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We propose a mass-dependent momentum subtraction (MOM) scheme to renormalize UV divergence
of unpolarized PDFs at one-loop order. This approach, which is based on a once subtracted dispersion
relation, does not need a regulator. The overall counterterms are obtained from the imaginary part of the
large transverse momentum region in loop integrals. The mass-dependent characteristic of the scheme
yields to mass-dependent splitting functions for the DGLAP evolution equations. While the flavor
number is fixed at any renormalization scale, the decoupling theorem is automatically imposed by the
mass-dependent splitting functions. The required symmetries are also automatically respected by our
prescription.
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I. INTRODUCTION

The Wilson operator product expansion (OPE) [1,2]
provides a systematic approach to the factorization of
quantum chromodynamics (QCD) [3,4], namely, the sep-
aration of contributions from long and short distances. The
universal parton distribution functions (PDFs) are factor-
ized from the hard partonic scattering. The latter can be
calculated within perturbative QCD, but the PDFs have to
be determined in a global analysis using experimental data
[5,6] and the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) equations [7–9] that provide the scale evolution
of the PDFs.
In an alternative approach, the programs for the OPE can

be performed in terms of matrix elements of gauge-
invariant nonlocal operators, giving an explicit definition
of bare PDFs [10]. In this fashion, the bare PDFs are
ultraviolet (UV) divergent in perturbation theory and
require renormalization. The effective UV cutoff for the
matrix elements is referred to as the factorization scale,
separating the short distance from the PDFs. Consequently,
the DGLAP equations appear as renormalization group
equations (RGEs) for PDFs in which the kernels (Altarelli-
Parisi splitting functions [9]) play the roles of anomalous
dimensions of the PDFs. Following this approach, one
comes up with different DGLAP equations in different
renormalization schemes.

Conventional minimal subtraction (MS) schemes, such
as mass-independent types, could be appropriate choices if
we were not to deal with heavy quarks. However, working
within MS renormalization schemes, one encounters large
logarithms of mh=μ when μ ≪ mh, where mh is a heavy
quark mass and μ is the renormalization scale. To avoid
this, one would follow an effective theory to decouple
heavy quarks and absorb their mass effects in the renor-
malized coupling constant. An alternative approach is to
take a composite scheme, using a different prescription to
renormalize diagrams containing heavy quarks [proposed
by Collins-Wilczek-Zee (CWZ) scheme [11] ]. However,
requiring a definition of heavy quarks with respect to μ is
inevitable. Unfortunately, heavy quark masses spread over
a wide range of scales from a few to hundreds of GeVs.
Consequently, we have to work with a series of sub-
schemes, each of which considers a different number of
heavy (decoupled) and light (active) quarks. Then, some
definite thresholds should be considered to switch
between the subschemes. In addition, matching conditions
at the thresholds should be imposed. A number of such
variable-flavor-number (VFN) schemes have been pro-
posed for deep inelastic scattering (DIS) structure func-
tions, including Aivazis-Collins-Olness-Tung (ACOT)
[12,13], simplified ACOT (S-ACOT) [14,15], modified
ACOT (ACOT-χ) [16], Thorne–Roberts (TR) and its
derivatives (TR’) [17,18], and Fixed-Order-Next-to-
Leading-Log (FONLL) [19–21], etc. For a review on
heavy quark mass effects in DIS and global analyses,
see [22].
On the other hand, as discussed in [23], the critical issue

of these schemes is that changes in the number of active
quarks would lead to jumps in the splitting functions
and the renormalized coupling constant. As a solution, a
so-called “physical” factorization scheme is introduced in
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[23–25]. Providing mass-dependent splitting functions
[23,26], this scheme automatically results in a smooth
behavior of PDFs, hard coefficient functions, and coupling
constant. Although the idea of mass-dependent splitting
functions had already been proposed in [27], the heavy
quark part was included only at a large enough scale above
the heavy quark mass. This approach gives irregularities at
the heavy quark thresholds, and as shown in [28], the
approach followed in [27] results in the same physical cross
sections as those obtained by the ACOT scheme.
What we propose in this paper is a fixed-flavor-number,

mass-dependent, momentum space subtraction (MOM)
scheme based upon the analytic structure of the Feynman
diagrams. Although mass-dependent MOM schemes decou-
ple heavy quarks automatically and smoothly, they mostly
suffer from complicated calculations and violation of sym-
metries of the theory in question. Therefore, defining a
suitable mass-dependent MOM scheme requires careful
considerations. Our scheme, on one hand, provides an
automatically decoupling theorem, and on the other hand,
it is lacking in possible disadvantages of a typical mass-
dependent MOM scheme. All the required symmetries for
PDFs, conservation of total momentum and flavor numbers,
are automatically respected by our approach. Additionally,
the possibility of extension to higher orders is supported by
the provided computational simplifications. In our scheme,
overall counterterms are extracted from off-shell Green
functions of parton operators at large transverse momenta.
This is carried out by a once subtracted dispersion relation
(DR) due to the analytic properties of the Feynman diagrams.
The outcomes are mass-dependent splitting functions

followed by mass corrections to the DGLAP equations. The
MOM characteristic of our scheme implies that the decou-
pling theorem is imposed automatically and smoothly by
mass correction terms in the splitting functions, while the
flavor number is fixed. This scheme also yields the
following computational simplifications: One only uses
finite cut diagrams in a large transverse momenta region
(full evaluation is not needed). Therefore, the requirement
of any regulator vanishes.
This article is organized as follows: In Sec. II basic and

required definitions of the unpolarized PDFs and the
DGLAP equations are briefly reviewed. Then, we introduce
our scheme in Sec. III. Some detailed calculations of
renormalized Green functions are also given to clarify
the prescription. In Sec. IV mass-dependent splitting
functions are presented, and their features are discussed.
The conclusion is given in Sec. V.

II. DEFINITIONS

We begin with a brief review on the theoretical frame-
work of unpolarized PDFs and their renormalization. Bare
PDFs can be defined as diagonal matrix elements of Fourier
transformed of gauge-invariant bilocal light-ray operators
[10]. For the quark type, one can write

OqiðkþÞ≡
Z

dw−

4π
e−ik

þw−

× ∶ψ̄ i
ð0Þðnw−ÞγþUFðuw−; 0Þψ i

ð0Þð0Þ∶; ð1Þ
and for the gluon type, it is written as

OgðkþÞ≡
Z

dw−

−2πkþ
e−ik

þw−

× ∶Gþj
ð0Þðnw−ÞUAðuw−; 0ÞGþ

ð0Þjð0Þ∶; ð2Þ
where ψ i

ð0Þ is the bare quark field of flavor i, and G
μν
ð0Þ is the

bare field strength of the gluon. The sum over j ¼ 1 and 2
is understood in Eq. (2). The vector uμ ≡ gμ− points in the
minus light-cone direction. We use the following definition
for light-cone coordinates of a given vector v:

v� ≡ ðv0 � v3Þ=
ffiffiffi
2

p
: ð3Þ

The operatorUðuw−; 0Þ is a Wilson line path ordered along
u [10]:

Uðuw−; 0Þ ¼ P exp

�
−igð0Þ

Z
w−

0

dy−Aa;þ
ð0Þ ðuy−Þta

�
; ð4Þ

where Aa;μ
ð0Þ is the bare gauge field. Indices F and A in

Eqs. (1) and (2) refer to “fundamental” and “adjoint”
representations of SU(3) group generators ta.
Consider a hadron h moving in the z direction with four

momentum P expressed by the jPi state. The probability of
finding a parton of flavor i with light-cone momentum
fraction ξ≡ kþ=Pþ within the hadron h, as bare PDF, is
given by the matrix element as follows:

fð0Þi=hðξÞ≡ hPjOiðξPþÞjPicon; ð5Þ
where “con” implies that only connected diagrams should
be taken into account.
The PDFs in Eq. (5) have an UV divergence that arises

not only from the bare field operators but also the operator
product in Eqs. (1) and (2). This requires us to apply a
renormalization procedure using some renormalization
factors and introducing a renormalization scale μ as

fðRÞi=hðξ; μÞ ¼ Zijðξ; μÞ ⊗ fð0Þj=hðξÞ; ð6Þ
where⊗ is the conventional convolution in the ξ parameter:

gðξ;…Þ ⊗ hðξ;…Þ≡
Z

1

ξ

dx
x
gðx;…Þhðξ=x;…Þ: ð7Þ

At leading order accuracy, renormalization factors should
be considered as

Z½0�
ij ðξÞ ¼ δijδð1 − ξÞ ð8Þ

due to the fact that the renormalized and bare PDFs are the
same at leading order. Notice the sum over j in Eq. (6) runs
over the gluon as well as all flavors of the quark and
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antiquark. Renormalization group equations for the renor-
malized PDFs imply the following DGLAP evolution
equations,

μ2
d
dμ2

fðRÞi=hðξ; μÞ ¼ Pijðξ; μÞ ⊗ fðRÞj=hðξÞ: ð9Þ

The kernels of the DGLAP equations are the anomalous
dimension of renormalized PDFs and are referred to as
splitting functions. They can be written in matrix form as

PðμÞ ¼ μ2
d
dμ2

lnZðμÞ: ð10Þ

Therefore, splitting functions are actually scheme
dependent.
Since the renormalization factors are independent of the

hadron state, it would be convenient to replace the hadron
state with a parton state, in the given definition of Eq. (5).
This gives parton in parton distribution which can be
carried out in the framework of perturbative QCD by
means of the Lehmann-Symanzik-Zimmermann (LSZ)
redundant formula [29]. Therefore, the bare unpolarized
distribution of parton i in quark j reads

fð0Þi=jðξÞ ¼
1

6
lim

p2→m̄2
j

δabðpþ m̄jÞαβΓab;αβ
ð0Þij ðξpþ; pÞ: ð11Þ

The factor 1=6 is a consequence of the average over spins
and colors of the target parton j. Here, Γð0Þij is a bare
amputated Green function of the parton operator Oi,
defined in Eq. (1) or (2), accompanied by two field
operators ψ j

ð0Þ and ψ̄ j
ð0Þ with off-shell external momenta

p and −p:

Γab;αβ
ð0Þij ðkþ;pÞ≡h0jT OiðkþÞψa;α

ð0ÞjðpÞψ̄b;β
ð0Þjð−pÞj0iamp; ð12Þ

where “amp’ refers to the “amputated” Green function and
m̄ is the physical mass. Note that Fourier transformations
are defined outside the time order operator. We work with
bare fields (instead of physical ones) for which loops on
external lines should be taken into account. Note that the
Green function in Eq. (12) is time ordered, which gives the
same result as the fixed ordered one as long as we work in a
covariant gauge [30]. A coordinate system is chosen such
that the external momentum has no transverse component,

pμ ¼ gμþpþ þ gμ−p2=2pþ; ð13Þ

where gμν is the metric tensor.
In the same manner, the bare unpolarized distribution of

a parton i in a gluon can be written in terms of an amputated
Green function as

fð0Þi=gðξÞ ¼
1

16
lim

p2→m̄2
j

δabdμνðpÞΓab;μν
ð0Þgj ðξpþ; pÞ; ð14Þ

where the amputated Green function reads

Γab;μν
ð0Þig ðkþ; pÞ≡ h0jT OiðkþÞAa;μ

ð0ÞðpÞAb;ν
ð0Þð−pÞj0iamp: ð15Þ

The sum over physical polarizations in Eq. (14) is done by
following tensor:

dμνðpÞ≡ −gμν þ
pμgþν þ pνgþμ

pþ : ð16Þ

The factor 1=16 in Eq. (14) results from the average over
physical polarizations and colors of the initial gluon.
From Eqs. (12) and (14), a renormalized parton in the

parton distributions can be defined by replacing the bare
amputated Green functions with their renormalized version.
On the other hand, regarding the standard definition given
by Eq. (6), one can consider the same renormalization
relation for the Green functions as

ΓðRÞijðξpþ; p; μÞ ¼ Zikðξ; μÞ ⊗ Γð0Þkjðξpþ; pÞ þ…; ð17Þ

where the dots indicate contributions of the Green functions
of possible non-gauge-invariant [but Becchi-Rouet-Stora-
Tyutin (BRST) invariant] operators mixing with the parton
operators in the renormalization process [31]. These
unphysical contributions, however, are not our concern
as long as they are eliminated by the equations of motion
imposed by the Lehmann–Symanzik–Zimmermann (LSZ)
redundant formula. Therefore, these unphysical Green
functions do not contribute to the PDF renormalization.
In general, renormalization factors may carry tensor and
spinor indices contracting with Green functions, but we
assume that, in an appropriate scheme, they appear to be
scalar coefficients. This is justified in our scheme in Sec. III
for the cases in which the target is a quark. According to
this assumption, renormalization factors introduced in
Eqs. (6) and (17) turn out to be equal.

III. OUR PROPOSED RENORMALIZATION
SCHEME

Since the PDFs are supposed to contain information about
the long-distance properties of hadrons, a renormalization
program is needed to remove the short-distance behavior of
the bare PDFs. Therefore, we introduce the following
renormalization condition on a given diagram, ΓðγÞ:

ΓðγÞ
ðRÞðp2; μÞ ¼ ΓðγÞðp2Þ − ΓðγÞ

UVðp2 ¼ −μ2Þ; ð18Þ

from which only the UV-divergent part is subtracted.
To clarify our formalism, let us first consider a dispersion

relation (DR). Given the imaginary part of an analytic
function fðxÞ, one can write a DR as
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fðxÞ ¼
Z

∞

xmin

ds
s − x − iϵ

ImfðsÞ
π

: ð19Þ

If the integral is logarithmically divergent, a once sub-
tracted DR can be performed to obtain a finite result

fðxÞ − fðcÞ ¼
Z

∞

xmin

ds
x − c

ðs − x − iϵÞðs − cÞ
ImfðsÞ

π
; ð20Þ

where c < xmin to avoid singularity.
Therefore, the condition introduced in Eq. (18) can be

carried out by using a once subtracted DR, Eq. (20), in
which the total imaginary part is replaced by a particular
piece of the imaginary part generating just the UV
divergence of a given diagram:

ΓðγÞ
ðRÞðp2; μÞ

¼
Z

∞

p2
min

ds
sþ μ2

ðs − p2 − iϵÞðsþ μ2Þ
UImΓðγÞðsÞ

π
þ ΓðγÞ

IR ðp2Þ;

ð21Þ

where “UIm” is defined as the “particular term of the
imaginary part that generates the UV divergence.” In
Eq. (21), just the UV divergence is subtracted, and the
UV-finite part, indicated by ΓðγÞ

IR , is left as is. In our
proposed renormalization scheme, therefore, one is sup-
posed to find just the UIm of a diagram instead of its total
imaginary part. This can simply be done by using cut
diagrams in the UV region of the loop integral, i.e., the limit
of infinite transverse momenta. Note that a sum over all
possible legitimate cut versions of a given diagram amounts
to its total imaginary part [32],

ImΓðγÞ ¼ 1

2

X
cut

ΓðγÞ
cut: ð22Þ

Since, in general, UV-finite terms in counterterms do not
automatically satisfy the required symmetries, over-sub-
traction may be needed to impose required constraints on
the counterterms. However, as long as our prescription
avoids these UV-finite terms, the renormalized PDFs
automatically satisfy the required constraints. This is shown
by explicit calculations in the following, and the resulting
splitting functions respect all the required symmetries.
It should be noted that not only is calculating the total

imaginary part of a diagram more complicated in com-
parison to the UIm, but the total imaginary part may also be
singular in general. Requiring just the UIm of diagrams, our
prescription, therefore, is followed by the following two
simplifications:

1. The UV limit of a cut diagram should be calculated
instead of its total value.

2. There is no need for a regulator since the UIm is
finite.

In the rest of this section, we calculate the UIm of the
amputated Green functions to renormalize them by using
Eq. (21). It is worth mentioning that all the cut diagrams
presented here would vanish if the external momenta were
on shell.
At leading order, we have two nonvanishing Green

functions: quark in quark type, Fig. 1(a), and gluon in
gluon type, Fig. 1(b). Thus, at leading order, we have

Γ½0�αβ
ij;abðξkþ; pÞ ¼

γþαβ
2pþ σðpþÞδabδijδð1 − ξÞ; ð23Þ

and

Γ½0�μν
ggabðξkþ;pÞ¼gμigνi δabσðpþÞ½δð1−ξÞ−δð1þξÞ�; ð24Þ

where σ indicates the sign function. From now on, we
consider a particle in particle distributions, i.e., for which
pþ and kþ > 0, and suppress flavor and color indices (as
long as they appear only in Kronecker delta indices).
Spinor indices, which are explicit from γ-matrices, are
also suppressed. It is convenient to indicate the dependence
of kþ through the ξ ¼ kþ=pþ ratio.
Substituting the leading-order Green functions and

renormalization factors—Eqs. (23), (24), and (8)—in
Eq. (17), one gets the following expressions at one-loop
order:

Γ½1�
ðRÞqqðξ; p; μÞ ¼ Γ½1�

ð0Þqqðξ; pÞ þ
γþ

2pþ Z½1�
qqðξ; μÞ; ð25Þ

Γ½1�
ðRÞgqðξ; p; μÞ ¼ Γ½1�

ð0Þgqðξ; pÞ þ
γþ

2pþ Z½1�
gqðξ; μÞ; ð26Þ

Γ½1�μν
ðRÞqgðξ; p; μÞ ¼ Γ½1�μν

ð0Þqgðξ; pÞ þ gμigνi Z
½1�
qgðξ; μÞ: ð27Þ

We start with the most important case of quark in quark.
Detailed calculations are represented in order to clarify our
prescription. Consider cut diagrams of quark in quark PDF
as in Fig. 2. The total value of diagrams (a) and its
Hermitian conjugate (a†), indicated by “h.c.” in Fig. 2(a),
are exactly the UIm, which gives

++

p p

(a) (b)
pp

FIG. 1. Cut diagrams of (a) quark in quark and (b) gluon in
gluon amputated Green functions at leading order.
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1

2
Γðaþa†Þ
cut ðξ;pÞ¼ g2

16π
CF

γþ

pþ

�
2ξ

1−ξ
θðp2−m2=ξÞ

�
þ
; ð28Þ

where a plus distribution is defined as

½fðξÞ�þ ≡ fðξÞ − θð0 < ξ < 1Þδð1 − ξÞ
Z

1

0

dαfðαÞ; ð29Þ

and CF is the value of the quadratic Casimir operator of the
SU(3) group in the fundamental representation. On the
other hand, for the case of the cut diagram in Fig. 2(b), we
need to extract the UIm from the total imaginary part which
is given by

1

2
ðΓðbÞ

cut I þ ΓðbÞ
cut IIÞðξ; pÞ

¼ −g2

16π
CFð1 − ξÞθð0 < ξ < 1Þ

×
Z

∞

0

dq2
T

q2
T

γþ
pþ þ 2ξ2pþγ− − 4mξ

q2
T þMðξ; p2Þ δðq2

T þMðξ; p2ÞÞ;

ð30Þ

where Mðξ; p2Þ≡ ð1 − ξÞðm2 − ξp2Þ. As mentioned
above, the UIm can be derived from the UV region of
the integral, i.e., q2

T → ∞. Therefore, we get

UImΓðbÞðξ; pÞ ¼ −
g2

16π
CF

γþ

pþ ð1 − ξÞ

× θð0 < ξ < 1Þθðp2 −m2=ξÞ: ð31Þ

The contribution of diagrams (c) and (c†) in Fig. 2
amounts to

1

2
Γðcþc†Þ
cut ðξ;pÞ¼ g2

16π

Z
1

0

dαð1−αÞ
Z þ∞

0

dq2
Tδðq2

TþMðα;p2ÞÞ

×
ðq2

T−m2Þ γþpþþαðα−2Þm2

q2
T−ð1−αÞ2m2

; ð32Þ

where the UV limit of the integral gives the associated
UIm as

UImΓðcþc†Þðξ;pÞ¼ g2

16π
CF

γþ

pþ

Z
1

0

dαð1−αÞθðp2−m2=ξÞ:

ð33Þ

Therefore, by substituting the total UIm in Eq. (21),
the renormalized Green function of the quark in quark
amounts to

Γ½1�
ðRÞqqðξ; p; μÞ

¼ −
g2

16π2
CF

γþ

pþ

�
1þ ξ2

1 − ξ

Z
∞

m2

ξ

ds
s − p2

μ2 þ p2

μ2 þ s

�
þ

þ ΓIRðξ; pÞ: ð34Þ

Notice the pure plus distribution form of the counterterm,
resulting in conservation of each flavor number. The
renormalized Green function, Eq. (34), is identical to
subtracting the logarithm part of the bare one at the
renormalization point −μ2 as well as the pole part of a
regulator. Therefore, as opposed to a MS scheme, we do
not have such a large logarithm of m=μ here. To avoid
these large logarithms in a MS scheme, either one
should get heavy quarks decoupled at low renormaliza-
tion scales, μ ≪ m, or use a mass-dependent scheme for
diagrams involving heavy quarks (like the CWZ
scheme [11]).
The same approach is applied to the other cases. There is

one diagram with two cuts for the Green function of the
gluon in quark, depicted in Fig. 3. Evaluated at large
transverse momenta, the cut diagrams give the UIm as

cut I cut II

++

p p

+ h.c.

(a) (b)

+

p p

+ h.c.

(c)

pp

FIG. 2. Cut diagrams of a quark in quark amputated Green
function at one-loop order.

cut I cut II

+

p p

FIG. 3. Cut diagrams of the gluon in quark amputated Green
function at one-loop order.
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UImΓ½1�
ð0Þgqðξ; p; μÞ

¼ −
g2

8π
CF

γþ

pþ
2 − 2ξþ ξ2

ξ
θ

�
p2 −

m2

ξð1 − ξÞ
�
: ð35Þ

Notice the transformation ξ → 1 − ξ under which the
counterterm of the gluon in quark Green function trans-
forms to the counterterm of the quark in quark Green
function. This manifests the conservation of total
momentum.
In general, we have three cut diagrams associated with

the case of the quark in gluon, illustrated in Fig. 4. To get
rid of diagram (b), we can project the Green function by
dμνðpÞ, defined in Eq. (16). By so doing, we actually sum
over physical polarizations, which results in extracting
renormalization factors for an unpolarized target gluon:

Z½1�
qgðξ; μÞ ¼ 1

2
½dμνðpÞΓðaÞμν

qg ðξ; pÞ − dμνðpÞΓðaÞμν
ðRÞqgðξ; p; μÞ�:

ð36Þ

Therefore, to find the renormalization factor, we just need
to obtain the UIm of the projected diagram (a), which
would be

UIm½dμνðpÞΓðaÞμν
qg ðξ; pÞ�

¼ −
g2

8π
TRð2ξ2 − 2ξþ 1Þθ

�
p2 −

m2

ξð1 − ξÞ
�
; ð37Þ

where TR is conventional notation for the normalization of
the SU(3) group generators.
Note that, in our scheme, the renormalization factors of

the antiquark have the following symmetries:

Zqqðξ; μÞ ¼ Zq̄ q̄ðξ; μÞ; ð38Þ

Zq̄qðξ; μÞ ¼ Zqq̄ðξ; μÞ; ð39Þ

and

Zqgðξ; μÞ ¼ Zq̄gðξ; μÞ ¼ Zqgð1 − ξ; μÞ: ð40Þ

The latter symmetry guarantees that the renormalized
nonsinglet distribution,

fNSðRÞq=hðξ; μÞ≡ fðRÞq=hðξ; μÞ − fðRÞq̄=hðξ; μÞ; ð41Þ

does not mix with the gluon distribution. Moreover, the
combination of all the symmetries given by Eqs. (38)–(40)
gives an explicit definition for the renormalization factor of
a nonsinglet distribution as

fNSðRÞq=hðξ; μÞ ¼ ½Zqqðξ; μÞ − Zqq̄ðξ; μÞ� ⊗ fNSð0Þq=hðξÞ: ð42Þ

IV. MASS-DEPENDENT SPLITTING FUNCTIONS

In this section, we represent the mass-dependent splitting
functions obtained by the scheme introduced in this paper.
In general, the resulting splitting functions are proportional
to the conventional ones multiplied by a mass-dependent
coefficient. We show that these coefficients automatically
impose a smooth decoupling on the DGLAP equations.
As mentioned, splitting functions are the anomalous

dimension of the parton in parton PDFs, Eq. (10). Thus, at
one-loop order, they can be derived by

P½1�
ij ðξ; μÞ ¼ μ2

d
dμ2

Z½1�
ðRÞijðξ; p; μÞ

¼ −μ2
d
dμ2

Γ½1�
ðRÞijðξ; p; μÞ; ð43Þ

in our approach. Substituting the renormalized Green
functions, e.g., Eq. (34), in Eq. (43), we obtain the
mass-dependent splitting functions as follows:

P½1�
qqðξ; rÞ ¼ g2

8π2
CF

�
1þ ξ2

1 − ξ

ξ

rþ ξ

�
þ
; ð44Þ

P½1�
gqðξ; rÞ ¼ g2

8π2
CF

�
1þ ð1 − ξÞ2

ξ

1 − ξ

rþ 1 − ξ

�
; ð45Þ

and

P½1�
qgðξ; rÞ ¼ g2

8π2
TR

�
1 −

�
r

rþ ξð1 − ξÞ
�

2
�
½ξ2 þ ð1 − ξÞ2�;

ð46Þ

where r≡m2=μ2. The conservation of quark number for
each flavor implies that Pqq should be in the form of a plus
distribution, which is automatically satisfied in our scheme.
In addition, the conservation of the total momentum results
in the symmetry

Pgqð1 − ξ; rÞ ¼ Pqqðξ; rÞ; ð47Þ

cut I cut II

+ h.c.

+ +

p p p p
(a) (b)

FIG. 4. Cut diagrams of the quark in gluon amputated Green
function at one-loop order.
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which is also automatically respected in our scheme and in
the “physical” scheme in [26]. It is worth mentioning that
the conventional symmetry

Pqgð1 − ξ; rÞ ¼ Pqgðξ; rÞ ð48Þ

also shows up in our mass-dependent splitting function.
This symmetry actually originates from the symmetry
given by Eq. (40). By violating this symmetry, the non-
singlet distribution, defined by Eq. (41), mixes with the
gluon distribution in the DGLAP equation. This symmetry,
however, is not respected in the mass-dependent splitting
function Pqg represented in [23].
Mass correction to the conventional Pgg splitting func-

tion, at one-loop order, should be performed on the
coefficient of the TR in the delta function coefficient.
This term is responsible for fermionic loops in the external
gluon propagator. The mass correction can be determined
using the sum rule

Z
1

0

dξξPggðξÞ þ
X6
i

Z
1

0

dξξ½Pqigðξ; riÞ þ Pq̄igðξ; riÞ� ¼ 0;

ð49Þ

which results from the conservation of total momentum.
Substituting the mass-dependent splitting function Pqg,
Eq. (46), in the sum-rule given by Eq. (49), we obtain
the mass correction to the conventional splitting function
Pgg, which is a replacement of the flavor number nf in the
conventional Pgg with the summation

X6
i¼1

πðriÞ; ð50Þ

where

πðrÞ≡ 1

1þ 4r

�
1þ r − 6r2 þ 12r3ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4r
p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r

p
− 1

�
:

ð51Þ

Note that the flavor number is fixed at 6 in Eq. (50).
Having a smooth behavior across the heavy-quark

thresholds, the function Eq. (51) is analogous to the step
function θðμ − μthresholdÞ in VFN schemes. The plot in
Fig. 8 shows that πðrÞ behaves like a very smooth step
function, and it smoothly adds the contribution of each
heavy-quark loop in gluon self-energy from low to high
scales. The contribution for each heavy-quark flavor is
completely decoupled at renormalization scales much
lower than the quark mass. For renormalization scales
much higher than the quark mass, the function πðrÞ acts as
if the quark were massless, as evidenced in Fig. 8.

In addition to the function πðrÞ, decoupling heavy
quarks in the DGLAP equations is also controlled by the
mass-dependent coefficients of the splitting functions in
Eq. (44)–(46) automatically. Plots depicted in Figs. 5–7
obviously reveal the fact that the mass-dependent splitting
functions are strongly suppressed by the large values r ≫ 1
and approach to the conventional ones at small values
r ≪ 1. This justifies the fact that, at any renormalization
scale, one should sum over all six quark and antiquark
flavors in the DGLAP equations when using these mass-
dependent splitting functions. They automatically control
the effects of heavy-quark masses in the DGLAP equations

FIG. 5. Effect of the mass-dependent coefficient on the splitting
function Pqq.

FIG. 6. Effect of the mass-dependent coefficient on the splitting
function Pgq.

FIG. 7. Effect of the mass-dependent coefficient on the splitting
function Pqg.
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with respect to the renormalization scale, starting from an
input scale Q0.
The difference between the splitting functions intro-

duced in this work and in [23,26] emphasizes the fact that
splitting functions are scheme dependent. The output is
such that our splitting functions do not contain an additive
term, in contrast to [23,26]. Our approach automatically
respects symmetries since we define counterterms as
lacking in the UV-finite part. However, the splitting
functions obtained by use of a so-called physical scheme
in [23] violate symmetries given by Eqs. (47) and (48), but
the former symmetry is recovered in [26]. This violation
shows that the counterterms determined by the physical
scheme contain symmetry-breaking terms.
In addition to the scale region at which the mass

correction has an influential contribution, the dominant
region of momentum fraction ξ at which the mass correc-
tion plays a substantial role can obviously be identified
from plots of the mass-dependent coefficients. Plots of
Fig. 5 show that the mass correction suppresses the
possibility that a heavy quark, with a small momentum
fraction, splits from a heavy parent quark. In other words,
since we have the symmetry given in Eq. (47), the emission
of a soft gluon from a heavy quark is still possible at
relatively low scales, while the possibility of gluon emis-
sion with a large momentum fraction from a heavy quark is
suppressed at even scales μ ≃m (which can also be realized
from Fig. 6).

On the other hand, from the mass-dependent coefficient
of Pgq illustrated in Fig. 7, we can infer that the mass
correction to Pgq is mostly suppressed when the magnitude
of ξð1 − ξÞ is small. This can be interpreted as follows: A
gluon is more likely to split into a quark and antiquark pair
with almost the same momentum fractions, ξ ≃ 1=2, in the
case of heavy quarks.

V. CONCLUSION

In this work, we use a mass-dependent MOM scheme to
renormalize unpolarized PDFs. Using this unconventional
approach, we subtract large transverse momenta behavior
(as well as the UV pole part) of bare PDFs, which actually
belong to the hard region. A once subtracted dispersion
relation is applied to perform the subtraction using the
imaginary part of the Feynman diagrams. We define the
specific part of the total imaginary part corresponding to
only the UV divergence in the real part. This approach is
followed by computational simplifications and automatically
respecting symmetries. The resulting splitting functions
differ from the conventional ones by a mass-dependent
coefficient. We show that these coefficients automatically
decouple heavy quarks in the DGLAP equations. Therefore,
the flavor number is fixed at 6 at any renormalization scale,
and decoupling is automatically imposed, very smoothly, by
the mass-dependent splitting functions.
Some phenomenological work is needed to test the

prescription. The PDF of the gluon and light quarks at a
low initial scale would be taken as the input for the DGLAP
equations. The input heavy-quark PDFs would be set to
zero or treated as “intrinsic” PDFs as introduced in [33],
and the summation in the DGLAP equations should run
over all 6 quark and antiquark flavors. The results would
specifically show a nonzero contribution for the evolution
of heavy-quark PDFs at renormalization scales below their
masses. This contribution, however, would not be of large
magnitude since not only are the mass-dependent coeffi-
cients of splitting functions highly suppressed at renorm-
alization scales μ ≪ m, but they also remain small at even
scales μ ≃m, as can be seen in Figs. 5–7. Therefore, we
would have a very smooth evolution of each heavy-quark
PDF starting somewhere in the region μ ≃m.
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