opposite chiralities (LRþ RL).
In the first category, the correlators are analyzed using

the QCD sum rule methods, previously developed for the
two-point axial current correlators. They make use of the
operator product expansion (OPE) which assumes that
the distances between the currents are small in comparison
to the typical vacuum fields, represented by the gluon and
quark condensates. The small-distance correlators are then
connected to integrals over on-shell contributions using the

pertinent spectral densities, with the pion plus the A1 meson
plus a “high energy continuum.” In the second category, the
distances between the currents are also assumed to be
small, but the calculation is based on the so-called single-
instanton approximation (SIA); see [18–21].
Instead of comparing the specific results of these works,

we make a more general comment on the same ideas
previously applied to the two-point functions. Since the
axial spectral density is known experimentally from τ-
lepton decays, these correlation functions are phenomeno-
logically known (see e.g., the analysis in [22] and many
others). The OPE expressions may only be used at rather
small distances x < 0.4 fm, while the pion contribution
becomes visible only at much larger distances x > 1 fm. In
between, the contribution of the A1 meson dominates.
Therefore we are very skeptical of the approach in the first
category. (Note also that the “instanton liquid model”
works at all distances; see Fig. 2 in [22].)
The pseudoscalar two-point function is also known and

was calculated on the lattice inmultipleworks (see e.g., [23]).
Unlike the axial case, here the pion contribution is large and
dominant already at small distances x ∼ 0.3 fm. It is alsowell
reproduced by the single instanton contribution. Therefore,
one should perhaps trust the accuracy of the approach in the
second category (with the pseudoscalar currents) more. [The
relevance of these comments to our work will be evident
below, in the relative contributions of themesonic distribution
amplitudes (DA) with different chiral structures.]
The outline of our paper is as follows: the next

introductory section compares the magnitude of one-gluon
exchange with a generic 4-fermion interaction of the
Nambu–Jona-Lasinio type, to get an initial qualitative idea
on the relative strength of the perturbative and nonpertur-
bative effects. Clearly, the nonperturbative contributions
will wane out at larger momentum transfer. This section
also includes Sec. I C with a brief introduction to the salient
instanton effects and their key parameters.
Since the paper contains a lot of technical details, not so

important for a first reading, we decided to collect all the
results for the pion, the rho vector meson, and the scalar and
gravitational form factors in Sec. II. The actual calculations
start from the perturbative ones (diagram (a) in Fig. 1) in
Sec. III A. They include the twist-2 and twist-3 contribu-
tions, most of which have been discussed in some form in
the literature for the vector form factors, but not in a fully
quantitative manner.
As discussed in Sec. III F, these results can be general-

ized to a large set of effective 4-quark scattering operators,
as a substitute for one-gluon exchange. A simple warm-up
calculation of this kind consists in taking the Fourier
transform of the instanton field instead of a gluon propa-
gator, as discussed in Sec. III G. We do not consider such an
approach internally consistent, and for this reason we will
not include it in the “results” section.
The core calculations of the instanton-induced effects

are collected in Sec. IV. We start by explaining an
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Lehmann-Symanzik-Zimmermann (LSZ) algorithm (short
of a Hamiltonian formulation), whereby full multiple
quark propagators in the instanton field are amputated
from their trivial free propagation, and leading to local
operators of the hard block. We discuss separately the
contributions to the propagators due to the Dirac zero
modes and the Dirac nonzero modes.
Section V contains a discussion of the mesonic light-

cone DAs, which are the wave functions integrated over
transverse momenta. Following a brief review of the
literature, we introduce the pion, rho, and scalar meson
amplitudes with different chiral structures, which we use
consistently in the results of the calculations. The paper
ends with a discussion in Sec. VI, in which the phenom-
enological and current lattice results about the mesonic
form factors are compared. A number of Appendixes are
added to include more technical details of the calculations.

B. Comparing the one-gluon exchange
with the 4-fermion interaction of the

Nambu–Jona-Lasinio model

Historically, the 1961 paper by Nambu and Jona-Lasinio
(NJL) [24] was the first breakthrough that established the
notion of chiral symmetry of the strong interactions, as well

as its spontaneous breaking. Furthermore, it also suggested
a particular mechanism for it to occur, by postulating the
existence of a certain 4-fermion interaction with a given
coupling GNJL, strong enough to make a superconductor-
like gap in the fermionic vacuum. The second important
parameter of the model is the UV cutoff ΛNJL ∼ 1 GeV,
below which their hypothetical attractive 4-fermion inter-
action operates. Their magnitudes were determined from
the empirical quark condensate and pion properties [25]
(for a review see [26]).
With time there were many applications of the NJL

model with different operators and parameters. For defi-
niteness we use the parameter set from Ref. [27] (and other
papers of the same authors) as an example. Those were
consistently used for the description of aspects of chiral
symmetry breaking, such as the quark constituent masses,
the pion and kaon masses, and those of other bound states
such as nucleons (made of a constituent quark and a
diquark). The central part to all NJL applications is the
so-called “gap equation” for the effective quark mass

MQ ¼ mþ 3GNJLMQ

π2

Z
1=Λ2

IR

1=Λ2
UV

dτ
τ2

e−τM
2 ð1Þ

where m is the current quark mass and MQ the constituent
quark mass following from (1). Note that when m ¼ 0,
M ≠ 0 cancels out in the left-hand side and the right-hand
side, and remains only in the (regulated) loop integral. For
the input parameters used in these works

GNJL ¼ 19 GeV−2; ΛIR ¼ 0.24 GeV; ΛUV ¼ 0.645 GeV;

ð2Þ

the constituent mass is found to beMQ ≈ 0.4 GeV, close to
half of the mass of the “usual” ρ meson mass or 1=3 of the
Δ baryon mass.
For an estimate, it is useful to use the magnitude of the

NJL nonperturbative force and compare it to the force from
one-gluon exchange or Fgluonðk2Þ ¼ g2=k2. For a typical
exchange within a meson with

k2 ¼ xx̄Q2 ≈Q2=4; ð3Þ

the ratio of the NJL to gluon exchange forces is

GNJL

Fgluon
exp

�
−

k2

Λ2
UV

�
; ð4Þ

where we assumed a Gaussian or exponential form factor
with ΛUV. Figure 2 shows the dependence of (4) on Q2.
While this ratio drops toward large momenta due to the
form factors, the ratio remains above one in a wide range of
momentum transfers.

(a) (b)

(c) (d)

FIG. 1. The perturbative one-gluon exchange diagrams: (a) Ex-
plains our notations for momenta of quarks and mesons. The thin
solid lines are free quark propagators, the red star indicates the
virtual photon (or scalar) vertex, bringing in large momentum qμ,
and the shaded ovals represent the (light-front) mesonic density
matrices (distributions). (b) Indicates a “Born-style contribution,”
in which the gluon propagator is substituted by the Fourier
transform of the instanton field. (c), (d) Contain three propagators
in the instanton background (thick lines). In (c) all of them are
SNZ, made of nonzero Dirac modes, while in (d) two of them are
SZ made of quark zero modes. This last contribution will be
referred to as the “’t Hooft-style term.”
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Thus, on a qualitative level one may think that the
puzzling large value of the form factors at intermediate Q
can perhaps be understood by adding to the perturbative
diagram Fig. 1(a) the nonperturbative diagram 1(b),
with the NJL effective quark scattering of appropriate
magnitude.
However, it is impossible to do it consistently. The

electromagnetic, scalar, or gravitational vertex (indicated
by stars in this figure) may occur well inside the cutoff
region [indicated by a blue circle in diagram 1(c)] with
strong nonperturbative fields, and the hypothetical nature
of the local NJL interaction provides no obvious clues on
how to handle propagation in it. For the minimal vector
insertion, one may argue for gauge invariance to compen-
sate for the lack thereof in the presence of a nonlocal 4- or
6-quark interaction [28], but this constraint does not ensure
quantum UAð1Þ explicit breaking (see below) and does
not extend consistently to the scalar, gravitational, and
more general vertices. So, one needs a more microscopic
approach, providing a consistent description of quark
propagation in the nonperturbative backgrounds.

C. Brief introduction to instanton effects

So far we focused on the (historically first) nonpertur-
bative approach to physics of chiral symmetry breaking,
namely the NJL model. With the advent of QCD in the
1970s, this hypothetical interaction between quarks
obtained a more fundamental explanation which came
from the understanding of gauge topology, the Chern-
Simons number, and topological tunneling events, semi-
classically described by instantons [29]. As discovered by
’t Hooft [30], instantons indeed generate 4- and 6-fermion
effective interactions of quarks. Those qualitatively differ
from the NJL operator in the fact that they explicitly violate

UAð1Þ chiral symmetry (see below). By the end of the
1970s most ingredients of the instanton theory—fermionic
zero modes and the propagators in the instanton field we
will be using—were constructed [31].
In the 1980s the main question then was whether those

instanton-induced interquark forces are strong enough to
generate chiral symmetry breaking. Assuming it is so, one
of us [32] developed the so-called instanton liquid model
(ILM), using as inputs the values of the quark and gluon
condensates. It assumes that the instanton ensemble has the
following parameters:

nIþĪ ≈ 1 fm−4; ρ ∼ 1=3 fm ∼ 1=ð0.6 GeVÞ ð5Þ

for the instanton plus anti-instanton density and size,
respectively. Their combination, known as the diluteness
parameter of the instanton ensemble, is defined by

κ ≡ π2ρ4nIþĪ : ð6Þ

These two parameters of the ILM correlate well with the
parameters of the NJL model; in particular the size ρ
corresponds to the inverse UV cutoff. Years later, these
parameters were confirmed, by both lattice studies and
numerical simulation of the interacting instanton liquid
model of the ensemble (for a review see [33]).
The prevailing picture of the nonperturbative fields

populating the QCD vacuum in the 1970s—reflected in
the wide use of the OPE in the QCD sum rule framework—
was a near-homogeneous vacuum field, with characteristic
momenta

p ∼ ΛQCD ∼ 1=fm:

The ILM had drastically changed the picture, emphasizing
instead the role of the small-size instantons with relatively
strong fields. For a qualitative estimate, let us mention the
color summed field strength of these fields inside the
instantons

ðGa
μνðxÞÞ2 ¼

192ρ4

ðx2 þ ρ2Þ4 : ð7Þ

Its magnitude at the center of a typical instanton with ρ ¼
1=3 fm is large,

Grms ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGa

μνð0ÞÞ2
q

¼
ffiffiffiffiffiffiffiffi
192
p

=ρ2 ≈ 5 GeV2:

As we will show below, the averaging over the instanton
size distribution of the induced interactions in the hard
block causes a shift toward smaller instanton sizes and
stronger fields, with typically ρ ¼ 1=6 fm and Grms ∼
20 GeV2. Such fields are by no means small compared
to the scale of the momentum transfer between quarks in
the semihard domain under consideration. (Note also that it

nonperturbative to 
perturbative ratio

FIG. 2. The ratio of the nonperturbative-to-perturbative 4-
fermion effective vertex (4), with a Gaussian form factor (solid
line) and exponential form factor (dashed line), versus the
momentum transfer squared Q2ðGeV2Þ.
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is larger than the charm quark mass m2
c ≈ 2 GeV2. At the

end of the paper we will speculate that our light-meson
results can be extrapolated in quark mass, to the strange and
perhaps even charm sectors.)
Instanton fields were incorporated directly into many

physical effects. The simplest are the heavy quark potentials
[34] and high energy scattering [35], in which quark
trajectories can be described by straight lines. Many more
applications follow from ’t Hooft effective Lagrangian [30],
following from zero modes of the Dirac equation in the
instanton background field, as briefly recalled inAppendixC.
It is important to note that the existence of zero modes is a
consequence of topological theorems and cannot be changed
by any smooth deformation of the instanton field.
The multiquark effective Lagrangian for two quark

flavors (Nf ¼ 2) consists of certain 4-quark operators.
As the NJL interaction, they preserve SUðNfÞ chiral
symmetry, but unlike the NJL interaction, they explicitly
violate the UAð1Þ chiral symmetry. While in “mesonic”
notations, with σ ≡ ðq̄qÞ, π⃗ ≡ ðq̄iγ5τ⃗qÞ, η≡ ðq̄iγ5qÞ,
δ⃗≡ ðq̄ τ⃗ qÞ, the NJL Lagrangian has the structure

LNJL ∼ ðπ⃗2 þ σ2Þ; ð8Þ
a different instanton-induced one has the structure
(Nf ¼ 2)

LtHooft ∼ ðπ⃗2 þ σ2 − δ⃗2 − η2Þ: ð9Þ

It is the minus sign of the last two terms which indicates the
explicit breaking of UAð1Þ. Therefore in the η channel
(called η0 for three flavors and in PDG meson tables) the
interaction is not attractive but repulsive, making it heavy.
In passing, we also note that the light-front wave function
of the η0 was recently calculated in [6] (see Fig. 12), and it is
drastically different from that of the pions.
With the original ILM parameters, the diluteness param-

eter is κ ∼ 1=10, and multiple lattice studies using “deep
cooling” toward the action minima have reproduced this
value. This conclusion, however, was put in doubt by some
more recent studies, which studied the dependence on the
cooling time by extrapolating to its zero value time (that is,
to the quantum vacuum itself). This dependence is related
to instanton–anti-instanton annihilation processes during
cooling. As a result, they suggested a larger value for κ.
In particular, lattice-based study [36] focused on the

instanton contribution to three and two-point Green func-
tions in the full quantum vacuum and with cooling. Their
original motivation was to extract the gluon coupling αsðkÞ,
so the observable on which this work was focused is the
ratio of the three-point to two-point Green function (in
configurations transformed to the Landau gauge)

αMOMðkÞ ¼
k6

4π

hGð3Þðk2Þi2
hGð2Þðk2Þi3 : ð10Þ

In the “uncooled” quantum vacuum (with gluons) the effec-
tive coupling starts running downward at large k > 1 GeV,
as required by asymptotic freedom. However, at low k → 0,
one finds a persisting positive power of k, with a slope that
matches exactly the one following from an instanton
ensemble [37]:

αMOMðkÞ →
k4

18πn
: ð11Þ

Furthermore, after cooling for different cooling time τ, it
was observed that the same power spreads to all momenta,
even for k > 1 GeV. This corresponds to the expectation
that cooling eliminates perturbative gluons (the plain
waves) but preserves (a certain time-dependent fraction)
of instantons.
Here, we will not cover the details of this analysis, but

rather mention their main conclusion: the total instanton
density (extrapolated to zero cooling time) is n ∼ 10 fm−4,
an order of magnitude larger than in the original ILM. In
other words, this analysis suggests that the vacuum
instanton diluteness parameter (6) is actually not small,
but rather large κ ∼ 1. This conclusion does not in fact
contradict our understanding of the underlying chiral
symmetry breaking and the parameters of the ILM, since
this large density includes close IĪ pairs, with zero
topological charge. These molecules have a small impact
on chiral symmetry breaking and related observables, and
therefore were not included in the ILM. However, their
internal gauge fields are very strong and should affect
nonperturbative quark scattering of the type we discuss in
this paper.

II. RESULTS

In this paper we consider a larger set of form factors than
is usually done in the available literature. In particular, we
discuss the pseudoscalar, vector, and scalar mesons, and
we calculate the vector, scalar, graviton, and dilaton form
factors.
We also include in the distribution functions several

possible Dirac/chiral structures allowed by parity. We
calculate the contributions to the hard block corresponding
to all four diagrams of Fig. 1. Specifically, those are as
follows: 1(a) the perturbative one-gluon exchange; 1(b) the
Born- style contribution of the instanton gauge field; 1(c)
the contribution of the nonzero mode quark propagators in
the instanton background; and 1(d) the contribution of the
instanton zero modes to the propagators, or ’t Hooft
effective 4-fermion quark interaction.
There are many technical details about these contribu-

tions, the relative values of the various parameters, etc., all
of which are relegated to subsequent sections. Therefore,
we decided to present the final results first, with the step-
by-step derivation to be given later in the paper. Here we do
not discuss the subleading contributions, the uncertainties
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of all parameters involved, etc. For that one has to read the
paper in full. Also, the discussion of the various (light-
front) wave functions (distributions) will be discussed in
Sec. V. In order to avoid too many plots, we selected a
single “reasonable” example for the light-front distributions
of the pion and rho mesons. For the former it is just a “flat”
distribution, ϕπðxÞ ¼ 1, and for the latter we use a simple
parametrization

φρðξÞ ∼ exp

�
−

0.7
1 − ξ2

�
ð12Þ

with ξ ¼ x − x̄, the difference between the quark and
antiquark momentum fractions.
We discuss four types of elastic mesonic form factors:

(a) the vector ones, associated with hard scattering of a
photon; (b) the scalar ones, associated with scattering via a
Higgs boson exchange (of course, those are not in practice
doable, but scalar form factors were calculated numerically
via lattice gauge theory simulations); (c), (d) the gravita-
tional ones, associated with scattering via a graviton or
dilaton exchange. In this section we report results for three
contributions to each of them, of Figs. 1(a), 1(c), and 1(d).
Plots are provided only for the pseudoscalar and vector
mesons, and only for the vector and scalar form factors. For
other cases we present the expressions for the scattering
amplitudes.

A. Vector form factors of the pseudoscalar mesons

We will keep the notations of the contributions as
explained in Fig. 1. For example, the (photon-induced)
vector scattering amplitude on the pion, with perturbative
one-gluon exchange, will be referred to as Vπ

a, which is

Vπ
aðQ2Þ ¼ ϵμðqÞðpμþp0μÞðeuþ ed̄Þ

��
2CFπαsf2π
NcQ2

�

×
Z

dx1dx2

�
1

x̄1x̄2þm2
gluon=Q

2

��
φπðx1Þφπðx2Þ

þ 2
χ2π
Q2

�
φP
π ðx1ÞφP

π ðx2Þ
�

1

x̄2þE2⊥=Q2
− 1

�

þ 1

6
φP
π ðx1Þφ0Tπ ðx2Þ

�
1

x̄2þE2⊥=Q2
þ 1

����
:

ð13Þ

Here we show explicitly the electromagnetic charges
eu ¼ 2=3, ed̄ ¼ 1=3, although of course the total charge
of a positive pion is eu þ ed̄ ¼ 1. The color matrices give
the factor CF ¼ ðN2

c − 1Þ=2Nc ¼ 4=3withNc ¼ 3 number
of colors. The large spacelike photon momentum is qμ

and qμqμ ¼ −Q2 < 0. The photon polarization vector is
ϵμðqÞ, with ϵμqμ ¼ 0. The momenta of the initial and final
mesons are called p and p0. The pion decay constant is

fπ ≈ 133 MeV, and it characterizes the wave function at
the origin in the transverse plane, r⊥ ¼ 0. For the pion
distribution we use the expression (134) which includes not
only the chirally diagonal part of the distribution φπðxÞ but
also the chirally nondiagonal ones, such as φP

π ðxÞ. The DA’s
depend only on one longitudinal momentum fraction x,
which corresponds to the 2-body sector of the full wave
function. The regulators of the divergent integrals by extra
terms in the denominators are discussed in Sec. III B, where
the relative magnitude of both chiral contributions are
compared. Here the bar indicates that the momentum
fractions are those of antiquarks, x̄i ≡ 1 − xi. In terms of
the asymmetry parameters, these variables read as
xi ¼ ð1þ ξiÞ=2, x̄i ¼ ð1 − ξiÞ=2. The regulators are the
gluon mass and quark “transverse energy.”
Note that the last two terms ∼χ2π=Q2 are kept because χπ

(131) is large, unlike the masses and transverse momenta
squared of quarks which are ignored. We note further that
the sum of them is shown in the summary plot in Fig. 3.
The contribution we call the Born-like instanton con-

tribution Vπ
b has the same Dirac traces, as explained in

Sec. III G, and is obtained by substituting in Vπ
a the Fourier

transforms of the instanton gauge field (59) instead of the
gluon propagator, with

παsðQ=2Þ → κhG2ðQρ
ffiffiffiffiffiffiffiffiffi
x̄1x̄2
p Þi; ð14Þ

FIG. 3. The vector form factors of the pion times the squared
momentum transfer, Q2FπðQ2ÞðGeV2Þ versus Q2ðGeV2Þ. The
closed disks show the total perturbative contribution. The squares
correspond to the instanton contribution from the nonzero mode
propagators SNZ. The dotted line above is their sum. The solid
line is the usual dipole fit with the rho meson mass, and the open
points are from the experimental measurements. We do not show
the multiple data points at smaller Q2, where there is good
agreement with the dipole formula.
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and is therefore

Vπ
bðQ2Þ ¼ ϵμðqÞðpμ þ p0μÞðeu þ ed̄Þ

��
2CFκf2π
NcQ2

�

×
Z

dx1dx2hG2ðQρ
ffiffiffiffiffiffiffiffiffi
x̄1x̄2
p Þi

×

�
1

x̄1x̄2 þm2
gluon=Q

2

��
φπðx1Þφπðx2Þ

þ 2
χ2π
Q2

�
φP
π ðx1ÞφP

π ðx2Þ
�

1

x̄2 þ E2⊥=Q2
− 1

�

þ 1

6
φP
π ðx1Þφ0Tðx2Þ

�
1

x̄2 þ E2⊥=Q2
þ 1

����
:

ð15Þ

The instanton-induced form factor G is given in (59). The
angular brackets indicate averaging over the instanton size.
The contribution Vπ

c , from three nonzero mode propa-
gators, are discussed in Sec. IVA, and it leads to the
following result:

Vπ
c ¼ ϵμðqÞðpμþp0μÞðeuþ ed̄Þ

�
κπ2f2πχ2π
NcM2

Q
hρ2GVðQρÞi

×
Z

dx1dx2x̄1

�
φP
π ðx1ÞφP

π ðx2Þ−
1

36
φ0Tπ ðx1Þφ0Tπ ðx2Þ

��
:

ð16Þ

The function GV is given in (75). Again, the angular
brackets indicate that it is averaged over the instanton
size distribution, as explained in Sec. IV J. Note that the
partonic integrand involves a single momentum fraction x̄1
(or x̄2 in the symmetric term not shown). The other integral
is simply over the function itself. For all of them except φ0Tπ
it is the normalization integral equal to 1. Yet for this one it
is an integral of the derivative, and therefore it vanishes due
to the quark-antiquark symmetry x ↔ x̄Z

1

0

φ0Tπ ðxÞdx ¼ φT
π ð1Þ − φT

π ð0Þ→ 0 ð17Þ

so the last term in (16) does not actually contribute to the
form factor.
The contribution of the mixed zero mode and nonzero

mode (’t Hooft vertex) derived in Sec. IV E, to the pion
vector form factor is

Vπ
d ¼ −ϵμðqÞðpμ þ p0μÞðeu þ ed̄Þ

×

��
1

N2
cðNc þ 1Þ

�
4κπ2f2πχ2π
3M2

Q

�
ρ2

K1ðQρÞ
Qρ

�

×
Z

dx1dx2φP
π ðx1Þφ0Tπ ðx2Þ

�
: ð18Þ

As we noted in (17), this contribution vanishes after the x
integration is carried.
The summary plot of the pion vector form factor is

shown in Fig. 3, taking all three DAs as flat distributions
φπðxÞ ¼ φP

π ðxÞ ¼ 1 and φ0Tπ ¼ 0. This selection is moti-
vated by our view that the flat distributions represent an
upper bound on the DA, with the asymptotic form provid-
ing a lower bound.
The perturbative contributions Vπ

a (closed circles) is the
sum of all chiral structures of the pion density matrices. The
corresponding integrals for each of them separately are
shown in Fig. 7, from which it is seen that the chiral-
nondiagonal term is about twice larger than the chiral-
diagonal one in the range of momenta considered. This
feature was anticipated already in [38].
The instanton Born-style contributions to Vπ

b is relatively
close to Vπ

a if the instanton diluteness parameter is κ ¼ 1.
(For a discussion of its value see the end of Sec. I C.) To
avoid any misunderstanding, we note that the Vπ

b contri-
bution does not really constitute a consistent account for the
instanton effects, as are Vπ

c , Vπ
d, and therefore is not shown

in the summary plot.
The instanton-induced contribution Vπ

c (squares) at
κ ¼ 1 is comparable to the perturbative Vπ

a in magnitude,
but has a different dependence on Q2. The instanton form
factor is of course a decreasing function of momentum
transfer, but on the plot it is multiplied by an extraQ2 and is
therefore slowly increasing.
Taken together (dotted line at the top) they account for

the pion form factor for the corresponding values of Q2,
reasonably well joining the experimental data at the lower
end. We stress that no parameters were fitted for this to
happen. Our main focus is still a comparison between all
plots, with the same set of parameters.

B. Scalar form factors of the pion

One may think of a pointlike scalar quantum, hitting one
of the quarks with momentum transfer qμ to be the Higgs
boson. If so, the corresponding couplings are Yukawa
couplings λq; q ¼ u; d;…, of the standard model. However,
these couplings are unimportant for the form factors.
(For example, lattice groups use for convenience λu ¼ 1,
λd ¼ 0.) The corresponding amplitude of the elastic scat-
tering on a pion, with a perturbative one-gluon exchange
between quarks, leads to the following scattering
amplitude:

Sπa ¼−ðλuþ λdÞMQ

��
2πCFαsf2πχπ
NcQ2MQ

�Z
1

0

dx1dx2
x̄1x̄2þm2

gluon=Q
2

×

�
φπðx1ÞφP

π ðx2Þ
�
1þ 2

x̄2þE2⊥=Q2

�

þ 1

6
φπðx1ÞφT0

π ðx2Þ
��

: ð19Þ
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Note first that we included outside the square bracket the
quark constituent massMQ, which is balanced by the same
constituent mass in the denominator. We did it to facilitate
the comparison with the instanton-induced expressions to
follow.
In the previous section, on the vector form factor, it was

obvious that the factors with charges and momenta in the
amplitude do not belong to form factors, as they are also
present in the forward scattering at Q ¼ 0. The situation
with the scalar form factors is a bit different. The forward
scattering amplitude on a hadron h is proportional to

X
q

λqhhjq̄qjhi ¼ −
X
q

λq
∂M2

h

∂mq
ð20Þ

thanks to the Feynman-Hellman theorem. The derivative
appearing here is known for the pion from the Gell-Mann-
Oaks-Renner relation and for most hadrons from lattice
chiral extrapolations.
In the scalar plots to follow, we will show the square

brackets in the amplitudes times Q2 without the factors in
front, as we did for the vector cases. Indeed, our main focus
is on the relative magnitude of different contributions.
However, the reader should be cautioned that the true scalar
form factor FSðQ2Þ requires multiplication by an additional
factor

KS ¼
P

qλq∂M2
h=∂mq

MQ
P

qλq
ð21Þ

to enforce the standard form factor normalization
FSðQ ¼ 0Þ ¼ 1.
An additional contribution proportional to the quark

mass MQ, instead of χπ , is explicitly given in (45), but,
being subleading, it is not mentioned here.
Note also that the scalar amplitudes have a negative

overall sign, which really does not matter as the couplings
λq are arbitrary. This sign, of course, does not affect the
contribution to the form factor as captured by the square
bracket. The Born-like instanton contribution to the scalar
pion scattering, Sπb, is obtained by the same substitution
(14) to Sπa and is therefore not shown here.
The contribution of the instanton-induced Fig. 1(c) (with

three nonzero mode propagators) is

SπcðQ2Þ ¼ −ðλu þ λd̄ÞMQ

��
κπ2χπf2π
NcM3

Q

�
hðQρÞ2GSðQρÞi

×
Z

1

0

dx1dx2x̄2φπðx1Þ
�
φP
π ðx2Þ −

1

6
φT0
π ðx2Þ

��
:

ð22Þ
Unlike the vector form factor Vπ

c (16), the scalar form factor
here involves the form factor GS in (77), which is part
of GV .

The contribution from the mixed zero modes and non-
zero modes or ’t Hooft vertex is

SπdðQ2Þ ¼ −ðλu þ λd̄ÞMQ

��
1

N2
cðNc þ 1Þ

��
κπ2f2πχπ
M3

Q

�

× hQρK1ðQρÞi
Z

1

0

dx1dx2

×

�
x1φπðx2Þ

�
φP
π ðx1Þ þ

1

6
φT0
π ðx1Þ

�

þ x2φπðx1Þ
�
φP
π ðx2Þ þ

1

6
φT0
π ðx2Þ

���
: ð23Þ

The perturbative and instanton contributions to the scalar
form factor of the pion (with flat DAs) are shown in Fig. 4
versus Q2. Again, one finds them to be comparable in
magnitude but quite different in their Q dependence.
Moreover, their sum is roughly independent of Q2.

C. Form factors of transversely polarized vector mesons

The transversely polarized rho meson form factors are
both electric and magnetic (see below). For simplicity, we
quote here the contribution to the electric or charge form
factor by choosing the transverse polarization ϵTðp; p0Þ of
the ρ with momentum p, p0 to be also transverse to q,
or ϵTðp; p0Þ · q ¼ 0.

FIG. 4. We show the square bracket in the scalar scattering
amplitudes of the pion as in (19) times the momentum transfer
squared ðGeV2Þ versus Q2ðGeV2Þ. As in the previous plot, the
black closed disks correspond to the one-gluon exchange con-
tribution, the black squares correspond to the instanton contri-
bution from three nonzero mode propagators SNZ, and the black
triangles correspond to the zero mode terms SZ in two propa-
gators. The dotted line above is their sum. [We recall that the full
normalized scalar form factor is obtained by multiplying these
results by the extra factor (21).]
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The perturbative contribution (a) for the transversely polarized rho vector form factor is formally subleading (containing
an extra factor of m2

ρ=Q2), as the χ2π=Q2 contribution in the second term of Vπ
a, and is found to be

Vρ
aðQ2Þ ¼ ϵμðqÞðpμ þ p0μÞðeu þ ed̄Þð−ϵ0�T · ϵTÞ

�
2πCFαsf2ρm2

ρ

NcQ4

�Z
1

0

dx1dx2
x̄1x̄2 þm2

gluon=Q
2

×

��
φρðx1Þφρðx2Þ −

1

16
φA0
ρ ðx1ÞφA0

ρ ðx2Þ
��

1

x̄1 þ E2⊥=Q2
þ 1

x̄2 þ E2⊥=Q2
− 2

�

þ 1

2
φA0
ρ ðx1Þφρðx2Þ

�
1

x̄1 þ E2⊥=Q2
−

1

x̄2 þ E2⊥=Q2

��
: ð24Þ

Note that the minus sign in the product of polarization vectors in fact means that this contribution is positive, since
ϵ�T · ϵ0T < 0 in the Minkowski metric used here. The Born-like instanton contribution to the rho vector form factor Vρ

b is also
given by the substitution (14) to Vρ

a, and will not be given.
The one-gluon exchange to the scalar form factor of the transverse rho meson is

SρaðQ2Þ ¼ −ðλu þ λd̄ÞMQð−ϵ0�T · ϵTÞ
��

πCFαs
Nc

mρfρfTρ
MQQ2

�

×
Z

dx1dx2
x̄1x̄2 þm2

gluon=Q
2

�
φT
ρ ðx1Þðφρðx2Þ − φA0

ρ ðx2Þ=4Þ
x̄1 þ E2⊥=Q2

þ ðφρðx1Þ − φA0
ρ ðx1Þ=4ÞφT

ρ ðx2Þ
x̄2 þ E2⊥=Q2

��
: ð25Þ

The contribution of the mixed zero mode and nonzero mode to the transverse rho meson vector form factor is

Vρ
cðQ2Þ ¼ ϵμðqÞðpμ þ p0μÞðeu þ ed̄Þð−ϵ0�T · ϵTÞ

�
κπ2f2ρm2

ρ

NcM2
Q
hρ2GVðQρÞi

×
Z

1

0

dx1dx2x̄1

�
φρðx1Þ −

φA0
ρ ðx1Þ
4

��
φρðx2Þ þ

φA0
ρ ðx2Þ
4

��
: ð26Þ

The contribution of the mixed zero mode and nonzero mode to the rho meson scalar form factor is

SρcðQ2Þ ¼ −ðλu þ λd̄ÞMQð−ϵ0�T · ϵTÞ
��

κπ2fρfT2ρ mρ

4NcM4
Q

�
hðQρÞ2GSðQρÞi

×
Z

dx1dx2

�
x̄1

�
φρðx1Þ −

φA0
ρ ðx1Þ
4

�
φT
ρ ðx2Þ þ x̄2

�
φρðx2Þ −

φA0
ρ ðx2Þ
4

�
φT
ρ ðx1Þ

��
: ð27Þ

The contribution of the ’t Hooft vertex to the vector form factor of the transversely polarized rho is detailed in (114) with
the result

Vρ
dðQ2Þ ¼ −ðeu þ ed̄ÞðϵμðqÞðpμ þ p0μÞðϵ0�T · ϵTÞÞ

�
hQρK1ðQρÞi

�
2κπ2

N2
cðNc þ 1Þ

fT2ρ
M2

Q

��
: ð28Þ

The contribution of the mixed nonzero mode and zero mode contribution (’t Hooft vertex) to the scalar form factor of the
transversely polarized rho is

SρdðQ2Þ ¼ þðλu þ λd̄ÞMQð−ϵ0�T · ϵTÞ
��

1

N2
cðNc þ 1Þ

��
κπ2fρfTρmρ

M3
Q

�
hQρK1ðQρÞi

×
Z

1

0

dx1dx2

�
x1φTðx2Þ

�
φρðx1Þ þ

1

4
φA0
ρ ðx1Þ

�
þ x2φT

ρ ðx1Þ
�
φρðx2Þ þ

1

4
φA0
ρ ðx2Þ

���
: ð29Þ

Perturbative and nonperturbative contributions to vector and scalar formfactors of transversely polarized ρ meson are
plotted in Figs 5 and 6, respectivelty.

NONPERTURBATIVE QUARK-ANTIQUARK INTERACTIONS IN … PHYS. REV. D 103, 054028 (2021)

054028-9



Completing this section, let us summarize the lessons
from these four plots: a/ the first conclusion stemming
from all of them is that the instanton effects are indeed
comparable to the perturbative ones in magnitude; b/
the second conclusion is that, while separate contribu-
tions have different Q-dependence, the total sums tend
to be flat. While this conclusion seems to correspond to
lattice data, we still need to remind the reader that the
absolute normalization of the instanton-induced effects
(squares and triangles in the previous four plots)
remains relatively uncertain. The value κ ¼ 1 is moti-
vated (as for the DAs) to represent the “maximal but
reasonable” value. The quark mass used MQ ¼ 0.4 GeV
may be strongly modified in the denominators. With
better knowledge of the gauge topology and DAs, these
curves may be modified.

We end this section by noting that the hard block is not
sensitive to the current quark mass mq, as it was assumed
that Q2 ≫ m2

q. Therefore, going from the pion to ηs and
perhaps even ηc (in the appropriate kinematic range) one
only needs to change the wave functions and the decay
constant fπ → fηs. We will discuss the comparison to
lattice data in Sec. VI B.

D. Form factors of the scalar meson a+
0

The form factors of the scalar meson aþ0 result from the
same hard blocks, but with completely different DAs. The
vector form factor of the aþ0 meson is

Va0
a ðQ2Þ ¼ ϵμðqÞðpμ þ p0μÞðeu þ ed̄Þ

��
2CFπαsf2a0

NcQ2

�Z
dx1dx2

x̄1x̄2 þm2
gluon=Q

2
ðφV

a0ðx1ÞφV
a0ðx2Þ

þ 2

Q2

�
ðχSa0Þ2φS

a0ðx1ÞφS
a0ðx2Þ

�
1

x̄2 þ E2⊥=Q2
− 1

�
þ χSa0χ

T
a0

6
φS
a0ðx1Þφ0Ta0ðx2Þ

�
1

x̄2 þ E2⊥=Q2
þ 1

���
; ð30Þ

which is to be compared with (13). All constants are different from in the pion case. The repulsive character of the
interaction in this channel should penalize the wave function at the origin, leading to smaller values for the parameters in
comparison to the pion parameters.

FIG. 5. The vector form factors of the transversely polarized rho
meson times the momentum transfer squared Q2FS

πðQ2ÞðGeV2Þ
versusQ2, ðGeV2Þ. The black closed points show the perturbative
contribution, the black triangles correspond to the instanton zero
mode (’t Hooft vertex) contribution, and the squares are the
contribution of the nonzero mode propagators SNZ. The dotted
line above is their sum.

FIG. 6. The square bracket quoted in the scalar scattering
amplitudes of the rho given in the text times the momentum
transfer squared Q2½� � ��ðGeV2Þ versus Q2ðGeV2Þ. The black
closed points correspond to the one-gluon exchange contribution,
the black squares to the instanton contribution of three nonzero
mode propagators SNZ, and the black triangles to the zero mode
terms SZ in two propagators. The dotted line above is their sum.
[Recall that the normalized scalar form factor is obtained by
multiplication by the extra factor in (21).]
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The scalar form factor of the aþ0 reads

Sa0a ðQ2Þ ¼ −ðλu þ λdÞMQ

��
2CFπαsf2a0
NcMQQ2

�

×
Z

1

0

dx1dx2
x̄1x̄2 þm2

gluon=Q
2

�
χSa0φ

S
a0ðx1ÞφV

a0ðx2Þ
�
1þ 2

x̄2 þ E2⊥=Q2

�
þ χTa0φ

V
a0ðx1Þ

φT0
a0ðx2Þ
6

��
; ð31Þ

which is structurally similar to the pion result (19).
The nonzero mode propagators contribute to the vector and scalar form factors of the aþ0 as follows:

Va0
c ¼ ϵμðqÞðpμ þ p0μÞðeu þ ed̄Þ

��
κπ2f2a0
NcM2

Q

�
hρ2GVðQρÞi

×
Z

dx1dx2

�
x̄1ðχSa0Þ2φS

a0ðx1ÞφS
a0ðx2Þ − ðx̄2 − x̄1ÞφS

a0ðx1Þ
χSa0χ

T
a0φ

T0
a0ðx2Þ

6
− x̄1
ðχTa0Þ2φT0

a0ðx1Þ
6

φT0
a0ðx2Þ
6

��
ð32Þ

is similar to (16)

Sa0c ðQ2Þ ¼ −ðλu þ λd̄ÞMQ

��
κπ2f2a0
NcM3

Q

�
hðQρÞ2GSðQρÞi

�

×
Z

1

0

dx1dx2

�
x̄2φV

a0ðx1Þ
�
χSa0φ

S
a0ðx2Þ −

1

6
χTa0φ

T0
a0ðx2Þ

��
: ð33Þ

The contribution of the mixed zero mode and nonzero mode propagators (’t Hooft vertex) to the aþ0 vector form factor is

Va0
d ðQ2Þ ¼ ϵμðqÞðpμ þ p0μÞðeu þ ed̄Þ

��
1

N2
cðNc þ 1Þ

�
4κπ2f2a0χ

S
a0χ

T
a0

3M2
Q

�
ρ2

K1ðQρÞ
Qρ

�Z
dx1dx2φS

a0ðx1ÞφT0
a0ðx2Þ

�
: ð34Þ

As we noted for the pion in (18), this contribution vanishes after the partonic integration is carried.
The contribution from the mixed zero modes and nonzero modes or ’t Hooft vertex to the scalar form factor of the aþ0

meson is

Sa0d ðQ2Þ ¼ þðλu þ λd̄ÞMQ

��
1

N2
cðNc þ 1Þ

��
κπ2f2a0
M3

Q

�Z
1

0

dx1dx2hQρK1ðQρÞi

×

�
x1φV

a0ðx2Þ
�
χSa0φ

S
a0ðx1Þ þ

1

6
χTa0φ

T0
a0ðx1Þ

�
þ x2φV

a0ðx1Þ
�
χSa0φ

S
a0ðx2Þ þ

1

6
χTa0φ

T0
a0ðx2Þ

���
: ð35Þ

We note the overall sign flip in comparison to the pion contribution in (23), but otherwise a similar structural result.

E. Graviton and dilaton form factors of the pion

The energy-momentum form factor of the pion follows from the replacement of the vector vertex by the symmetrized
tensor vertex (53). The form factor decomposition is detailed in Sec. III D with the 00 (graviton) and μμ (dilaton)
perturbative contributions

Tπ
00aðQ2Þ ¼

�
4CFπαsf2π

Nc

�Z
dx1dx2

1

x̄1x̄2 þm2
gluon=Q

2

�
x1φπðx1Þφπðx2Þ

þ 2χ2π
Q2

��
1

x̄1 þ E2⊥=Q2
þ x̄1 − 2

�
φP
π ðx1ÞφP

π ðx2Þ þ
�

1

x̄1 þ E2⊥=Q2
− x̄1

�
φP
π ðx2Þ

φT0
π ðx1Þ
6

�
;

Tπ
μμaðQ2Þ ¼

�
4CFπαsf2π

Nc

�Z
dx1dx2

1

x̄1x̄2 þm2
gluon=Q

2

�
φπðx1Þφπðx2Þ

þ 2χ2π
Q2

��
1

x̄1 þ E2⊥=Q2
− 3

�
φP
π ðx1ÞφP

π ðx2Þ þ
�

1

x̄1 þ E2⊥=Q2
− 1

�
φP
π ðx2Þ

φT0
π ðx1Þ
6

�
: ð36Þ

The nonzero mode contribution follows the same reasoning as that for the vector contribution through the substitution
(53), with the result
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Tπ
00cðQ2Þ ¼

�
κπ2f2πχ2π
NcM2

Q

�
hðQρÞGVðQρÞi

Z
dx1dx2ðx̄1 − x̄2Þ

×
�
x̄1φP

π ðx1ÞφP
π ðx2Þ þ ðx̄2 − x̄1ÞφP

π ðx2Þ
φT0
π ðx1Þ
6

− x̄1
φT0
π ðx1Þ
6

φT0
π ðx2Þ
6

�
;

Tπ
μμcðQ2Þ ¼

�
2κπ2f2πχ2π
NcM2

Q

�
hðQρÞGVðQρÞi

Z
dx1dx2x̄1x2

×

�
φP
π ðx1ÞφP

π ðx2Þ − φP
π ðx2Þ

φT0
π ðx1Þ
6

−
φT0
π ðx1Þ
6

φT0
π ðx2Þ
6

�
: ð37Þ

The mixed zero mode and nonzero mode contribution (83) contribute equally to 00 and μμ in the Breit frame, with the
result

Tπ
00dðQ2Þ ¼ Tπ

μμdðQ2Þ ¼ −
1

N2
cðNc þ 1Þ

�
16κπ2f2πχ2π

3M2
Q

�
hðQρÞK1ðQρÞi

Z
dx1dx2φπðx1Þ

φT0
π ðx2Þ
6

; ð38Þ

which is seen to vanish after the x integration.

III. HARD BLOCK FROM ONE-GLUON
EXCHANGE AND ITS POSSIBLE EXTENSIONS

A. The one-gluon exchange contributions

After we presented the results, we now turn to their
derivation starting from the hard block–induced by the
lowest order perturbative diagram for completeness.
The one-gluon exchange contribution to the mesonic

form factor is illustrated in Fig. 1(a), where the definition
of themomenta involved is also given (see alsoAppendixA).
Of course, Fig. 1(a) is one of four diagrams, with a photon
insertion appearing on the upper line of the u-quark
before the gluon vertex. In the Breit frame, the spacelike
photon carries q ¼ ð0; 0; Q; 0Þ, with the energy as
the fourth component. The incoming pion carries p ¼
ð0; 0;−Q=2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ðQ=2Þ2
p

Þ and the outgoing pion carries
p0 ¼ ð0; 0;þQ=2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ðQ=2Þ2
p

Þ. We will, however,
ignore the pion mass mπ in the energy, by approximating
the latter by Q=2 in the hard momentum limit.
The quark momenta should not be directed strictly along

the direction of the meson momentum, as they carry some

nonzero transverse momenta k⃗⊥ ≠ 0 in the wave functions.
In principle, one needs to integrate over their distribution in
hadrons. This brings in a question discussed e.g., by the
authors of [39], who pointed out that the smallness of the
mean transverse momenta hk2⊥i ≪ Q2 does not in general
exclude the existence and importance of a wave function
component with a larger k2⊥ ∼Q2. In particular, it can also be
induced by instantons, as momenta and field strength are
simply related by the equations of motion. In general, such a
component, when present, would violate factorization and
produce an additional contribution to the exclusive processes.
Nevertheless, in this paper we will for now ignore such

contributions. The wave functions depending on k⊥ will
appear only in the integrated DAs times the probability to
find both quarks at the same transverse location. Those are
constants such as f2π . Therefore, we will approximate the
quark momenta as simply proportional to the mesonic ones
kμ1 ¼ x1pμ, etc. In the two-body sector of the mesonic wave
function, the longitudinal momentum fraction of the
antiquark is just x̄1;2 ¼ 1 − x1;2 ≤ 1.
The contributions of four perturbative diagrams of type

(a) are

eu

�
−gμν

ðk1 − k2Þ2
�
ðūðk2ÞgsTaγμSuðk1 þ p0ÞϵðqÞ · γuðk1ÞÞðd̄ðk1ÞgsTaγνdðk1ÞÞ

þ eu

�
−gμν

ðk1 − k2Þ2
�
ðūðk2ÞϵðqÞ · γSuðk2 þ pÞgsTaγμuðk1ÞÞðd̄ðk1ÞgsTaγνdðk1ÞÞ

þ ed̄

�
−gμν

ðk1 − k2Þ2
�
ðūðk2ÞgsTaγμuðk1ÞÞðd̄ðk1ÞgsTaγνSdðk2 − pÞϵðqÞ · γuðk2ÞÞ

þ ed̄

�
−gμν

ðk1 − k2Þ2
�
ðūðk2ÞgsTaγμuðk1ÞÞðd̄ðk1ÞϵðqÞ · γSdðk1 − p0ÞgsTaγνðk2ÞÞ ð39Þ
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with the usual free quark propagators SfðpÞ ¼ 1=ðp −mfÞ. Note that Fig. 1(a) corresponds to the second line. Here ϵðqÞ · γ
is the convolution of the photon polarization vector ϵμ with gamma matrices, for brevity indicated by a slash. The
propagator denominators of the exchanged gluon simplify in the hard momentum limit as follows:

ðk1 − k2Þ2 ¼ −x1x2Q2 −
ffiffiffi
2
p

qðx1k−1 þ x2k
þ
2 Þ − 2k−1 k

þ
2 − ðk1⊥ − k2⊥Þ2 ≈ −x1x2Q2;

ðk1 − k2Þ2 ¼ −x̄1x̄2q2 −
ffiffiffi
2
p

Qðk−1 x̄1 þ kþ2 x̄2Þ − 2kþ2 k
−
1 − ðk1⊥ − k2⊥Þ2 ≈ −x̄1x̄2Q2: ð40Þ

Similarly, the free fermion propagators simplify as

Sfðk1 þ p0Þ ¼ =k1 þ =p0 þmf

−x̄1Q2 −
ffiffiffi
2
p

qx̄1k−1 − k21⊥ −m2
f

≈
=p0 − x̄1=p
−x̄1Q2

;

Sfðk2 þ pÞ ¼ =k2 þ =pþmf

−x̄2Q2 −
ffiffiffi
2
p

qx̄2k
þ
2 − k22⊥ −m2

f

≈
=p − x̄2=p0

−x̄2Q2
: ð41Þ

Since there are two denominators, from the quark and
gluon propagators, one encounters certain negative powers
of xi in the answer, with potentially divergent integrals of
the distributions. To keep it from happening, one should
keep the “regulating” masses and other subleading terms
only in the denominator. The magnitude of these “regu-
larized” integrals is discussed in Sec. III B. When two parts
of the hard blocks are sandwiched between two pion DA
amplitudes for the outgoing and incoming pions [both
defined in (134)–(137), each term becomes a single color-
Dirac trace. The final expression for Vπ

a was reported in the
results section (13).

B. Convolutions with the wave functions and
regularization of the x-integrals

After substitution of the DAs into expressions for form
factors (and other exclusive processes) one immediately
finds that the integrands contain factors that diverge at the
end points, ξ ¼ �1 or x, x̄ ¼ 0; 1. Therefore, some of the
wave functions so far mentioned (flat, semicircular, and
asymptotic ones) lead to divergent integrals. When Q is
taken to infinity, the integrals over momentum fractions
obtain end-point singularities (x → 0; 1), up to quadratic
ones

Z
dx

φðxÞ
x2

:

For some wave functions, including the asymptotic one,
such integrals are divergent.
However, the very derivations of the correspo-

nding expressions provide a natural way out of this
problem, by keeping subleading terms in the denomi-
nators. In particular, the well-known twist-2 perturbative

contribution to the pion vector form factor in (13) can be
written as

I1 ¼
Z

dx1dx2
φπðx1Þφπðx2Þ

x̄1x̄2 þm2
gluon=Q

2
ð42Þ

with a nonzero gluon mass used as an IR regulator. More
generally, one may view it as an effective parameter,
representing a sum of higher-twist operators which

0 5 10 15 20
0

2

4

6

8

FIG. 7. The regulated integrals I1 (42) (lower curves at right)
and I2 (43) (upper curves) versus the momentum transfer
Q2ðGeV2Þ. The closed points are for the flat distribution
(p ¼ 0), the open points are for the asymptotic distribution
(p ¼ 1). The values of the gluon mass and quark transverse
energy used are m2

gluon ¼ 1 GeV2, E2⊥ ¼ 0.3 GeV2.
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would appear if one expands the integral in powers
of 1=Q. For estimates below we will use a value of
m2

gluon ∼ 1 GeV2.
The twist-3 contributions have a higher singularity,

stemming from the denominator of the quark propagator.
For instance, by combining the quark transverse momentum
and quark mass into a transverse energy E2⊥ ¼ k⃗2⊥ þM2,
the first twist-3 contribution can be recast in the regulated
form

I2 ¼
�
χ2π
Q2

�Z
dx1dx2

φP
π ðx1ÞφP

π ðx2Þ
x̄1x̄2 þm2

gluon=Q
2

×

�
2 −

1

x̄1 þ E2⊥=Q2
−

1

x̄2 þ E2⊥=Q2

�
: ð43Þ

The dependence of these integrals onQ is shown inFig. 7, for
flat (closed points) and asymptotic wave functions (open
points).
We recall that for the flat distribution both unregularized

integrals are divergent, while for the asymptotic one only
the second one is divergent. However, they cannot be
compared. Remarkably, the regulated versions of the
traditional part, I1, and the new one, I2, turned out to be
comparable. Moreover, although I2 has a 1=Q2 upfront as a
twist-3 contribution, its regulated version shows quite a
weak Q dependence. Only asymptotically does the full

twist-3 contribution in the pion vector form factor asymp-
tote 1=Q4 as it should.
Note, finally, that the DAs φπðxÞ, φP

π ðxÞ, and φT
π ðxÞ are

distributions of independent chiral components of the pion,
and there are no general reasons for them to be the same.
Moreover, we do know that the constants in front are quite
different, so the distributions over the transverse momenta
must be different. For instance, φP

π ðxÞ is more compact—
has a larger probability to find the pair of quarks at the same
point in the transverse plane—so it is perhaps closer to flat
than φπðxÞ. It is possible that the distributions over the
longitudinal momenta are also different.

C. Scalar pion form factor from one-gluon
exchange

The hard scalar (Higgs) block follows from the same
diagrams (39) with the substitutions

ðϵðqÞ · γÞ → 1; eq → λq;

with the Yukawa couplings instead of the electric
charges. To understand the nature of the scalar form factor
in perturbation theory, and for simplicity, let us set the
tensor DA φTðxÞ ¼ 0. With the same regulation procedure
as used in the previous subsection, the result for the form
factor is

SπaðQ2Þ→ −ðλu þ λdÞ
��

πCFαsf2πχπ
NcQ2

�Z
1

0

dx1dx2φπðx1ÞφP
π ðx2Þ

×

�
1

x̄1x̄2 þm2
gluon=Q

2

��
1þ 1

x̄1 þ E2⊥=Q2
þ 1

x̄2 þ E2⊥=Q2

��
: ð44Þ

Note that this term appears from the product of two different chiral components of the density matrix. It must be so because,
unlike the interaction with the photon, the scalar vertex flips chirality, and therefore needs to be complemented by another
chirality flip.
Another contribution to the scalar form factor stems from the mass term in the quark propagators (41), ∼MQ=Q2, which

we usually neglect. Since it also flips chirality, it generates a subleading contribution (as we assume MQ ≪ χπ)

Sπa → −ðλu þ λdÞ
��

πCFαsf2πM
NcQ2

�Z
1

0

dx1dx2

�
φπðx1Þφπðx2Þ −

4χ2π
Q2

φP
π ðx1ÞφP

π ðx2Þ
�

×

�
1

x̄1x̄2 þm2
gluon=Q

2

��
1

x̄1 þ E2⊥=Q2
þ 1

x̄2 þ E2⊥=Q2

��
; ð45Þ

which we have not included in the results quoted above.

D. Gravitaton and dilaton pion form factors
from one-gluon exchange

QCD is characterized by the symmetric energy momen-
tum tensor

Tμν ¼ 2ffiffiffiffiffiffi−gp δSQCD
δgμν

¼ FaμλFaν
λ þ

1

4
gμνF2 þ 1

2
ψ̄γ½μiD

↔ν�þψ

ð46Þ
with the symmetric and long derivative D

↔ ¼ D⃗ − D⃖, and
½�þ denotes symmetrization. It is conserved ∂μTμν ¼ 0,
with a nonvanishing trace
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Tμ
μ ¼ βðgÞ

2g
Fa
μνFaμν þmψ̄ψ ð47Þ

due to the conformal anomaly, with the one-loop beta
function βðgÞ ¼ −ð11Nc=3 − 2Nf=3Þg3=16π2.
The form factor of the energy-momentum tensor in a

pion (or any pseudoscalar) state is constrained by Lorentz
symmetry, parity, and energy-momentum conservation.
Under these strictures it takes the general form

hp2jTμνjp1i ¼
1

2
ðgμνq2 − qμqνÞΘ1ðq2Þ þ

1

2
pμpνΘ2ðq2Þ

ð48Þ

with qμ ¼ pμ
2 − pμ

1 and pμ ¼ pμ
1 þ pμ

2. The two form
factors correspond to the spin representations 1 ⊗ 1 ¼ 0 ⊕
1 ⊕ 2 with 1 excluded by parity. They reflect on the tensor
exchange or graviton (2) and the scalar exchange or dilaton
(0). The graviton form factor is described by Θ2, and the
dilaton form factor is described by the trace

hp2jTμ
μjp1i ¼

3

2
q2Θ1ðq2Þ þ

1

2
ð4m2

π − q2ÞΘ2ðq2Þ: ð49Þ

The normalization Θ2ð0Þ ¼ 1 is fixed by recalling that
H ¼ R dxT00 is the Hamiltonian, with hp1jHjp1i ¼

p0
1½2p0

1ð2πÞδpð0Þ�. At low energy, the Goldstone nature
of the pion allows one to organize (46) in a momentum
expansion

hp2jTμνjp1i ¼ pμ
2p

ν
1 þ pν

2p
μ
1 þ

1

2
gμνq2 þOðp4Þ; ð50Þ

which shows that the two invariant form factors normalize
to 1, Θ1ð0Þ ¼ Θ2ð0Þ ¼ 1. Note that in two dimensions,
there is only one invariant form factor for the dilaton, and
an exact nonperturbative result can be derived in the context
of the large Nc limit [40].
In general, the invariant form factorsΘ1;2 are fixed by the

energy density T00 and the trace identity (49)

−
Q2

2
Θ1ðQ2Þþ 2

�
m2

π þ
Q2

4

�
Θ2ðQ2Þ ¼ hp2jT00ð0Þjp1i;

−
3Q2

2
Θ1ðQ2Þþ 2

�
m2

π þ
Q2

4

�
Θ2ðQ2Þ ¼ hp2jTμ

μð0Þjp1i;

ð51Þ

in the Breit frame with qμ ¼ ð0; QÞ and pμ
1;2 ¼

ðEp;∓Q=2Þ. More specifically, we have

Θ1ðq2Þ ¼
1

q2
hp2jðTμ

μð0Þ − T00ð0ÞÞjp1i≡ 1

q2
ðTπ

μμðq2Þ − Tπ
00ðq2ÞÞ;

Θ2ðq2Þ ¼
1

q2 − 4m2
π
hp2jðTμ

μð0Þ − 3T00ð0ÞÞjp1i≡ 1

q2 − 4m2
π
ðTπ

μμðq2Þ − 3Tπ
00ðq2ÞÞ ð52Þ

with q2 ¼ −Q2. We identify the strength of the graviton
coupling as −3T00 þ Tμ

μ from (52), and the strength of the
dilaton coupling as Tμ

μ from (49).
The hard graviton and dilaton blocks follow from the

same diagrams (39) using the elementary quark vertices
in (46)

D
fðk1 þ qÞ

			 1
2
ψ̄γ½μi∂↔ν�þψð0Þjfðk1Þ

E
¼ 1

2
γ½μð2k1 þ qÞν�þ ;D

fðk2Þ
			 1
2
ψ̄γ½μi∂↔ν�þ

ψð0Þjfðk2 − qÞ
E
¼ 1

2
γ½μð2k2 − qÞν�þ

ð53Þ

for f ¼ u, d. The 00-coupling corresponds to the vertex
γ0ð2k1;2 � qÞ0, and the μμ-coupling corresponds to the
vertex ð2=k1;2 � qÞ. With this in mind, the corresponding
perturbative contributions to the pion after regularization
are listed in (36). The nonperturbative contributions in the
context of semiclassics will follow.

E. The form factor of the transversely polarized rho
meson from one-gluon exchange

The perturbative and unregulated contribution to the
vector form factor for the rho meson with transverse
polarization can be obtained through similar contractions.
For instance, if we set in this case the axial DA amplitude
φA
ρ ¼ 0, then a typical perturbative contribution to the rho

vector form factor follows from the vector insertion

Vρ
aðQ2Þ→ −

euCF

Nc

Z
1

0

dx1dx2

�
−1

−x̄1x̄2Q2

�

× Tr

�
ϵTðqÞ · γ

�
=p0 − x̄1=p
−x̄1Q2

�
gsγαγ0

×
�
−
i
4
=ϵ0Tðfρmρφρðx1Þ þ fTρ =p0φT

ρ ðx1ÞÞ
�†

γ0

× gsγα

�
−
i
4
=ϵTðfρmρφρðx2Þ þ fTρ =pφT

ρ ðx2ÞÞ
��

:

ð54Þ
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Since γα=ϵ0Tp
0γα ¼ 4ϵ0Tμp

0μ ¼ 0, the tensor contribution =ϵTp drops out in the spin trace. The final result with all insertions
combined is subleading in m2

ρ=Q2,

Vρ
aðQ2Þ→ −ϵμðqÞðpμ þ p0μÞðeu þ ed̄Þϵ0�T · ϵT

��
2πCFαsf2ρm2

ρ

NcQ4

�

×
Z

1

0

dx1dx2φρðx1Þφρðx2Þ
�

1

x̄1x̄2

�
1

2

�
1

x̄1
þ 1

x̄2

�
− 1

���
: ð55Þ

Similar arguments applied to the scalar form factor of the transversely polarized vector meson yield the unregulated result

SρaðQ2Þ → ðλu þ λd̄ÞMQϵ
0�
T · ϵT

��
πCFαs
Nc

mρfρfTρ
MQQ2

�

×
Z

dx1dx2
1

x̄1x̄2

�
1

x̄2
φρðx1ÞφT

ρ ðx2Þ þ
1

x̄1
φρðx2ÞφT

ρ ðx1Þ
��

: ð56Þ

The full perturbative results including the axial DA φA
ρ are

quoted in the results section above.

F. Including other NJL-type local
4-fermion operators?

In the spirit of the effective scattering theory for quarks,
one may think of introducing all local operators of the type

OΓ ≡ ðq̄ΓqÞðq̄ΓqÞ;

where the matrices Γ include all possible Dirac, color, and
flavor structures. Naively, including any of them is rather
straightforward. The obvious practical problem is due to
the fact that the total basis of all operators is way too large
for meaningful applications. One needs an organizational
principle for the selection of only relevant ones to be kept in
the hard block.
From short distances, one-gluon exchange corresponds

to the product of two color currents, with Γ ¼ γμτ
a=2.

Colorless exchanges start from two gluons, or perhaps
scalar and tensor glueballs (in the discussion section we
will explain why the latter seems to be especially important,
based on high energy scattering phenomenology). If so,
Γ ¼ 1 or the stress tensor ΓT ¼ i∂μγν.
From a large distance perspective, one may think about

mesonic exchanges, as is done for nuclear forces. If this is
the case, colorless scalar, pseudoscalar, and vector Γ should
be used, with or without flavor matrices. Still, the basis is
too large for this approach to be practical.
Instantons generate very specific effective quark-quark

interactions. The most prominent is the one discovered by
’t Hooft [30]. It provides a unique nontrivial selection of
matrices, and so, in this work, we have focused on this
particular choice. The organizational principle is the use of
semiclassics in the hard block supplemented by a pertur-
bative correction (one-loop).

G. Born-style estimates of the instanton effects

This section is devoted to an estimate of Fig. 1(b). Note
that the point in which the hard photon (scalar) is absorbed
is separated, by a quark propagator, from the location of the
quark-antiquark scattering. (On general grounds, one may
question why such a separation is always possible, and in
fact we will not assume it in the next section.)
In this warm-up section, we include the instanton field in

the “naive Born-like approximation,” just by substituting the
gluon propagator by the (Fourier transform) of the instanton
field. The reader must be warned that such an approach is a
“naive estimate” of the effect, similar in spirit to our treatment
of theNJL vertex above. However, we note that the instanton
field is nonperturbative, gAμ ∼Oð1Þ in the weak coupling
g ≪ 1 regime. Therefore, a consistent treatment should
include the instanton field in the full quark propagator to
all orders, with all zero and nonzero modes, through the
instanton, a task relegated to later sections below.
Before we start, let us mention the issue of gauge

selection. Historically, the instantons were discovered in
the so-called “regular” gauge, in which the topological
singularity is at infinity. In contrast, the so-called “singular”
gauge put it at the origin. The difference between them
became apparent in any discussion of multi-instanton
configurations (and ensembles): only the singular ones
can be used, since there is only one infinity for all of them.
This is important for our estimate, since the pointlike gauge
singularity will show up in the Fourier transform.
With this in mind, the instanton field has the form

ðAμðxÞÞijðxÞ ¼ −
i
2g

Ui
αðσμx̄ − xσ̄μÞαβU†β

j
ρ2

x2ðx2 þ ρ2Þ ;

ðAμðxÞÞijðxÞ ¼ þ
i
2g

Ui
αðσμx̄ − xσ̄μÞαβU†β

j

×
ρ2

ð−x2 þ i0Þð−x2 þ i0þ ρ2Þ ð57Þ
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in Euclidean and Minkowski space, respectively. In Euclidean space, the Fourier transform of the instanton is

Aa
μðkÞ ¼

ð2πρÞ2
2g

TrðTaUðσμk̄ − kσ̄μÞU†ÞGðρ
ffiffiffiffiffi
q2

p
Þ

k2
¼ ið2πρÞ2

g
DabðUÞη̄bμνkν

Gðρ
ffiffiffiffiffi
q2

p
Þ

k2
ð58Þ

with the field form factor

Gðρ
ffiffiffiffiffi
k2

p
Þ ¼

�
4

k2ρ2
− 2K2ðρ

ffiffiffiffiffi
k2

p
Þ
�
; ð59Þ

which is normalized to 1, Gð0Þ ¼ 1. (No minus sign is under the root because here we use Euclidean notations.) The D-
function isDabðUÞ ¼ TrðTaUτbU†Þ with the normalization TrðTaTbÞ ¼ δab=2. In particular, the analytical continuation of
(58) to Minkowski space with amputation gives

lim
k2→0
ð−k2ÞϵμðkÞAa

μðkÞ ¼ −
2π2ρ2

g
TrðTaUðϵðkÞk̄ − kϵ̄ðkÞÞU†ÞGð0Þ

→ −i
ð2πρÞ2

g
DabðUÞη̄bμνϵμðkÞkν: ð60Þ

Note that the two-point gluon correlator in both spaces reads

Aa
μðkÞAb

νð−kÞ ¼
ð2πρÞ4
g2

DacðUÞDbdðUÞ η̄
c
μαη̄

d
νβk

αkβ

k4
G2ðρ

ffiffiffiffiffi
k2

p
Þ: ð61Þ

The nonperturbative contribution to the mesonic form factor in the Born approximation illustrated in Fig. 1(b) can be
evaluated using the single instanton contribution in (61). This contribution corresponds to the instanton (anti-instanton) effect
on a pair of nonzero quarkmodes. For light quarks, it is subleading in diluteness with the contribution shown in Fig. 1(c) which
involves nonzero mode contributions. For heavy quarks it is the sole and dominant nonperturbative contribution.
The nonperturbative gluon propagator (61) when averaged over an instanton plus anti-instanton contribution gives

Δab
μνðkÞ ¼ hAa

μðkÞAb
νð−kÞiIþĪ

¼ n
2

ð2πρÞ4
g2s
hDacðUÞDbdðUÞiUðη̄cμαη̄dνβ þ ηcμαη

d
νβÞ

kαkβ

k4
G2ðρ

ffiffiffiffiffi
k2

p
Þ

→ −δab
nð2πρÞ4

g2s

gμνk2 − kμkν
k4

G2ðρ
ffiffiffiffiffiffiffiffi
−k2

p
Þ≡ δabΔμνðkÞ ð62Þ

with the last relation following in Minkowski space. The contribution of Fig. 1(b) follows that in Fig. 1(a) in the form (39)
with the substitution of (62) for the gluon propagator, namely

−gμν
ðk1 − k2Þ

→ Δμνðk1 − k2Þ;
−gμν
ðk1 − k2Þ

→ Δμνðk1 − k2Þ: ð63Þ

IV. INSTANTON-INDUCED EFFECTS

A. From nonzero mode propagators
to hard block operators

As we already discussed, the instanton field is non-
perturbative, or strong Aμ ∼ 1=g. Therefore even if the
coupling g is small, it cancels out. The propagation in such
a field cannot be calculated in powers of g. Instead, one
should use the fully dressed (resummed) propagators. With
this in mind, the next step is the identification of the hard

block, via the “amputation” of the free propagators also
known as the LSZ reduction. We start explaining how this
procedure works in the coordinate representation, starting
from the simpler case of spinless (scalar) quarks, as
discussed in [41].
The propagator for a massless scalar particle in an

instanton field has the form [42]

Δðx;yÞ ¼Δ0ðx− yÞ
�
1þ ρ2

½UxȳU†�
x2y2

�
1

ðΠðxÞΠðyÞÞ12 ð64Þ
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with Δ0ðxÞ ¼ 1=ð2πxÞ2 the free scalar propagator, ΠðxÞ ¼
1þ ρ2=x2, and x, ȳ are convoluted with (Euclidean 4D)
sigma matrices (B4). To see how the LSZ reduc-
tion operates on (64), we consider the limit x, y ≫ ρ,
which is dominated by the asymptotic of 1=

ffiffiffiffiffiffiffiffiffiffi
ΠðxÞp

≈
ð1 − ρ2=2x2 þ � � �Þ. For a single quark line, the color
averaging in (64) yields

h½UxȳU†�iU ¼
x · y
Nc

: ð65Þ

Inserting (65) and keeping only the asymptotic contribu-
tions give

Δðx − yÞ ≈ Δ0ðx − yÞ

×

�
1 −

ρ2

2x2y2

�
ðx − yÞ2 þ 2x · y

�
1 −

1

Nc

���
;

ð66Þ

and one finds that the term of order ρ2 in the numerator
becomes exactly the combination ðx − yÞ2 in the denom-
inator, so that it is canceled out. Subtracting the free
propagator, one observes that the Oðρ2Þ lowest-order
instanton contribution is proportional to 1=x2y2 ¼
ð4π2Þ2D0ðxÞD0ðyÞ, just the product of the Green function
describing free propagation to and from the instanton. So,
in this case the LSZ procedure is just an “amputation” of
these free propagators.
This result can be generalized to an “amputated line

operator” in the momentum representation with arbitrary
in- and out-momenta

T ðk; k0Þ ¼
Z

d4xdyeikx−ik
0yð∂2

xΔðx; yÞ∂2
yÞ; ð67Þ

where the second derivatives over x and y stand for the
amputation of the trivial large distance part of the Green
function. Out of those one can construct n-body scattering
amplitudes by taking their powers, averaging over the
positions of the instanton center zμ and tracing over the
color indices

Aðki; k0iÞ ¼ Tr

�Yn
i¼1

T ðki; k0iÞ
�
: ð68Þ

The simplest of them, n ¼ 1, leads to the forward scattering
amplitude on the instanton

Tðk; kÞ ¼ 4π2ρ2

Nc
ð69Þ

used by one of us long ago, in [43]. This result explains the
instanton suppression term at finite temperatures previously
calculated in [44], and allowed its generalization to the case
of finite temperature and density. The n ¼ 2 case corre-
sponds to two-by-two scattering, n ¼ 3 to three-by-three
scattering, and so on. Averaging over the instanton position
leads to momentum conservation

P
i ki ¼

P
k0i. The for-

mer case is important for meson form factors, the latter for
baryon ones.
The remaining important detail is that in Euclidean

calculations k ¼
ffiffiffiffiffi
k2μ

q
where all coordinates appear with

a plus sign. Going to Minkowski kinematics with “on-
shell” k → 0, partons can only mean here all components
going to zero, or x, y go to large distances. The scattering
amplitude one gets from this procedure is just a constant,
corresponding to low energy local interaction. There is no
correlation between k, k0 momenta, or any angular dis-
tribution. There is no nonlocality or explicit form factors in
this procedure, and thus no dependence on the momentum
transfer k − k0 in quark-antiquark scattering.
The extension of the (massless) scalar case to the

(massless) spinor case is done by using the full quark
nonzero mode propagator in the chiral-split form [42]

SNZðx; yÞ ¼ =D
!

xΔðx; yÞ
1þ γ5

2
þ Δðx; yÞ=D y

1 − γ5
2

¼ S̄ðx; yÞ 1þ γ5
2
þ Sðx; yÞ 1 − γ5

2
ð70Þ

with the free Weyl propagators S0 ¼ 1=∂̄ and S̄0 ¼ 1=∂,
in the notations detailed in Appendix B. The long deri-
vative =D ¼ =∂ − i=A acts on the left and right, respectively,
of the (massless) scalar propagator, with each explicit
contribution

S̄ðx; yÞ ¼
�
S̄0ðx − yÞ

�
1þ ρ2

½UxȳU†�
x2y2

�
þ ρ2σ̄μ

4π2
½Uxσ̄μðx − yÞȳU†�
Πxx4ðx − yÞ2y2

�
1

ðΠxΠyÞ12
;

Sðx; yÞ ¼
�
S0ðx − yÞ

�
1þ ρ2

½UxȳU†�
x2y2

�
þ ρ2σμ

4π2
½Uxðx̄ − ȳÞσμȳU†�
x2ðx − yÞ2y4Πy

�
1

ðΠxΠyÞ12
; ð71Þ
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and withU valued in SUðNcÞ. When a mixture of color and
spinor indices occurs, the spinor matrices act on the upper
left corner of the Nc × Nc color matrices. Recall that the
terms without and with the bar here correspond to Weyl
notations with two-by-two matrices. They do not corre-
spond to quarks and antiquarks—the diagonal of γ0—but to
the left and right quark polarizations, the diagonal of γ5.
These notations are compatible with other Weyl-style
notations used.
In the case of a scalar (Higgs) probe on a qq̄ meson pair,

the chirality of the quark is flipped, and therefore one part
of the diagram contributes

S̄ðx; zÞSðz; yÞ þ Sðx; zÞS̄ðz; yÞ;
in which case the end points x, y should be taken to large
distances while the intermediate point z is still residing
inside the instanton field. In the former term the covariant
derivatives, acting from both sides, create free fermionic
propagators, which can readily be amputated. What is left,
depending on the point z, is just the factor 1=Πz. Its Fourier
transform with momentum transfer qμ is

Z
d4z

eiq·z

Πz
: ð72Þ

Unfortunately, this is not so simple in the second part of
the diagram. The second term of Sðx; zÞ at large x is of
order 1=x2, with a power not matching the free fermion
propagator S0 ∼ x=x4. It means that the LSZ reduction in
coordinate representation is not local. Let us use the
following trick: multiply and divide by =D. The =D in the
numerator now reproduces the free propagator, which we
can amputate. The =D in the denominator will become the
negative power of momentum in the amplitude when taken
to the momentum representation, generating a negative
moment of the wave function by convolution to the wave
function.
Now let us focus on the line in which there is no external

probe. There is a single Sðx; yÞ in which coordinates are
taken to infinity. Again, in each term one dependence leads
to a straightforward LSZ procedure, and the other lacks one
power of the distance. We use the same trick and represent
it as =DxΔ=Dy=ð1==DyÞ. The effective amplitude takes the
form A ∼ ρ2ð1xþ 1

x0Þ. We now proceed to give a more
quantitative derivation of these results.
The LSZ reduced nonzero mode contributions to the qq̄

vector vertex with polarization ϵμðqÞ can be formally
written in the chiral split form as

�
hk2j∂S̄ ϵ̄ðqÞS̄∂ 1þ γ5

2
þ ∂̄SϵðqÞS∂̄ 1 − γ5

2

			k1
�

⊗
�
k1j∂S̄∂ 1þ γ5

2
þ ∂̄S∂̄ 1 − γ5

2

			k2i
�

U
; ð73Þ

where the overall averaging over color is indicated by the subscript U and the mass-shell conditions k21;2 → 0 and k21;2 → 0
are subsumed. Using the results in Appendix D, the final vector vertex follows by adding (D4) to the color averaged (D8)
and combining the result with (D13) to finally obtain

½2κGVðqρÞūðk2Þ=ϵðqÞuðk1Þ� ×
�
ð2π2ρ2Þd̄ðk1Þ

�
1

=k1
þ 1

=k2

�
dðk2Þ

�
: ð74Þ

The induced vector form factor GV consists of two parts

GVðξÞ ¼ F1ðQρÞ þ 1

NcM2ρ2
F2ðQρÞ ð75Þ

with specifically

F1ðxÞ≡
�
K1ðxÞ
x

�00
¼ 1

4x3
ð4xK0ðxÞ þ ð8þ 3x2ÞK1ðxÞ þ xð4K2ðxÞ þ xK3ðxÞÞÞ;

F2ðxÞ≡ x

�ðxK1Þ0
x

�0
¼ 1

4x
ð−2xK0ðxÞ þ ð−4þ 3x2ÞK1ðxÞ þ xð−2K2ðxÞ þ xK3ðxÞÞÞ≡ xK1ðxÞ: ð76Þ

We have summed over n=2 instantons plus n=2 anti-instantons, analytically continued to the Minkowski signature, and
dropped the extra factor of i since (73) follows from S ¼ 1þ iT with T identified with the vector vertex. Overall
momentum conservation follows from the Z-integration over the instanton and anti-instanton positions leading to qþ
k1 þ k1 ¼ k2 þ k2 for the 2-body vertex (74). In Fig. 8 the behavior of F1;2ðQρÞ in (76) is shown, with F2ðQρÞ dominant at
large Q.

NONPERTURBATIVE QUARK-ANTIQUARK INTERACTIONS IN … PHYS. REV. D 103, 054028 (2021)

054028-19



After the hard block is defined, one carries the trace with
the pion (or rho) density matrices. The propagators remain-
ing in the second bracket of (74) are treated as follows:

1

k1
→

k1
M2

Q

with MQ being the constituent quark mass. The final
expression is (16).
We have checked that similar arguments apply to the

scalar form factor, which is seen to mix chirality through SS̄
and S̄S contributions, but the result is found to be identical
to (D2) with the substitution =ϵðqÞ → 1 and no additional
contribution. Hence, the same result holds for the scalar
vertex with the substitution =ϵðqÞ→ 1 in (74) and the
induced scalar form factor

GVðξÞ→ GSðξÞ ¼
�
K1ðξÞ
ξ

�00
: ð77Þ

Note that the two terms in (75) have opposite signs. So their
sum is sensitive to the averaging over the instanton size (see
Sec. IV J). Figure 9 displays the contribution of each of
them, as well as their sum. After convolution of the hard
block with the pion density matrices we get the final result
for Vπ

c, as given in (16).

B. The nonzero mode contributions
to the rho vector form factors

The general decomposition of the vector form factor of
the rho meson compatible with parity, time-reversal sym-
metry, and Lorentz symmetry is of the form

hρðp0; ϵ0ÞjJμð0Þjρðp; ϵÞi ¼ FVðq2Þϵ0� · ϵðpμ þ p0μÞ

þGVðq2Þ
2mρ

ðϵ�0μ ϵ · q − ϵμϵ
�0 · qÞ þHVðq2Þ

4m2
ρ

ϵ0� · qϵ · qðpμ þ p0μÞ ð78Þ

with FV , HV contributing to the electric form factor and GV to the magnetic form factor of the rho.
The contribution to the vector form factor of the transverse rho meson in the large momentum limit involves all three form

factors in (78) in general. For simplicity, we focus on the contribution to the electric part FV by choosing the transverse
polarization ϵTðp; p0Þ of the ρ⊥ with momentum p, p0 to also be transverse to q, or ϵTðp; p0Þ · q ¼ 0. In the large
momentum limit and for the axial DA φAðxÞ ¼ 0 for simplicity, the unregulated contribution to FV is

Vρ
cðQ2Þ → −ϵμðqÞðpμ þ p0μÞϵ0�T · ϵTðeu þ ed̄Þ

�
κπ2fT2ρ
Nc

hρ2GVðQρÞi
Z

1

0

dx1dx2

×

��
1

x̄1
þ 1

x̄2

�
φT
ρ ðx1ÞφT

ρ ðx2Þ þ
1

2

f2ρm2
ρ

fT2ρ M2
Q
φρðx1Þφρðx2Þðx̄1 þ x̄2Þ

��
: ð79Þ
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FIG. 9. The nonzero mode contributions to the vector pion form
factor times Q2ðGeV2Þ versus Q2ðGeV2Þ. The blue circles above
and below show the contributions of hF1iρ and hF2iρ, respec-
tively. The black closed circles are their sum.
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FIG. 8. The blue dashed and the solid black lines correspond to
the functions F1ðQρÞ and F2ðQρÞ versus Q as given in (76),
respectively.
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C. The nonzero mode contribution to the
rho scalar form factors

The general decomposition of the scalar form factor of
the rho meson compatible with parity, time-reversal sym-
metry, and Lorentz symmetry is of the form

hρðp0;ϵ0ÞjSð0Þjρðp;ϵÞi ¼FSðq2Þϵ0� · ϵþ
HSðq2Þ
4m2

ρ
ϵ0� ·qϵ ·q:

ð80Þ

Similar to the pion scalar form factor, the contribution to
the scalar form factor of the longitudinal rho meson
vanishes because of a poor spin trace. As a result, the
invariant scalar form factors in (80) satisfy

FSðq2Þ −
q4

16m4
ρ
HSðq2Þ ≈ 0 ð81Þ

in the large momentum limit. We can extract FSðq2Þ from
the transversely polarized ρ by choosing ϵTðp; p0Þ · q ¼ 0.
For simplicity, if we set the axial DA amplitude φAðxÞ ¼ 0,
the unregulated result is

SρcðQ2Þ→ ðλu þ λd̄Þϵ0�T · ϵTMQ

�
κπ2fρfTρ
2Nc

mρ

MQ
hρ2GSðQρÞi

Z
1

0

dx1dx2

×

�
φT
ρ ðx1Þφρðx2Þ

�
1

x̄1
þ q2

M2
Q
x̄2

�
þ φT

ρ ðx2Þφρðx1Þ
�
1

x̄2
þ q2

M2
Q
x̄1

���
: ð82Þ

D. The nonzero mode contribution to the graviton
and dilaton form factor of the pion

The instanton and anti-instanton contributions to the hard block with the energy-momentum tensor vertex follows a
similar reasoning as that for the vector insertion with the substitutions

ϵμðqÞ → ð2kμ1;2 þ qμÞ; eq → 1;

and symmetrization. In particular, the nonzero mode contributions to the energy-momentum vertex follow from (74) in
the form

½2κGVðQρÞūðk2Þðk1 þ k2Þ½μγν�þuðk1Þ� ×
�
ð2π2ρ2Þd̄ðk1Þ

�
1

=k1
þ 1

=k2

�
dðk2Þ

�
ð83Þ

with the induced vector form factor GV given in (75) and
(76). The nonzero mode vertex (83) when sandwiched
between the pion DA yields (37).

E. Quark zero modes and ’t Hooft
effective Lagrangian

The quark propagator in the instanton background when
expressed in the eigenmode basis is a sum over all modes.
In this section we focus on the specific term of this sum
containing the zero modes. For a single instanton, this
contribution takes the form

SZðx; yÞ ¼
ψ0ðxÞψ�0ðyÞ

imq
ð84Þ

with zero eigenvalue plus the quark mass in the denom-
inator. This appears singular in the chiral limitmq → 0, but,
as explained by ’t Hooft, since the amplitude for a single
instanton is itself proportional to the product of masses of
all light quark flavors, ∼

Q
q¼u;d;s mq, the Green functions

and vertices with Nf fermions are finite. This is how the
famous ’t Hooft effective Lagrangian was derived.

In an “empty” (perturbative) vacuum the mass here is
that from the QCD Lagrangian. However, when an instan-
ton is not in the perturbative but rather in the physical QCD
vacuum, the problem is more complex. A nonzero quark
condensate makes the instanton amplitude nonzero even in
the chiral limit. The current quark mass m is supplemented
by the so-called “determinantal mass” M� [45]

M� ≡ 2π2

3
jhq̄qijρ2 ≈ 200 MeV

�
ρ

ρ0

�
2

: ð85Þ

(Note that this is not the on-shell quark mass at zero
momentum, which is about twice larger.) This mass was
used in the first mean-field-style treatment of the instanton
ensemble [32], appending the quark masses both in the
instanton determinant and in the denominator of the quark
propagator.
After the formalism of the interacting instanton liquid

model (IILM) was further developed, the so-called SIA for
treating effects produced by a single member of the
ensemble was further discussed in Ref. [46]. It was pointed
out there that the OPE expression from [45] was derived
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assuming factorization of the vacuum expectation value
(VEV) of 4-fermion operators in the QCD vacuum, which
is also a version of the mean-field treatment. However, the
instanton ensemble is highly correlated, and the expectation
values of different multiquark operators are highly inho-
mogeneous, and therefore the mean-field-style approxima-
tions are quite inaccurate. In particular, the operators of the
type of ’t Hooft Lagrangian under consideration,

hðūuÞðd̄dÞi≫ hðūuÞihðd̄dÞi;

have strongly enhanced VEVs. The quark propagator in the
QCD vacuum is approximated by the form

Sðx; yÞ ¼ SZðx; yÞ þ
X
I;J

ψ�0IðxÞ
�
1

T

�
I;J
ψ0JðyÞ; ð86Þ

where TIJ denotes the so-called “instanton hopping”
matrix, constructed out of the Dirac zero mode overlaps
between neighboring instantons I, J. Note that here enters
the inverse matrix, as propagators are inverse to Dirac
operators. So, when one discusses a process in which both
points x, y are inside one instanton I�, as when defining the
hard block here, we can restrict the sum to only the term
with the zero mode of this very instanton. This leads to the
following redefinition of the determinantal mass

1

Mu
≡
��

1

T

�
I�I�

�
: ð87Þ

Furthermore, in the diagrams containing two quark propa-
gators of different flavors one has a different averaging,

1

M2
uudd

≡
��

1

T

�
2

I�;I�

�
: ð88Þ

These two quantities were calculated in the random and
interacting instanton liquid models, and in all calculations
one finds that

1=M2
u ≪ 1=M2

uudd: ð89Þ

In the interacting instanton liquid these quantities are

1

M2
u
¼ 1

ð177 MeVÞ2 ;
1

M2
uudd

≈
1

ð103 MeVÞ2 : ð90Þ

The chief consequence of these substantial deviations from
mean field can be captured by a “’t Hooft operator
enhancement factor”

ftHooft ≡M−2
uudd

M−2
u

≈ 3: ð91Þ

Ending this section, we briefly explain the values used to
generate the plots in the results section. Since we decided to
take a round maximal value for the instanton diluteness
parameter κ → 1, we have not included this additional
enhancement factor (91). When the quark effective mass
appears, in the numerator or denominator, we use a round
value of MQ ¼ 400 MeV. This uniform but simplified
approximation in all our numerical plots does not exclude
the need for further systematic lattice studies of the VEVs
and their averages over the mesons of all 4-quark operators.
To our knowledge the only such work, reporting the
enhancement just mentioned on the lattice is a rather old
study in [47]. Since those operators are widely used in
hadronic phenomenology, such studies are, in our opinion,
long overdue.

F. The zero mode contributions to the
vector form factor

The zero mode part of the propagator (84) can be
schematically shown as two disconnected quark lines, with
different chirality, ending in the instanton shown with the
labels þ (see Fig. 10) with the rules for these diagrams
given in Appendix E. The corresponding contributions to a
hard block are

FIG. 10. A quark-antiquark pair absorbing or emitting a vector
photon in an instanton background labeled by þ.

EDWARD SHURYAK and ISMAIL ZAHED PHYS. REV. D 103, 054028 (2021)

054028-22



Fig:10A ¼ eu × hððu†Rðk2Þð−ik2ÞϵðqÞ · V̄ðq;−k2ÞÞðϕ̄ðk1Þðik̄1ÞuLðk1ÞÞÞ
⊗ ððd†Rðk1Þðik1ÞKðk1ÞÞðϕ̄ð−k2Þð−ik2ÞdLðk2ÞÞÞiU;

Fig:10B ¼ ed̄ × hððu†Rðk2Þð−ik2ÞKð−k2ÞÞðϕ̄ðk1Þðik̄1ÞuLðk1ÞÞÞ
⊗ ððd†Rðk1Þðik1ÞKðk1ÞÞðϵðqÞ · Vðq;−k2Þð−ik̄2ÞdLðk2ÞÞiU; ð92Þ

where we have now made explicit the different flavors running in the vector vertex in Fig. 10, with the generic notation
uiαðk1;2Þwith flavor charge eu and d†iα ðk1;2Þwith flavor charge ed̄, and α ¼ 1, 2 for spin and i ¼ 1;…; Nc for color. Note that
we have now attached a color index to each incoming and outgoing quark-antiquark line which is contracted with the
pertinent U-matrix in the corresponding bracket. To carry the color averaging in (92) we use the identityZ

dUUi
αU

†β
j Uk

γU
†δ
l ¼

1

N2
c − 1

ðδijδkl δβαδδγ þ δilδ
k
jδ

β
γ δδαÞ −

1

NcðN2
c − 1Þ ðδ

i
jδ

k
l δ

β
γ δδα þ δilδ

k
jδ

β
αδδγÞ: ð93Þ

The result for the symmetrized vector insertion on the quark line in Fig. 10A is

Fig:ð10Aþ 10ÃÞI ¼ i
ð2πρ3

2Þ4
ð−iMQρÞ2

× eu

×

�
1

N2
c − 1

ðu†Rðk2ÞðFVðq; k1Þ þ FVðq;−k2ÞÞuLðk1ÞÞðd†Rðk1ÞdLðk2ÞÞ

þ 1

N2
c − 1

ðu†Rðk2ÞðFVðq; k1Þ þ FVðq;−k2ÞÞdLðk2ÞÞðd†Rðk1ÞuLðk1ÞÞ

−
1

NcðN2
c − 1Þ ðu

†
Riðk2ÞðFVðq; k1Þ þ FVðq;−k2ÞÞujLðk1ÞÞðd†Rjðk1ÞdiLðk2ÞÞ

−
1

NcðN2
c − 1Þ ðu

†
Riðk2ÞðFVðq; k1Þ þ FVðq;−k2ÞÞdjLðk2ÞÞðd†Rjðk1ÞuiLðk1ÞÞ

�
ð94Þ

with MQ the constituent quark mass discussed earlier. To avoid cluttering the spin-color indices in the Weyl spinors have
been omitted. Each of the L,R-Weyl spinor in the bracket is contracted over the dummy spin α ¼ 1, 2 and color i ¼
1;…; Nc indices, unless the contraction is out-of-bracket in which case the pertinent (color) index contraction is displayed.
The I-subscript refers to the instanton contribution. The anti-instanton contribution follows from (94) through the
substitution L ↔ R. The corresponding result for the symmetrized vector insertion on the antiquark line in Fig. 10B is

Fig:ð10Bþ 10B̃ÞI ¼ i
ð2πρ3

2Þ4
ð−iMQρÞ2

× ed̄

×

�
1

N2
c − 1

ðu†Rðk2ÞuLðk1ÞÞðd†Rðk1ÞðFVðq; k1Þ þ FVðq;−k2ÞÞdLðk2ÞÞ

þ 1

N2
c − 1

ðu†Rðk2ÞdLðk2ÞÞðd†Rðk1ÞðFVðq; k1Þ þ FVðq;−k2ÞÞuLðk1ÞÞ

−
1

NcðN2
c − 1Þ ðu

†
Riðk2ÞujLðk1ÞÞðd†Rjðk1ÞðFVðq; k1Þ þ FVðq;−k2ÞÞdiLðk2ÞÞ

−
1

NcðN2
c − 1Þ ðu

†
Riðk2ÞdjLðk2ÞÞðd†Rjðk1ÞðFVðq; k1Þ þ FVðq;−k2ÞÞuiLðk1ÞÞ

�
ð95Þ

with the substitution L ↔ R for the anti-instanton contribution. The spin-valued induced form factor

FVðq; kÞ ¼
ϵðqÞk̄ − kϵ̄ðqÞ

2k · q
F


ρ
ffiffiffiffiffi
q2

q �
þ
�
ϵðqÞðq̄þ k̄Þ − ðqþ kÞϵ̄ðqÞ

ðkþ qÞ2 −
ϵðqÞk̄ − kϵ̄ðqÞ

2k · q

�
F


ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ qÞ2

q �
ð96Þ

simplifies when the quark line is taken on mass-shell [FðxÞ ¼ xK1ðxÞ]
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lim
k2→0

FVðq; kÞ ¼
ϵðqÞq̄ − qϵ̄ðqÞ

q2
F


ρ
ffiffiffiffiffi
q2

q �
¼ ϵμðqÞqνðσμσ̄ν − σνσ̄μÞ 1

q2
F


ρ
ffiffiffiffiffi
q2

q �
: ð97Þ

The full contribution to the hard vector form factor is (94) plus (95) weighted by the instanton averaged density n=2, plus
the corresponding anti-instanton contribution. The analytically continued result is

ϵμðqÞVμðk1; k2; k1; k2;qÞ ¼ −
8κπ2

M2
Q

×

�
eu ×

�
1

N2
c − 1

ðūRðk2ÞðFVðq; k1Þ þ FVðq;−k2ÞÞuLðk1ÞÞðd̄Rðk1ÞdLðk2ÞÞ

þ 1

N2
c − 1

ðūRðk2ÞðFVðq; k1Þ þ FVðq;−k2ÞÞdLðk2ÞÞðd̄Rðk1ÞuLðk1ÞÞ

−
1

NcðN2
c − 1Þ ðūRiðk2ÞðFVðq; k1Þ þ FVðq;−k2ÞÞujLðk1ÞÞðd̄Rjðk1ÞdiLðk2ÞÞ

−
1

NcðN2
c − 1Þ ðūRiðk2ÞðFVðq; k1Þ þ FVðq;−k2ÞÞdjLðk2ÞÞðd̄Rjðk1ÞuiLðk1ÞÞ



þ ed̄ ×

�
1

N2
c − 1

ðūRðk2ÞuLðk1ÞÞðd̄Rðk1ÞðFVðq; k1Þ þ FVðq;−k2ÞÞdLðk2ÞÞ

þ 1

N2
c − 1

ðūRðk2ÞdLðk2ÞÞðd̄Rðk1ÞðFVðq; k1Þ þ FVðq;−k2ÞÞuLðk1ÞÞ

−
1

NcðN2
c − 1Þ ðūRiðk2Þu

j
Lðk1ÞÞðd̄Rjðk1ÞðFVðq; k1Þ þ FVðq;−k2ÞÞdiLðk2ÞÞ

−
1

NcðN2
c − 1Þ ðūRiðk2Þd

j
Lðk2ÞÞðd̄Rjðk1ÞðFVðq; k1Þ þ FVðq;−k2ÞÞuiLðk1ÞÞ

�
þ L ↔ R: ð98Þ

We dropped a factor of i in switching from the S-matrix to the T-matrix element in the identification of the vector vertex. For
the free spinors, we made the substitutions u†L;R → ūL;R and d†R;L → d̄R;L when analytically going to Minkowski space as in
(C8), with the standard Minkowski relation between Dirac and Weyl spinors

u ¼ 1þ γ5
2

uþ 1 − γ5
2

u≡ uR þ uL ð99Þ

and similarly for d≡ dR þ dL. More explicitly, the first contribution in (98) due to the instanton can be recast in the form

�
Nc

N2
c − 1

��
euFP



ρ
ffiffiffiffiffiffiffiffi
−q2

q �
ūðk2Þ

iϵμðqÞσμνqν
2MQ

ð1 − γ5Þ
2

uðk1Þ
��ð2πρÞ2

MQ
d̄ðk1Þ

ð1 − γ5Þ
2

dðk2Þ
�

ð100Þ

with the spin-valued matrix σμν ¼ i
2
½γμ; γν�. The first bracket in (100) shows the vector interaction with a chirally flipped

u-quark which is purely magnetic. The corresponding Pauli form factor is

FP



ρ
ffiffiffiffiffiffiffiffi
−q2

q �
¼ 8κ

Nc

K1



ρ
ffiffiffiffiffiffiffiffi
−q2

p �
ρ
ffiffiffiffiffiffiffiffi
−q2

p : ð101Þ

(We again recall that −q2 ¼ Q2 > 0.) The second bracket is the chirality flipped d-quark through the instanton zero mode.
All contributions in (98) are of this type. (Note that if the amplitude is evaluated at near-zero Q, this instanton term
contributes to the constituent quark magnetic moment; see [48].)
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G. The zero mode contributions to the scalar form factor

This contribution to the hard scalar form factor follows a similar reasoning as in the previous subsection, with two
modifications: (i) in the form factors (96) and (97) the polarization ϵðqÞ → 1; (ii) in the contributions (94) and (95) there is
no chirality flip on the leg with the scalar form factor insertion. With this in mind, and making use of the LSZ amputations
(E6) and (E7), we have

Fig:ð10Aþ 10ÃÞS;I

¼ −i
ð2πρ3

2Þ4
ð−iMQρÞ2

× λu

�
1

N2
c − 1

ðu†Lðk2ÞFSðq;−k2ÞuLðk1Þ þ u†Rðk2ÞF̄Sðq; k1ÞuRðk1ÞÞðd†Rðk1ÞdLðk2ÞÞ

þ 1

N2
c − 1

ððu†Lðk2ÞFSðq;−k2ÞdLðk2ÞÞðd†Rðk1ÞuLðk1ÞÞ þ ðd†Rðk1ÞF̄Sðq; k1ÞuRðk1ÞÞðu†Rðk2ÞdLðk2ÞÞÞ

−
1

NcðN2
c − 1Þ ððu

†
Liðk2ÞFSðq;−k2ÞujLðk2ÞÞðd†Rjðk1ÞuiLðk1ÞÞ þ ðd†Rjðk1ÞF̄Sðq; k1ÞuiRðk1ÞÞðu†Riðk2ÞdjLðk2ÞÞÞ

−
1

NcðN2
c − 1Þ ðu

†
Liðk2ÞF̄Sðq;−k2ÞujLðk1Þ þ u†Riðk2ÞF̄Sðq; k1ÞujRðk1ÞÞðd†Rjðk1ÞdiLðk2ÞÞ

�
ð102Þ

with a scalar charge λu, and the scalar form factors

FSðq;−k2Þ ¼
k̄2
M2

Q
F


ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ k2Þ2

q �
→

k̄2
M2

Q
F


ρ
ffiffiffiffiffiffiffiffi
−q2

q �
;

F̄Sðq; k1Þ ¼
k1
M2

Q
F


ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq − k1Þ2

q �
→

k1
M2

Q
F


ρ
ffiffiffiffiffiffiffiffi
−q2

q �
: ð103Þ

The S-subscript refers to the scalar vertex, and the I-subscript referring to the instanton contribution. The anti-instanton
contribution follows from (94) through the substitution L ↔ R. The rightmost identity in (103) is the leading contribution in
the k2 → 0 limit, with FðxÞ ¼ xK1ðxÞ after the analytical continuation to Minkowski space. The corresponding result for
the symmetrized scalar insertion on the antiquark line in Fig. 10B is

Fig:ð10Bþ 10B̃ÞS;I ¼−i
ð2πρ3

2Þ4
ð−iMQρÞ2

× λd̄

×

�
1

N2
c − 1
ðu†Rðk2ÞuLðk1ÞÞððd†Lðk1ÞFSðq;−k2ÞdLðk2ÞÞþ ðd†Rðk1ÞF̄Sðq;k1ÞdRðk2ÞÞÞ

þ 1

N2
c − 1
ððu†Lðk2ÞFSðq;−k2ÞdLðk2ÞÞðd†Rðk1ÞuLðk1ÞÞþ ðd†ðk1ÞF̄Sðq;k1ÞuLðk1ÞÞðu†Rðk2ÞdLðk2ÞÞÞ

−
1

NcðN2
c − 1Þ ðu

†
Liðk2ÞFSðq;−k2ÞdjLðk2ÞÞðd†Rjðk1ÞuiLðk1ÞÞþ ðd†Ljðk1ÞF̄Sðq;k1ÞuiLðk1ÞÞðu†Riðk2ÞdjLðk2ÞÞ

−
1

NcðN2
c − 1Þ ðu

†
Riðk2ÞujLðk1ÞÞðd†Rjðk1ÞFSðq;−k2ÞdiLðk2Þþd†Ljðk1ÞF̄Sðq;k1ÞdiLðk2ÞÞ

�
: ð104Þ

The anti-instanton contribution follows through the substitution L ↔ R.
The full contribution to the hard scalar form factor is (102) plus (104) weighted again by the instanton averaged density

n=2, plus the corresponding anti-instanton contribution. The analytically continued result to Minkowski space is
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Sðk1; k2; k1; k2; qÞ

¼ þ 8κπ2

M2
Q

�
λu ×

�
1

N2
c − 1

ðūLðk2ÞFSðq;−k2ÞuLðk1Þ þ ūRðk2ÞF̄Sðq; k1ÞuRðk1ÞÞðd̄Rðk1ÞdLðk2ÞÞ

þ 1

N2
c − 1

ððūLðk2ÞFSðq;−k2ÞdLðk2ÞÞðd̄Rðk1ÞuLðk1ÞÞ þ ðd̄Rðk1ÞF̄Sðq; k1ÞuRðk1ÞÞðūRðk2ÞdLðk2ÞÞÞ

−
1

NcðN2
c − 1Þ ððūLiðk2ÞFSðq;−k2ÞdjLðk2ÞÞðd̄Rjðk1ÞuiLðk1ÞÞ þ ðd̄Rjðk1ÞF̄Sðq; k1ÞuiRðk1ÞÞðūRiðk2ÞdjLðk2ÞÞÞ

−
1

NcðN2
c − 1Þ ðūLiðk2ÞF̄Sðq;−k2ÞujLðk1Þ þ ūRiðk2ÞF̄Sðq; k1ÞujRðk1ÞÞðd̄Rjðk1ÞdiLðk2ÞÞ



þ λd̄ ×

�
1

N2
c − 1

ðūRðk2ÞuLðk1ÞÞððd̄Lðk1ÞFSðq;−k2ÞdLðk2ÞÞ þ ðd̄Rðk1ÞF̄Sðq; k1ÞdRðk2ÞÞÞ

þ 1

N2
c − 1

ððūLðk2ÞFSðq;−k2ÞdLðk2ÞÞðd̄Rðk1ÞuLðk1ÞÞ þ ðd̄ðk1ÞF̄Sðq; k1ÞuLðk1ÞÞðūRðk2ÞdLðk2ÞÞÞ

−
1

NcðN2
c − 1Þ ðūRiðk2ÞFSðq;−k2ÞdjRðk2ÞÞðd̄Rjðk1ÞuiLðk1ÞÞ þ ðd̄Ljðk1ÞF̄Sðq; k1ÞuiLðk1ÞÞðūRiðk2ÞdjLðk2ÞÞ

−
1

NcðN2
c − 1Þ ðūRiðk2Þu

j
Lðk1ÞÞðd̄Rjðk1ÞFSðq;−k2ÞdiRðk2Þ þ d̄Ljðk1ÞF̄Sðq; k1ÞdiLðk2ÞÞ

�
þ L ↔ R; ð105Þ

again after dropping a factor of i in going from the S-matrix to the T-matrix element in the identification of the scalar vertex.
More explicitly, using the limiting form factors (103) the first contribution in (105) can be recast in the compact form

�
Nc

N2
c − 1

��
λuF̃P



ρ
ffiffiffiffiffiffiffiffi
−q2

q �
ūðk2Þ

�
kþμγμ þ k−μγμγ5

2MQ

�
uðk1Þ

��ð2πρÞ2
MQ

d̄ðk1Þ
ð1 − γ5Þ

2
dðk2Þ

�
ð106Þ

with k� ¼ ðk1 � k2Þ=2 (not to be confused with the light-cone momenta) and the scalar form factor

F̃PðxÞ ¼
x2FPðxÞ
ðMQρÞ2

¼ 8κ

Nc

FðxÞ
ðMQρÞ2

¼ 8κ

Nc

xK1ðxÞ
ðMQρÞ2

: ð107Þ

Similar reductions hold for the other contractions. In Appendix F we give an alternative but simplified derivation of (106)
before analytical continuation and color averaging.
The zero mode instanton plus anti-instanton contribution to the pion vector form factor vanishes for a vanishing tensor

DA amplitude φT
π ðxÞ ¼ 0,

− ðeu þ ed̄ÞFPðρ
ffiffiffiffiffiffiffiffi
−q2

q
Þ
�

Nc

N2
cðNc þ 1Þ

�Z
1

0

dx1dx2

× Tr

��
iϵμðqÞσμνqν

2MQ

ð1 − γ5Þ
2

��
ifπ
4

γ5ð=pφπðx1Þ − χπφ
P
π ðx1ÞÞ

�

×

�ð2πρÞ2
MQ

ð1 − γ5Þ
2

�
γ0
�
ifπ
4

γ5ð=p0φπðx2Þ − χπφ
P
π ðx2ÞÞ

�†
γ0
�
þ L → R ¼ 0; ð108Þ

which is seen to spin trace to zero. The color factor follows directly from the color contraction of (93) in a colorless meson
state

δik

Nc

��
δijδ

k
l

N2
c − 1

−
δilδ

k
j

NcðN2
c − 1Þ

�
δβαδδγ

�
δjl

Nc
¼ δβαδδγ

N2
cðNc þ 1Þ : ð109Þ

The nonvanishing result with the tensor DA amplitude is given in the results section above. Similarly, the zero mode
instanton plus anti-instanton contribution to the pion scalar form factor is given by
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− ðλu þ λd̄ÞF̃Pðρ
ffiffiffiffiffiffiffiffi
−q2

q
Þ
�

Nc

N2
cðNc þ 1Þ

�Z
1

0

dx1dx2

× Tr

��
kþμγμ þ k−μγμγ5

2MQ

��
ifπ
4

γ5
�
=pφπðx1Þ − χπφ

P
π ðx1Þ þ iχπσαβ

pαp0β

p · p0
φT0
π ðx1Þ
6

��

×

�ð2πρÞ2
MQ

ð1 − γ5Þ
2

�
γ0
�
ifπ
4

γ5
�
=p0φπðx2Þ − χπφ

P
π ðx2Þ þ iχπσαβ

p0αpβ

p · p0
φT0
π ðx2Þ
6

��†
γ0
�

þ L → R ð110Þ

with the result of all tracing given in the results section above.

H. The zero mode contribution to the graviton and dilaton form factor of the pion

The mixed zero mode and nonzero mode contribution (’t Hooft vertex) follows from (98) with (100) now reading

�
Nc

N2
c − 1

��
FPðQρÞūðk2Þ

iðk1 þ k2Þ½μσν�þτqτ
2MQ

ð1 − γ5Þ
2

uðk1Þ
��ð2πρÞ2

MQ
d̄ðk1Þ

ð1 − γ5Þ
2

dðk2Þ
�
: ð111Þ

The mixed zero mode and nonzero mode vertex (111) contributes equally to 00 and μμ in the Breit frame, with the result

Tπ
00dðQ2Þ ¼ Tπ

μμdðQ2Þ ¼ 1

N2
cðNc þ 1Þ

�
16κπ2f2πχ2π

3M2
Q

�
hðQρÞK1ðQρÞi

Z
dx1dx2φπðx1Þ

φT0
π ðx2Þ
6

; ð112Þ

which is seen to vanish.

I. The zero mode contribution to the transverse rho form factors

The instanton plus anti-instanton contribution to the transversely polarized vector form factor is

Vρ
dðQ2Þ ¼ −ðeu þ ed̄ÞFPðρQÞ

�
Nc

N2
cðNc þ 1Þ

�Z
1

0

dx1dx2

× Tr

��
iσμνqν
2MQ

ð1 − γ5Þ
2

��
i
4
=ϵTðfρmρφρðx1Þ − fTρ =pφT

ρ ðx1ÞÞ þ
fρmρ

4p · p0
ϵμνρσγ

μγ5ϵ
νpρp0σ

φA0
ρ ðx1Þ
4

�

×

�ð2πρÞ2
MQ

ð1 − γ5Þ
2

�
γ0
�
i
4
=ϵTðfρmρφρðx2Þ − fTρ =p0φT

ρ ðx2ÞÞ þ
fρmρ

4p · p0
ϵμνρσγ

μγ5ϵ
νp0ρpσ

φA0
ρ ðx2Þ
4

�†
γ0

þ L → R

¼ ðeu þ ed̄ÞFPðρ
ffiffiffiffiffiffiffiffi
−q2

q
Þ
�

Nc

N2
cðNc þ 1Þ

�

× Tr

��
iσμνqν
2MQ

��
þ i
4
fTρ =p=ϵT

��ð2πρÞ2
MQ

��
−
i
4
=ϵ0�T f

T
ρ =p0
��

: ð113Þ

Unwinding the last trace gives

Vρ
dðQ2Þ ¼ −ðeu þ ed̄Þððpμ þ p0μÞϵ0�T · ϵTÞ

�
hðρQÞK1ðρQÞi

�
2κπ2

N2
cðNc þ 1Þ

f̃ρ
2

M2
Q

��
; ð114Þ

which is to be compared to the hard perturbative contribution (55). The instanton plus anti-instanton contribution to the
transversely polarized rho scalar form factor is given by
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SρdðQ2Þ ¼ −ðλu þ λd̄ÞF̃PðρQÞ
�

Nc

N2
cðNc þ 1Þ

�Z
1

0

dx1dx2

× Tr

��
kþμγμ þ k−μγμγ5

2MQ

��
i
4
=ϵ⊥ðfρmρφρðx1Þ − fTρ =pφT

ρ ðx1ÞÞ þ
fρmρ

4p · p0
ϵμνρσγ

μγ5ϵ
νpρp0σ

φA0
ρ ðx1Þ
4

�

×
ð2πρÞ2
MQ

�ð1 − γ5Þ
2

�
γ0
�
i
4
=ϵ⊥ðfρmρφρðx2Þ − fTρ=pφT

ρ ðx2ÞÞ þ
fρmρ

4p · p0
ϵμνρσγ

μγ5ϵ
νp0ρpσ

φA0
ρ ðx2Þ
4

�†
γ0
�

þ L → R ð115Þ

with the full tracing result given in the results section
above.

J. Averaging over the instanton size distribution

In the expressions above and for simplicity, we have used
a single value of the instanton size ρ. For many estimates it
is sufficient to use its rms value of about 0.30 fm. Yet in
cases in which a large momentum transfer is involved, the
shape of the distribution over ρ becomes important,
especially its tail toward small sizes. Fortunately, at small
ρ the effective coupling αsðρÞ is small, the action is large,
and the semiclassical theory gets more reliable.
Still, one needs the full shape of the distribution, to get a

proper averaging. The instanton size distribution in the
QCD vacuum has been derived from lattice works, using
various degree of “cooling”methods, e.g., [49]. We will not
dwell on the details of this distribution, and we will not get
involved in the theoretical aspects of the large-size instan-
tons for which we refer to e.g., Ref. [50]. Here we make use
of the interpolating formula

dnðρÞ ∼ dρ
ρ5
ðρΛQCDÞbQCDe−2πσρ2 ð116Þ

in which the preexponential is the semiclassical contribution
corrected to one-loop with bQCD ¼ 11Nc=3 − 2Nf=3 ≈ 9.
The exponent is model dependent, with σ the QCD string
tension. (It is proportional to the dual magnetic condensate,
that of Bose-condensed monopoles, but we prefer the
expression with the string tension which is experimentally
well determined to be σ ≈ 0.42 GeV2.)
In Fig. 11 we show the effect of averaging over the

instanton size distribution. We take a simple typical
exponential dependence on the momentum transfer and
compare it to its version after the instanton size averaging

he−Qρiρ ¼
R
dnðρÞe−QρR
dnðρÞ : ð117Þ

As one can see, at small Q the two curves coincide, but at
large Q they differ significantly. The small-size instantons
become more important in this limit, and the exponential
decay with Q changes to an inverse power.
All of the Bessel functions KiðQρÞ appearing above in

the instanton-induced form factors behave as∼e−Qρ at large
Q, so the result of their averaging over the instanton sizes is
similar to what is shown in Fig. 11. Yet, when we
performed the instanton size averaging of the functions
F1;2, as given in (76), we found that their corrections due to
averaging differ substantially, resulting in significant
changes in the outcome.

V. MESONIC LIGHT-FRONT DISTRIBUTION
AMPLITUDES

A. Brief history of mesonic DAs and exclusive processes

In the pioneering works on theory of exclusive QCD
processes [15,51,52], most of the general structure and
observations were made. The key element of the theory is
the factorization into a hard block and a light-front DA,
with the latter containing most of the information about the
soft physics at a scale much below the hard scale Q2.
The DAs are defined as the hadron wave function

integrated over the transverse momentum. They are

0 5 10 15 20 25 30
10–4

0.001

0.010

0.100

1

FIG. 11. The blue dashed line is the exponential function
e−Qρrms of momentum transfer Q, and the solid line is the same
function averaged over the instanton size distribution, plotted
versus Q2ðGeV2Þ.
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traditionally defined via bilocal light-cone operators, clas-
sified in the framework of a twist expansion, the leading
twist-2, and higher, with extra powers of 1=Q. Twist is spin
minus dimension. This theory originated from DIS in
which moments of parton distribution functions (PDFs)
are matrix elements of the leading twist operators, con-
taining only bilinear quark (or gluon) fields. Higher twist
operators, specified for unpolarized and polarized DIS in
[53,54], contain important further information about the
nucleon structure, such as correlations between quark and
gluon fields, or quark-quark correlation via four-fermion
operators.
However, unlike in DIS, the exclusive processes are

studied at what we call a “semihard” domain, in which
one cannot expect the twist expansion to converge. In
particular, as pointed out early on by Geshkenbein and
Terentyev [38], the twist-3 DAs of the pion are numerically
enhanced, so that their contribution may in fact be larger
than that of the leading twist, in the semihard Q2 range of
interest.
Even more academic is the discussion of the asymptotic

limit, in which not powers of Q2, but powers of log are
considered to be large, i.e., logðQ2=Λ2

QCDÞ ≫ 1. When
perturbative processes of gluon radiation are included,
these logs sum into calculable anomalous dimension of
various operators. So when the log is considered to be large,
only the leading contribution survives.
Technically, the DAs are decomposed into Gegenbauer

polynomials, and the so-called “asymptotic wave function”
corresponds to the lowest order polynomial,

φπ → φasymptotic
π ðξÞ ¼ 3

4
ð1 − ξ2Þ ¼ 6xx̄: ð118Þ

Needless to say, this limit is very far from the realistic
kinematic range of interest. Therefore we will neither use
asymptotic wave functions, nor restrict our analysis to the
leading twist DAs. We rather focus on the chiral structure of
the DAs, making sure that all possible and large contribu-
tions are included. For phenomenological purposes it is
sufficient to consider a set of DAs approximated by the
simple analytic form

φπðξ; pÞ ¼
Γð3=2þ pÞffiffiffi
π
p

Γð1þ pÞ ð1 − ξ2Þp ¼ 6pΓð3=2þ pÞffiffiffi
π
p

Γð1þ pÞ ðxx̄Þ
p:

ð119Þ

The case p ¼ 1 is the asymptotic distribution, while the
case p ¼ 0 is called flat. Several authors have used an
intermediate case p ¼ 1=2 called “semicircular.”
The pion is a particular particle, a Nambu-Goldstone

mode, and therefore its properties one can calculate in any
theory inwhich chiral symmetry gets spontaneously broken.
Historically the NJL model and its nonlocal versions (some
related with the instanton liquid model) have been used to

calculate the pion light-frontwave function [7–9]. Beforewe
briefly discuss the results of “realistic” models, related to a
larger set of hadronic wave functions, let us introduce some
extreme cases. For example, in [55] a flat pionwave function
was used as an “initial condition” for radiative evolution.
Some typical shapes of the pion and other light meson wave
functions stemming from some recent works, are shown
in Fig. 12.
In contrast, in the 1980s Chernyak and collaborators

[56], using the QCD sum rules, arrived at the pion wave
function

φCZðxÞ ¼ 30xð1 − xÞð2x − 1Þ2; ð120Þ

known as “the double-hump” one. But, since then no
support for this shape has materialized, and it also does not
agree with lattice results on momentum fractions, so we
will not discuss it. Let us state once again that we see
phenomenological failure of the perturbative QCD (pQCD)
expressions not in the modified shape of the wave function,
but in the missing nonperturbative part of the hard blocks.
The light pseudoscalar mesons P ¼ π, K, η are related to

chiral symmetry breaking, and therefore they exist even in
models without confinement, such as the NJL and ILM.
Their wave functions and parton distribution amplitudes
(PDA) have been calculated in various approximations.
The question was addressed originally in the ILM frame-
work in [57] and more recently using the quasidistribution
proposal by one of us in [13]. The distribution amplitude
for the light P-pseudoscalars of squared mass m2

P was
derived in [13]

FIG. 12. Upper plot: the pion light front distribution function
from [13]. Lower plot: the light meson light front distribution
functions from [6].
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φPðxÞ ¼
2Nc

f2P

Z
d2k⊥
ð2πÞ3

θðxx̄Þ
ðk2⊥ þM2ð0; mqÞ − xx̄m2

PÞ

×M2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þM2ð0; mqÞ

q
λP

ffiffiffiffiffi
xx̄
p

!
; ð121Þ

where the momentum-dependent quark mass is

Mðk; 0Þ ¼ Mð0ÞðjzðI0K0 − I1K1Þ0j2Þz¼1
2
ρk: ð122Þ

Here λP is a cutoff parameter of order 1, e.g., λπ ¼ 3.41,
and Mð0Þ ¼ 386 MeV ≈MQ with an instanton size
ρ ¼ 0.3 fm. As shown in [13], this momentum dependence
has been confirmed by lattice studies. For a light current
quark mass mq, the running effective quark mass
Mðk;mqÞ ≈MðkÞ þmq. The corresponding shape of the
wave function is shown in the upper plot of Fig. 12 as
reproduced from [13] and is in agreement with [57]. Both
calculations show a wave function rather close to the
asymptotic one and very far from the double-hump dis-
tribution (120).
Another approach to light front wave functions is based

on some model-dependent Hamiltonians. Jia and Vary [5]
introduced a convenient form of it, with three basic
elements: constituent quark masses (that is, chiral sym-
metry breaking), plus some form of confinement, plus
(NJL-type) residual quark-quark interaction. This approach
was followed by one of us [6], who calculated the wave
functions for the π, ρ, η0 mesons, as shown in the lower plot
of Fig. 12.
We do not study or discuss in this work other hadrons,

such as baryons, pentaquarks and dibaryons, or multiquark
components of meson wave functions. Still, let us make
here a few remarks on those. Their PDFs, extracted from
DIS and jets, are in this case not sufficient to obtain the
wave functions and DAs, as they depend on more variables.
And yet, it is very important to study those: in particular,
the structure of the nucleons is the central area of
experimental research. So, let us mention a few works
on that related with instanton effects.

In the 1990s Diakonov and collaborators developed a
version of the chiral bag model based on the ILM and
calculated certain leading and next-to-leading twist nucle-
ons DAs (for a review see [58]). Unfortunately, it was done
in the large Nc limit, which missed important elements,
such as the instanton-induced diquarks [59]. The wave
functions for the Δ, the nucleon, and even their 5-light-
quark component were derived recently in [6], with the
’t Hooft residual interaction. It provides the first quantita-
tive derivation of the antiquark PDFs inside the nucleon,
explaining its flavor asymmetry.

B. Twist and chiral structures
of the DAs of the pion

We start this section from a generic discussion of chiral
symmetry and its breaking. Naively, in a theory with
massless quarks chiral symmetry is exact. If it remains
unbroken, hadrons diagonal in chirality, such as q̄LqLþ
q̄RqR, and nondiagonal in chirality, such as q̄LqR þ q̄RqL,
would simply be different species, with different masses
and wave functions. Since chiral symmetry is spon-
taneously broken in the QCD vacuum (and at low temper-
atures T < Tc), all such would be species are mixed
together.
Starting from the QCD sum rule days of the 1970s, it is

known that hadrons can be excited by local operators with
different chiral structure. For example, positive pions can
be excited by both (chiral nondiagonal) pseudoscalar
operator ðd̄iγ5uÞ and (diagonal) axial current ðd̄γμγ5uÞ.
Yet the pion role in these two correlation functions is very
different. While in the pseudoscalar correlator the pion
practically dominates from very small distances on, in the
axial-vector correlator the A1 meson dominates, and only at
rather large distances does a pion tail appear. The coupling
to the axial-vector current fπ is relatively small and
vanishes if chiral symmetry is restored.
In the case of the pion, the DA is πþðpÞ →

qifαðkÞq̄jgβðk − pÞ and corresponds formally to the con-
nected amplitude

Z þ∞
−∞

pþdz−

2π
eixp·zh0jd̄βð0Þ½0; z�uαðzÞjπþðpÞi

¼
�
þ ifπ

4
γ5
�
=pφπþðxÞ − χπφ

P
π ðxÞ þ iχπσαβ

pαp0β

p · p0
φ0Tπ ðxÞ

6

��
αβ

ð123Þ

and its conjugate

Z þ∞
−∞

p0−dzþ

2π
e−ixp

0·zhπþðp0ÞjūβðzÞ½z; 0�dαð0Þj0i

¼
�
−
ifπ
4

γ5
�
=p0φπþðxÞ þ χπφ

P
π ðxÞ − iχπσαβ

pαp0β

p · p0
φ0Tπ ðxÞ

6

��
αβ

ð124Þ
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up to twist-3. ½x; y� refers to the gauge link and
σαβ ¼ i

2
½γα; γβ�. Equations (134) and (133) are explicitly

odd under P parity.
Note that the 4-vector p0μ appears in the DA of a pion

with 4-vector pμ, in reference to the conjugate light-cone
direction, with generally no relation to the second pion. In
the DA of a pion with momentum p0μ, the exchange p ↔ p0

needs to be enforced, effectively flipping the sign of the last
term. Also, note that we dropped the contribution

fπχπ
4

σμνpμ

�� ∂
∂k⊥ν

φT
π ðxÞ
6

�
þ φT

π ðxÞ
6

∂
∂k⊥ν

�
ð125Þ

as it involves the dependence on k⊥ which we have ignored
in both the soft and the hard blocks.
Equations (134)–(137) can be inverted, to recast the

pion twist-2 and twist-3 light-cone wave functions in
explicit form

φπþðxÞ ¼
1

ifπ

Z þ∞
−∞

dz−

2π
eixp·zh0jd̄ð0Þγþγ5½0; z�uðzÞjπþðpÞi;

φP
πþðxÞ ¼

pþ

fπχπ

Z þ∞
−∞

dz−

2π
eixp·zh0jd̄ð0Þiγ5½0; z�uðzÞjπþðpÞi;

φT0
πþðxÞ
6
¼ 1

fπχπ

pμp0νpþ

p · p0

Z þ∞
−∞

dz−

2π
eixp·zh0jd̄ð0Þσμνγ5½0; z�uðzÞjπþðpÞi; ð126Þ

with all DA normalized to 1. The leading twist-2 DA φπðxÞ is chirally diagonal. Although it characterizes the axial-vector
strength in the pion, it is traditionally referred to without the label A or axial, a convention we will hold. Its normalization to
1 is fixed by the weak pion decay constant fπ ≈ 133 MeV,

h0jd̄ð0Þγμð1 − γ5Þuð0ÞjπþðpÞi ¼ −Tr
�
γμð1 − γ5Þ

�
ifπ
4

γ5=p

��Z
1

0

dxφπþðxÞ≡ ifπpμ: ð127Þ

Isospin symmetry and charge conjugation force φπðxÞ ¼ φπðx̄Þ. As pointed out initially in [38], there are two twist-3 and
chirally nondiagonal independent DA φP

π ðxÞ and φT
π ðxÞ, characterizing the pseudoscalar and tensor strength in the pion,

respectively. The pseudoscalar and tensor are tied by the current identity

∂νðd̄ð0Þσμνγ5uðzÞÞ ¼ −∂μðd̄ð0Þiγ5uðzÞÞ þmd̄ð0Þγμγ5uðzÞ ð128Þ

and share the same couplings. The value of the dimensionful coupling constant χπ can be fixed by the divergence of the
axial-vector current and the partially conserved axial current (PCAC) relation

ðmu þmdÞh0jd̄ð0Þiγ5uð0ÞjπþðpÞi

¼ −ðmu þmdÞTr
�
iγ5
�
ifπ
4

γ5χπ

��Z
1

0

dxφP
π ðxÞ ¼ ðmu þmdÞfπχπ ð129Þ

with φP
π ðxÞ normalized to 1. Using the Gell-Mann-Oakes-

Renner relation

f2πm2
π ¼ −2ðmu þmdÞhq̄qi ð130Þ

with jhq̄qij ≈ ð240 MeVÞ3, which yields

χπ ¼
m2

π

ðmu þmdÞ
: ð131Þ

Furthermore, quark masses are not physical quantities and
their numerical values depend on the definition, in par-
ticular on chosen normalization point μ. PDG tables use the

rather high value μ ¼ 2 GeV, appropriate e.g., to lattice
simulations with fine lattices. For usage in DAs more
appropriate are values at “soft” normalization, as used in
hadronic spectroscopy, which are about twice larger than
PDG values. Therefore we will use χπ ≈ 1.2 GeV.
Note that while the coupling to the pseudoscalar current

is numerically large compared to fπ, this term flips the
quark chirality. For the vector form factor, this term
contributes typically subleading corrections ∼χ2π=Q2.
However, as we have shown in our summary results, its
contribution is far from being negligible in the kinematical
region of interest.
Asymptotically, twist-3 contributions combined give

subleading contributions to the pion form factor at large
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Q2 as can be seen in (13). Indeed, the asymptotic limits of
these DAs are φP

π ðxÞ→ 1 and φTðxÞ→ 6xx̄ owing to their
conformal spin, with φ0TðxÞ → 6ðx̄ − xÞ. When inserted in
(13) the twist-3 contribution simplifies at asymptotic Q
with the result

f2πχ2π
Q4

Z
dx1dx2

1

x̄1x̄2

��
1

x̄2
− 1

�

þ ðx̄2 − x2Þ
�
1

x̄2
þ 1

�
¼ 2x̄2

�
¼ 2

f2πχ2π
Q4

Z
dx1
x̄1

; ð132Þ

which is clearly subleading. However, in the semihard
domain of interest for this work, one does not expect
the twist expansion to converge. Moreover, as was also

noted already in [38], while suppressed asymptotically,
P and T contributions are actually enhanced by a large
prefactor and are in fact dominant over the leading
axial term.

C. The twist and chiral structure of DAs of the
transversely polarized vector mesons

The DAs of the vector mesons, with longitudinal and
transverse polarizations, are extensively discussed in the
literature. We refer to [60,61] for a thorough discussion of
the leading and subleading twist contributions and how
their couplings are related. We will mostly discuss the
transversely polarized ρþ, with the following twist-2 and
twist-3 DA:

φρ⊥ðxÞ ¼ gðvÞ⊥ ðxÞ ¼
pþ

fρmρ

Z þ∞
−∞

dz−

2π
eixp·zh0jd̄ð0Þ=ϵ⊥uðzÞjρþðpÞi;

φT
ρ⊥ðxÞ ¼ ϕ⊥ðxÞ ¼

pþ

2fTρp · p0

Z þ∞
−∞

dz−

2π
eixp·zh0jd̄ð0Þð=ϵ⊥=p0 − ϵ⊥ · pÞuðzÞjρþðpÞi;

φ0Aρ⊥ðxÞ ¼ g0ðaÞ⊥ ðxÞ ¼
2ipþ

3fρmρp · p0
ϵμνρσϵTμp0ρpσ

Z þ∞
−∞

dz−

2π
eixp·zh0jd̄ð0Þγμγ5uðzÞjρþðpÞi; ð133Þ

with nonvanishing ϵμ⊥ ≠ 0 only for μ ¼ 1, 2. The first labeling refers to our notations, and the second labeling to the
notations used in [60].
Expressions (133) can be inverted to give the transverse rho twist-2 and twist-3 light-cone wave functions in explicit form

Z þ∞
−∞

pþdz−

2π
eixp·zh0jd̄βð0Þ½0; z�uαðzÞjρþðpÞi

¼
�
þ i
4
=ϵ⊥ðfρmρφρðxÞ − fTρ=pφT

ρ ðxÞÞ þ
fρmρ

4p · p0
ϵμνρσγ

μγ5ϵ
νpρp0σ

φA0
ρ ðxÞ
4

�
αβ

; ð134Þ

and its conjugate

Z þ∞
−∞

p0−dzþ

2π
e−ixp

0·zhρþðp0ÞjūβðzÞ½z; 0�dαð0Þj0i

¼
�
−
i
4
=ϵ⊥ðfρmρφρðxÞ þ fTρ=p0φT

ρ ðxÞÞ −
fρmρ

4p · p0
ϵμνρσγ

μγ5ϵ
νpρp0σ

φA0
ρ ðxÞ
4

�
αβ

ð135Þ

with again all DA normalized to 1. The parameter fρ ≈ 210 MeV is fixed from the electromagnetic decay ρ → eþe−,

h0jd̄ð0Þγμuð0Þjρþ⊥ðpÞi ¼ −
Z

1

0

dxTr

�
γμ
�
i
4
=ϵTðfρmρφρþ⊥ðxÞ − fTρ =pφT

ρ ðxÞÞ
��

≡ ifρmρϵ
μ
T: ð136Þ

Lattice evaluation of the tensor coupling [62] gives
fTρ=fρ ≈ 0.6. The reason the first and third lines in the
above equations have the same coupling is extensively
discussed in [60]. Note that the first vector and last axial
components are chirality diagonal, and the tensor term is
chirality flipping.

D. Very special mesons η0ð958Þ and a0ð1450Þ
The light vector mesons ρ, ω (and their strange

counterparts K�;ϕ) considered in the previous subsec-
tion are “the most normal” mesons, generally described
as a pair of constituent quarks rather weakly bound by a
confining potential. In this respect they are different
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from the pions, deeply bound by instanton-induced
forces.
However, there is one more family of unusual mesons

that we already mentioned in (9), which appears in the
instanton-induced ’t Hooft effective Lagrangian with neg-
ative sign, and which corresponds to repulsive forces. In
that discussion, done for simplicity in the old two-flavor
notations, they were called pseudoscalar isoscalar η and
scalar isovector δ, respectively. In the real world with three
light flavors u, d, s they correspond to the η0ð958Þ and its
chiral partner a0ð1450Þ, in current notations. (The index
zero is for the spin J and not the charge which, as for the
pion and rho, would be þ1.) Such instanton-induced
repulsion makes them significantly heavier than ρ, ω.
(Recall that for the light-front mesonic Hamiltonians one
should think in terms of mass squared.)
Technically, the calculation of the η0 two- (and three-)

point correlation functions is difficult to calculate because
of the “disconnected” two-loop quark diagrams. But, since
a0 is its chiral partner with flavored states coupled to the
charged ðd̄uÞ operator, it produces only a one-quark-loop

diagram and may serve as a reasonable substitute. The
corresponding correlator in Euclidean time has been
calculated in the interacting instanton liquid model in
[33], together with many other mesonic two-point func-
tions. The latter functions strongly decrease with the
distance, a behavior consistent with a strong instanton-
induced repulsion. Unlike other channels, no fit for the
particle mass and coupling constant was done in this
channel. The study mentions that apparently there was
no state below the “continuum threshold” at about 1.5 GeV.
No identification with a0ð1450Þ was made at that old
analysis. There may be lattice studies of this scalar
isovector channel, but we are not aware of such.
The first calculation of the η0 DA in [6] has already been

mentioned, with its shape shown in Fig. 12(b). Indeed, it
has a shape that is quite different from the other mesons.
One may anticipate that it should be similar for the a0, a
chiral partner to the η0.
One can define the DA of the scalar mesons in the same

form as for the pion, just omitting γ5, namely

Z þ∞
−∞

pþdz−

2π
eixp·zh0jd̄βð0Þ½0; z�uαðzÞjaþ0 ðpÞi

¼
�
þ ifa0

4

�
=pφV

a0ðxÞ − χSa0φ
S
a0ðxÞ þ iχTa0σαβ

pαp0β

p · p0
φ0Ta0ðxÞ

6

��
αβ

ð137Þ

and its conjugate

Z þ∞
−∞

p0−dzþ

2π
e−ixp

0·zhaþ0 ðp0ÞjūβðzÞ½z; 0�dαð0Þj0i

¼
�
−
ifa0
4

�
=p0φV

a0ðxÞ − χSa0φ
S
a0ðxÞ þ iχTa0σαβ

pαp0β

p · p0
φ0Ta0ðxÞ

6

��
αβ

ð138Þ

up to twist-3. The three functions introduced here, and their
couplings, of course have nothing to do with those of the
pion. In particular, the short-distance repulsive quark
interaction is expected to make those couplings to be
much smaller numerically, as they correspond to the wave
function at the origin.
The notations in (137) and (138) parallel the pion ones,

but with big differences in the values of the parameters.
Indeed, it is readily seen that the divergence of the vector
current relates to the scalar matrix element with

χSa0 ¼
m2

a0

md −mu
; ð139Þ

which is similar to χπ in (131), but with the difference of the
quark masses instead of their sum. In the isospin symmetric
limit md ¼ mu, χSa0 → ∞. Also, the mass of the a0 in (131)

does not vanish in the chiral limit mu;d → 0, in which case
we also have χSa0 → ∞. In a way, our parallel use of the
notations with the pion is a bit misleading, as fa0 → 0 in the
chiral and/or the isospin symmetric limit. Hence, it is more
appropriate to use the finite combinations

fa0χ
S
a0 → ðfSa0Þ2; fa0χ

T
a0 → ðfTa0Þ2 ð140Þ

for the scalar and tensor in (137) and (138), and disregard
the small vector contribution.
The reader may also notice that there is a relation

between the scalar and tensor couplings, stemming from
the condition that, with the asymptotic wave functions,
certain cancellations must take place, so that their common
contribution should be ∼1=Q4 as they are generically twist-
3 structures. For instance, in the results quoted in (30) the
asymptotic cancellation suggests that fS2a0 ¼ fT2a0 for
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φS
a0ðxÞ → 1 and φT

a0ðxÞ → 6x̄x, which is the choice of
parameters used in Sec. II D.

VI. DISCUSSION AND OUTLOOK

A. Nonperturbative quark-quark interactions
at the few-GeV2 scale

We start by emphasizing the chief motivation and result
of this work. In the momentum transfer range of interest
Q2 ∼ fewGeV2, the quark-quark interactions are much
more complex than just the lowest-order one-gluon
exchange. Clearly, some nonperturbative effects (and
higher order gluon diagrams) are needed to quantitatively
explain many observations, with the mesonic form factors
addressed here being just the simplest examples.
We argued that, while in this kinematic domain the

dynamics is complex, the collinear factorization frame-
work should still hold. Indeed, it is based on the purely
kinematic separation of the hard probing scale Q2 from the
soft internal scale hp2⊥i ∼ 0.1 GeV2. The separation of
those scales still allows one to separate any exclusive
process into two parts: (i) the (quasi)local hard block
operator, and (ii) the light front distributions.
In the introductory Sec. I B we indicated that the NJL 4-

fermion operators, fitted to chiral phenomenology, have
magnitude comparable to those from perturbative one-
gluon exchange. We argued therefore that in order to
understand the magnitude of the hadronic form factors
(and other exclusive reactions) one has to include them.
In this spirit, we performed a relatively long calculation

of only a part of the nonperturbative effects we can evaluate
at this point, namely the instanton-induced ones. Our
results confirmed that their contributions are indeed com-
parable to or larger than the perturbative ones in the region
discussed, Q2 ∼ 2–10 GeV2.
We further emphasized the importance of including a

complete density matrix of mesons, with different chiral
structures, rather than relying on leading twist ones. In
particular, taking together the perturbative axial and pseu-
doscalar density matrix, and the gluon and instanton
contributions, we found a reasonable magnitude and Q
dependence for the total vector pion form factors. In fact it
matches smoothly with the data (and the monopole fit) at
the lower end of the domain. Note that this happened in a
rather nontrivial way and without any parameter specially
fitted.
In the course of this work our understanding of the

instanton-induced effects has changed. In particular, the
anticipated dominance of the zero mode contributions,
denoted by Vd, Sd did not occur.
A direction we took in this work aims at as many form

factors as possible, for a large variety of mesons, all
evaluated in the same framework. We separately identified
the effect of instantons into the hard block, for the scalar,
vector, and gravitational form factors. We then convoluted

those with the full form of the density matrix, for the
pseudoscalar (transversely polarized) vector and even
scalar mesons.
For technical reasons, we restricted our analysis to

hadrons made of light quarks. Indeed, only in this case
do we have analytic expressions for the quark propagators
in the instanton background. However, extensions to
strange (and perhaps even charmed) quarks can be done
with perturbative inclusion of their masses.
Since the results were already presented upfront in

Sec. II, we will not repeat our comments here. Instead,
we will now take a wider perspective and speculate on how
these results can be combined with other theoretical and
phenomenological inputs, to attack a general problem of
understanding forces acting between quarks.
We recall that the important inputs were provided by the

point-to-point correlation functions at intermediate distan-
ces x ∼ 1=Q, with the scale of interestQ2 ∼ fewGeV2. The
setting is schematically explained in Fig. 13. In a way, these
studies revealed what can be called “the form factors of the
QCD vacuum.” As discussed in detail e.g., in [1,33], at
small distances they are described by pQCD diagrams, and
at large distances by “meson exchanges.” At intermediate
distances, of interest here, one finds a rather rich channel-
dependent set of correlators. This richness was first
historically emphasized in the title of Ref. [63]: “Are all
hadrons alike?” and quantitatively reproduced by instan-
ton-based semiclassical theory.
The point-to-point correlation functions on the lattice

provided wave functions at the origin in the form of
constants such as fπ , χπ , fρ, needed for form factors.
The strong splitting between the light π − σ with m2

π ≈ 0

and m2
σ ≈ 0.2 GeV2, on the one hand, and η0 − δ with

m2
η0;δ ∼ 1 GeV2, on the other, historically provided a

motivation for the dominance of instanton-induced forces
described by the effective ’t Hooft Lagrangian

OtHooft ∼ ðūLuRÞðd̄LdRÞ þ ðL ↔ RÞ:

There are direct lattice evidences (e.g., [47]) that this
operator is indeed dominant in the vacuum. One now can
certainly do many more systematic lattice studies of multiple

FIG. 13. Two diagrams for in-vacuum correlation functions.
The rhombuses correspond to two operators hOð0ÞOðxÞi inserted
at Euclidean coordinates 0 and x ∼ 1=Q. The blue circles refer to
a nonperturbative background field.
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correlation functions at small/intermediate distances and
quantify the strength of all relevant 4-fermion operators

OΓ ¼ ðq̄ΓqÞðq̄ΓqÞ:

Thatwill put theNJL-typemodeling of quark-quark forces on
a more quantitative basis.
Let us also mention here another area in which an

interesting phenomenology of quark interaction, in the
same range of momentum transfer, has been developed: the
physics of Pomerons and diffractive processes. In Fig. 14
we schematically show two basic processes: the high
energy elastic scattering and the double-diffractive produc-
tion (sometimes called Pomeron-Pomeron collisions).
In the lowest perturbative order, the Pomeron is just a

two-gluon exchange. In higher orders it is given by ladder
diagrams producing the so-called Balitsky-Fadin-Kuraev-
Lipatov (BFKL) Pomeron [65,66]. At intermediate Q one
also thinks of it as an (Reggeized) exchange of glueballs. It
is worth recalling that the first one on the Pomeron
trajectory is not the lowest scalar glueball, but a tensor
one JPC ¼ 2þþ. This correlates well with recent demon-
strations [64,67] that the Pomeron is also an object
possessing a symmetric polarization tensor hμν. Finally,
note that in the holographic models of QCD the Pomeron
and tensor glueballs are just certain parts of Reggeized
graviton exchanges that sum up to a close string exchange
[68,69]. Taking this into account, one may expect to find
among the quark-quark forces the operator containing the
product of two stress tensors,

OTT ¼ ðq̄∂μγνqÞðq̄∂μγνqÞ:

The problem, however, remains: we do not entirely
understand the mechanisms of the quark-antiquark scatter-
ing at any level of precision. The instantons are not the only
nonperturbative objects in the QCD vacuum. The (nearly
60 years old) NJL Lagrangian is very important, but still it
is not the only quark interaction.

B. Where should further progress happen?

As we emphasized in the Introduction, in spite of
significant efforts, experimental measurements of the pion
and kaon form factors have hardly entered the semihard
domain of Q2 discussed. Perhaps with a new facility such
as the EIC in Brookhaven, there will be further exper-
imental progress.
In the near future, we anticipate a rapid progress in lattice

calculations of the mesonic form factors. The simulations
with physical light masses are currently possible, and the
subtleties of chiral dynamics are under control.
Current lattice studies (of the vector pion form factors

in [70,71] and scalar form factors [72]) are restricted to the
momentum transfer range Q2 < 1 GeV2. In order to get to
a larger momentum transfer, one needs lattices with
smaller lattice spacing. With this in mind we have picked
up a sample of mesonic form factors carried by the
HPQCD Collaboration; see Fig. 15. The strategy of
HPQCD is to approach the problem gradually, from
heavier to lighter quarks. The natural expectation is that
the physics of the heavy quark system is simpler, since
their nonrelativistic wave functions and some other
aspects are under better theoretical control. Heavier quark
flavors are expected to be less involved in nonperturbative
interactions. Starting with the b, c system, and going
down to the strange quarks, we note that they become
more relativistic and more sensitive to the details of chiral
symmetry breaking and its nonperturbative origins. On the
lattice one can of course dial any value for the quark
masses.
In the vector channels, mesons made of different flavors

do not mix much, and one might think that the ρ → ϕ →
J=ψ sequence can be smoothly connected via a change in
mass. However, in the light pseudoscalar channels we know
the mixing is very strong. Furthermore, it is complicated by
the broken chiral UAð1Þ symmetry, due to which η0 is not a
partner to the octet states at all. (This is a strong indication
of the dominance of ’t Hooft–like interaction, which is
flavor-nondiagonal by construction.)
In order not to deal with such issues, in [74], an artificial

particle called ηs was invented. It is different from the
physical η or η0. Its definition can be explained as follows:
imagine that there are two more species of strange quarks,
s0 and s00, which have the same mass as the standard ms.
Their additional properties are as follows: (i) they are not
identical, so the pair s̄0s00 cannot annihilate, and the
correlators consist only of the connected one-loop diagram,
while the (very costly) disconnected two-loop diagram
does not exist. This construction avoids the calculation of
that diagram which is technically challenging; (ii) also for
simplicity, one of these presumed quarks is given an
electric charge es0 ¼ 1, and the other one is neutral, with
es00 ¼ 0, eliminating half of the diagrams. It was numeri-
cally found that in the range Q2 ≈ 2–9 GeV2, the ηs form
factor times Q2,

FIG. 14. Elastic high energy collision of hadrons (upper plot)
and double-diffractive production of a hadron (lower plot). Note
that the Pomeron-Pomeron-(tensor) hadron may have many
different index structures, but it is the “triple-graviton” one
which explains the data [64].
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Q2FηsðQ2Þ ≈ 0.6 GeV2; ð141Þ

is approximately constant, with no indication to reach the
pQCD asymptotic value, which is significantly smaller.
Almost identical results were recently obtained for the K
meson form factor.
For the charmed ηc meson, the vector form factor was

calculated to significantly higher momentum transfer
Q2 ∼ 25 GeV2. Again, Q2Fηs remains approximately con-
stant, also about twice larger than the asymptotic value.
Lattice data for the scalar form factor indicate that it (times
Q2) is also about the constant, in contradiction with the
chirality flip suppression rule predicted by the gluon
exchange mechanism. Furthermore, the numerical value
of this constant is larger than for the vector form factor, by
another factor of 2.
Multigluon diagrams lead to a correction of order ð1þ

1.18αsÞ [75] that can partly help to bridge the gap between
the lattice results and the pQCD for the vector form factor.
However, this correction would not help for the scalar form
factor, as gluon exchange cannot create the necessary
chirality flip, except through a penalty factor mf=Q.
However, we explain the presence of scalar form factors
by nonvanishing cross terms, between two chiral structures
in the distributions.
Taken literally, our calculations are done for zero current

quark masses, while the lattice data under consideration are

for massive s, c quarks. So, they are not related directly.
But, the strange quark mass is small enough m2

s ≪ Q2, and
it should not matter much, but in fact it can perhaps be
included perturbatively in the propagators. What we found
is that the sum of the perturbative contribution with
Q2FðQ2Þ weakly growing with Q2, plus the instanton
contributions, amounts to a near constant as observed on
fine lattices by the HPQCD Collaboration.
The lattice configurations can be made “more smooth”

by various procedures (e.g., the gradient flow) by which
one can gradually remove high-momentum gluons, while
keeping instantons (the action minima). Measuring form
factors during such a procedure, one is expected to see the
results changing, to their respective versions including only
instanton-induced effects. Our calculations can therefore be
considered as predictions for form factors, modified by
such smoothening procedures.
Finally, instantons are only some fraction of the non-

perturbative forces between quarks. We just calculated
what we could. Instantons are the only background for
which full massless quark propagators are available. It may
well be that, with better measurements/calculations of these
form factors, one may need some nonperturbative mech-
anisms of quark-antiquark interactions, other than the one-
gluon exchange and instantons. Perhaps, for heavy quarks,
one can proceed along the line of Ref. [76], starting from
the heavy quark limit.

FIG. 15. Mesonic form factors calculated on the lattice by the HPQCD Collaboration: K-meson [73], ηs [74], and ηc [73], top to
bottom.
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APPENDIX A: NOTATIONS AND KINEMATICS

The definitions of momenta are given in Fig. 1(a). Note
that in the Breit frame the initial meson momentum
pμ ¼ ð0; 0;−Q=2; Q=2Þ, and the final meson momentum
is p0μ ¼ ð0; 0; Q=2; Q=2Þ, where we ignored the meson
mass p2

μ ≈ 0. Note that we put the energy as the fourth
component rather than the zeroth as we do in Euclidean
notations, and that we call the two first components
transverse, for the momenta and polarization vectors.
Since we consider as an example mesons with chargeþ1

or d̄u flavors, the upper line in Fig. 1(a) corresponds to a u
quark, and its direction is assumed to be left to right. The
other line (d̄ with underlined momenta ki) has a flow of
baryon charge in the opposite direction, right to left, which
is reflected in the definition of its momenta with opposite
signs. Therefore, in our notations

pμ ¼ kμ1 − kμ1; p0μ ¼ kμ2 − kμ2:

For completeness, let us mention that momentum con-
servation corresponds to pμ þ qμ ¼ p0μ. In Minkowskian
kinematic we use the standard Dirac “slash” notations

=p≡ pμγμ:

Our set of gamma matrices are in the chiral basis, meaning
that γ5 is diagonal.

APPENDIX B: INSTANTON FIELD AND ITS
FOURIER TRANSFORM

Throughout, we will use the conventions and notations
developed in [77–79] for the instanton calculus. Super-
position of instantons makes sense only if they are all in the
so-called singular gauge

Aa
μðxÞ ¼

2

g
η̄aμν

ρ2ðxν − zνÞ
ðx − zÞ2ððx − zÞ2 þ ρ2Þ ;

¼ 2

g
η̄aμνðxν − zνÞ

�
1

ðx − zÞ2 −
1

ððx − zÞ2 þ ρ2Þ
�
: ðB1Þ

All Fourier transforms will be carried using

Fð�kÞ≡
Z

d4xe∓ik·xFðxÞ: ðB2Þ

The instanton Fourier transform is

Aa
μðkÞ ¼

4π2

g
η̄aμν

∂
∂kν

�
1

k2
−
ρ

k
K1ðkρÞ

�
; ðB3Þ

where K1 is the Bessel function. Quite characteristically,
one finds two terms, one decaying as a power of k as
hA�μðkÞAμðkÞi ∼ n=k6, supplemented by a term which
decreases exponentially at large k, ∼e−kρ. The former term
comes from the pointlike gauge topological singularity at
the origin ∼xν=x2, and therefore it does not depend on
instanton size ρ. It is spurious. The latter originates from the
regular bracket.
Following [77–79], we use the shorthand matrix-valued

notation x≡ σμxμ and x̄≡ σ̄μxν, with the covariantized
Pauli matrices in Euclidean and Minkowski space
defined as

Euclidean∶ σμ ¼ ð1;−iσ⃗Þ; σ̄μ ¼ ð1;þiσ⃗Þ; σμσ̄ν þ σνσ̄μ ¼ 2ημν;

Minkowski∶ σμ ¼ ð1;−σ⃗Þ; σ̄μ ¼ ð1;þσ⃗Þ; σμσ̄ν þ σνσ̄μ ¼ 2gμν;

with metric gμν ¼ ðþ;−;−;−Þ, ημν ¼ δμν, and satisfying
the identities

σμσ̄ν − σνσ̄μ ¼ 2iη̄aμντa; σ̄μσν − σ̄νσμ ¼ 2iηaμντa;

ðB4Þ

with the η-’t Hooft symbol. The spinor indices are α, β ¼ 1,
2, and the color indices are i; j ¼ 1; 2;…; Nc. We will carry
the analytical continuation from Euclidean to Minkowski
space using the prescription for spacelike momenta
q2M ≤ 0,

q2E → −q2M þ i0; ρ
ffiffiffiffiffiffi
q2E

q
→ ρ

ffiffiffiffiffiffiffiffiffiffi
−q2M

q
: ðB5Þ

For timelike momenta q2M > 0, it is more appropriate to use
the double prescription

q2E→−q2Mþ i0; ρ
ffiffiffiffiffiffi
q2E

q
→ ρ

ffiffiffiffiffiffi
q2M

q
; argρ¼−arg

ffiffiffiffiffi
q2

q
:

ðB6Þ

The analytical continuation in the instanton size ρ → −iρ
compensates for the extra phase obtained when analytically
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continuing in momentum. Since we are formally integrat-
ing over the instanton size distribution which is fixed by
the saddle point, this continuation is absorbed by the
ρ-integration measure (116).

APPENDIX C: FERMIONIC ZERO MODES

Our conventions for the γ5 matrix in Euclidean and
Minkowski space are, respectively,

γ5E ¼
�−1 0

0 1

�
; γ5M ¼

�
1 0

0 −1

�
: ðC1Þ

In Weyl notations, the Euclidean Dirac spinor reads

ΨðxÞ ¼
�
Ki

αðxÞ
ϕα
i ðxÞ

�
;

Ψ†ðxÞ ¼ ðK†α
i ðxÞ;ϕ†i

α ðxÞÞ≡ ðϕ̄α
i ðxÞ; K̄i

αðxÞÞ: ðC2Þ

The Euclidean fermionic action splits into leftK and right ϕ
copies

K̄σ · ð∂ − igAÞK þ ϕ̄ σ̄ ·ð∂ − igAÞϕ ðC3Þ

with K̄ ¼ ϕ† and ϕ̄ ¼ K† using

γμE ¼
�

0 σ̄μE
σμE 0

�
; γμM ¼

�
0 σ̄μM
σμM 0

�
: ðC4Þ

The instanton admits a left-handed zero mode Ki
αðxÞ

satisfying σ ·DK ¼ 0, and the anti-instanton a right-
handed zero mode ϕα

i ðxÞ satisfying σ̄ ·Dϕ ¼ 0, which
are eigenstates of ð1� γ5EÞ=2 and conjugates of each other.
In terms of the Euclidean Weyl spinors, the instanton zero
mode and its conjugate are

Ki
αðxÞ ¼

ρ
3
2

πx4
ðx̄ϵUÞiα
Π

3
2
x

¼ 2πρ
3
2

Π
3
2
x

ðS̄0ðxÞϵUÞiα;

K†α
i ðxÞ ¼

ρ
3
2

πx4
ðU†ϵxÞαi
x4Π

3
2
x

¼ 2πρ
3
2

Π
3
2
x

ðU†ϵS0ðxÞÞαi ≡ ϕ̄α
i ðxÞ:

ðC5Þ

Here ϵ is the antisymmetric spin 2-tensor with the nor-
malization ϵασϵ

σβ ¼ δβα, and

Πx ¼ 1þ ρ2

x2
; S0ðxÞ ¼

x
2π2x4

; S̄0ðxÞ ¼
x̄

2π2x4
;

ðC6Þ

with S0ðxÞ the free massless quark propagator. The zero
modes are normalized to ρ,

Z
d4xK†ðxÞKðxÞ ¼ ρ;

Z
d4xϕ†ðxÞϕðxÞ ¼ ρ: ðC7Þ

For the free Dirac spinors we will use the notation
χðkÞ ¼ χRðkÞ þ χLðkÞ (with Minkowski labeling) as the
sum of free Weyl spinors that satisfy

=kχðkÞ ¼ =k

�
χRðkÞ
χLðkÞ

�
¼
�
0 k̄

k 0

��
χRðkÞ
χLðkÞ

�
¼
�
k̄χLðkÞ
kχRðkÞ

�

¼ 0 ðC8Þ

with the free-wave orthonormalizations

χL;RðkÞχ†L;RðkÞ ¼ k; k̄; χ†L;RðkÞχR;LðkÞ ¼ 0: ðC9Þ

APPENDIX D: DETAILS OF THE
AVERAGING IN (73)

The first bracket in (73),

hk2j∂S̄ ϵ̄ðqÞS̄∂ 1þ γ5
2
þ ∂̄SϵðqÞS∂̄ 1 − γ5

2

			k1i; ðD1Þ

when converted to the configuration representation is
dominated by the large x, y-asymptotics of the propagators
on mass-shell. This translates formally to S̄ðx; zÞ → S̄0ðx −
zÞ= ffiffiffiffiffiffi

Πz
p

to the left, S̄ðz; yÞ→ S̄0ðz − yÞ= ffiffiffiffiffiffi
Πz
p

to the right,
and similarly for Sðx; zÞ and Sðz; yÞ. With this in mind,
(D1) gives

�
ϵ̄ðqÞ 1þ γ5

2
þ ϵðqÞ 1 − γ5

2

�Z
d4z

eiq·z

Πz
ðD2Þ

independently of the color orientations U with

Z
d4z

eiq·z

Πz
¼ −∂2

q

Z
d4zeiq·z

Z
∞

0

dλe−λðz2þρ2Þ

¼ −4π2ρ4
�
K1ðξÞ
ξ

�00
ξ¼ρq

; ðD3Þ

which at large q asymptotes ∼e−ρq=ðρqÞ3=2, plus an addi-
tional contribution

�
1

ik2
σμ½Uσμð−i∂̄qÞU†�ϵðqÞ

�
1− γ5
2

�

− ϵ̄ðqÞσ̄μ½Uð−i∂qÞσ̄μU†� 1
ik̄1

�
1þ γ5
2

��Z
d4zeiq·z

ρ2

z4Π2
z
;

ðD4Þ

which depends on the color orientations with
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Z
d4zeiq·z

ρ2

z4Π2
z
¼ −ρ2

∂
∂ρ2

Z
d4zeiq·z

1

z2 þ ρ2
¼ −2π2ρ2

�ðξK1ðξÞÞ0
ξ

�
ξ¼qρ

; ðD5Þ

which asymptotes ∼e−ρq=ðρqÞ1=2.
The contribution (D3) amounts to the instanton contribution to the electric form factor on a single quark line. To

understand the electric or magnetic nature of the contribution (D4) and (D5), we average it over the instanton color moduli
using the identity Z

dUUi
αU

†β
j ¼

1

Nc
δijδ

β
α ðD6Þ

to have �
−
k̄2
k22

qϵðqÞ
�
1 − γ5
2

�
þ ϵ̄ðqÞq̄ k1

k21

�
1þ γ5

2

���
−
4π2ρ4

Nc

1

ξ

�ðξK1Þ0
ξ

�0�
: ðD7Þ

On a single quark line with q ¼ k2 − k1 and both ends on mass-shell, Eq. (D7) yields the vector vertex

q2

M2
Q

�
1þO

�
k1;2
q

���
ϵ̄ðqÞ 1þ γ5

2
þ ϵðqÞ 1 − γ5

2

��
−
4π2ρ4

Nc

1

ξ

�ðξK1Þ0
ξ

�0�
: ðD8Þ

We regulated the emerging poles using k21;2 ¼ 0 → −M2
Q in the Euclidean signature. Equation (D8) is seen as an additional

instanton contribution to the electric form factor of a single quark line, much as (D3).
The second bracket in (73), D

k1j∂S̄∂ 1þ γ5
2
þ ∂̄S∂̄ 1 − γ5

2

			k2E; ðD9Þ

can be LSZ reduced exactly. More specifically, applying the LSZ reduction to the right of the second term in (D9) and
retaining only the leading k22 → 0 contribution give�Z

d4xe−iðk2−k1Þ·x
ik̄1ffiffiffiffiffiffi
Πx
p

�
1þ ρ2

2x2
½Uxk̄2U†�
k2 · x

ð1 − eik2·xÞ
�
þOðk2Þ

�
1 − γ5
2

: ðD10Þ

Similarly, applying the LSZ reduction to the left of the first term in (D9) and retaining only the leading k21 → 0 contribution
give �Z

d4xe−iðk2−k1Þ·x
�
1þ ρ2

2x2
½Uk1x̄U†�
k1 · x

ð1 − e−ik1·xÞ
�

ik2ffiffiffiffiffiffi
Πx
p þOðk1Þ

�
1þ γ5

2
: ðD11Þ

In the limit k1;2 → 0, the contributions in (D10) and (D11) do not vanish unless the integrals develop singularities which can
only arise from the large x-asymptotic of the integrands, as the contributions for x ≈ 0 are all finite. For instance, for a single
quark line (D11) after color averaging gives

ik2

Z
d4xe−iðk2−k1Þ·x

�
1þ ρ2

2Ncx2
ð1 − e−ik1·xÞ

�
1ffiffiffiffiffiffi
Πx
p þOðk1Þ

¼ ik2

�
ð2πÞ4δ4ðk2 − k1Þ −

2π2ρ2

ðk2 − k1Þ2
�
1 −

1

Nc

�
−
2π2ρ2

k22

1

Nc

�
þOðk1;2Þ

≈ ik2

�
ð2πÞ4δ4ðk2Þ −

2π2ρ2

k22

��
1 −

1

Nc

�
þ 1

Nc

��
þOðk1;2Þ ðD12Þ

with the approximation k2 − k1 ≈ k2 near the Euclidean mass-shell. This approximation supports retaining only the
1-contribution in (D10) and (D11), with the final result in Euclidean signature

2π2ρ2
��

1 −
1

Nc

�
þ 1

Nc

��
1

ik1

1 − γ5
2
þ 1

ik̄2

1þ γ5
2

�
: ðD13Þ
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APPENDIX E: RULES FOR THE DIAGRAMS
WITH ZERO MODES INSERTION

In Fig. 16 we illustrate the LSZ reduced Feynman
diagram for incoming and outgoing waves stemming from
an instanton zero mode. We note that the LSZ reduction is

not guaranteed unless the Euclidean field theory has a
Hamiltonian interpretation, which is lacking in the instan-
ton model of the QCD vacuum. Here it is understood as an
algorithm. More specifically, each LSZ reduced diagram
corresponds to

Fig:16A ¼
Z

d4x1ϕ̄ðx1Þ ⃖∂̄x1χLðk1Þe−ik1·x1 ¼ ϕ̄ðk1Þðik̄ÞχLðk1Þ;

Fig:16B ¼
Z

d4x1χ
†
Rðk2Þ∂⃗x1Kðx1Þeþik2·x1 ¼ χ†Rðk2Þð−ik2ÞKð−k2Þ;

Fig:16C ¼
Z

d4x1ϕ̄ðx1Þ ⃖∂̄x1χLðk2Þeþik2·x1 ¼ ϕ̄ð−k2Þð−ik̄2ÞχLðk2Þ;

Fig:16D ¼
Z

d4x1χ
†
Rðk1Þ∂⃗x1Kðx1Þe−ik1·x1 ¼ χ†Rðk1Þðik1ÞKðk1Þ; ðE1Þ

with the instanton localized at Z ¼ 0. The integration
over the collective Z-location of the instanton (anti-in-
stanton) in a given diagram gives rise to overall 4-
momentum conservation

ð2πÞ4δðk1 þ k1 þ q − k2 − k2Þ: ðE2Þ

The LSZ reduction of the quark zero modes (C5)
amounts to the amputation of the free quark propagator

in the large-x limit with Πx → 1. In momentum space this
amounts to

lim
k2→0

χ†RðkÞikKið−kÞ ¼ −2πρ3
2χ†RαðkÞϵαβUi

β;

lim
k2→0

ϕ̄jð−kÞð−ik̄ÞχLðkÞ ¼ þ2πρ3
2U†β

j ϵβαχ
α
LðkÞ: ðE3Þ

FIG. 16. Quark (A),(B) and antiquark (C),(D) zero modes
entering and exiting an instanton labeled by þ.

FIG. 17. Quark (A),(B) and antiquark (C),(D) absorbing or
emitting a vector photon in an instanton background labeled
by þ.
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In Fig. 17 we show the Feyman graphs whereby a zero
mode absorbs a virtual vector with polarization ϵμðqÞ
(absorption) and flips to a nonzero mode. The same
rules apply for a scalar or a pseudoscalar vertex with

the polarization set to �1. The extension to the energy-
momentum tensor vertex was given above. Following
the definitions established earlier, each of the verti-
ces gives

Fig:17A ¼ ϵðqÞ · Vðq; k1Þ≡
Z

d4xe−iq·xϕ̄ðxÞϵ̄ðqÞSðx; k1Þ;

Fig:17B ¼ ϵðqÞ · V̄ðq;−k2Þ≡
Z

d4xe−iq·xS̄ð−k2; xÞϵðqÞKðxÞ;

Fig:17C ¼ ϵðqÞ · Vðq;−k2Þ≡
Z

d4xe−iq·xϕ̄ðxÞϵ̄ðqÞSðx;−k2Þ;

Fig:17D ¼ ϵðqÞ · V̄ðq; k1Þ≡
Z

d4xe−iq·xS̄ðk1; xÞϵðqÞKðxÞ: ðE4Þ

The mixed Fourier transform of the nonzero mode propagators in Weyl form follows from (B2) using

Sðx; yÞ ¼
�
S0ðx − yÞ

�
1þ ρ2

UxȳU†

x2y2

�
þ ρ2σμ

4π2
Uxðx̄ − ȳÞσμȳU†

x2ðx − yÞ2y4Πy

�
1

ðΠxΠyÞ12
;

S̄ðx; yÞ ¼
�
S̄0ðx − yÞ

�
1þ ρ2

UxȳU†

x2y2

�
þ ρ2σ̄μ

4π2
Uxσ̄μðx − yÞȳU†

Πxx4ðx − yÞ2y2
�

1

ðΠxΠyÞ12
: ðE5Þ

More specifically, the LSZ amputated propagators Sk̄ and kS̄ are found to be

ikS̄ðk; yÞ ≈ eþik·y

Π1=2
y

�
1þ ρ2

2y2
UkȳU†

k · y
ð1 − e−ik·yÞ

�
;

Sðx; kÞik̄ ≈ e−ik·x

Π1=2
x

�
1þ ρ2

2x2
Uxk̄U†

k · x
ð1 − eþik·xÞ

�
; ðE6Þ

in agreement with those originally found in [78]. The new and more involved LSZ amputations S̄k and k̄S are

S̄ðx; kÞik ≈ e−ik·x

Π1=2
x

�
1 −

ρ2

2x2
Ukx̄U†

k · x

�
1 −

i
k · x
ð1 − eþik·xÞ

�
−

ρ2

M2
Q

ik
x4Πx

σ̄μUxσ̄μU†
�
;

ik̄Sðk; yÞ ≈ eþik·y

Π1=2
y

�
1 −

ρ2

2y2
Uyk̄U†

k · y

�
1þ i

k · y
ð1 − e−ik·yÞ

�
−

ρ2

M2
Q

ik̄
y4Πþ

σμUσμȳU†
�
: ðE7Þ

Note that we made use of the Euclidean regulator −k2 ≈ 0 → M2
Q in the last contributions appearing in (E7). The LSZ

amputated parts of the vertices in Figs. 17(A) and 17(B) read

lim
k2
1
→0
ϵðqÞ · Vðq; k1Þðik̄1Þ

¼ þði2πρ3
2ÞU†

�
ϵk1ϵ̄ðqÞ
2k1 · q

F


ρ
ffiffiffiffiffi
q2

q �
þ
�
ϵðqþ k1Þϵ̄ðqÞ
ðqþ k1Þ2

−
ϵk1ϵ̄ðqÞ
2k1 · q

�
F

�
ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ k1Þ2

q ��
;

lim
k2
2
→0
ð−ik2ÞϵðqÞ · V̄ðq;−k2Þ

¼ −ði2πρ3
2Þ
�
ϵðqÞk̄2ϵ
2k2 · q

F


ρ
ffiffiffiffiffi
q2

q �
þ
�
ϵðqÞðq̄ − k̄2Þϵ
ðq − k2Þ2

−
ϵðqÞk̄2ϵ
2k2 · q

�
F

�
ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq − k2Þ2

q
Þ
��

U; ðE8Þ

respectively, and similarly for Figs. 17(C) and 17(D) with FðxÞ ¼ xK1ðxÞ in terms of the Mac-Donald function.
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APPENDIX F: SCALAR VERTEX REDUX

If we ignore the transverse momentum dependence in the vertices, a simpler derivation of the vector, scalar, and
gravitational vertices in the instanton background can be obtained. Here, we illustrate it for the case of the scalar insertion.
Typically, we have

S̃ðq; k1Þ ¼
Z

d4xe−iq·xϕ̄ðxÞSðx; k1Þ ¼
Z

d4xe−iq·xϕ̄ðxÞσ̄μD⃗μΔðx; k1Þ ðF1Þ

with Δðx; k1Þ the half-mass shell Fourier transform of the scalar propagator in (64). Here since σμDμKðxÞ ¼ 0with K† ¼ ϕ̄
(C2), it is easier to proceed through the integration by parts and obtain

S̃ðq; k1Þ ¼
Z

d4xe−iq·xϕ̄ðxÞiq̄Δðx; k1Þ ≈
Z

d4xe−iq·xϕ̄ðxÞ iq̄ffiffiffiffiffiffi
Πx
p Δ0ðx; k1Þ ðF2Þ

with the free scalar propagator Δ0ðx; k1Þ ¼ eik1·x=k21 and k21 on mass-shell. Inserting the instanton zero mode in (F2) and

carrying the integration give (ξ ¼ ρ
ffiffiffiffiffi
q2

p
)

S̃ðq; k1Þ ≈
2πρ7=2q2K1ðξÞ

k21ξ
ðU†ϵik1Þ: ðF3Þ

In terms of (F3) the scalar vertex reads

��
8κq2K1ðξÞ

−k21ξ

�
ðχ†Rðk2ÞϵUÞ

�
U†ϵ

k1
2MQ

χRðk1Þ
�
þ ðχ†Lðk2ÞϵUÞ

�
U†ϵ

k̄2
2MQ

χLðk1Þ
��

×

�ð2πρÞ2
MQ

ðχ†Rðk1ÞϵUÞðU†ϵχLðk2ÞÞ
�
: ðF4Þ

Equation (F4) is in agreement with (106) after analytical continuation with k21 ≈ 0 → −M2
Q and color averaging.

APPENDIX G: FIERZING VECTOR AND SCALAR

Further rearrangements at the expense of length can be done using Fierzing to recombine the color contractions through
the identity

ðψ̄MϕÞðω̄NλÞ ¼ −
1

4

X
O

ðψ̄OλÞðω̄NOMϕÞ ðG1Þ

with O ¼ 1; γ5; γμ; iγ5γμ; iγμγν. More specifically, the subleading contributions in 1=Nc in (98) can be cast in the form

eu ×

�
−1

NcðN2
c − 1Þ

��
−1
4

�
× ½2ðūRðk2ÞdLðk2ÞÞðd̄Rðk1ÞðFVðq; k1Þ þ FVðq;−k2ÞÞuLðk1ÞÞ
− ðūRðk2ÞγμγνdLðk2ÞÞðd̄Rðk1ÞγμγνðFVðq; k1Þ þ FVðq;−k2ÞÞuLðk1ÞÞ
þ 2ðūRðk2ÞuLðk1ÞÞðd̄Rðk1ÞðFVðq; k1Þ þ FVðq;−k2ÞÞdLðk2ÞÞ
− ðūRðk2ÞγμγνuLðk1ÞÞðd̄Rðk1ÞγμγνðFVðq; k1Þ þ FVðq;−k2ÞÞdLðk2ÞÞ� ðG2Þ

and
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ed̄ ×

�
−1

NcðN2
c − 1Þ

��
−1
4

�
× ½2ðūRðk2ÞdLðk2ÞÞðd̄Rðk1ÞðFVðq; k1Þ þ FVðq;−k2ÞÞuLðk1ÞÞ
− ðūRðk2ÞγμγνdLðk2ÞÞðd̄Rðk1ÞðFVðq; k1Þ þ FVðq;−k2ÞÞγμγνuLðk1Þ
þ 2ðūRðk2ÞuLðk1ÞÞðd̄Rðk1ÞðFVðq; k1Þ þ FVðq;−k2ÞÞdLðk2ÞÞ
− ðūRðk2ÞγμγνuLðk1ÞÞðd̄Rðk1ÞðFVðq; k1Þ þ FVðq;−k2ÞÞγμγνdLðk2ÞÞ�: ðG3Þ

The subleading contributions in 1=Nc in (105) can be Fierzed using (G1) with the result

eu ×

�
−

1

NcðN2
c − 1Þ

��
−
1

4

�
½ðūLðk2ÞγμuLðk1ÞÞðd̄Rðk1ÞγμFSðq;−k2ÞdLðk2ÞÞ

− ðūLðk2Þγμγ5uLðk1ÞÞðd̄Rðk1Þγμγ5FSðq;−k2ÞdLðk2ÞÞ
þ 2ðd̄Rðk1ÞdLðk2ÞÞðūRðk2ÞF̄Sðq; k1ÞuRðk1ÞÞ
− ðd̄Rðk1ÞγμγνdLðk2ÞÞðūRðk2ÞγμγνF̄Sðq; k1ÞuRðk1ÞÞ
þ ðūLðk2ÞγμdLðk2ÞÞðd̄Rðk1ÞγμF̄Sðq;−k2ÞuLðk1ÞÞ
− ðūLðk2Þγμγ5dLðk2ÞÞðd̄Rðk1Þγμγ5F̄Sðq;−k2ÞuLðk1ÞÞ
þ 2ðūRðk2ÞdiLðk2ÞÞðd̄Rðk1ÞF̄Sðq; k1ÞuRðk1ÞÞ
− ðūRðk2ÞγμγνdLðk2ÞÞðd̄Rðk1ÞγμγνF̄Sðq; k1ÞuRðk1ÞÞ� ðG4Þ

and

ed̄ ×

�
−

1

NcðN2
c − 1Þ

��
−
1

4

�
½2ðūRðk2ÞuLðk1ÞÞðd̄Rðk1ÞFSðq;−k2ÞdRðk2ÞÞ

− ðūRðk2ÞγμγνuLðk1ÞÞðd̄Rðk1ÞγμγνFSðq;−k2ÞdRðk2ÞÞ
þ ðd̄Lðk1ÞγμdLðk2ÞÞðūRðk2ÞγμF̄Sðq; k1ÞuLðk1ÞÞ
− ðd̄Lðk1Þγμγ5dLðk2ÞÞðūRðk2Þγμγ5F̄Sðq; k1ÞuLðk1ÞÞ
þ ðūRðk2ÞγμdRðk2ÞÞðd̄Rðk1ÞFSðq;−k2ÞγμuLðk1ÞÞ
− ðūRðk2Þγμγ5dRðk2ÞÞðd̄Rðk1ÞFSðq;−k2Þγμγ5uLðk1ÞÞ
þ 2ðūRðk2ÞdLðk2ÞÞðd̄Lðk1ÞF̄Sðq; k1ÞuLðk1ÞÞ
− ðūRðk2ÞγμγνdLðk2ÞÞðd̄Lðk1ÞF̄Sðq; k1ÞγμγνuLðk1ÞÞ�: ðG5Þ
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