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We discuss the effects of rotation on confining properties of gauge theories focusing on compact
electrodynamics in two spatial dimensions as an analytically tractable model. We show that at finite
temperature, the rotation leads to a deconfining transition starting from a certain distance from the rotation
axis. A uniformly rotating confining system possesses, in addition to the usual confinement and
deconfinement phases, a mixed inhomogeneous phase which hosts spatially separated confinement and
deconfinement regions. The phase diagram thus has two different deconfining temperatures. The first
deconfining temperature can be made arbitrarily low by sufficiently rapid rotation while the second
deconfining temperature is largely unaffected by the rotation. Implications of our results for the phase
diagram of QCD are presented. We point out that uniformly rotating quark-gluon plasma should therefore
experience an inverse hadronization effect when the hadronization starts from the core of the rotating
plasma rather than from its boundary.
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I. INTRODUCTION

Noncentral relativistic heavy-ion collisions create a
highly vortical fluid of quark-gluon plasma. According
to the experimental results of the RHIC collaboration [1],
this fluid possesses the angular momentum of the order
of 103ℏ and carries the vorticity in the range of
ω ≈ ð9� 1Þ × 1021 s−1 ∼ 0.03 fm−1c. Theoretically, the
vorticity is expected to reach even higher values,
ω ∼ 0.1 fm−1c ∼ 20 MeV, at certain impact parameters
[2,3].1 Therefore, the vorticity can affect substantially
the thermodynamic properties and the phase structure of
the quark-gluon plasma. An overview of hydrodynamic and
transport-based models of vortical effects in quark-gluon
plasma and the relevant experimental results can be found
in Refs. [4,5].
Theoretically, the effects of vorticity on the phase

diagram are usually studied in the approximation of a
uniform rotation which assumes that the quark-gluon
plasma rotates as a solid body. There is a consensus that
the uniform rotation decreases the temperature of the chiral
phase transition [6–11] because the vorticity tends to align
the spins of quarks and antiquarks and suppresses the scalar
pairing thus diminishing the scalar fermionic condensate

[7]. Therefore, the effect of rotation in vortical plasmas
restores the chiral symmetry at lower critical temperatures
as compared to the quark-gluon plasmas with zero vorticity.
Besides the chiral symmetry breaking, QCD possesses

the color confinement phenomenon in the low-temperature
phase. Recent numerical lattice simulations indicate that the
bulk critical temperature of the deconfining phase transition
can rise with the increase of the vorticity [12]. A holo-
graphic approach gives the opposite result implying that the
temperature of the deconfinement transition decreases in the
vortical gluonic fluid [13]. In our paper, we propose the third
scenario, in which the rotation splits the single deconfining
transition into the two deconfining transitions, between the
pure confinement phase, a newmixed inhomogeneous phase
in which the confinement and deconfinement phases are
spatially separated, and the pure deconfinement phase.
To illustrate our proposal, we consider in detail the

rotation in compact electrodynamics (called also compact
QED or cQED for shortness) which is a toy model that
possesses the confinement property and, at the same time,
can be treated analytically. This (2þ 1) dimensional theory
enjoys the “compact” U(1) gauge symmetry, cU(1) and it
has no matter fields. The compact Abelian gauge theory in
two space dimensions is an effective toy model which
shares several non-perturbative features with QCD, notably
the charge confinement and the mass-gap generation [14].
Both cQED and QCD possess instantonlike objects in their
vacua, and both of them experience a deconfining phase at
high enough temperatures. Therefore, we expect that the
effects of rotation on QCD and cQED diagrams should
share similar features.
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1Hereafter, we work in units ℏ ¼ c ¼ 1.
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The structure of this paper is as follows. In Sec. II, we
discuss the implementation of the uniform rotation in the
imaginary-time formalism in the Euclidean-space time,
which is suitable for the analytical treatment of thermo-
dynamic ensembles in thermal equilibrium. We show that
the uniform rotation may be taken into account as a simple
shift of the Matsubara frequencies in the complex
plane. We also discuss the analytic rotation of the real-
valued angular frequency to a pure imaginary domain,
Ω → ΩI ¼ −iΩ, suitable for numerical lattice simulations
[12,15]. In Sec. III, we briefly overview the nonperturbative
features of compact electrodynamics in two spatial dimen-
sions. To elucidate the effect of rotation on confining
properties of this model, we study the Green’s functions in
the rotating disk-shaped domain in Sec. IV. These results
are used in Sec. V to find the effect of the rotation on the
confining properties of the compact Abelian model. We
briefly discuss the implications of our results for QCD at
the end of the article.

II. ROTATION AND WICK ROTATION

The rotating quantum systems were originally consid-
ered by Vilenkin long time ago [16]. In this section, we
discuss in very detail the spatial rotation in the imaginary
time formalism for the simplest case of a scalar field theory.
We also briefly touch the case of fermions. Our main aim is
to explicitly demonstrate that the physical rotation may be
incorporated as a simple shift of the Matsubara frequency in
the Wick-rotated space-time. We also discuss rotation with
purely imaginary frequencies Ω ¼ iΩI , viewed as an
analytical continuation in the plane of complex Ω. We
will use these results in the subsequent discussions of the
confining properties of rotating compact electrodynamics.

A. Thermodynamics of nonrotating scalar fields

1. Zero temperature

Consider a free theory of a massless real-valued field ϕ:

L ¼ 1

2
∂μϕ∂μϕ; ð1Þ

with the partition function

Z ¼
Z

Dϕ exp

�
−i

Z
d4xL

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Detð□Þp ; ð2Þ

and the classical equation of motion:

□ϕðt; xÞ≡
�∂2

∂t − Δx

�
ϕðt; xÞ ¼ 0; ð3Þ

where Δx ≡ ∇2 is the Laplacian. We traditionally ignored
an irrelevant constant factor in the right-hand side of

Eq. (2). In this section, we will mostly work in 3þ 1
dimensions.
The determinant in Eq. (2) should be taken for the

d’Alembertian operator □ defined in the appropriate
spacetime. Since in our work we focus on the rotation
problem in a field theory, we restrict out attention to the
volume inside a cylinder of radius R. For simplicity, we
consider the Dirichlet condition imposed on the field at the
cylindrical boundary of the system:

ϕðt; ρ;φ; zÞjρ¼R ¼ 0; ð4Þ

with the coordinate z directed along the cylinder’s axis,
x ¼ ρ cosφ and y ¼ ρ sinφ.
The eigenmodes are defined by Eq. (3). It is convenient

to rewrite this equation in the cylindrical coordinates:

�∂2

∂t −
1

ρ

∂
∂ρ ρ

∂
∂ρ −

1

ρ2
∂2

∂φ2
−

∂2

∂z2
�
ϕJ ¼ 0; ð5Þ

where we introduced the cumulative index

J ¼ ðm; l; kzÞ; ð6Þ

for angular (m ∈ Z), radial (l ≥ 1), and longitudinal
(kx ∈ R) quantum numbers that characterize the eigen-
functions:

ϕJðt; ρ;φ; zÞ ¼ e−iωJtϕJðρ;φ; zÞ; ð7aÞ

ϕJðρ;φ; zÞ ¼
eikzzþimφffiffiffi

2
p

πjJmþ1ðκmlÞj
Jm

�
κml

ρ

R

�
: ð7bÞ

The spatial wave function (7b) is the eigenmode of the
Laplacian:

−ΔxϕJðxÞ ¼ ω2
JϕJðxÞ: ð8Þ

For the field satisfying the Dirichlet boundary condition
(4), the dimensionless quantity κml is the lth positive root of
the Bessel function Jm:

JmðκmlÞ ¼ 0; m ∈ Z; l ¼ 1; 2;…: ð9Þ

The eigenenergies are as follows:

ω2
J ¼ k2z þ κ2ml=R

2: ð10Þ

The orthonormalization of the modes (7b)Z
R

0

dρρ
Z

∞

−∞
dz

Z
2π

0

dφϕ�
Jðt; ρ;φ; zÞϕJ0 ðt; ρ;φ; zÞ

¼ δll0δmm0δðkz − k0zÞ; ð11Þ

comes as a result of the identity:
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Z
1

0

dx xJmðκmlxÞJmðκml0xÞ ¼
δll0

2
J2mþ1ðκmlÞ; ð12Þ

valid for any two roots of the Bessel functions (9).
In the volume bounded by a cylinder, the integration

measure over the quantum numbers is modified with
respect to the integration measure in an unbounded space.
The integration over the continuous spatial momentum k is
replaced by the integration over the momentum along the
axis of rotation kz, the sum over the angular momentum m
about the same axis, and the radial excitation number l:

Z
d3k
ð2πÞ3 →

XZ
J

≡ 1

πR2

X∞
m¼−∞

X∞
l¼1

Z
∞

−∞

dkz
2π

: ð13Þ

2. Finite temperature

The conventional approach to study the theory in the
thermodynamic equilibrium is to perform the Wick rotation
from the real time to the imaginary time:

t → iτ: ð14Þ

It does not mean that one should literally apply the Wick
transformation (14) to the eigenfunction (7). Instead, we
identify a new operator in the left-hand-side of Eq. (3) with
the Wick-transformed time (14), and define its eigensystem:

�
−
∂2

∂τ − Δx

�
ϕn;Jðτ; xÞ ¼ E2

n;Jϕn;Jðτ; xÞ: ð15Þ

At finite temperature T, the direction of the imaginary
time τ is compactified to a circle of the length β ¼ 1=T with
periodic (for bosons) boundary conditions:

ϕn;Jðτ; xÞjτ¼0 ¼ ϕn;Jðτ; xÞjτ¼1
T
: ð16Þ

The solutions of Eqs. (15) and (16) are

ϕn;Jðτ; xÞ ¼ eiωnτϕJðxÞ; ð17Þ

where the spatial function ϕJ is given in Eq. (7b) and

ωn ¼ 2πn; n ∈ Z; ð18Þ

is the (bosonic) Matsubara frequency labeled by the integer
n. According to Eqs. (17) and (7b), the spectrum of Eq. (15)
is given by the eigenvalues (10) of the spatial Laplacian and
the Matsubara frequencies (18):

E2
n;J ¼ ω2

n þ ω2
J: ð19Þ

The partition function, Z ¼ e−F=T , determines the free
energy,

F ¼ −
1

2
TV

X
n∈Z

XZ
J

ln
E2
n;J

T2

≡ −
1

2
TV

X
n∈Z

XZ
J

ln
ω2
n þ ω2

J

T2
; ð20Þ

via the eigenfunctions of the operator (15). Here V is the
volume of the system, the integration measure is given in
Eq. (13), and T2 is added in the denominator for the sake of
the dimensional consistency. At finite temperature, the
integral over the fourth component of the momentum is
replaced in Eq. (20) by the sum over the Matsubara
frequencies: Z þ∞

−∞

dk4
2π

→ T
X
n∈Z

ð21Þ

In order to take the sum (20), we use the identity [17],X
n∈Z

ln ½ð2πn − iγÞ2 þ θ2� ¼ θ þ ln ð1 − e−θ−γÞ

þ ln ð1 − e−θþγÞ þ C; ð22Þ

extended with a parameter γ for a future use. To take the
divergent sum (22), we differentiate its left-hand side and
evaluate the converging expression explicitly:

∂
∂θ

X
n∈Z

ln ½ð2πn − iγÞ2 þ θ2�

¼
X
n∈Z

2θ

ð2πn − iγÞ2 þ θ2

¼ 1

2

�
coth

θ þ γ

2
þ coth

θ − γ

2

�
: ð23Þ

The integration of the above expression over θ gives us
Eq. (22) with an (infinite) constant constant C which we
can safely ignore in the following.
Using Eq. (22) with θ ¼ ωJ=T and γ ¼ 0, we get for the

free energy (20) the following standard expression:

F
V
¼ −

1

2

XZ
J

ωþ
XZ
J

ln ð1 − e−ωJ=TÞ; ð24Þ

where the first term corresponds to the vacuum contribution
and the second term is the standard thermodynamic energy.
Below, we will repeat the same derivation for the rotating
system of bosons.

B. Rotating scalar fields after the Wick rotation

We consider a thermal ensemble of the scalar fields
rotating rigidly and uniformly with the angular frequencyΩ
about the z axis of the same cylinder. We will always
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assume that the radius of the cylinder and the rotation
frequencies satisfy the causality constraint: jΩRj < 1.
Without losing generality, we assume that the system
rotates counterclockwise, Ω > 0.
The cylindrical coordinates of the laboratory reference

frame, xμ ¼ ðt;φ; ρ; zÞ, are related to the reference frame
corotating with the cylinder, x̃μ ¼ ðt̃; φ̃; ρ̃; z̃Þ as follows:

t̃ ¼ t; φ̃ ¼ ½φ −Ωt�2π; ρ̃ ¼ ρ; z̃ ¼ z; ð25Þ

where ½…�2π means modulo 2π. All coordinates remain the
same, except for the angle φ which is a uniformly growing
(up to 2π) linear function of time.
The change of variables (25) leads to the relation

between the derivatives in these frames:

∂
∂t¼

∂
∂ t̃−Ω

∂
∂φ̃ ;

∂
∂φ¼ ∂

∂φ̃ ;
∂
∂ρ¼

∂
∂ρ̃ ;

∂
∂z¼

∂
∂z̃ : ð26Þ

The change of the angular coordinate affect the derivative
with respect to the time coordinate.
One should distinguish between (i) a description of a

truly static (“static”, in the laboratory reference frame)
system in rotating coordinates and (ii) a physically rotating
system in the appropriate corotating coordinates. The
uniform rotation is determined by the frame in which
the “matter” (set by nonzero chemical potentials and/or
nonvanishing temperature) is identified. Our “tilted” coor-
dinate system is set in the corotated, physical reference
frame. Thus, the wave functions and the energy spectrum—
the latter will set the distribution functions of the matter—
are to be determined in the corotating (“tilted”) refer-
ence frame.
Substituting the relations (26) into the equation of

motion (5), we arrive at

�� ∂
∂ t̃ −Ω

∂
∂φ̃

�
2

− Δx

�
ϕJðt̃; x̃Þ ¼ 0; ð27Þ

where

Δx̃ ¼
1

ρ̃

∂
∂ρ̃ ρ̃

∂
∂ρ̃þ

1

ρ̃2
∂2

∂φ̃2
þ ∂2

∂z̃2 ; ð28Þ

is the spatial Laplacian in the rotating frame which is
unchanged up to the trivial renaming of the coordinates.
The Wick rotation (14) applied to the corotating (tilted)

time coordinate leads to the modification of the differential
operator in the right-hand side of Eq. (27):

�
−
� ∂
∂ τ̃ − iΩ

∂
∂φ̃

�
− Δx̃

�
ϕn;J ¼ Ẽ2

n;Jϕn;J: ð29Þ

The important but obvious point now is to notice that
the periodicity of the imaginary-time direction is imposed

in the corotating frame and not in the laboratory
frame:

ϕn;Jðτ̃; x̃Þ ¼ eiωn τ̃ϕJðx̃Þ; ð30Þ

The energy spectrum in the corotating frame (29) is

Ẽ2
n;J ¼ ðωn − iΩmÞ2 þ ω2

J: ð31Þ

Here we took into account the particular form of the angular
dependence of the spatial wave function (7b).
The free energy in the rotating frame F̃ is defined

analogously to Eq. (20) but now with the shifted spectrum
(31). Using the equality (22) with θ ¼ ωJ=T and
γ ¼ Ωm=T, we get for the complex bosonic field:

1

V
F̃ðbÞ ¼ −

T
2

X
n

XZ
J

ln
Ẽ2
n;J

T2
¼ T

2

XZ
J

ω

þ T
2

XZ
J

½lnð1 − e−ðωJ−mΩÞ=TÞ

þ lnð1 − e−ðωJþmΩÞ=TÞ�: ð32Þ

We find that the physical rotation in the Wick-rotated
Euclidean formulation of the field theory in the thermal
equilibrium is given, for a bosonic field, by a simple shift of
the Matsubara frequency: ωn → ωn − iΩm. In the rest of
this section we will briefly rederive this relation in another,
more formal way. From now on we remove the tilted marks
from the corotating coordinates since the reference frame in
which we work should be clear from the context.
In the rotating reference frame (25), the Lagrangian of

the model (1) takes the following form:

L ¼ 1

2
½ð∂t −Ω∂φÞϕ�2 −

1

2
ð∇xϕÞ2: ð33Þ

The momentum conjugate to the field,

π ¼ ∂L
∂ð∂tϕÞ

¼ ∂tϕ − Ω∂φϕ; ð34Þ

leads us to the following expression for the Hamiltonian in
the rotating frame:

Hðπ;ϕÞ ¼ π∂tϕ − L ¼ 1

2
π2 þ ð∇xϕÞ2 −Ωπ∂φϕ: ð35Þ

Following the standard approach [17], we perform the
Wick rotation (14) and formulate the path integral in a
discretized space-time. In the terms of the continuous
variables, the path integral reads as follows:
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Z ¼
Z

Dπ

Z
periodic

Dϕ

× exp

�Z
1=T

0

dτ
Z

d3x

�
iπ∂τϕ −Hðπ;ϕÞ

��
ð36Þ

where the expression in the exponent is

iπ∂τϕ −Hðπ;ϕÞ ¼ −
π2

2
−
1

2
ð∇xϕÞ2 − iπð∂τ − iΩ∂φϕÞ:

ð37Þ

Substituting this expression into Eq. (36) and performing
the integral over momentum conjugate, we arrive to the
following partition function:

Z¼
Z
periodic

Dϕ

×exp

�Z
1=T

0

dτ
Z

d3x½ð∂τ−iΩ∂φϕÞ2þð∇ϕÞ2�
�
: ð38Þ

There is no charge conjugation for the scalar fields under
the exponential because the fields are real-valued quan-
tities. We perform the Gaussian integration over the scalar
fields, take into account the complex energies (31), and
come back to the expected expression (32) for the real-
valued free energy.
We also give, without derivation, the expression for the

free energy of a uniformly rotating fermion ensemble:

1

V
F̃ðfÞ ¼ −

XZ
J

ω − T
XZ
J

½ln ð1þ e−½ωJ−ðmþ1=2ÞΩ�=TÞ

þ ln ð1þ e−½ωJþðmþ1=2ÞΩ�=TÞ�; ð39Þ

which also includes the double degeneracy factor of
fermion’s spin. At zero charge density (in the absence of
chemical potentials), the two terms of the bosonic free
energy (32) and, separately, two terms in the fermionic free
energy (39), are equal to each other. The rigorous treatment
of the rigidly rotating fermionic ensembles inside a
cylindrical cavity may be found in Refs. [18,19].

C. Imaginary angular momentum
and spin-statistics theorem

In this section, we discuss certain symmetries of the
thermal theory with imaginary angular momentum in the
imaginary time formalism.
We have established that a uniform rotation of a system

in a thermodynamic equilibrium in Minkowski space-time
may also be treated in the finite-temperature imaginary time
formalism using a simple shift of the Matsubara frequen-
cies. Generalizing our results, we write the prescription
both for boson and fermions, respectively:

ωðbÞ
n → ωðbÞ

n − iΩm; ð40Þ

ωðfÞ
n → ωðfÞ

n − iΩ
�
mþ 1

2

�
; ð41Þ

where Ω is the rotation frequency, and

ωðbÞ
n ¼ 2πTn; ωðfÞ

n ¼ 2πT

�
nþ 1

2

�
; ð42Þ

are the bosonic [marked by the superscript “(b)”] and
fermionic [marked by the superscript “(f)”] Matsubara
frequencies, respectively.
Below we will treat the rotational frequency Ω as a

complex variable, concentrating, in particular, at the purely
imaginary quantity

Ω ¼ iΩI; ð43Þ

which is suitable in first-principle lattice simulations of
rotating systems [12,15].
The shift rules (40) and (41) have a universal nature in a

sense that they change the corresponding imaginary fre-
quency in all instances it appears in the partition functionZ
and in the thermal expectation value of any operatorO. This
universality allows us to establish immediately the discrete
symmetry of the partition function under the shifts of the
imaginary frequency (43):

OðΩI þ 2πTlÞ ¼ OðΩIÞ; ðbosonsÞ ð44Þ

OðΩI þ 4πTlÞ ¼ OðΩIÞ; ðfermionsÞ ð45Þ

for any integer number l ∈ Z. Notice that the fermion’s
period is twice larger than the period for bosons.
In order to illustrate the properties of the system at the

imaginary angular frequency, let us consider the sums
which often appear in finite-temperature calculations in
bosonic and fermionic systems, respectively:

SðbÞm ðΩÞ ¼ T
X
n∈Z

1

ðωðbÞ
n − iΩmÞ2 þ ε2p

¼ 1

2εp

�
1þ 1

eðεpþΩmÞ=T − 1
þ 1

eðεp−ΩmÞ=T − 1

�
;

ð46Þ

SðfÞm ðΩÞ¼T
X
n∈Z

1

ðωðfÞ
n − iΩðmþ 1

2
ÞÞ2þ ε2p

¼ 1

2εp

�
1−

1

eðεpþΩðmþ1
2
ÞÞ=T þ1

−
1

eðεp−Ωðmþ1
2
ÞÞ=T þ1

�
:

ð47Þ
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Here the subscript p in the dispersion relation (a particle or
quasiparticle energy) εp incorporates all quantum numbers
including the angular momentum m. The sum over the
Matsubara frequencies gives us, respectively, the bosonic
and fermionic occupation numbers with the energies shifted
by the angular momenta.
The symmetries (44) and (45) in the momentum space

are enforced by the trivial identities (with m;l ∈ Z):

e
iΩI
T m

			
Ω¼2πTl

¼ e
iΩI
T ðmþ1

2
Þ
			
ΩI¼4πTl

¼ 1: ð48Þ

The relations (44) and (45) have the following conse-
quences: the bosonic (fermionic) system with the imaginary
angular momentumΩI ¼ 2πl (ΩI ¼ 4πl) corresponds to a
nonrotating system with Ω ¼ 0:

ZðbÞðΩÞjΩ¼2πiT ¼ ZðbÞðΩÞjΩ¼0; ð49Þ

ZðfÞðΩÞjΩ¼4πiT ¼ ZðfÞðΩÞjΩ¼0: ð50Þ

These relations establish the equivalence between
(i) the bosonic (fermionic) system which rotates in the

imaginary space exactly once (exactly twice) as the
Matsubara imaginary time makes a full circle from
τ ¼ 0 to τ ¼ 1=T;

(ii) the very same system which does not rotate at all.
These equivalences have a simple interpretation in terms

of the spin-statistics theorem: the bosonic wave function
transforms to itself after any number of full rotations about
a fixed point while the fermionic wave function needs an
even number of full rotations to restore its original form.
Our conclusions in this subsection have a universal
character: they are also valid in interacting theories because
the bosonic (40) and fermionic (41) combinations appear in
any loop order.
The spin-statistics relation lead also to some conse-

quences at the imaginary angular momentum correspond-
ing to a half rotation. Namely, the bosonic theory at the half
imaginary period, ΩI ¼ πT, corresponds to an exotic non-
rotating (Ω ¼ 0) theory in which the modes with odd even
angular momentum (m ¼ 2l with l ∈ Z) correspond to
bosonic modes with the Matsubara frequencies ωn ¼ 2πTn
while the odd modes (m ¼ 2lþ 1) behave as fermions
(with ωn ¼ 2πTðnþ 1=2Þ, respectively) which contribute
to the free energy, however, with a wrong sign.
For fermions, the situation is more straightforward but

not less exotic: at the half-period imaginary rotation in the
imaginary time (corresponding to a single full rotation in
the real time), ΩI ¼ 2πT, the system becomes purely
bosonic with the Matsubara frequencies ωn ¼ 2πTn.
However, these bosons are ghosts as they contribute to
the free energy with a wrong sign. The interpretation of this
result is rather natural: a single full 2π rotation flips the sign
of the fermionic wave function as the fields evolve the full
period 1=T along the imaginary time. Therefore the

antiperiodic boundary conditions, imposed on fermions
in the compactified imaginary time, become the periodic
boundary conditions for these new bosons. For example,
for the imaginary angular frequency ΩI ¼ 2πT the system
is it described by spinors obeying bosonic statistics. One
thus gets:

FðfÞðΩ ¼ 2πiÞ ¼ FðghÞðΩ ¼ 0Þ¼free − FðbÞðΩ ¼ 0Þ; ð51Þ

where the last equality is written for free particles. The
duality (51) is illustrated in Fig. 1 for a free bosonic theory
on a two-dimensional disk.
The properties of the Green’s functions will be essential

for the rotating plasma in compact electrodynamics. We
overview the confining properties of this model in the next
section.

III. (2 + 1) COMPACT ELECTRODYNAMICS

At the analytical level, the confinement phenomenon is
well understood in compact electrodynamics in two spatial
dimensions [14]. While this model has no dynamical matter
fields, it possesses instantonlike Abelian monopoles which
emerge as an inevitable result of the compactness of the U
(1) gauge group. In this section, we very briefly summarize
certain important features of cU(1) gauge theory concen-
trating on the role of the Abelian monopoles.

A. Monopoles, photons, and boundaries

1. Lagrangian

The compact electrodynamics is a pure U(1) gauge
theory with monopoleslike singularities in the gauge field.

FIG. 1. The free energy of bosons (blue) and fermions (orange)
for real-valued (Ω, the solid lines) and imaginary (ΩI , the dashed
lines) angular momentum at temperature T ¼ R−1 in the two-
dimensional disk of radius R. The duality (51) is shown via the
red points atΩI ¼ Ω ¼ 0 and ΩI ¼ �2πT with the same value of
the free energy (shown by the horizontal dotted red line). The
inset zooms in the central region and demonstrates the free
energies vs ΩI .
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In (3þ 1) spacetime dimensions, the world trajectories of
the monopoles are closed lines so that the monopoles share
similarly with standard pointlike particles. This model
serves is a precursor of effective approaches [20] to the
confinement problem of Yang-Mills theory [21,22] based
the Abelian-monopole confinement mechanism which
utilizes the Abelian dominance phenomenon [23] (for
recent developments, see Ref. [24]). In (2þ 1) dimensions,
the monopoles are instantonlike objects as their trajectories
are represented by a set of individual points. While the
ð2þ 1Þd U(1) instantonlike monopoles share certain fea-
tures of the ð3þ 1Þd SU(N) instantons, these objects have a
different impact on the corresponding theories: the former
are responsible for the confining properties of the cU(1)
vacuum [14] while the latter determine the topological
properties of Yang-Mills theories (see, for example, the
discussion in Ref. [25] in the scope of the instanton
liquid model).
The action of the compact U(1) gauge theory,

S½A; ϱ� ¼ 1

4

Z
d3xF2

μν ð52Þ

is quadratic in the field strength tensor (μ, ν ¼ 1, 2, 3):

Fμν ¼ Fph
μν þ Fmon

μν : ð53Þ

This tensor is the sum of the perturbative term expressed via
the vector photon (gauge) field Aμ,

Fph
μν½A� ¼ ∂μAν − ∂νAμ; ð54Þ

and the nonperturbative monopole part,

Fmon
μν ðxÞ ¼ −gmonϵμνα∂α

Z
d3x0Gðx; x0Þϱðx0Þ; ð55Þ

determined via the local monopole density:

ϱðxÞ ¼
X
a

qaδð3Þðx − xaÞ: ð56Þ

The monopoles carry the quantized magnetic charge,

gmon ¼
2π

g
; ð57Þ

where g is the elementary electric charge. In Eq. (56), the
sum goes over the monopoles located at the positions xa of
the Euclidean spacetime with coordinates x ¼ ðx; y; τÞ. We
study the theory in thermal equilibrium in three-dimen-
sional Euclidean spacetime after performing the Wick
rotation, t → iτ, to the purely imaginary time. The mag-
netic charges qa ∈ Z are written in terms of the elementary
charge (57). We will work in the dilute gas approximation

where the overlaps of the individual elementary monopoles
are rare and thus qa ¼ �1. Below we will take q2a ¼ 1.
The quantity Gðx; x0Þ≡Gðx0; xÞ in Eq. (55) is the

Green’s function of the three-dimensional Laplacian oper-
ator Δx ¼ ∇2

x ≡ ∂2
μ:

ΔGðx; x0Þ ¼ −δðx − x0Þ: ð58Þ

In the unbounded R3 spacetime, the Green’s function,

Gðx; x0Þ ¼ Gðx − x0Þ; ð59Þ

is the function of a single coordinate:

GðxÞ ¼
Z

d3p
ð2πÞ3

eipx

p2
¼ 1

4πjxj : ð60Þ

In our paper, we will mostly work in the bounded spaces,
where the Green’s function becomes more involved.
In a closed space with boundaries, the action of the

model (52) may be written as a sum

S½A; ϱ� ¼ 1

4

Z
V
d3xðFph

μν½A� þ Fmon
μν ½ϱ�Þ2

≡ Sph½A� þ Smon½ϱ� þ Ssurf ½A; ϱ�; ð61Þ

of the perturbative photon part,

Sph½A� ¼ 1

4

Z
V
d3xðFph

μν½A�Þ2; ð62Þ

the nonperturbative monopole part,

Smon½ϱ� ¼ g2mon

2

Z
V
d3x

Z
V
d3x0ϱðxÞGðx; x0Þϱðx0Þ; ð63Þ

and the photon-monopole surface term:

Ssurf ½A; ϱ� ¼ −gmon

Z
S
d2xϵμναnμðxÞAνðxÞ

× ∂α
x

Z
V
d3x0Gðx; x0Þϱðx0Þ; ð64Þ

where nμðxÞ is the local normal vector to the boundary
S ¼ ∂V of the system’s volume V. In deriving Eq. (64), we
used the divergence-free property of the monopole field
strength: ∂μF

μν
mon ≡ 0.

2. Boundaries

The surface term (64) is an unnecessary complication of
the model in a finite volume which may be removed by
imposing the appropriate boundary conditions for the
monopole and/or gauge fields. In our work, we impose
the Dirichlet condition for the Green’s function which
enters the monopole field strength (55):
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Gðx; x0Þjx∈S ¼ 0: ð65Þ

Since the derivative in Eq. (64) is tangential to the surface,
nðxÞ × ∇xGðx; x0Þ ¼ 0 for x ∈ ∂S, the Dirichlet condition
(65) requires that the surface term (64) vanishes at the
boundary.
Physically, the condition (65) implies that the monopole

field strength tensor (55) is subjected to the boundary
condition:

nμðxÞFmon
μν ðxÞjx∈S ¼ 0; ð66Þ

which is nothing but the MIT boundary condition for the
gauge field. In three spatial dimensions, this condition
would imply the vanishing of the normal electric field,
nðxÞ · EðxÞ ¼ 0 as well as the tangential magnetic field,
nðxÞ × BðxÞ ¼ 0, with x ∈ S. The MIT boundary condi-
tions correspond to a boundary made of a perfect magnetic
conductor, which is electromagnetically dual to a perfectly
electrically conducting material.

3. Photon decoupling

The partition function of the theory,

Z ¼
Z

DA
XZ
mon

e−S½A;ϱ� ð67Þ

involves the integration over all photon configurations and
over all monopole (and antimonopole) configurations.
These configurations are represented by the monopole
density ϱ ¼ ϱðxÞ. The monopole integration measure

XZ
mon

¼
X∞
N¼0

1

N!

YN
a¼1

� X
qa¼�1

ζ̄

Z
d3xa

�
: ð68Þ

is given by the sum over the total number of monopoles N,
the integration over the positions xa of all these N
monopoles, and the sum over all their magnetic charges
qa ¼ �1. We work in the dilute monopole gas regime
where overlaps between these magnetic instantons are rare
and can therefore be neglected. The factor 1=N! takes into
account the monopole degeneracy.
The fugacity parameter ζ̄ in the measure (68) controls the

monopole density. The bar over this quantity implies that this
is a bare parameter which is renormalized by interactions.
Due to the decoupling of the photon and monopole parts

of the action (61), the photon and monopole contributions
to the partition function (67) can be factorized:

Z ¼ Zph · Zmon; ð69Þ

Zph ¼
Z

DAe−Sph½A�; ð70Þ

Zmon ¼
XZ
mon

e−Smon½ϱ�: ð71Þ

The photon and monopole actions are given in Eqs. (62)
and (63), respectively. In the rest of the paper, we neglect
the perturbative physics of photons which does not con-
tribute to the confinement phenomenon.

B. Monopole dynamics

1. Screening and confinement

Using the explicit expression for the monopole density
(56), one can rewrite the monopole action (63) in terms of
the monopole Coulomb gas:

Smon½ϱ� ¼ g2mon

2

XN
a≠b
a;b¼1

qaqbGðxa − xbÞ þ Smon
0 : ð72Þ

The action contains the divergent term

Smon
0 ¼ g2mon

2

X∞
a¼1

Gðxa; xaÞ; ð73Þ

which corresponds to the monopole self-energy. It will be
renormalized below. In the unbounded R3 spacetime, the
local part of the monopole action (73) is a translationally
invariant quantity. Below we will consider the theory in a
spatially bounded domain, where the monopole self-action
(73) becomes an explicitly coordinate-dependent quantity.
The monopole partition function (71), can be reformu-

lated in terms of the sine-Gordon model [14]. Adapting the
standard derivation to a finite domain, we get the following
equivalence:

Zmon ¼
X∞
N¼0

1

N!

YN
a¼1

� X
qa¼�1

Z
d3xaζðxaÞ

�

× exp

�
−
g2mon

2

Z
d3x

Z
d3yϱðxÞDðx − yÞϱðyÞ

�

¼
Z

Dχ exp

�
−
Z

d3xLsðχÞ
�
; ð74Þ

where

Ls ¼
1

2g2mon
½∂μχðxÞ�2 − 2ζðxÞ cos χðxÞ; ð75Þ

is the Lagrangian of a modified sine-Gordon model. In a
contrast to the standard sine-Gordon model, in Eq. (75) the
fugacity parameter ζ acquires a dependence on the coor-
dinate x because the divergent monopole self-action (73)
renormalizes the fugacity parameter
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ζðxÞ ¼ ζ̄ exp

�
−
2π2

g2
Gðx; xÞ

�
; ð76Þ

where we used the identity:

ζ̄e−S
mon
0 ¼

YN
a

ζðxaÞ: ð77Þ

In the dilute gas approximation, the vacuum expectation
value of the monopole density is proportional to the
fugacity parameter:

ϱmonðxÞ≡

X

a

δð3Þðx − xaÞ
�

¼ 2ζðxÞ: ð78Þ

This quantity is the density of monopoles and antimono-
poles, counted as a total number that ignores the magnetic
charge. A difference with the definition of the charge-
sensitive monopole density (56) should be noted.
The presence of the monopole Coulomb gas leads to a

screening effect which weakens all interactions at the
monopole Debye length λD. At the distance r, the inter-
actions are screened exponentially, e−r=λD . The screening
length λD corresponds to the mass mph of the dual field χ
which may be deduced from the dual Lagrangian (75):

mphðxÞ≡ 1

λDðxÞ
¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱmonðxÞ

p
g

¼ 2π
ffiffiffiffiffiffiffiffiffiffiffi
2ζðxÞp
g

: ð79Þ

Here we have used Eq. (57) and expanded the sine-Gordon
Lagrangian (75) over small fluctuations of the dual field χ:

Ls ¼
1

2g2mon
½ð∂μχÞ2 þm2

phðxÞχ2� þOðχ4Þ: ð80Þ

The photon mass (79) determines the interaction range in
the theory.
Another important property of the compact electrody-

namics is the linear confinement of electric charges: a pair
of static, electrically charged particle and antiparticle
separated by sufficiently large distance R ≫ λD experien-
ces the confining potential VðrÞ ¼ σr which grows linearly
with the distance R. This phenomenon exists in the non-
Abelian gauge theories, and it is successfully modeled by
the compact electrodynamics which is one of a few field-
theoretical models where the linear confinement property
may be proved analytically. In the latter case, the string
tension σ is given by the following formula [14]

σðxÞ ¼ 8
ffiffiffiffiffiffiffiffiffiffiffi
2ζðxÞp

gmon
≡ 4g

ffiffiffiffiffiffiffiffiffiffiffi
2ζðxÞp
π

; ð81Þ

which was adapted to the space-dependent fugacity ζ. Due
to the nonlocal character of the string tension, Eq. (81) is

valid for a slowly varying fugacity, where the variation of
fugacity at one Debye length is small, λDj∇ζðxÞj ≪ ζðxÞ.
It is the monopole degree of freedom which leads to the

confinement of electric charges: in the absence of monop-
oles (i.e., if ϱmon ¼ 0), the effect of confinement disappears.
Thus, in our paper, we will study the confining phenome-
non in the rotating cU(1) gauge theory concentrating on the
properties of the monopoles that cause confinement.

2. Deconfinement at finite temperature

The screening and confinement phenomena, discussed in
the previous section, we formulated at zero temperature
where all monopoles are not bounded into magnetically
neutral pairs. This picture changes at finite temperature,
which favors the monopole–anti-monopole binding and,
therefore, leads to the deconfinement phenomenon.
At finite temperature T, the unbounded Euclidean

spacetime R3 is compactified into R2 × S1, and the
finite-temperature Green’s function takes the following
form:

GTðx; x0Þ ¼
X
l∈Z

G

�
x; x0 þ l

T
eτ

�
; ð82Þ

where the sum goes along the third (imaginary time) axis
with the unit vector eτ. The Green’s function is, evidently,
periodic along this direction:

GT

�
xþm

T
eτ;x0

�
¼GT

�
x;xþm0

T
eτ

�
¼GTðx;x0Þ; ð83Þ

where m;m0 ∈ Z.
It is convenient to represent the three-dimensional

coordinate as x ¼ ðτ; ρ⃗Þ where ρ⃗ is the two-dimensional
vector in the spatial R2 space. Then the Green’s function
(82) may be written either via the familiar sum over the
Matsubara frequencies ωn ¼ 2πnT or via the sum in the
real spacetime:

GTðx; x0Þ≡GTðx − x0Þ

¼ T
X
n∈Z

Z
d2p
ð2πÞ2

eiωnðτ−τ0Þþip⃗ðρ⃗−ρ⃗0Þ

p⃗2 þ ω2
n

¼
X
l∈Z

1

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ⃗ − ρ⃗0Þ2 þ ðτ − τ0 − l

TÞ2
q : ð84Þ

In the high-temperature limit, Tjρ⃗ − ρ⃗0j ≫ 1, the func-
tion (84) may be evaluated analytically. In the second line
of Eq. (84), we replace the sum over l via an integral over l
and absorb the time variable, l → lþ Tτ. Then we notice
that while the integral is logarithmically divergent, the
divergent part does not depend on the coordinate x⃗. After a
regularization, we get the finite part in the high-temperature
limit:
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GTðx; x0Þ → G2d
T ðρ⃗; ρ⃗0Þ ¼ −

T
2π

lnTjρ⃗ − ρ⃗0j; ð85Þ

where the subleading corrections with Tjρ⃗ − ρ⃗0j ∼ 1 and
smaller are not shown.
Therefore, at finite temperature the space-dependent part

of the monopole action (72),

Smon½ϱ� ¼ g2mon

2

XN
a≠b
a;b¼1

qaqbG2d
T ðρ⃗a − ρ⃗bÞ; ð86Þ

takes the following form:

Smon½ϱ� ¼ −
Tg2mon

4π

XN
a≠b
a;b¼1

qaqb lnTjρ⃗a − ρ⃗bj: ð87Þ

It implies that at large distances jρ⃗a − ρ⃗bj ≫ 1=T, a
monopole (qa ¼ þ1) and an antimonopole (qb ¼ −1)
experience a logarithmically bounding potential. Thus, at
large temperatures, the logarithmic potential becomes
strong and the monopoles and antimonopoles tend to form
bound pairs which cannot support the confinement
property. The binding effect results in a change of the
thermodynamic phase which is known as the Berezinskii-
Kosterlitz-Thouless phase transition [26–28].2 The binding
of the ð2þ 1Þd monopoles is similar to the formation of the
instanton molecules in the finite-temperature ð3þ 1Þd
Yang-Mills theory [25].
There is a simple way to estimate the transition temper-

ature. Let us consider a single monopole pair (MM̄) at the
distance jρ⃗a − ρ⃗bj ¼ r. For a moment, let us consider a
discretized space with the lattice spacing a (the smallest
distance between the nearest points) and of the same size L
in x and y directions such that a ≪ r ≪ L. Therefore, the
number of all possible states of a pairMM̄ pair of the size r
is approximately

NðRÞ ¼
�
L
a

�
2

×
2πr
a

; ð88Þ

where the first term counts the number of possible positions
of the monopole and the second term takes into account the
all possible orientations of the monopole with respect to the
fixed antimonopole. The boundary terms are proportional
to the number of the perimeter states L=a, they give a
subleading correction to (88) linear in L, and therefore they
are neglected. Thus, the contribution of MM̄ the pair of
radius r to the monopole partition function is therefore

ZmonðRÞ ¼ C1NðRÞe−SMM̄

¼ C2

R
a
exp

�
−
Tg2mon

4π
ln
r
a

�

¼ C2 exp

��
1 −

Tg2mon

4π

�
ln
r
a

�
; ð89Þ

where the action of the singleMM̄ pair can be deduced from
the total action (87). The constantsC1 andC2 do not play any
role in our derivation. The actual value of the regularization
parameter a does not play a role for determination of the
phase transition point since this parameter appears in the
prefactor of the monopole partition function.
Equation (89) shows that the contribution of the energy

and the entropy has the same functional form. Both
contributions cancel each other at

Tc ¼
4π

g2mon
≡ g2

π
; ð90Þ

where we took into account Eq. (57). At T > Tc, the large
distances r are unfavorable and therefore the monopoles
and antimonopoles are bound into the MM̄ pairs. The
confinement is lost at high temperatures. At T < Tc, the
pairs may be of any size (89) thus signaling the validity of
the confinement regime. We stress that the result for the
critical temperature (90) is obtained in the dilute gas regime
which was implemented throughout our paper. This esti-
mation was done using the asymptotic logarithmic form
(87) of the monopole-antimonopole MM̄ interactions,
where the separations r ¼ jρ⃗M − ρ⃗M̄j between the monop-
oles and antimonopoles become large compared to the
inverse temperature, rTc ≫ 1. The charge confinement is
thus realized at large distances.
Similar estimations for the BKT phase transition temper-

ature (90) appear—with an appropriate change of notations
—in the vortex matter [26–28] as well as in non-Abelian
gauge theories in (2þ 1) dimensions [29,30].
Notice that the critical temperature (90) does not depend

on the monopole density ϱmon (or, equivalently, on the
fugacity ζ). This property is easy to understand on physical
grounds. At the critical temperature, all monopoles get
bounded into neutral pairs, and this fact does not depend
how many monopoles were originally in the confinement
phase (here we work in the dilute gas approximation what
neglects nonlinear effects). A large number of monopoles
in the confinement phase will be reduced to a large number
of dipoles, that will not be able to support confinement
anyway.

3. Applicability

The phenomena discussed in our work are described in
the dilute gas approximation. In this regime, the monopole
density is much smaller than the characteristic mass scale
determined by the gauge coupling constant:

2The presence of matter fields can change the type of the finite
temperature deconfining phase transition [29,30].
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ϱ1=2mon ≪
g3

ð2πÞ3 ; or ϱ1=2mon g3mon ≪ 1: ð91Þ

In the next section, we study the properties of the Green’s
function Gðx; x0Þ in the cylindrical spacetime suitable for
the description of the rotating thermal state. This Green’s
function determines the monopole action (63), the screen-
ing mass (79), and the confining and deconfining properties
of the theory.
It is important to stress that across the deconfinement

transition, the total density of monopoles and antimono-
poles does not experience any change. The transition is of a
geometrical type: these individual objects get combined
into pairs while the total number of monopoles and
antimonopoles does not change. In terms of the thermo-
dynamic quantities, the finite-temperature transition in
cQED is very smooth and, therefore, it is often said, that
the transition is of an infinite order.
Obviously, the confining features of the system are

defined only by the density of the individual monopoles
and anti-monopoles that are unbounded into magnetically
neutral pairs (we refer to Refs. [31,32] for a detailed
discussion).

IV. GREEN’S FUNCTIONS

The important role in determining the dynamics of any
quantum system is played by two-point correlations func-
tions which define the propagation of physical degrees of
freedom in the system. In our case, the two-point function
Gðx; x0Þ enters the monopole action (63). In the dilute gas
regime, one may safely neglect quantum loop corrections to
the propagator G and treat it as the tree-level Green’s
function of the differential operator (58). The simplicity of
the Laplacian operator is well compensated by the com-
plicated nature of the environment where the Green’s
function needs to be evaluated: we need to know
Gðx; x0Þ at finite temperature (with periodic boundary
conditions in the imaginary time direction) subjected to
a uniform rotation in the spatially cylindrical domain with
the spatial Dirichlet boundary conditions.
The finite-temperature Green’s functions in rotating

systems have been discussed in Ref. [16]. Here we choose
another method to address this problem: instead of pre-
senting the Green’s function as a series over the appropriate
eigenfunctions, we use a trick of mirror images to simplify
the expressions. The method of images has been success-
fully used in solving electrostatic problems of classical
electrodynamics [33] (as brief pedagogical introduction to
the subject may be found in Ref. [34]). For practical reasons,
we consider 2þ 1 dimensional Green’s functions in a disk
geometry which are relevant to the problem of confinement
in 2þ 1 dimensional compact electrodynamics. The gener-
alization to higher dimensions is straightforward.

A. Green’s function inside a cylinder

First, we consider a cylinder of the radius R in the
ðx1; x2Þ plane with the center at the origin x1 ¼ x2 ¼ 0, and
with the axis along the τ≡ τ direction of an infinite height.
We denote

x ¼ ðρ⃗; τÞ with ρ⃗ ¼ ðx1; x2Þ: ð92Þ

We consider the symmetric Green’s function,

Gðx; x0Þ ¼ Gðx0; xÞ; ð93Þ

of the Laplacian:

Δð3Þ
x ¼ ∂2

∂x21 þ
∂2

∂x22 þ
∂2

∂τ2 ; ð94Þ

satisfying the equation

ΔxGðx; x0Þjjρ⃗j;jρ⃗0j<R ¼ −δðx − x0Þ; ð95Þ

and obeying the Dirichlet boundary condition:

Gðx; x0Þjjρ⃗j¼R ¼ Gðx; x0Þjjρ⃗0j¼R ¼ 0: ð96Þ

The Green’s function is

Gðx; x0Þ ¼ 1

4π

�
1

jx − x0j −
1

jx − x0j�

�
; ð97Þ

where

jx − x0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jρ⃗ − ρ⃗0j2 þ ðτ − τ0Þ2

q
; ð98Þ

jx − x0j� ¼
�
jρ⃗ − ρ⃗0�j2jρ⃗0j2

1

R2
þ ðτ − τ0Þ2

�1
2

: ð99Þ

The second term in Eq. (97) involves the exterior image

x� ¼ ðρ⃗�; τÞ with ρ⃗� ≡ ρ⃗�ðρ⃗Þ ¼
R2

jρ⃗j2 ρ⃗; ð100Þ

of the interior point x mirrored in the reflective surface of
the cylinder.
The Green’s function (97) satisfies the boundary con-

dition (96) because of the following relation for the image
point (100):

ρ⃗�ðjρ⃗j ¼ RÞ ¼ ρ⃗: ð101Þ

Using the identity

jρ⃗ − ρ⃗0�j2jρ⃗0j2 ¼ jρ⃗� − ρ⃗0j2jρ⃗j2 ≡ jρ⃗0 − ρ⃗�j2jρ⃗j2; ð102Þ
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one can also show that the Green’s function (97) is a
symmetric function of its variables (93) despite a seemingly
asymmetric representation of the distances (98) and (99). In
the large-radius limit R → ∞, the Green’s function reduces
to the standard expression with the second term in Eq. (97)
vanishing.
Similarly to the Green’s function on R3, Eq. (60), the

Green’s function inside the cylinder (97) may also be
rewritten as the integral over the momentum p ¼ ðp⃗; pτÞ:

Gðx; x0Þ ¼
Z

d3p
ð2πÞ3

eipτðτ−τ0Þ

p⃗2 þ p2
τ

× ðeip⃗·ðρ⃗−ρ⃗Þ − eip⃗·ðρ⃗−ρ⃗0�Þjρ⃗0j=RÞ; ð103Þ

In is important to notice that the two-dimensional trans-
verse momentum p⃗ is not quantized and the integration
goes over the unbounded region in the momentum space.
This is not an error since the Dirichlet boundary condition
is enforced by the unconventional exponential factors
in Eq. (103).

B. Finite-temperature Green’s function in a disk

As we mentioned above, at a finite temperature T > 0,
the symmetry axis τ of the cylinder is compactified to a
circle of the length 1=T closed via the periodic boundary
condition. The finite-temperature Green’s function takes
the generic form of a sum along the height of the
compactified cylinder (82). The finite-temperature function
may also be rewritten, similarly to the T ¼ 0 representation
(103), in terms of a sum in the momentum space over the
bosonic Matsubara frequencies ωn ¼ 2πTn:

GTðx; x0Þ ¼ T
X
n∈Z

Z
d2p
ð2πÞ2

eiωnðτ−τ0Þ

p⃗2 þ ω2
n

× ðeip⃗·ðρ⃗−ρ⃗Þ − eip⃗·ðρ⃗−ρ⃗0�Þjρ⃗0j=RÞ; ð104Þ

where the dot denotes the scalar product in two-dimen-
sions, p⃗ · ρ⃗ ¼ p1x1 þ p2x2. Notice that rotation has not
been implemented yet.
In a case when the third coordinates of the points x and y

coincide, τ ¼ y3 [modulo the periodic shits (83)], the
propagator (82) takes a bit more familiar form:

GTðρ⃗; y⃗Þ≡GTðx;yÞjτ¼y3 ¼
Z

d2p
ð2πÞ2

1

p

× ðeip⃗·ðρ⃗−y⃗Þ−eip⃗·ðρ⃗−y⃗�Þjy⃗j=RÞ
�
1

2
þfTðpÞ

�
; ð105Þ

with the Bose-Einstein distribution function

fTðpÞ ¼
1

ep=T − 1
: ð106Þ

C. Green’s function in a rotating disk at finite
temperature

1. Derivation

Let us come back to the momentum representation of the
Green’s function (104). The integral over the two-dimen-
sional momentum p⃗ may be represented in two equivalent
ways which include either the integral over the angular
variable of the momentum θp or the sum over the
associated quantized angular momentum m. Let us denote
p⃗ ¼ ðp cos θp; p cos θpÞ and ξ⃗ ¼ ðξ cos θξ; ξ cos θξÞ with

p ¼ jp⃗j and ξ ¼ jξ⃗j. Here ξ⃗ is a vector in the two-dimen-
sional plane (either ξ⃗ ¼ ρ⃗ or ξ⃗ ¼ y⃗). Then the integral over
the momentum may be written as follows:Z

d2p
ð2πÞ2 e

ip⃗·ξ⃗QðpÞ¼
Z

∞

0

pdp
Z

2π

0

dθp
ð2πÞ2 e

ipξcosðθp−θξÞQðpÞ

¼
Z

∞

0

pdp
2π

J0ðpξÞQðpÞ; ð107Þ

where JlðxÞ is the Bessel function of zero order, l ¼ 0, and
QðpÞ is an arbitrary function of the absolute value of the
momentum p.
The integral over the angle θp in the momentum space

may also alternatively be rewritten as a sum over the
quantized angular momentum m:Z

2π

0

dθp
ð2πÞ2 e

ip⃗·ðρ⃗−y⃗Þ ¼
X
m∈Z

ϕp;mðρ⃗Þϕ�
p;mðy⃗Þ; ð108Þ

in terms of the eigenfunctions

ϕp;mðξ⃗Þ ¼
1ffiffiffiffiffiffi
2π

p eimθξJmðpξÞ; ð109Þ

of the two-dimensional Laplacian operator

Δð2dÞ
ξ ¼ ∂2

∂ξ21 þ
∂2

∂ξ22 : ð110Þ

In the polar coordinates ξ1 þ iξ2 ¼ ξeiθξ , the eigenvalue
equation reads as follows:

�
1

ξ

∂
∂ξ ξ

∂
∂ξþ

1

ξ2
∂2

∂θ2ξ
�
ϕp;mðξ⃗Þ ¼ −p2ϕp;mðξ⃗Þ: ð111Þ

To derive Eq. (108), we implemented the plane wave
expansion in two dimensions:

eiz cos θ ¼
X
m∈Z

imeimθJmðzÞ: ð112Þ

Using the properties of the Bessel functions, it is not
difficult to show that the wave functions (109) form a
complete set of functions on the disk:
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X
m∈Z

Z
∞

0

pdpϕ�
p;mðξ⃗Þϕp;mðξ⃗0Þ ¼

δðξ − ξ0Þ
ξ

×
X
l

δðθξ − θξ0 − 2πlÞ≡ δðξ⃗ − ξ⃗0Þ: ð113Þ

In order to find the appropriate Green’s function, we do
need to ensure the completeness (113) of these auxiliary
functions on a disk. As will see below, the orthonormal-
ization properties of the functions (109) do not play any
role in our derivation.
The choice of the representation is a matter of conven-

ience. Below we pass to the angular momentum represen-
tation of the integration measure:

Z
d2p
ð2πÞ2 →

X
m∈Z

Z
∞

0

pdp
2π

; ð114Þ

Specifically, the Green’s function (104) can now be
identically rewritten as follows:

GTðx;x0Þ¼T
X
n∈Z

X
m∈Z

Z
∞

0

pdp
eiωnðτ−τ0Þ

p2þω2
n

×

�
ϕp;mðρ⃗Þϕ�

p;mðρ⃗0Þ−ϕp;m

�
ρ⃗ jρ⃗ 0j
R

�
ϕ�
p;m

�
ρ⃗ 0�jρ⃗ 0j
R

��
ð115Þ

As we discussed earlier, the inclusion of the rotation can be
taken into account via the shift of theMatsubara frequencies:
ωn → ωn − iΩm. Performing this operation in Eq. (115), we
arrive to the following representation of the Green’s function
of the Laplacian on a spatial disk of the radius R in the
reference frame rotating with the angular velocity Ω at the
finite temperature T:

GT;Ωðx; x0Þ

¼ T
X
n∈Z

X
m∈Z

Z
∞

0

pdp
eiωnðτ−τ0Þ

p2 þ ðωn − iΩmÞ2

×

�
ϕp;mðρ⃗Þϕ�

p;mðρ⃗0Þ − ϕp;m

�
ρ⃗jρ⃗0j
R

�
ϕ�
p;m

�
ρ⃗0�jρ⃗0j
R

��
;

ð116Þ

where ϕp;mðρ⃗Þ are the eigenfunctions (109) of the two-
dimensional Laplacian.

2. Properties

After performing all these transformations, it is less than
obvious that the expression (116) is indeed the Green’s
function of the Laplacian in rotating frame which satisfy all
necessary requirements that are fulfilled by its counterpart
written in the static frame: It should satisfy the appropriate
Green’s function equation similar to Eq. (95), be symmetric

with respect to the permutation of arguments (93), and obey
the Dirichlet boundary condition at the boundary (96).
Below, we will perform a step-by-step check of all these
requirements.

The main equation.—The Laplacian in the rotating frame in
the imaginary time (after performing the Wick rotation) has
the following form:

Δð3Þ
Ω;x ¼

∂2

∂x21 þ
∂2

∂x22 þ
� ∂
∂τ − iΩ

∂
∂θ

�
2

: ð117Þ

Taking into account that the wave function

ϕp;m;nðxÞ ¼ eiωnτϕp;mðρ⃗Þ ð118Þ

is the eigenfunction of the Laplacian (117),

½Δð3Þ
Ω;x þ p2 þ ðωn − iΩmÞ2�ϕp;m;nðxÞ ¼ 0; ð119Þ

we determine that the first term in the square brackets of
Eq. (116) gives us:

Δð3dÞ
Ω;x GT;Ωðx; x0Þ ¼ −δðx − x0Þ; ð120Þ

where the delta function takes the periodicity with respect
to the compactified time direction:

δðx − x0Þ ¼ δðρ⃗ − ρ⃗0Þ
X
l

δðτ − τ0 − l=TÞ: ð121Þ

The second term in the square brackets of Eq. (116) does
not contribute to Eq. (120) because the points in this term
are located at different sides with respect to the disk’s
boundary.

The symmetry under the flip of the arguments.— In the first
term in the square brackets of Eq. (116), the permutation of
the arguments is equivalent to the flipping of the sign in
front of the angular momentum, m → −m:

ϕp;mðρ⃗0Þϕ�
p;mðρ⃗Þ ¼ ϕp;−mðρ⃗Þϕ�

p;−mðρ⃗0Þ: ð122Þ

This fact follows from the definition of the wave func-
tion (109).
It is less obvious but easy to show that the same is also

true for the second term in the square brackets of Eq. (116):

ϕp;m

�
ρ⃗0jρ⃗j
R

�
ϕ�
p;m

�
ρ⃗�jρ⃗j
R

�

¼ ϕp;−m

�
ρ⃗jρ⃗0j
R

�
ϕ�
p;−m

�
ρ⃗0�jρ⃗0j
R

�
; ð123Þ

since the mirror point ρ⃗� defined in Eq. (100) has the same
angular coordinate, θx� ≡ θ and satisfies the identity
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jρ⃗�jjρ⃗j ¼ R2. The flip in m is compensated by the change
of the angular summation variable m → −m and a simul-
taneous flip in the sum n → −n over the Matsubara
frequencies in Eq. (116). We thus prove the anticipated
symmetry:

GT;Ωðx; x0Þ ¼ GT;Ωðx0; xÞ: ð124Þ

Boundary condition.—The property (101) of the mirror
point (100) implies that if the point ρ⃗0 touches the boundary
of the disk, jρ⃗0j ¼ R, then the second term in the square
brackets of Eq. (116) becomes equal to the first term and
the Green’s function (116) vanishes identically. Due to the
symmetry (124), the same statement is valid for the ρ⃗ point.
We arrive to the conclusion that the Green’s function (116)
satisfies the required Dirichlet boundary condition:

GT;Ωðx; x0Þjjρ⃗j¼R ¼ GT;Ωðx; x0Þjjρ⃗0j¼R ¼ 0: ð125Þ

Thus, the boundary is a reflecting surface and the particles
cannot travel outside the rotating disk.

3. Coinciding points

It is easier to analyze the propagator at coinciding
imaginary times, τ ¼ τ0. In this case, the Green’s function
(116) may be rewritten in the following form:

GT;Ωðρ⃗; ρ⃗0Þ

≡GT;Ωðx; x0Þjτ¼τ0 ¼
1

2

X
m∈Z

Z
∞

0

dp

×

�
1þ 1

eðpþΩmÞ=T − 1
þ 1

eðp−ΩmÞ=T − 1

�

×

�
ϕp;mðρ⃗Þϕ�

p;mðρ⃗0Þ − ϕp;m

�
ρ⃗jρ⃗0j
R

�
ϕ�
p;m

�
ρ⃗0�jρ⃗0j
R

��
;

ð126Þ

where we used the summation identity (46):

T
X
n∈Z

1

ðωn − iΩmÞ2 þ p2

¼ 1

2p

�
1þ 1

eðpþΩmÞ=T − 1
þ 1

eðp−ΩmÞ=T − 1

�
; ð127Þ

with p≡ jp⃗j. Due to the translational invariance, the
Green’s function (126) does not depend on imaginary
time. We also notice in Eq. (126) two Bose-Einstein
distribution functions (106) with the energies modified
by rotation.
At the coinciding spatial points, understood as a limit

ρ⃗0 → ρ⃗ (or, equivalently, as x0 → x), we get:

GT;ΩðρÞ≡GT;Ωðx; x0Þ
				
jxj¼ρ
x0→x ¼

X
m∈Z

Z
∞

0

dp
4π

×

�
1þ 1

eðpþΩmÞ=T − 1
þ 1

eðp−ΩmÞ=T − 1

�

×

�
J2mðpρÞ − JmðpRÞJm

�
pρ2

R

��
; ð128Þ

where we used Eq. (109) and denoted the radial variable
ρ ¼ jρ⃗j. The expression (128) is formally divergent and
therefore an ultraviolet regularization of the integral and the
sum are implicitly assumed (we will consider the regulari-
zation shortly below). Finally, it is worth reminding that
Eq. (128) is valid only inside the disk, at ρ ≤ R.
From the form of Eq. (128), we can immediately make

two conclusions. First, the particle in the very center is not
affected by the rotation sinceGT;Ωð0Þ ¼ GTð0Þ. Indeed, the
Bessel function vanish at vanishing arguments unless
m ¼ 0. At m ¼ 0, however, the Green’s function loses
the dependence on the rotation frequency Ω. Second, the
Green’s function vanishes at the boundary,GT;ΩðRÞ ¼ 0, as
expected.

4. Causality

The causality of a rigidly rotating disk is maintained
provided the angular frequency is bounded, jΩjR < 1, so
that the boundary of the disk rotates with velocity smaller
than the speed of light. Since the particle cannot escape the
disk, the causality property is maintained.
However, one may still question the validity of the

causality for the proposed representation of the propagator
because we have chosen the representation (116) in which
the radial momentum is not quantized. While this non-
quantization property is a technically convenient feature of
our representation, it puts a shadow on the validity of the
causality principle in our solution as the non-quantization
of the transverse momentum is usually associated with
unbounded, and thus causality-violating, when rigidly
rotating, domains.
The potential violation of the causality could be well

guessed in Eq. (128). To this end, let us assume that the
factors in the round brackets are associated with the Bose-
Einstein occupation numbers which may become negative
provided p�Ωm < 0. This would-be unphysical behavior
does not appear in a traditional approach where the
momenta p ¼ pml are quantized and pml �Ωm > 0 for
any angular m and radial l quantum numbers.
The causality violation leads to an accumulation of an

infinite tower of the states with a negative occupation
numbers. For example, for a clockwise rotation (Ω > 0),
this dangerous tower builds up at a fixed p and sufficiently
large positive m:
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fTðp; Þ ¼
1

eðp�ΩmÞ=T − 1
< 0 for m > p=Ω: ð129Þ

In our representation, the unphysical, negative-occupa-
tion tower does not exist due to the presence of the second,
image-mirrored term in propagator (116). It’s role is well
seen in Eq. (128). To this end we use the large-order
representation of the Bessel functions,

JmðzÞ ¼
1ffiffiffiffiffiffiffiffiffi
2πm

p
�
ez
2m

�
m
þ…; ð130Þ

where we consider a finite argument z and take m to be
positive real values (similar arguments hold for negative
values as well). Substituting this expansion in Eq. (128), we
see that the leading terms in the square brackets exactly
cancel each other and the negative tower never builds up.
Moreover, the problematic negative last term in the round
brackets cancels with the first term, thus leaving only the
first Bose-Einstein term with the correct, positive occupa-
tion number. The same is obviously true for the counter-
clockwise rotation Ω < 0, where the Bose-Einstein terms
exchange their roles.
This result can be understood on physical grounds: the

causality cannot be broken since the interior and exterior of
the disk do not communicate with each other while every
point of the disk rotates with the velocity lower than the
speed of light (jΩjR < 1). Thus, we refute the suspected
causality violation in our representation (116) of the finite-
temperature Green’s function in the rotating frame by
highlighting the important role that is played by the second
(image mirror) term in the square brackets of Eq. (116). The
presence of this term restores the causality of the Green’s
function. Our result is in line with the general proof that the
Dirichlet boundary condition for a scalar field on a surface
with jΩjR < 0 always gives p� Ωm > 0 [35].

5. Physical Green’s function: Can cold vacuum rotate?

Based on physical grounds, we expect that the answer to
this question is “no”: the vacuum is a Lorentz-invariant
environment which cannot rotate because there is no
substance that can be rotated. As a result, we expect that
the propagator of physical particle should not depend on
the angular frequency at zero temperature and in the
absence of matter. [6,8]. However, one may easily check
that our propagator (116) does depend on Ω at T ¼ 0. This
property does not mean that the expression is subjected of a
mathematical inaccuracy. On the contrary, we have checked
that our formula for the Green’s function fulfills all the
requirements imposed on the latter. A resolution of this
issue has a physical rather than mathematical nature.
A Green’s function of any operator is identified up to

bilinear combinations of zero modes which are vanishing
under the action of this operator. Since our derivation
differs from the standard approach which employs the sum

over all the modes, the difference between these two
approaches appears due to omission of these zero modes.
For example, the mathematical definition of the Coulomb
Green’s function allows its determination up to an arbitrary
harmonic function.
Usually, the correct Green’s function is selected out of

many others on physical grounds (for example, based on an
appropriate behavior of the Green’s function at asymptoti-
cally large values of it arguments in a spatially uncon-
strained volume). In our bounded space, this requirement is
no more applicable, and therefore we use the other argu-
ment: we require that the physical Green’s function is
independent of the angular frequency Ω at zero temper-
ature T.
The physical Green’s function, constrained by these

conditions, is given by the following formula:

Gphys
T;Ω ðx; x0Þ ¼ GT;Ωðx; x0Þ −GT¼0;Ωðx; x0Þ

þ GT¼0;Ω¼0ðx; x0Þ; ð131Þ

with GT;Ωðx; x0Þ given in Eq. (116).
For the physical definition (131) of the Green’s function,

we get, obviously,

Δð3Þ
Ω;xG

phys
T;Ω ðx; x0Þ ¼ −δðx − x0Þ; ð132Þ

in addition to the correct boundary conditions,

Gphys
T;Ω ðx; x0Þjjρ⃗j¼0 ¼ Gphys

T;Ω ðx; x0Þjjρ⃗0j¼0 ¼ 0; ð133Þ

the permutational symmetry,

Gphys
T;Ω ðx; x0Þ ¼ Gphys

T;Ω ðx0; xÞ; ð134Þ

and the correct physical limits:

Gphys
T¼0;Ωðx; x0Þ ¼ GT¼0;Ω¼0ðx; x0Þ; ð135Þ

Gphys
T;Ω¼0ðx; x0Þ ¼ GT;Ω¼0ðx; x0Þ: ð136Þ

For coinciding points, one immediately gets from
Eqs. (131) and (128):

Gphys
T;Ω ðρÞ¼

X
m∈Z

Z
∞

0

dp
4π

�
J2mðpρÞ−JmðpRÞJm

�
pρ2

R

��

×

�
1þ ΘðpþΩmÞ

eðpþΩmÞ=T −1
þ Θðp−ΩmÞ
eðp−ΩmÞ=T −1

�
: ð137Þ

6. Faster-than-light rotation

In order to further cross-check our results, we would like
to make sure that the physical Green’s function (131) gives
us an unphysical result if the causality condition is violated.
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To this end, it is sufficient to notice from Eq. (137) that the
integration over the transverse momentum proceeds up to
the point p ¼ jΩmj. Taking, for simplicity, Ω > 0 and
m > 0, we obtain that close to this point in the momentum
and at high angular velocities, the Bessel functions contain
a simple pole

JmðmzÞ ∼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ; ð138Þ

which translates to three singularities in Eq. (137):

1

1−Ω2ρ2
;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Ω2R2

p ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−Ω2ρ4=R2
p : ð139Þ

As expected, these singularities will make the expression
(137) divergent provided the causality condition is bro-
ken, Ω2R2 > 1.

7. Angular frequency dependence

The monopole density (78) depends on the propagator
evaluated at coinciding points (76). In order to figure out
the effect of the rotation on the monopole density, we
should estimate the dependence of the propagator (137) on
the angular frequency Ω. This propagator contains an
uninteresting zero-temperature part which does not depend
on Ω. The subtraction of this contribution from the full
Green’s function,

GΩ;TðρÞ ¼ Gphys
T;Ω ðρÞ −Gphys

T¼0;Ω¼0ðρÞ; ð140Þ

amounts to removing the unity from the round brackets in
the propagator (137) at coinciding points. Notice that
according to Eq. (137), the propagator (140) does not
depend on the angular frequency Ω at the axis of rota-
tion, ρ ¼ 0.
The quantity (140) is a sum of a finite and divergent

parts, respectively:

GΩ;TðρÞ ¼ Gfin
Ω;TðρÞ þ Gdiv

Ω;TðρÞ: ð141Þ

The finite part has the following form:

Gfin
Ω;TðρÞ¼

X∞
m¼1

Z
∞

0

dp
2π

J2mðpρÞ−JmðpRÞJmðpρ2=RÞ
eðpþΩmÞ=T −1

þ
X∞
m¼1

Z
∞

Ωm

dp
2π

1

eðp−ΩmÞ=T −1

�
J2mðpρÞ−J2mðmΩρÞ

þJmðmΩRÞJm
�
mΩρ2

R

�
−JmðpRÞJm

�
pρ2

R

��
:

ð142Þ

where we implied, without loss of generality, Ω > 0.

The second term in Eq. (141) appears because the
massless field theories in 2þ 1 dimensions contain soft
logarithmic divergences, regularized by an infrared cutoff
ΛIR. It is well known that in cQED this divergence cannot
be removed via, for example, a mass-gap generation typical
for an interacting theory. On the contrary, this divergence
represents a long-range interaction between the monopoles
and its absence signals the loss of the mass-gap generation
and the confinement phenomena.
On physical grounds, we fix the cutoff to the radius of

the disk, ΛIR ¼ 1=R, and get:

Gdiv
Ω;TðρÞ ¼ hðTÞfΩðρÞ; ð143Þ

where

hðTÞ ¼ T
2π

logðRTÞ ð144Þ

is a temperature prefactor and

fΩðρÞ ¼
X∞
m¼1

�
J2mðmΩρÞ− JmðmΩRÞJm

�
mΩρ2

R

��
; ð145Þ

is a radial factor expressed as the quickly converging sum
over the angular momentum m. The dependence of the
finite-Ω correction (140) to same-point Green’s function as
well as the behavior of the factor fΩ are shown in Fig. 2.
The response of the Green’s function to the rotation is
important for the confining properties of the rotating
compact electrodynamics that we will discuss in the next
section.

D. Rotation at imaginary angular frequency: Wick
rotation to imaginary time

In this section, we consider the same system but at a
purely imaginary angular frequency ΩI, Eq. (43). Our aim

FIG. 2. The correction (140) to the same-point Green’s function
induced by rotation with the angular frequency Ω at temperature
T ¼ 1=R. The insets show the behavior of the factor fΩ given
in Eq. (145).
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is to find a suitable representation of the scalar finite-
temperature Green’s function in the rotating background
via analytical continuation from the imaginary angular
frequency ΩI to the real angular frequency Ω. We will
shortly see that the imaginary-frequency approach may also
be suitable, besides applications in numerical lattice sim-
ulations, for certain analytical approaches as well.
We take the representation (116) of the Green’s function

with imaginary frequency (43):

GT;ΩI
ðx; x0Þ

¼ T
X
m;n∈Z

Z
∞

0

pdp
eiωnðτ−τ0Þ

p2 þ ðωn þΩImÞ2

×

�
ϕp;mðρ⃗Þϕ�

p;mðρ⃗ 0Þ − ϕp;m

�
ρ⃗ jρ⃗ 0j
R

�
ϕ�
p;m

�
ρ⃗ 0�jρ⃗ 0j
R

��
;

ð146Þ

and replace the sum over Matsubara frequencies ωn by an
integral over the continuous momentum pτ. To this end we
substitute in Eq. (146) the following identity:

T
X
n∈Z

fðωnÞ ¼
X
l∈Z

Z
∞

−∞

dpτ

2π
eipτl=TfðpτÞ; ð147Þ

and shift pτ → pτ −ΩIm. We get:

GT;ΩI
ðx; x0Þ

¼
X
l;m∈Z

Z
∞

−∞

dpτ

2π

Z
∞

0

pdp
eiðpτ−ΩImÞðτ−τ0Þ

p2 þ p2
τ

×

�
ϕp;mðρ⃗Þϕ�

p;mðρ⃗0Þ − ϕp;m

�
ρ⃗jρ⃗0j
R

�
ϕ�
p;m

�
ρ⃗0�jρ⃗0j
R

��
;

The next step is to use the explicit form (109) of the
eigenfunctions ϕp;mðρ⃗Þ as well as the plane wave expansion
(112) to show thatX
m∈Z

ϕp;mðρ⃗Þϕ�
p;mðρ⃗0Þe−iΩImðτ−τ0þl=TÞ

¼
Z

2π

0

dθp
ð2πÞ2 e

ipx cos ½θpþθ−ΩIτ�−ipx0 cos ½θpþθ0−ΩIðτ0þl=TÞ�

¼
Z

2π

0

dθp
ð2πÞ2 e

ip⃗½ρ⃗ðτÞ−ρ⃗0ðτ0þl=TÞ�; ð148Þ

where ρ⃗ðτÞ is defined in the following way:

ρ1ðτÞ þ iρ2ðτÞ ¼ ½ρ1ð0Þ þ iρ2ð0Þ�e−iΩIτ: ð149Þ

The interpretation of Eq. (149) is straightforward: as the
imaginary time τ increases, the spatial vector ρ⃗ðτÞ rotates
about the origin with the frequency equal to the imaginary
angular frequency ΩI.

The propagator reduces to

GT;ΩI
ðx; x0Þ ¼

X
l∈Z

Z
d3p
ð2πÞ3

1

p2

× fexp½ip½xðτÞ − x0ðτ0 þ l=TÞ��
− exp½ip½x̃ðτÞ − x̃0�ðτ0 þ l=TÞ��g; ð150Þ

where p ¼ ðp⃗; pτÞ is the three-dimensional momentum,

xðτÞ ¼ ðρ⃗ðτÞ; τÞ; ð151Þ

is the spacetime coordinate with follows the helix (149) in
the imaginary time with the period ΩI, and

x̃ðτÞ ¼
�jρ⃗0j

R
ρ⃗ðτÞ; τ

�
: ð152Þ

The integral over the momentum p in Eq. (150) can be
easily taken (60). We get the following coordinate repre-
sentation of the finite-temperature Green’s function at
purely imaginary rotational frequency ΩI ¼ −iΩ:

GT;ΩI
ðx;x0Þ¼ 1

4π

X
l∈Z

�
1

jxðτÞ−x0ðτ0 þ l=TÞ�j

−
1

jxðτÞ−x0ðτ0 þ l=TÞ�j�

�

¼ 1

4π

X
l∈Z

"
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ρ⃗ðτÞ− ρ⃗ 0ðτ0 þ l
TÞ�2þðτ−τ0− l

TÞ2
q

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jρ⃗0j2
R2 ½ρ⃗ðτÞ− ρ⃗ 0�ðτ0 þ l

TÞ�2þðτ−τ0− l
TÞ2

q
#
;

ð153Þ

where ρ⃗ðτÞ is given in Eq. (149) and the distance j…j� is
defined in Eq. (99). This Green’s function vanishes if one of
the arguments touches the boundary (if either jρ⃗j ¼ R
or jρ⃗0j ¼ R).
The interpretation of Eq. (153) is straightforward: the

imaginary frequency ΩI makes the spatial coordinates ρ⃗
rotating about the origin with the angular frequencyΩI. The
first term accounts for the direct propagation between the
points while the second term takes into account a reflection
at the cylindrical boundary. Thus, the real rotation in the
real space is mapped to the imaginary rotation of the
identical spacetime copies in the Wick-rotated Euclidean
spacetime. A similar representation for the fermionic
propagator can be found in Ref. [36].
In the absence of the imaginary rotation, ΩI ¼ 0, the

helicoidal worldlines become straight lines and the Green’s
function (153) expectedly reduces to Eq. (84).
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Finally, we would like to stress that the Green’s function
(153) is a periodic function of the imaginary time similarly
to the Green’s function in the absence of rotation (83):

GT;ΩI

�
xþm

T
eτ; y

�
¼ GT;ΩI

�
x; yþm0

T
eτ

�
¼ GT;ΩI

ðx; yÞ; ð154Þ

where m;m0 ∈ Z. The periodicity (154) is obvious in the
momentum representation (146) and it may also be seen in
the coordinate representation of the Green’s function (153).

E. High-temperature or long-distance limit

1. Green’s function of a static disk

In the high-temperature limit (or, equivalently, in the
long-distance limit)

Tjρ⃗ − ρ⃗0j ≫ 1; Tjρ⃗ − ρ⃗0�j ≫ 1; ð155Þ

the finite-temperature Green’s function (103) takes the
following form (the leading term is shown only):

G2d
T ðρ⃗; ρ⃗0Þ ¼ −

T
2π

ln
�jρ⃗ − ρ⃗0j
jρ⃗ − ρ⃗0�j

R
jρ⃗0j

�
; ð156Þ

which corresponds, up to the temperature factor T, to the
Green’s function of the two-dimensional Laplacian oper-
ator inside the disk of the radius R:

Δð2dÞ
ρ⃗ G2d

T ðρ⃗; ρ⃗0Þ ¼ −Tδðρ⃗ − ρ⃗0Þ; ð157Þ

where the mirror image point ρ⃗� in Eq. (156) is defined
in Eq. (100).
The Green’s function (156) is expectedly symmetric with

respect to the exchange of its arguments, G2d
T ðρ⃗; ρ⃗0Þ ¼

G2d
T ðρ⃗0; ρ⃗Þ. It also satisfies the Dirichlet conditions at the

boundary:G2d
T ðρ⃗; ρ⃗0Þ ¼ 0 if either jρ⃗j ¼ R or jρ⃗0j ¼ R. For a

large disk, R → ∞, the result (156) reduces ot the well-
known expression in two dimensions (85).

2. Green’s function of a rotating disk

Applying the same arguments to the Green’s function of
a disk (153) rotating with the (imaginary) frequency ΩI we
get:

G2d
T;ΩI

ðρ⃗; ρ⃗0Þ ¼ T
4π

�
HΩI

ðρ; ρ0; θ − θ0Þ

−HΩI

�
ρρ0

R
;R; θ − θ0

��
; ð158Þ

where we use our standard notations ρ1 þ iρ2 ¼ ρeiθ, and
defined the integral along the helix:

HΩI
ða; b; θÞ ¼

Z
∞

−∞

dξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ a2 þ b2 − 2ab cosðθ þΩIξÞ

p :

ð159Þ

Since the logarithmic divergence of this integral does not
involve the physical parameters a, b, θ and ΩI, the
divergence may easily be regularized. In the absence of
rotation, we recover Eq. (156) because

H0ða; b; θÞ ¼ − logða2 þ b2 − 2ab cos θÞ þ C: ð160Þ

For the rotating system, the integral (159) cannot be
taken analytically. For small rotational frequencies ΩI , the
integral can however be expanded in the series over ΩI and
the Green’s function (158) becomes as follows:

G2d
T;ΩI

ðρ⃗; ρ⃗0Þ ¼ G2d
T ðρ⃗; ρ⃗0Þ þ G2d;ð2Þ

T ðρ⃗; ρ⃗0ÞΩ2
I þ…; ð161Þ

The first term in this expression is given in Eq. (156). To
calculate the second term, we represent the integrand in
Eq. (159) via another integral,

1ffiffiffiffi
A

p ¼ 1

π

Z
∞

−∞

dχ
χ2 þ ξ2

; ð162Þ

and change the integration over the Cartesian coordinates χ
and ξ to the polar basis, χ þ iξ ¼ λeiφ:

HΩI
ða; b; θÞ ¼

Z
∞

0

dλ2
Z

2π

0

dφ
2π

×
1

λ2 þ a2 þ b2 − 2ab cosðθ þ ΩIλ sinφÞ
:

ð163Þ

It is convenient to consider the difference of the H
functions in Eq. (158) rather than the functions H indi-
vidually because this difference does not contain the
logarithmic ultraviolet divergence. Then, expanding both
terms (163) in the imaginary frequency ΩI and performing
the straightforward integration, we obtain for the coefficient
of the second term,

G2d;ð2Þ
T ðρ⃗; ρ⃗0Þ≡G2d;ð2Þ

T ðρ; ρ0; θ − θ0Þ; ð164Þ

the following finite result (with θρρ0 ≡ θ − θ0):

G2d;ð2Þ
T ðρ;ρ0;θρρ0 Þ

¼ T
4π

ðρρ0cosθρρ0 Þln
�jρ⃗− ρ⃗0j
jρ⃗− ρ⃗0�j

R
jρ⃗0j

�

þ2ðρ2ρ02sin2θρρ0 Þ
�

1

jρ⃗− ρ⃗0j2−
R2

jρ⃗− ρ⃗0�j2jρ⃗0j2
�
: ð165Þ
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We wrote Eq. (165) in the mixed notations:

ρρ0 cos θρρ0 ¼
jρ⃗ − ρ⃗0j2 − ðρ2 þ ρ02Þ

2
;

ρ2ρ02sin2θρρ0 ¼ ρ2ρ02 −
�jρ⃗ − ρ⃗0j2 − ðρ2 þ ρ02Þ

2

�
2

: ð166Þ

Notice that the last line in Eq. (165) is not divergent since
for the close points with ρ ¼ ρ0, one gets jρ⃗ − ρ⃗0j2 ¼
4ρ2 sin2 θ=2 ∼ ρ2θ2 in the denominator of the first term,
which is cancelled by the overall factor in the numerator,
sin2 θ ∼ θ2. The last term in the second line is not divergent
in the bulk. For growing separations between the points,
jρ⃗ − ρ⃗0j, the second line in Eq. (165) gives a subleading
contribution with respect to the first line and thus the
second line will be ignored in the following.
Thus, the finite-temperature Green’s function of the

rotating disk at the imaginary momentum in a long-distance
(or, equivalently, a high-temperature) limit takes the fol-
lowing form:

G2d
T;ΩI

ðρ⃗; ρ⃗0Þ ¼ −
T
2π

�
1 −

Ω2
I

2
ρρ0 cos θρρ0

�

× ln

�jρ⃗ − ρ⃗0j
jρ⃗ − ρ⃗0�j

R
jρ⃗0j

�
þ…; ð167Þ

where the ellipsis denote the omitted subleading terms.
Analytically continuing Eq. (167) to the real values of

the orbital momentum, Ω2
I → −Ω2 we get the leading

correction due to rotation to the Green’s function in the
large distance regime (jρ⃗ − ρ⃗0jT ≫ 1):

G2d
T;Ωðρ⃗; ρ⃗0Þ ¼ −

T
2π

�
1þΩ2

2
ρρ0 cosðθ − θ0Þ

�

× ln

�jρ⃗ − ρ⃗0j
jρ⃗ − ρ⃗0�j

R
jρ⃗0j

�
þ…: ð168Þ

This formula will be used in the next section to analyze the
effect of rotation on the confining properties of the system.

V. ROTATION AND DECONFINEMENT

In this section, we consider the effect of the rotation on
confinement and mass gap generation with the confining
cU(1) gauge theory. Since any uniformly rotating system
should be spatially bounded, we expect the appearance of
the effects coming both from the presence of the boundary
and from the effects of rotation. We discuss both these
effects concentrating on the properties of the system in
the bulk.

A. Deconfinement in a static system

1. Effect of boundaries on monopole density at T = 0

The presence of boundaries can modify the properties of
the monopole gas even in the absence of rotation at zero
temperature. Therefore, we expect that the boundaries may
potentially affect the confining properties of the cU(1) gauge
theory as well. In our work, we always consider systems
which are much larger with respect to the Debye length (79)
defined at a vanishing temperature, R ≫ λDðT ¼ 0Þ.
In order to estimate the effects of boundaries, temper-

ature, and rotation on monopole density, we use the relation
of the monopole density to the monopole fugacity in
Eq. (78), the renormalization of the fugacity (76) via the
Green’s function, and the exact form of the Green’s
function (97) at zero temperature. The ratio of the monop-
ole density ϱmonðρÞ at the distance ρ from the center of the
disk to the monopole density computed at the very center of
the disk is as follows:

ϱmonðρÞ
ϱmonð0Þ

¼ exp

�
π

2g2
ρ

R2 − ρ2

�
; ðT ¼ 0Þ: ð169Þ

The behavior of the monopole density for a set of coupling
constants g is shown in Fig. 3.
The density (169) becomes large as we approach the

boundary, ρ → R. This divergence is a natural property of the
“magnetic” boundary characterized by the MIT condition
(66): a positively charged monopole creates an image in the
reflecting mirror and attracts to it, thus creating the excess of
the monopoles (and antimonopoles) close to the boundary.
As one can see fromFig. 3, the stronger the coupling constant
g, the stronger the attraction. The monopoles form pairs

FIG. 3. Monopole density (169) at zero temperature (T ¼ 0) in
the absence of rotation (Ω ¼ 0) as the function of the distance
from the center ρ at various values of the coupling constant g2.
The plots do not reflect correctly the properties of the density
close to the boundary (with R − ρ ≪ R) because in this region,
the density diverges and the dilute gas approximation (91) is no
more valid.
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with their anti-monopole images (and vice-versa) at the
boundaries.
The fact that the monopole density rises as we approach

the boundary (169) implies that the string tension (81) and
the Debye mass take their minima at the center of the disk
and they both increase toward the border of the system:

σðρÞ
σð0Þ ¼

mphðρÞ
mphð0Þ

¼ exp

�
1

4

ρTc

R2 − ρ2

�
; ðT ¼ 0Þ: ð170Þ

Our calculations are not valid in the very vicinity of the
boundary because Eqs. (169) and (170) were obtained in
the dilute gas approximation which is evidently broken at
the edge of the system. In our calculations, we assume that
we are not approaching the boundary too close, so that the
applicability condition (91) is still valid. We recall that
the quantity ϱmon corresponds to the total number of the
monopoles and antimonopoles regardless of their charges.
The vacuum is magnetically neutral so that mean densities
of monopoles and antimonopoles are equal to each other in
every point.

2. Boundary effects on monopole density at T ≠ 0

In the high-temperature limit (or long-distance limit) the
Green’s function (103) is given by a combination of the
logarithms (156). Repeating the steps that led us to
expression (169) but now with the dimensionally reduced
Green’s function (156), we get the following behavior of
the monopole density as the function of the distance to the
center ρ of the disk:

ϱmonðρ; TÞ
ϱmonð0Þ

¼
�

R2

R2 − ρ2

� T
2Tc
; ð171Þ

where Tc ¼ g2=π is the critical temperature of the decon-
fining BKT transition in the infinite volume (90). The
monopole density (171) increases toward the boundary, but
at finite temperature this effect is much smoother as
compared to the zero-temperature behavior (169).
According to Eq. (155), the expression (171) is valid
provided the distance between the point ρ⃗ and its image
ρ⃗� is larger than the thermal length, jρ⃗ − ρ⃗�jT ≪ 1, or

ðR2 − ρ2ÞT ≫ ρ: ð172Þ

The monopole density at zero temperature, Fig. 3, and
the monopole density at finite temperature, Fig. 4, may be
reconciled together by noticing that the weak-coupling
limit, g → 0, naturally corresponds to high values of the
ratio T=Tc at fixed temperature T. A similar statement is
true for the opposite limit of the strong coupling. Notice,
however, that due to the condition (172), a low-temperature
limit T → 0, the finite-temperature results can only be
trusted sufficiently close to the rotation center, ρ → 0.

3. Effect of boundaries on deconfinement temperature

We have already discussed the deconfinement transition
in the static system in an infinite volume via the phase
transition of the Berezinskii-Kosterlitz-Thouless (BKT)
type with the critical temperature (90). At the critical
temperature Tc, the instanton-like monopoles get bounded
into magnetically neutral monopole-antimonopole pairs. At
large distances, the magnetic field of the magnetically
neutral monopole pairs falls down much faster compared to
the field of individual monopoles, and the long-range
confining property of the system is lost.
In the disk-shaped space, the monopole action gets the

form dictated by Eqs. (86) and (156):

Smon ¼ −
Tg2mon

4π

XN
a≠b
a;b¼1

qaqb ln

� jρ⃗a − ρ⃗bj
jρ⃗a − ρ⃗b;�j

R
jρ⃗bj

�
: ð173Þ

The presence of the boundary does not modify the BKT
transition temperature because the coefficient in front of the
logarithmic term in the monopole action, ln jρ⃗ − ρ⃗0j, is not
modified. The nature of the phase transition should,
however, be modified since the finite volume may not
support a genuine phase transition. Usually, in a finite
volume, phase transitions become smooth crossovers and
the appropriate critical points are associated with the
“pseudo-critical” rather than critical temperatures. We will
continue to call them “critical” while keeping in mind their
possible crossover nature.
The interaction potential gets the contribution due to the

attractive interaction (ln jρ⃗ − ρ⃗0�j) of a monopole with its
image (156) which gives a small polynomial correction to
the energy of a monopole pair close to the center of the disk
(with jρ⃗j; jρ⃗0j ≪ R). Thus, we expect that the presence of
the boundaries enhances the confinement closer to these
boundaries without, however, modifying the deconfine-
ment temperature of the BKT transition in the bulk.

FIG. 4. Monopole density (171) at various temperatures T in a
nonrotating plasma (Ω ¼ 0). The applicability criterium (172)
implies that the behavior close to the boundary cannot be trusted
in the dilute gas approximation.
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In more detail, the numerator inside the logarithm of
Eq. (156) corresponds to the attraction of monopoles and
antimonopoles, and to the mutual repulsion of two monop-
oles and, separately, of two antimonopoles. The denomi-
nator in Eq. (156) appears as the result of the presence of
the boundary, as it describes the attraction of a monopole
and an image of another monopole (and, likewise, with
the antimonopoles). The same denominator describes the
repulsion of the antimonopole and an image of the
monopole, and vice versa. As we see from this expression,
the denominator does not renormalize the temperature of
the phase transition.
One could therefore expect that the presence of the

boundary diminishes the confining properties of the
Coulomb plasma of monopoles and antimonopoles since
they appear together with their mirror images that have a
screening effect on the magnetic field. In other words, the
monopoles and antimonopoles get self-screened by their
images if they approach the boundary too close. Therefore,
the confinement should become less pronounced closer to
the boundary, despite the fact that the monopole density
(171) rises in the boundary’s vicinity. However, this
boundary-induced screening is indeed a purely boundary
effect which should only be effective within one Debye
distance (79) from the edge of the system, ðR − ρÞ ∼ λD.
We do not discuss it in the following, since we are
interested in the bulk properties of the Coulomb plasma
of monopoles.
We conclude that the bulk deconfinement temperature is

not affected by the presence of the distant boundary (with
R ≫ λD) so that the critical temperature in the bulk of the
disk coincides with the critical temperature in the infinite
volume (90).

B. Deconfinement in a rotating system

The rotation may, however, affect the phase structure of
the theory. In this section, we address this question by
studying the effect of the rotation on the monopole density
and on the confining properties of the Coulomb gas of
monopoles.

1. Effect of rotation on monopole density

Similarly to the case of the static system, the rotation
affects the monopole density (78) via the renormalization
(76) of the fugacity parameter by the Ω-dependent part of
the Green’s function (168). Since the Green’s function is
known analytically only to the OðΩ2Þ order, we use a
numerical approach to evaluate the contribution of rotation
to the Green’s function (140) at large angular frequency Ω.
It is convenient to study the ratio of the densities,

ϱmonðρ; T;ΩÞ
ϱmonðρ; 0; 0Þ

¼ exp

�
−
2π2

g2
GΩ;TðρÞ

�
; ð174Þ

which quantifies the effect of the rotation on the monopole
density.
The quantity (174) evaluates the combined effect of the

angular rotation and temperature at a fixed distance ρ from
the axis of rotation. This quantity has a different meaning as
compared to the ratios studied previously: both the ratio
(169) at zero temperature, shown in Fig. 3, and the ratio
(171) at finite temperature, illustrated in Fig. 4, relate the
densities at a finite distance ρ with the density at the center
of rotation.
The behavior of the same-point propagator in the right-

hand side of Eq. (174) has already been demonstrated in
Fig. 2. The result of a calculation of the ratio (174) at fixed
values of temperature T and coupling g is shown in Fig. 5.
According to the definition of the Green’s function

(140), the monopole density at the axis of rotation ρ ¼ 0
does not dependent on the angular frequency Ω since
ϱmonð0; T;ΩÞ≡ ϱmonð0; T; 0Þ. The density rises toward the
boundary in agreement with the results of the previous
section. As the angular velocity increases, the monopole
density gets shifted toward the border of the system. The
latter fact may be attributed to the centrifugal force acting
on the monopoles. The effect of the angular frequency
vanishes identically at the edge of the system due to the
reflective nature of the boundary: the physical one-site
Green’s function (140) is zero at ρ ¼ R.

2. Effect of rotation on confinement

As we have already mentioned, the value of the monop-
ole density does not affect the critical temperature of the
deconfinement phase transition. This conclusion, valid in
the dilute gas approximation, comes from the fact that the
BKT mechanism bounds, at certain critical temperature, all
monopoles and antimonopoles into magnetically neutral
pairs regardless of their initial density. The position of the

FIG. 5. The ratio (174) of the monopole density at the angular
velocityΩ and the temperature T at the distance ρ from the center
of rotation to the monopole density at the same distance but for
the vacuum at T ¼ Ω ¼ 0.
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critical transition is determined by the form of the inter-
action between the monopoles rather than by their quantity.
The uniform rotation does indeed modify the prefactor in

front of the logarithmic term of the Green’s function (168)
which enters the monopole action (86) and thus governs the
finite-temperature interaction between the monopoles. Let
us analyze this Green’s function in detail, concentrating on
the leading-order OðΩ2Þ correction to the logarithmic
interaction term.
First of all, we notice that the rotation does not influence

the interaction between two (anti)monopoles if one of them
is located exactly at the center of rotation (ρ ¼ 0 or ρ0 ¼ 0).
Mathematically, the effect appears because the rotational
correction to the interaction (168) vanishes identically in
this case. The effect of rotation is small for the monopoles
which are located close to the rotation axis, with ρΩ ≪ 1
or ρ0Ω ≪ 1.
Far away from the center, the rotational effects becomes

noticeable. Consider two nearby points ρ⃗ and ρ⃗0 such that
1 ≪ jρ⃗ − ρ⃗0jT ≪ ρΩ ≃ ρ0Ω. In this case, we may set the
angle θ between the vectors ρ⃗ and ρ⃗0 to zero in Eq. (168),
θ ¼ 0, an the Green’s function takes the following form:

G2d
T;Ωðρ⃗; ρ⃗0Þ¼−

TΩð
ffiffiffiffiffiffi
ρρ0

p
Þ

2π
ln

�jρ⃗− ρ⃗0j
jρ⃗− ρ⃗0�j

R
jρ⃗0j

�
þ…: ð175Þ

The effect of rotation may be incorporated in the spatial
variation in the temperature, T → TΩðρÞ. The effective
temperature,

TΩðρÞ ¼ Tð0Þ
�
1þ 1

2
ρ2Ω2 þOðΩ4Þ

�
ð176Þ

acquires the dependence on the distance from the axis of
rotation to the monopoles, ρ ≃ ρ0 ≃

ffiffiffiffiffiffi
ρρ0

p
. The monopole

action then becomes:

Smon ¼ −
g2mon

4π

XN
a≠b
a;b¼1

qaqbTΩð ffiffiffiffiffiffiffiffiffi
ρaρb

p Þ

× ln

� jρ⃗a − ρ⃗bj
jρ⃗a − ρ⃗b;�j

R
jρ⃗bj

�
: ð177Þ

In the absence of rotation, Ω ¼ 0, this action expectedly
reduces to Eq. (173).
What is the physical origin of the appearance of the

effective temperature (176)? The temperature of a rotating
physical body is defined in the corotating reference frame
in which the body is static. In two spatial dimensions of the
three-dimensional Minkowski spacetime, the corotating
reference frame can be represented in terms of the curvi-
linear metric

gμν ¼

0
B@

1 − ðx2 þ y2ÞΩ2 yΩ −xΩ
yΩ −1 0

−xΩ 0 −1

1
CA; ð178Þ

with the line element (in the cylindrical coordinates):

ds2 ≡ gμνdxμdxν

¼ ð1 − ρ2Ω2Þdt2 − 2ρ2Ωdtdφ − dρ2 − ρ2dφ2: ð179Þ

The rotation induces an effective gravitational field which
is responsible, in particular, for the centrifugal forces.
In a background gravitational field, the temperature T ¼

TðxÞ of a system in a thermal equilibrium is a local quantity
defined by the Tolman-Ehrenfest law [37,38]:

TðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxÞ

p
¼ T0; ð180Þ

where g00 is the component of the metric tensor. The
reference temperature T0 corresponds to a spatial point
x ¼ x0 at which g00ðx0Þ ¼ 1.
For the rotating system (178), the relevant component of

the metric tensor is g00 ¼ 1 − ρ2Ω2. We find that the
temperature (176), which enters the monopole action,
coincides exactly with the Tolman-Ehrenfest temperature
(180) within the computed OðΩ2Þ order. The reference
quantity T0 ≡ Tð0Þ is the local temperature at the axis of
rotation, ρ ¼ 0. Therefore, the influence of rotation reduces
to the Tolman-Ehrenfest effect acting on the monopoles.
It is important to notice that it is the reference temper-

ature T0—and not the local temperature TðxÞ—which is
used in the imaginary-time formalism of the thermalized
system and which is also implemented in the numerical
simulations of lattice gauge theories [12,15].
The prefactor in front of the logarithmic term in the

monopole action defines the phases of the monopole gas
determining whether they are forming a Coulomb gas of
individual objects (the confining phase) or are bounded into
the neutral pairs (the deconfinement phase). Proceeding
then along the lines that led us from Eq. (86) to Eq. (90), we
find that the coordinate-dependent prefactor of the monop-
ole action (175) implies that in the rotating environment,
the confinement is the coordinate-dependent property:

TΩðρÞ < Tc;∞ ðconfinementÞ; ð181aÞ

TΩðρÞ > Tc;∞ ðdeconfinementÞ; ð181bÞ

where Tc;∞ ¼ g2=π is the critical temperature in the
thermodynamically large, nonrotating system (90). The
relations (181) should be understood in a quasilocal sense
because the width of the spatial transition region between
the two phases is of the order of the Debye length (79).
Using the Tolman-Ehrenfest law (180), supported by our

calculations (176), we find the critical line of the
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deconfinement transition in the temperature-radius
plane: �

TcðρÞ
Tc;∞

�
2

þ Ω2ρ2 ¼ 1: ð182Þ

Since any physical system preserves the causality property,
Ω2ρ2 < 1, the critical temperature (182) is a well-defined
quantity.
Thus, we find that the uniformly rotating system pos-

sesses two transition temperatures:

Tc1 ¼ Tc;∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2R2

p
; Tc2 ¼ Tc;∞: ð183Þ

The pure confinement phase is realized at T < Tc1. The
mixed phase, which supports the confinement phase close
to the rotational axis and the deconfinement phase in the
outer layer, exists in between the upper and lower critical
temperatures Tc1 < T < Tc2. The deconfining transition in
the mixed phase appears at the following critical radius:

Rc ¼
1

Ω

�
1 −

T2

T2
c;∞

�
1=2

; Tc1 < T < Tc2; ð184Þ

where we set Ω > 0. Finally, the pure confining phase is
realized at T > Tc2. According to Eq. (182), the mixed
phase disappears in the absence of rotation, because
Tc1ðΩ ¼ 0Þ≡ Tc2.
From Eq. (183) one can make an important conclusion:

in a uniformly rotating system, the deconfining transition to
the mixed phase may appear at any arbitrarily low, but still
nonzero, temperature, provided the system rotates with a
sufficiently large frequency, ΩR ∼ 1 (which does not
exceed, however, the causality threshold ΩR < 1).
The phase diagram of the rotating confining system is

shown in Fig. 6, where the confinement, mixed, and
deconfinement phases are presented. The spatial structure
of these phases is illustrated in Fig. 7.

In a loose sense, the properties of (anti)monopoles under
rotation may be interpreted as a result of the centrifugal
force acting on these objects. The centrifugal force affects
not only individual (anti-)monopoles via the increase of
their density at the edges of the system, this force also
modifies the interactions between the monopoles thus
lowering the temperature of the deconfining transition.
The deconfining effect increases as we approach the edge
of the system. However, there is no effect of rotation neither
on the deconfinement temperature nor on the density of
monopoles at the very center of the rotating system.
We expect that the same conclusions can also be applied

to the theories in three spatial dimensions. It is difficult to
speculate about confinement phenomenon in Yang-Mills
theory starting from the first principles, but one could
address the problem in the language of the effective
theories which describe the confinement phenomenon.
The rise of the kinetic temperature toward the edges of
the rotating system will lead to the emergence of the mixed
confining-deconfining phase, Fig. 7, sliced in between the
pure confining and pure deconfining phases of Yang-Mills
theory.

3. Comparison with existing results

The only available first-principle lattice calculation of
the deconfinement transition in pure SU(3) gluodynamics
indicates that the rotation at the imaginary angular fre-
quency Ω ¼ iΩI increases the expectation value of the bulk
Polyakov loop at any fixed temperature around the decon-
fining phase transition [12]. The temperature, correspond-
ing to the position of the susceptibility peak, decreases
quadratically with the imaginary frequency ΩI. The latter
property implies, via analytical continuation, that the
critical temperature increases quadratically with the physi-
cal angular frequency Ω [12]. The results of the lattice
simulations and the results in this paper are in contradiction
with each other.
The reasons for the discrepancy could be rooted in the

property that the bulk Polyakov loop, calculated in
Ref. [12], acquires contributions from all the regions of
the rotating plasma, including the central core (which a
kinetically colder region) and the edges (which should have
a higher kinetic temperature). Moreover, the Polyakov loop

1

0 1

 0

FIG. 6. The local phase structure of the uniformly rotating
confining field theory as a function of temperature T and radius ρ
in a cylinder of a finite radius R (with R < 1=Ω).

FIG. 7. Illustration of the confining, mixed, and deconfining
phases of the uniformly rotating system at finite temperature.
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gets perturbative contributions which can depend on the
rotation frequency. In contrast, we studied the local con-
fining properties which were accessed not via the Polyakov
loop but rather via the nonperturbative monopole proper-
ties. We have, however, a common qualitative (but not
quantitative) agreement with the result of Ref. [12]: the
critical transition (183) depends on the angular momentum
in the particular combination ΩR, where R is the radius of
the system.
Our results partially agree with the holographic estima-

tion of the general deconfinement picture obtained in
Ref. [13]: the confining properties diminish with the
increase of the angular velocity. However, in contrast with
Ref. [13], we have found two distinct deconfining tran-
sitions and not a single one: the rotation splits the
deconfining transition into two different deconfining tran-
sitions. Moreover, in our calculation, the first deconfining
transition, from the confinement phase to the mixed phase,
may be made arbitrarily low depending on the rotation
frequency and on the size of the system while the second
deconfining temperature does not depend on the rotation
frequency at all (we expect that beyond the dilute gas
approximation, the second deconfining temperature may
get a weak dependence on the angular frequency).

C. Phase diagram of rotating QCD

Let us consider the effect of a pure kinematic rotation on
the finite-temperature phase diagram of QCD at finite
baryonic density. A uniformly rotating plasma can be
described by the corotating curvilinear metric with the
(3þ 1) dimensional line element:

ds2 ≡ gμνdxμdxν ¼ ð1 − ρ2Ω2Þdt2
− 2ρ2Ωdtdφ − dρ2 − ρ2dφ2 þ d2z: ð185Þ

The local temperature TðxÞ and the local chemical potential
μBðxÞ of the plasma subjected to the background gravita-
tional field satisfy the following conditions [39]:

TðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxÞ

p
¼ T0; μBðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
g00ðxÞ

p
¼ μB0; ð186Þ

where T0 and μB0 are, respectively, the local temperature
and the local baryonic chemical potential at the center of
the rotating medium. The first relation in Eq. (186) is the
Tolman-Ehrenfest law for temperature [37,38], Eq. (180).
According to Eq. (186), the form of the zeroth compo-

nent of the metric,

g00ðΩ; ρÞ ¼ 1 − Ω2ρ2; ð187Þ

in the line element (185) indicates that both the temperature
and the baryon chemical potential rise as one moves from
the center of the uniformly rotating plasma to its boundary.
Therefore, the rotation kinematically shifts both T and μB

toward higher values and moves the QCD plasma from the
confining, chirally broken phase in the center of the system
to the deconfining, chirally restored quark-gluon plasma
phase at outer layers of the rotating QCDmatter. The region
in the center of the plasma is unaffected by the rotation.3

We stress that our discussion has a very general form
based on the Tolman-Ehrenfest relations for temperature
and chemical potential (186). Therefore, our conclusions
are valid not only for the confinement phenomenon but they
should also be applied to the chiral degrees of freedom
as well.4

The kinematic effect of the increased temperature and the
enhanced baryonic chemical potential (186) on the phase
diagram of QCD can be figured out once we know the
transition line Tc ¼ Tc;∞ðμBÞ from the hadronic phase to
the quark-gluon plasma phase in the thermodynamic limit
of the nonrotating QCD matter. In Fig. 8 we show the QCD
phase diagram under the uniform rotation. The diagram
contains the mixed inhomogeneous phase, which possesses
both the hadronic (confining and chirally broken) phase
closer to the center of rotation and the quark-gluon plasma

FIG. 8. Suggested phase diagram of rotating QCD matter
with ΩR ¼ 0.5 (for example, rotating with the angular frequency
Ω ¼ 0.1 fm−1 within the radius R ¼ 5 fm). The chemical po-
tential μB and the temperature T are given at the geometrical
center of the rotating plasma. The critical values μc;∞ and Tc;∞
correspond to the thermodynamic limit of a nonrotating plasma.
The position of the endpoint (the dot) which separates the 1st
order phase transition (the solid line) and the crossover (the
dashed line) is shown schematically. The first deconfinement
transition is given by the dotted line. Higher-density and nuclear-
matter transitions are not shown.

3We remind that in our paper, we consider a uniform rotation
of geometrically bounded plasma which is accessible, in the low-
baryonic density domain, to first-principle numerical simulations
of lattice QCD. The rotation of the quark-gluon plasma created in
heavy-ion collisions is not expected to be uniform [2–4].

4Different boundary conditions can lead to both breaking [11]
and restoration [9] of the chiral symmetry at the very local
vicinity of boundary. We ignore this skin effect because our
discussion is devoted to the bulk properties.
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(deconfining and chirally restored) phase in the rest of the
volume.
The line of the first finite-temperature transition from the

pure hadronic phase to the inhomogeneous mixed phase is
described as follows:

Tc1ðμB;Ω; RÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðΩ; RÞ

p
Tc;∞

�
μBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g00ðΩ; RÞ
p �

; ð188Þ

where the metric element g00 is given in Eq. (187). This
transition is shown by the dotted line without discriminat-
ing between the first order and crossover line. We expect
that the finite-size environment will soften the strength of
this transition and even make it a smooth crossover.
As the temperature and/or density rise, the island of the

hadronic phase close to the center of rotation shrinks and
finally disappears at the second (usual) transition line:

Tc2ðμB;Ω; RÞ ¼ Tc;∞ðμBÞ: ð189Þ

We expect that this line is largely not affected by the
kinematic rotation.
As the angular frequency increases, the inhomogeneous

phase extends further into the confining phase in the phase
diagram of Fig. 8: the transition to the mixed phase emerges
at lower temperatures and lower baryonic densities.

VI. CONCLUSIONS

We found that a uniform rotation of a thermalized plasma
of a confining gauge theory supports the appearance of a
deconfinement transition in the regions far from the rotation
axis. Therefore, at a finite temperature, a uniformly rotating
system possesses three, rather than two phases: in addition
to the confining phase at low temperature and deconfining
phase at high temperature, the phase diagram contains also
a mixed inhomogeneous phase at intermediate temper-
atures. The mixed phase has a confining region at the core
and a deconfining region at the edge of the rotating system.
The generic phase diagram is shown in Fig. 6 and
illustrated in Fig. 7.
While we argue that our conclusions should have a

universal character independent of the particularities of the
confining theory, we supported our assertions by the
explicit analytical calculations in compact Abelian gauge
theory in two spatial dimensions. Working in the dilute gas
approximation suitable for analytical calculations, we
explicitly show that the rotation directly affects the dynam-
ics of Abelian monopoles and thus alters the system’s
confining properties.
The rotating plasma thus features two critical deconfin-

ing temperatures (183) rather than the single one: the first
critical temperature separates the confinement phase and

the mixed phase while the second critical temperature
marks the transition to the deconfinement phase.
Any uniformly rotating system should inevitably be

bounded in the transverse (to the rotation axis) directions
to support the causality.While the boundary conditions at the
edge of the system could, in principle, affect the pseudoc-
ritical transition temperature(s), we have argued that the
boundary conditions alone do not alter the transition temper-
ature in the bulk (at least, in the dilute gas regime used in our
article). The system is not statistically intensive due to the
finiteness of the transverse size of the central confining core.
The role of statistical fluctuations and the thermodynamical
stability of the three-phase structure of the rotating plasma
need to be explored further.
We noticed that the rotation affects the monopoles in two

differentways. First of all, the rotation has a centrifugal effect
on the monopoles: it presses the monopoles against the
rotating cylinder’s edge. Secondly, the rotation enhances the
attraction between monopoles and anti-monopoles, thus
supporting the formation of the neutral monopole–anti-
monopole pairs and facilitating the transition to the decon-
finement phase in the region close to the boundary of the
system. Thus, a uniformly rotating confining system pos-
sesses a mixed phase with both confinement and deconfine-
ment phases separated by a spatial manifold (a “deconfining
cylinder”) where the deconfining transition is realized. Thus,
insteadof one,wehave two transition temperatureswhich are
separating confining, mixed, and deconfining phases of the
rotating thermalmedium. This behavior is consistentwith the
Tolman-Ehrenfest law applied in the non-inertial frame
which corotates with the system.
In a nonrotating system, the reflective MIT boundary

condition, implemented for the gauge fields at the cylin-
drical boundary of the system, also leads to the increase of
the monopole density close to the boundary and, therefore,
to the enforcing the confinement properties in the low-
temperature, confining phase. The explanation of this effect
is simple: the monopoles and antimonopoles are attracted to
their images in the reflective mirror. The increased density
of the monopoles enhances the confining properties close
to the edge of the system which, however, does not affect
both critical temperatures.
We have also shown that in the imaginary-time formal-

ism, a uniform rotation is incorporated as a complex shift of
the bosonic (40) and fermionic (41) Matsubara frequencies.
The Wick-rotated angular frequency, ΩI ≡ −iΩ may be
imagined as a “rotation” of the Euclidean system along the
imaginary time which does not break, however, the (anti-)
periodicity for (fermionic) bosonic fields along the imagi-
nary time direction.
The partition function is invariant under an integer-

multiple of a single 2π–rotation for the bosons (44) and a
double 4π–rotation for fermions (45) in the agreement with
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the spin-statistics theorem. A bosonic Euclidean system
which rotates with the imaginary frequency ΩI ¼ 2πT (and
with ΩI ¼ 4πT for fermions) is equivalent to a stationary
nonrotating field theory. These properties may be used to
test the magnitude of the discretization effects in lattice
implementations of the rotating field systems.
An unexpected outcome of this work is that a uniformly

rotating, adiabatically expanding quark-gluon plasma
should hadronize starting from its core and not from the
outer layers as one could expect naively. This conclusion
comes from the observation that the center of a uniformly
rotating system is colder compared to its boundary. The
effect of the “inverse hadronization” can be non-negligible
for a real system: while the kinetic increase of temperature
of the plasma rotating with the angular velocity Ω ∼
10 MeV is expected to give a minuscule correction of
3% at the radius ρ ∼ 5 fm, the same effect leads to the very
noticeable 30% temperature rise for the Ω ∼ 20 MeV at the
distance ρ ∼ 7 fm from the center. The appearance of the
inhomogeneous mixed phase in the phase diagram of
uniformly rotating QCD medium in the baryonic chemical
potential μB—temperature T plane is illustrated in Fig. 8.
Since the rotation of the quark-gluon plasma is not globally
uniform [3], the effect of rotation on the confinement
property in realistic physical environment requires a more
detailed investigation.
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Note added.—After this manuscript was submitted to the
journal, two more preprints devoted to the subject have
appeared [40,41]. In the analytical approach performed
within the hadron resonance gas model, it was shown that
the critical deconfinement temperature decreases with the
increase of the angular frequency while developing, at the
same time, a spatial inhomogeneity of the pressure in
the radial direction [40]. These results are consistent with
the physical picture presented in our paper. On the contrary,
new numerical lattice simulations of SU(3) Yang-Mills
theory indicate that the bulk critical temperature of the
deconfining phase transition rises with the increase of the
vorticity [41] thus confirming the earlier studies of the same
group [12]. Three independent theoretical approaches of
Ref. [13], Ref. [40], and of the present manuscript agree
qualitatively with each other while contradicting, at the
same time, the numerical results of Refs. [12,41]. Thus,
more work is needed to understand the deconfining proper-
ties of the rotating (quark-)gluonic plasma.
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