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In this paper, we study the thermoelectric behavior of the quark-gluon plasma within the framework of
an effective kinetic theory. We adopt a quasiparticle model to incorporate the effects of a thermal medium.
The thermoelectric response of the medium is quantified in terms of the Seebeck and Nernst coefficient.
Utilizing the relaxation time approximation and Bhatnagar-Gross-Krook collision kernels in an effective
Boltzmann equation, we compute the dependence of the Seebeck coefficients on collision temperature and
quark chemical potential. We furthermore explore the magnetic field dependence of the thermoelectric
effects in a weakly and strongly magnetized medium. The thermoelectric response of a hot QCD medium is
shown to be most prominent at low temperatures close to the transition temperature.
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I. INTRODUCTION

Experimental programs at Relativistic Heavy Ion
Collider (RHIC) and Large Hadron Collider (LHC) have
confirmed the existence of a hot and dense state of nuclear
matter known as the quark-gluon plasma (QGP) [1,2]. The
space-time evolution of the QGP has been successfully
described within the framework of relativistic dissipative
hydrodynamics [3,4]. The nonequilibrium physics of the
created medium critically depends on its transport coef-
ficients associated with the momentum, thermal and
electric charge transport processes. Besides quantifying
the dissipative processes and system responses to electro-
magnetic fields, these transport coefficients act as input
parameters for the hydrodynamical approach. The rel-
evance of transport parameters for the quantitative descrip-
tion of the measured observable has been explored in the
collision experiments at the RHIC and LHC [5–8].
Recently, the LHC and RHIC have reported that the

directed flow v1 of D and D̄0 mesons are about 3 orders
of magnitude higher than that of the charged hadrons [9,10].
These observations indicate the existence of a strong mag-
netic field in the initial stages of the heavy-ion collision.
The theoretical estimations of the strength of the magnetic
field in the primary stage of collision are in the order of
ð1–15Þm2

π [11,12] and have generated wide enthusiasm.
The impact of the magnetic field on anomalous transport

phenomena [13,14], heavy quark dynamics [15,16], quar-
konia suppression [17,18], electromagnetic probes [19], jet
quenching [20], transport and thermodynamic of QCD
medium [21–23] has gained much attention recently.
Studies have shown that the lifetime of the magnetic field
in the QGP may depend on the medium properties [24,25],
which indicates that the magnetic field may persist in the
medium for a longer time than expected. Owing to the fact
that the decay of the magnetic field is not completely
modeled yet, the hot QCD medium properties have been
explored both in the strong andweakmagnetic field regimes.
In a strongly magnetizedmedium

ffiffiffiffiffiffiffiffi
qfB

p
≫ T, where qfB is

the strength of the field and T is the temperature of the
medium, the charged fermionmotion is constrained along the
direction of the magnetic field via Landau quantization. On
the other hand, in the presence of a weak magnetic fieldffiffiffiffiffiffiffiffi
qfB

p
≪ T, cyclotron frequency captures themagnetic field

effects.
A temperature gradient over the extent of the fluid results

in thermal dissipation in the hot QCDmedium. The thermal
transport in the QGP medium has been explored within
kinetic theory framework [26,27], effective models [28–31]
and Kubo formalism [32]. Similarly, the electromagnetic
responses of the QGP can be quantified in terms of the
electrical conductivity of the medium. Several works have
been devoted to understanding the electrical and thermal
transport processes in a magnetized QCD medium [33–40].
Notably, the magnetic field induces anisotropy in the
transport processes and, in the strong field limit, the
dominant contribution arises from the longitudinal compo-
nent of the transport coefficients associated with the
thermal and electric charge transport processes.
The thermoelectric or Seebeck effect describes phenom-

ena in which a temperature gradient generates an electric
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current in an electrically conducting medium and vice
versa. The thermoelectric behavior has been well studied
for condensed matter systems [41,42]. In a recent study
[43], a related coefficient, namely, the Seebeck coefficient,
has been investigated for a dense hadronic medium. The
thermoelectric behavior of quark matter has started receiv-
ing attention very recently [44]. It is important to note that a
finite quark chemical potential is required to obtain a
nonzero thermoelectric current in the medium. Further, the
presence of the magnetic field leads to anisotropic thermo-
electric transport process in the medium. The thermoelec-
tric effect in the presence of the magnetic field can be
studied in terms of magnetic-field-dependent Seebeck
coefficient and Nernst coefficient in the weakly magnetized
QGP medium. Transport coefficients characterizing the
thermoelectric behavior of the magnetized QCD medium,
Seebeck and Nernst coefficients, has been estimated in both
weak field [45,46] and strong field regimes [47]. It would
be an interesting aspect to study the thermoelectric
responses of the interacting QCD medium while including
the effects of collisions and realistic equation of state (EOS)
for both the cases of vanishing and nonvanishing magnetic
fields. This sets the motivation for our investigations.
In the current analysis, the thermoelectric responses of

the interacting two-flavor QGP medium and the associated
transport coefficients have been estimated within an
effective quasiparticle model. The gluonic, quark, and
antiquark degrees of freedom are modeled by utilizing
the effective fugacity quasiparticle model (EQPM) [48,49].
Knowledge about the system away from equilibrium can be
obtained by solving the consistently developed effective
Boltzmann equation within the EQPM [50]. The collisional
aspects of the interacting medium are incorporated in the
analysis through relaxation time approximation (RTA) and
Bhatnagar-Gross-Krook (BGK) collision kernels. The RTA
turns out to be a viable approach to explore the dissipative
process and the associated transport coefficients of the
QCD medium [51–54]. In a recent study [55], the authors
have derived dissipative hydrodynamics employing the
RTA while including the transitions between quarks and
gluons (inelastic interactions such as pair production and
annihilation processes). The BGK kernel is the improve-
ment over the RTA such that it conserves the particle
number exactly. The formalism of the thermoelectric
responses has been extended to a magnetized nuclear
matter in terms of the magnetic-field-dependent Seebeck
coefficient and Hall-type Nernst coefficient. In a recent
work [56], we have studied the relative significance of
electric charge transport in the presence of an external
electric field and thermal transport in a weakly magnetized
medium in terms of the Wiedemann-Franz law. The present
analysis is to understand the physics of a generated electric
field due to the temperature gradient in the collisional hot
QCD medium. The dependence of the thermoelectric effect
on ambient temperature and magnetic fields and other

parameters of a collision, such as quark chemical potential,
are studied in the presence of a realistic EOS.
The manuscript is organized as follows. The mathemati-

cal formulation of thermoelectric transport in a collisional
hot QCDmedium within the EQPM effective kinetic theory
is presented in Sec. II. Section III describes the thermo-
electric behavior and the associated transport coefficients of
a magnetized QGP. Section IV is devoted to the results and
followed by discussion. Finally, in Sec. V, the present
analysis is summarized with an outlook.
Notations and conventions.—The fractional charge of

the up and down quarks are qf ¼ 2e=3 and −e=3, res-
pectively. We define uμ as the normalized unit vector with
uμuμ ¼ 1 and Δμν ≡ gμν − uμuν as the projection operator
orthogonal to uμ where gμν ¼ diagð1;−1;−1;−1Þ is the
metric tensor. The index k represents the particle species. In
the absence of a magnetic field, the quantity gk denotes the
degeneracy factor with gq;q̄ ¼

P
f 2Nc, where

P
f is the

sum over flavor f. We consider Nf ¼ 2 and massless limit
of quarks in the present analysis.

II. EFFECTIVE DESCRIPTION OF
THERMOELECTRIC EFFECT IN

THERMAL QCD MEDIUM

The diffusion of the charge carriers due to the temper-
ature gradient in a medium results in the generation of the
electric field, and the thermoelectric behavior of the
medium can be quantified with the associated transport
parameter, the Seebeck coefficient. The effective descrip-
tion of the thermoelectric behavior of the collisional QCD
medium requires knowledge of the nonequilibrium part of
the distribution function along with the proper modeling of
the system at equilibrium. To that end, we employ the
EQPM description of the medium. The model initiated with
the ansatz that the realistic EOS can be interpreted in terms
of noninteracting quasiparticles with temperature-dependent
effective fugacities. The particle four flow Nμ is described
within the EQPM as follows [50]:

Nμ ¼ gq

Z
d3jp̃qj
ð2πÞ3ωq

pμ
qðfqðx; p̃qÞ − fq̄ðx; p̃q̄ÞÞ

þ δωqgq

Z
d3jp̃qj
ð2πÞ3ωq

hp̃μ
qi

ϵq
ðfqðx; p̃qÞ − fq̄ðx; p̃q̄ÞÞ;

ð1Þ
where hp̃μ

qi≡ Δμ
νp̃ν

q and p̃μ
q ¼ ðωq; p̃qÞ is the dressed four-

momentum of the quasiquark in the medium. For the system
not very far from local equilibrium, the EQPM momentum
distribution function is defined as

fk ¼ f0k þ δfk; f0k ¼
zk exp ½−βðu · pk − akμÞ�

1� zk exp ½−βðu · pk − akμÞ�
;

ð2Þ
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with jδfkj ≪ f0k, μ as the quark chemical potential, and
ak ¼ 1, −1, and 0 for quarks, antiquarks, and gluons,
respectively. Here, f0k is the EQPM equilibrium distribution
function and δfk nonequilibrium part of the momentum
distribution. The parameter zk is the effective fugacity that
encodes the medium interactions through lattice EOS. The
quasiparticle four-momenta are related to the bare particle
momenta pμ

k ¼ ðϵk;pkÞ through zk. The physical signifi-
cance of the fugacity parameter can be understood from the
energy dispersion relation as

p̃k
μ ¼ pμ

k þ δωkuμ; δωk ¼ T2∂T lnðzkÞ; ð3Þ

such that the quasiparticle energy ωk ¼ ϵk þ δωk, where
ϵk ¼ jp̃kj. Since zk are not associated with any conserved
current in themedium the temperature behavior of quark and
antiquark effective fugacities remains the same, i.e., zq ¼ zq̄.
The effective fugacity model was seen to be thermodynami-
cally consistent without adding any external parameter
realizing the medium as a grand canonical ensemble of
quarks or antiquarks and gluons. The effective grand
canonical partition function for the hot QCD medium which
yields the forms of themomentumdistribution function takes
the form [48]

Zeff ¼ ZgZqZq̄; ð4Þ

where the quark or antiquark and gluonic contribution,
respectively, take the forms as follows:

lnZk ¼ �gkV
Z

djpkj
ð2πÞ3 lnð1� zk exp ð−βðϵk − akμÞÞÞ; ð5Þ

where V is the volume, − is for the gluonic and þ is for the
quark sector, respectively. Employing the thermodynamic
definition of pressureP ¼ Pg þ Pq þ Pq̄ for a grand canoni-
cal ensemble, PβV ¼ lnZeff , we can fix the fugacity
parameters in the model. The temperature dependence of
effective fugacity for gluons, quarks and antiquarks can be
estimated by fitting the pressure obtained within the EQPM
descriptionwith the latticeQCDresults. Thegluonic fugacity
parameter is determined from the contribution to the lattice
pressure of the pure gluonic sector [pure SU(3) gauge
theory]. Similarly, zq captures the interactions in the quark
sector and can be fitted with the QCD lattice EOS. The
parametric forms for zq and zg with fitting parameters and the
temperature behavior of the fugacities arewell investigated in
Ref. [48]. The net baryon density n can be defined from the
zeroth component of the Nμ and takes the following form in
the massless limit:

n ¼ T3

π2
X
k

gkakPolyLog½3;−zqe−αk �; ð6Þ

where αk ¼ βakμ. Similarly, the microscopic definition of
current density in theQCDmediumwithin the EQPMhas the
form as follows:

ji ¼
X
k

gk

Z
dP̃kqfkv

i
kδfk −

X
k

δωkgk

Z
dP̃kqfk

vik
ϵk

δfk;

ð7Þ

with dP̃k ¼ d3jp̃kj
ð2πÞ3 and vi ¼ p̃i

p̃0. The system away from

equilibrium δfk can be described by the relativistic
Boltzmann equation. The effective Boltzmann within the
EQPM takes the following form:

p̃μ
k∂μfkðx; p̃kÞþ ðFμ

kðu · p̃kÞþqfkF
μνp̃kνÞ∂ðp̃kÞ

μ fk ¼C½fk�;
ð8Þ

where C½fk� is the collision kernel that quantifies the rate of
change of distribution functions due to the collisional
processes in the medium. Here, Fμν represents the electro-
magnetic field strength tensor and Fμ

k ¼ −∂νðδωkuνuμÞ
denotes the mean field force term that arises from the basic
conservation laws in the medium. We solve the Boltzmann
equation (8) to obtain δfk with a proper choice of the
collision kernel.

A. Seebeck coefficient within RTA

Within the RTA, the physics of collisions in a QCD
medium is approximated in terms of the thermal relaxation
time τRk

as follows:

Ck ¼ −ðu · p̃kÞ
δfk
τRk

: ð9Þ

The relaxation time for the 2 → 2 elastic scattering proc-
esses in the medium has been included in the present
analysis [57]. Notably, in a strongly magnetized medium
1 → 2 processes such as quark-antiquark annihilation and
vice versa are kinematically possible and considered as the
dominant processes in the medium [58]. In the massless
case, the relaxation time for quarks and antiquarks takes the
following form [36,59]:

τR ¼ 1

5.1Tα2eff lnð 1
αeff
Þð1þ 0.12ð2Nf þ 1ÞÞ ; ð10Þ

where αeff is the effective coupling that can be realized as
the charge renormalization within the EQPM description
and is related to running coupling constant αsðT; μÞ as

αeff
αsðT; μÞ

¼
�
2Nc

π2
PolyLog½2; zg� −

2Nf

π2
PolyLog½2;−zq�

þ μ2
Nf

π2
zq

1þ zq

�
1�

Nc
3
þ Nf

6
þ μ2

Nf

2π2

� : ð11Þ
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It is important to emphasize that the realistic EOSs are
embedded in the relaxation time through αeff . Substituting
Eq. (9) in Eq. (8) and employing an iterative Chapman-
Enskog-like approach [60], we solve the Boltzmann equa-
tion while considering the force term as F ¼ qfkE in the
case of a finite electric field. The first-order correction to
the distribution can be expressed as

δfk ¼ τRk

�
1

T
fp̃0

k∂0T þ p̃i
k∂iTg þ

T
p̃0
k

fp̃0
k∂0αk

þ p̃i
k∂iαkg −

1

p̃0
k

fp̃0
kp̃

ν
k∂0uν þ p̃i

kp̃
ν
k∂iuνg

þ θδωk − qfk v̄k · E

� ∂f0k
∂ϵk ; ð12Þ

where v̄k ¼ vk
ωk
ϵk
. Here, θ ¼ ∂μuμ and the traceless part of

the velocity gradient ⟪∂μuν⟫ acts as the source terms for
the bulk and shear viscous force in the medium. Sim-
plifying Eq. (12) by Gibbs-Duhem relation ∂iðμTÞ ¼
− h

T2 ð∂iT − T
nh ∂iPÞ, where h ¼ εþP

n , ε and P are the
enthalpy, energy density and pressure of the system,
respectively, we obtain

δfk ¼ τRk

∂f0k
∂ϵk

�
ðωk − akhÞvik

∂iT
T

− qfk v̄
i
kE

i

�
: ð13Þ

It is important to emphasize that in the steady state the
momentum conservation gives ∂iP ¼ 0. Equation (13)
denotes the nonequilibrium correction to the distribution
function due to the temperature gradient and electric field in
the medium. Substituting Eq. (13) in the electric current
density as described in Eq. (7), we obtain

j ¼
X
k

gkτRk
qfk

3T

Z
dP̃k

jp̃kj2
ω2
k

ðωk − akhÞ
∂f0k
∂ϵk ∇T

−
X
k

δωk
gkτRk

qfk
3T

Z
dP̃k

jp̃kj
ω2
k

ðωk − akhÞ
∂f0k
∂ϵk ∇T

−
X
k

gkτRk
q2fk

3

Z
dP̃k

jp̃kj2
ωk

1

ϵk

∂f0k
∂ϵk E

þ
X
k

gkτRk
q2fk

3

Z
dP̃k

jp̃kj2
ωk

1

ϵk

∂f0k
∂ϵk E: ð14Þ

The thermoelectric effect can be described by setting up
j ¼ 0 in a steady state, and hence we have

E ¼ S∇T; ð15Þ

such that the generated electric field is proportional to the
temperature gradient which can be quantified in terms of
the Seebeck coefficient S. Employing Eqs. (14) and (15)
and performing the thermodynamic integrals within the

EQPM description, the Seebeck coefficient takes the form
as follows:

S ¼ I1ðT; μÞ
I2ðT; μÞ

; ð16Þ

where I1 and I2 can be defined in terms of PolyLog
functions as, respectively,

I1 ¼ −
1

6π2
X
k

gkτRk
qfk

�
−6T2PolyLog½3;−eαkzk�

þ 4δωkTPolyLog½2;−eαkzk�

þ akhT

�
2PolyLog½2;−eαkzk�

þ 3
δωk

T
Log½1þ eαkzk�

��
; ð17Þ

I2 ¼
1

3π2
X
k

gkτRk
q2fk ½T2PolyLog½2;−eαkzk�

þ δωkTLog½1þ eαkzk��: ð18Þ

It is important to note that the term I2 is related to the
electrical conductivity of the QGP medium, i.e., I2 ¼ −σe
in the case of a vanishing magnetic field. The temperature
behavior of the σe and the Seebeck coefficient critically
depends on the thermal relaxation time. The effect of
collisions can be further studied with the BGK collisional
term and could be thought of as an improvement over the
RTA results.

B. Seebeck coefficient within BGK kernel

The BGK collisional aspects are observed to have a
significant impact on the collective modes, refractive
index, and electric charge transport process of the QCD
medium [61–65]. The BGK collision term takes the form as
follows:

C½fk� ¼ −ν
�
fk −

Nk

N0
k

f0k

�
¼ −ν

�
δfk −

f0k
N0

k

Z
dP̃kδfk

�
;

ð19Þ

where ν is the collisional frequency which is independent of
the momentum of particles and

Nk ¼
Z

dP̃kfk; N0
k ¼

Z
dP̃kf0k ð20Þ

denote the particle densities of the kth species. The
BGK collision kernel preserves number conservation
instantaneously, unlike conventional RTA integral, i.e.,R
dP̃kC½fk� ¼ 0. Note that, in the limit Nk

N0
k
¼ 1, the BGK

collisional term reduces to RTA kernel. Substituting
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Eq. (19) in Eq. (8) and solving the Boltzmann equation, we
have

δfk ¼ δfkð0Þ þ iνðiDÞ−1 f
0
k

N0
k

�Z
dP̃0

kδf
ð0Þ
k ðp̃0; XÞ

�

þ iνðiDÞ−1 f
0
k

N0
k

iν
N0

k

�Z
dP̃0

kðiDÞ−1f0k

×
Z

dP̃00
kδf

ð0Þ
k ðp̃00; XÞ

�
þ � � � ; ð21Þ

where D ¼ v · ∂X þ ν with v ¼ ð1; vkÞ and the RTA
equivalent form of the part of distribution function away

from equilibrium δfð0Þk takes the following form:

δfð0Þk ¼ ν−1
p̃i
k

p̃0
k

�
ðωk − akhÞ

∂iT
T

−
p̃0
k

ϵk
qfkE

i

� ∂f0k
∂ϵk : ð22Þ

Employing Eq. (21) in Eq. (7) and keeping terms in leading
order of ν−1, the current density takes the following form:

ji ¼
X
k

gkν−1qfk

Z
dP̃kvik

	�
p̃i
k

ωk
ðωk − akhÞ

∂iT
T

−
p̃i
k

ϵk
qfkE

i

� ∂f0k
∂ϵk þ

f0k
N0

k

ν−1
Z

dP̃0
k

×

�
p̃0i
k

ω0
k
ðω0

k − akhÞ
∂iT
T

−
p̃0i
k

ϵ0k
qfkE

i

� ∂f0k
∂ϵ0k



þ
X
k

δωkgkν−1qfk

Z
dP̃k

vik
jp̃kj

	�
p̃i
k

ωk
ðωk − akhÞ

∂iT
T

−
p̃i
k

ϵk
qfkE

i

� ∂f0k
∂ϵk þ

f0k
N0

k

ν−1
Z

dP̃0
k

�
p̃0i
k

ω0
k
ðω0

k − akhÞ
∂iT
T

−
p̃0i
k

ϵ0k
qfkE

i

� ∂f0k
∂ϵ0k



: ð23Þ

Setting up j ¼ 0 by employing Eq. (23) and performing
the thermodynamic integrals, the Seebeck coefficient
within the BGK collision kernel can be defined as

S ¼ K1ðT; μÞ
K2ðT; μÞ

; ð24Þ

K1 ¼ −
1

6π2
X
k

gkqfk
ν

�
−6T2PolyLog½3;−eαkzk�

þ 4δωkTPolyLog½2;−eαkzk� þ akhT

×

�
2PolyLog½2;−eαkzk� þ 3

δωk

T
Log½1þ eαkzk�

�

− 2
Ak

N0
k

ð−T2PolyLog½3;−eαkzk�

þ δωkTPolyLog½2;−eαkzk�Þ
�
; ð25Þ

K2 ¼
1

3π2
X
k

gkq2fk
ν

�
ðT2PolyLog½2;−eαkzk�

þ δωkTLog½1þ eαkzk�Þ

þ Bk

N0
k

ð−T2PolyLog½3;−eαkzk�

þ δωkTPolyLog½2;−eαkzk�Þ
�
; ð26Þ

where Ak and Bk, respectively, take the forms as follows:

Ak ¼
1

2π2

�
6T3PolyLog½3;−eαkzk� − akhT2

×

�
2PolyLog½2;−eαkzk� þ

δωk

T
Log½1þ eαkzk�

��
;

ð27Þ

Bk ¼
T3

π2
PolyLog½2;−eαkzk�: ð28Þ

It is important to note that, in the limit of zk ¼ 1, the
analysis reduces back to that in the case of ultrarelativistic
gas of quarks or antiquarks and gluons. The term jK2j
denotes the electrical conductivity of the QGP within the
BGK collision kernel. Let us now proceed to discuss the
thermoelectric effect in a magnetized QCD medium.

III. THERMOELECTRIC RESPONSES OF A
MAGNETIZED QGP WITHIN THE EQPM

In a weakly magnetized medium, the temperature is the
dominant energy scale in comparison with the strength of the
magnetic field. Hence, the energy dispersion of quarks and
antiquarks remains intact in the presence of the weak
magnetic field, unlike the Landau level dispersion of charged
fermions in a stronglymagnetizedmedium. In the presence of
a weak magnetic field, the Boltzmann equation has the form�

−
∂f0k
∂ϵk ðωk − akhÞ

1

T
ðvk · ∇TÞ

�

þ qfk ½Eþ ðvk ×BÞ� · ∂fk∂p̃k
¼ −

δfk
τRk

: ð29Þ

We consider that the dependence of the magnetic field on the
thermal relaxation time for the binary scattering process is
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entering through the one-loop magnetic-field-dependent
coupling constant αsðqfB; TÞ. The form of αsðqfB; TÞ for
a weakly magnetized medium is presented in Refs. [21,66].
A much deeper analysis is needed to obtain the exact form of
thermal relaxation to incorporate the effects of the magnetic
field and elastic-inelastic interactions in themedium,which is
beyond the scope of the present analysis. In the presence of a
strong magnetic field, the relaxation time critically depends
on the strength of the magnetic field as the 1 → 2 processes
are kinematically possible in the medium [58]. The non-
equilibrium part of the quasiparton distribution in the pres-
ence of a weak magnetic can be obtained by solving the
Boltzmann equation. To that end, we choose the following
ansatz:

δfk ¼ ðp̃k · ΞÞ
∂f0k
∂ϵk ; ð30Þ

where Ξ is defined as

Ξ ¼ α1Eþ α2bþ α3ðE × bÞ þ α4∇T

þ α5ð∇T × bÞ þ α6ð∇T ×EÞ; ð31Þ

with unit vector b ¼ B
jBj representing the direction of the

magnetic field. In general, there will be other independent
force terms other than the thermal driving force and Lorentz
force in the Boltzmann equation that corresponds to the
momentum transport and the associated viscous coefficients
in the medium. Different components of the transport
parameters associated with the electric charge, thermal and
momentumtransport processes in themagnetizedmediumare
studied in Ref. [67]. Since the Lorenz force vanishes in the

equilibriumcase as
∂f0k∂p̃k

∝ vk, Eq. (29) reduces to the following
form:

�
−ðωk − akhÞ

1

T
ðvk · ∇TÞ þ qfkðv̄k ·EÞ

� ∂f0k
∂ϵk

þ qfk ½ðvk ×BÞ · Ξ� ∂f
0
k

∂ϵk ¼ −
1

τRk

ðp̃k · ΞÞ
∂f0k
∂ϵk : ð32Þ

The unknown parameters αi ði ¼ 1; 2;…; 6Þ in the non-
equilibrium part of the distribution can be obtained by
substituting Eq. (30) in Eq. (32). Hence, we obtain

− ðωk − akhÞ
1

T
ðvk · ∇TÞ þ qfkðv̄k · EÞ þ qfkα1ðv ×BÞ · Eþ qfkα2ðv ×BÞ · bþ qfkα3ðv ×BÞ · ðE × bÞ

þ qfkα4ðv ×BÞ · ∇T þ qfkα5ðv ×BÞ · ð∇T × bÞ þ qfkα6ðv ×BÞ · ð∇T × EÞ
¼ −

ωk

τRk

½α1vk · Eþ α2vk · bþ α3vk · ðE × bÞ þ α4vk · ∇T þ α5vk · ð∇T × bÞ þ α6vk · ð∇T ×EÞ�: ð33Þ

Comparing different independent tensor structures on
both sides of Eq. (33), we obtain the following relations for
the parameters αi ði ¼ 1; 2;…; 6Þ:

−
ωk

τRk

α1 ¼
ωk

ϵk
qfk þ α3qfk jBj; ð34Þ

−
ωk

τRk

α2 ¼ −α3qfkðB · EÞ − α5qfkðB · ∇TÞ; ð35Þ

−
ωk

τRk

α3 ¼ −α1qfk jBj; ð36Þ

−
ωk

τRk

α4 ¼ −
ðωk − akhÞ

T
þ α5qfk jBj; ð37Þ

−
ωk

τRk

α5 ¼ −α4qfk jBj; ð38Þ

with α6 ¼ 0. For the quantitative analysis of the thermo-
electric effect in a magnetized medium, we consider the
magnetic field direction along the z axis and the directions
of the electric and temperature gradient in the x–y plane in
the present analysis, i.e., ðb · EÞ ¼ ðb · ∇TÞ ¼ 0. Further
solving Eqs. (34)–(38), the parameters take the forms as
follows:

α1 ¼ −
τR
ϵk

qfk
ð1þ τ2Rk

Ω2
ckÞ

; ð39Þ

α2 ¼ 0; ð40Þ

α3 ¼ −
τ2Rk

ϵk

qfk
ð1þ τ2Rk

Ω2
ckÞ

Ωck; ð41Þ

α4 ¼
τRk

ωk

1

T
ðωk − akhÞ
ð1þ τ2Rk

Ω2
ckÞ

; ð42Þ

α5 ¼
τ2Rk

ωk

1

T
ðωk − akhÞ
ð1þ τ2Rk

Ω2
ckÞ

Ωck; ð43Þ

where Ωck ¼ qfk jBj
ωk

denotes the cyclotron frequency in the
presence of the magnetic field. Employing Eqs. (39)–(43)
in Eq. (30) we obtain

δfk ¼
�
−qfkðv̄k ·Eþ τRk

Ωckvk · ðE × bÞÞ

þ ðωk − hkÞ
1

T
ðvk · ∇T þ τRk

Ωckvk · ð∇T × bÞÞ
�

×
τRk

ð1þ τ2Rk
Ω2

ckÞ
∂f0k
∂ϵk : ð44Þ
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By substituting Eq. (44) in Eq. (7), the component of the
current density along the x axis can be obtained as follows:

jx ¼
X
k

gkτRk
qfk

3

Z
dP̃k

v2k
ð1þ τ2Rk

Ω2
ckÞ

�
−
ωk

ϵk
qfkðEx

þ τRk
ΩckEyÞþ ðωk−akhÞ

1

T

�
dT
dx

þ τRk
Ωck

dT
dy

��∂f0k
∂ϵk

−
X
k

δωk
gkτRk

qfk
3

Z
dP̃k

v2k
ϵkð1þ τ2Rk

Ω2
ckÞ

�
−qfkðEx

þ τRk
ΩckEyÞþ ðωk−akhÞ

1

T

�
dT
dx

þ τRk
Ωck

dT
dy

��∂f0k
∂ϵk :
ð45Þ

Similarly, the component of current density along the y axis
takes the following form:

jy ¼
X
k

gkτRk
qfk

3

Z
dP̃k

v2k
ð1þ τ2Rk

Ω2
ckÞ

�
−
ωk

ϵk
qfkðEy

− τRk
ΩckExÞþ ðωk−akhÞ

1

T

�
dT
dy

− τRk
Ωck

dT
dx

��∂f0k
∂ϵk

−
X
k

δωk
gkτRk

qfk
3

Z
dP̃k

v2k
ϵkð1þ τ2Rk

Ω2
ckÞ

�
−qfkðEy

− τRk
ΩckExÞþ ðωk−akhÞ

1

T

�
dT
dy

− τRk
Ωck

dT
dx

��∂f0k
∂ϵk :
ð46Þ

The charge carriers traveling along the temperature gradient
(x–y plane) generate an electric field that induces an electric
current in the opposite direction, and in the steady state the
net current vanishes in the medium. By setting up jx ¼ 0
and jy ¼ 0, we can represent the generated electric field in
terms of the temperature gradient. Hence, from Eqs. (45)
and (46) we have

Ex ¼ SB
dT
dx

þ NjBj dT
dy

; ð47Þ

Ey ¼ SB
dT
dy

− NjBj dT
dx

; ð48Þ

where SB and N are the Seebeck and Nernst coefficients,
respectively, associated with the thermoelectric transport
process in the presence of the magnetic field. In the case of
a vanishing magnetic field, Eqs. (47) and (48) reduce to
Eq. (15) such that the coefficient SB reduces to S and the
Nernst coefficient vanishes in the medium. The SB and N
take the following forms:

SB ¼ L1L3 þ L2L4

L2
1 þ L2

2

; NjBj ¼ L1L4 − L2L3

L2
1 þ L2

2

; ð49Þ

where Li (i ¼ 1, 2, 3, 4) are the thermodynamic integrals in
the presence of the magnetic field and can be defined as
follows:

L1 ¼
1

3

X
k

gkτRk
q2fk

	Z
dP̃k

jp̃kj2
ωk

1

ϵk

1

ð1þ τ2Rk
Ω2

ckÞ
∂f0k
∂ϵk − δωk

Z
dP̃k

jp̃kj2
ωk

1

ϵ2k

1

ð1þ τ2Rk
Ω2

ckÞ
∂f0k
∂ϵk



; ð50Þ

L2 ¼
1

3

X
k

gkτRk
q2fk

	Z
dP̃k

jp̃kj2
ωk

1

ϵk

τRk
Ωck

ð1þ τ2Rk
Ω2

ckÞ
∂f0k
∂ϵk − δωk

Z
dP̃k

jp̃kj2
ωk

1

ϵ2k

τRk
Ωck

ð1þ τ2Rk
Ω2

ckÞ
∂f0k
∂ϵk



; ð51Þ

L3 ¼
1

3T

X
k

gkτRk
qfk

	Z
dP̃k

jp̃kj2
ω2
k

ðωk − akhÞ
ð1þ τ2Rk

Ω2
ckÞ

∂f0k
∂ϵk − δωk

Z
dP̃k

jp̃kj
ω2
k

ðωk − akhÞ
ð1þ τ2Rk

Ω2
ckÞ

∂f0k
∂ϵk



; ð52Þ

L4 ¼
1

3T

X
k

gkτRk
qfk

	Z
dP̃k

jp̃kj2
ω2
k

τRk
Ωckðωk − akhÞ
ð1þ τ2Rk

Ω2
ckÞ

∂f0k
∂ϵk − δωk

Z
dP̃k

jp̃kj
ω2
k

τRk
Ωckðωk − akhÞ
ð1þ τ2Rk

Ω2
ckÞ

∂f0k
∂ϵk



: ð53Þ

The integrals L2 and L4 vanish at B ¼ 0, and hence the
Nernst coefficient vanishes in the absence of a mag-
netic field.
In a strongly magnetized medium, the motion of fer-

mions is constrained in the direction of the magnetic field.
Various transport processes in the QCD medium have been
initially studied in the lowest Landau level approximation
(T2 ≪ jqfkBj) [58] and later on the more realistic regime
gT ≪

ffiffiffiffiffiffiffiffiffiffiffijqfBj
p

where higher Landau level contributions are
significant [68]. The longitudinal current density jz due to

the 1þ 1-dimensional Landau level dynamics of the
charged particles in the presence of the strong magnetic
field has been studied in Ref. [69]. Following the same
formalism and invoking jz ¼ 0, the Seebeck coefficient in

the strongly magnetized medium SkB can be defined as

E ¼ SkB∇T; SkB ¼ Ik1ðqfB; T; μÞ
Ik2ðqfB; T; μÞ

; ð54Þ

where the integral takes the form
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Ik1 ¼ −
X∞
l¼0

X
k

gl
jqfkBj
2π

Nc

T2

Z
∞

−∞

dp̃zk

2π
τeff

ðωl
k − akhlÞ
ωl2
k

× p̃2
zkf

l0
k ð1 − fl0k Þ

þ
X∞
l¼0

X
k

glδωk
jqfkBj
2π

Nc

T2

Z
∞

−∞

dp̃zk

2π
τeff

ðωl
k − akhlÞ
ωl2
k

×
p̃2
zk

El
fl0k ð1 − fl0k Þ: ð55Þ

Here, gl ¼ ð2 − δl0Þ is the spin degeneracy with l as the
Landau level, hl is the enthalpy in the strongly magnetized

QGP, and ωl
k ¼ El þ δωk with El ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2ljqfkBj

q
. The

EQPM particle distribution function in a strong magnetic
field takes the form

fl0k ¼ zk exp ½−βðEl − akμÞ�
1þ zk exp ½−βðEl − akμÞ�

: ð56Þ

Similarly, the integral Ik2 can be defined as

Ik2 ¼ −σk; ð57Þ

where σk is the longitudinal electrical conductivity within
the EQPM as described in Ref. [70]. Here, τeff is the
thermal relaxation time for dominant 1 → 2 processes in
the strongly magnetized medium [58].

IV. RESULTS AND DISCUSSIONS

We initiate the discussions with the temperature depend-
ence of the Seebeck coefficient in the two-flavor QGP
medium. The dependence of quark chemical potential and
thermal medium interactions on the temperature behavior of
the thermoelectric coefficient is depicted in Fig. 1 (left) in the
case of a vanishing magnetic field within the RTA. It is
observed that the mean field contributions that arise from the
hot medium interactions to the Seebeck coefficient are more

pronounced in the temperature regimes not very far from the
transition temperature Tc. In a previous study [56], we have
studied the relative behavior of electric and thermal transport
in the medium in terms of the Wiedemann-Franz law and
observed that the law is violated with the inclusion of EOS
effects in temperature regimes near Tc. In a similar line, we
have observed that the hot QCD medium interactions
significantly modify the low-temperature behavior of the
thermoelectric effect in themedium. The negative sign of S is
arising from the term ðωk − akhÞ for the two-flavor system
within the EQPM, in contrast with the term ðωk − akhÞ2
while describing the Lorentz number L ¼ κ

σeT
, where κ is the

thermal conductivity of the medium. At very high temper-
ature, the EQPM results reduce back to the results of
noninteracting medium owing to the fact that zk → 1 and
δωk → 0 at the asymptotic limit. At the massless and ideal
EOS limits, the coefficient S vanishes for the three-flavor
QGP at B ¼ 0. Along with the temperature gradient in the
medium, a finite quark chemical potential is also required for
the thermoelectric effect in the hot QCDmedium [44]. This is
attributed to the fact that, in the QGP medium, there are
positive and negative charge carriers for the transport process,
unlike in the condensed matter system. The quark chemical
potential is seen to have a strong dependence on the
thermoelectric effect in themedium. The coefficient increases
with an increase in the quark chemical potential at a particular
temperature. This observation is in line with the results of
Ref. [44]. For a large temperature regime, the enthalpy to the
net quark number density ratio behaves as h ∼ T cothðμ=TÞ
and S ∼ − cothðμ=TÞ for the massless limit. Within the limit
μ
T ≪ 1, we have cothðμ=TÞ ∼ T=μ in the leading order.
However, it is important to note that, in contrast to the
condensedmatter systems, a finite quark chemical potential is
required for the thermoelectric effect to be observed.
The collisional aspects of the QGPmedium are embedded

in the analysis through the RTA and BGK kernels. In Fig. 1
(right), the ratio of BGK description of the Seebeck coef-
ficient to the RTA result is plotted as a function of temper-
ature. The BGK description of the Seebeck coefficient is

FIG. 1. Left: dependence of chemical potential and medium interactions on the temperature behavior of the Seebeck coefficient of the
two-flavor QGP within the RTA. Right: The RTA results are compared with the estimations with the BGK collision kernel.
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described in Eq. (24). The first term of Eqs. (25) and (26)
describes the RTA results, and other terms denote further
corrections within the BGK description. For the quantitative
estimation, the parameter ν is assumed as the thermal average
of inverse of relaxation time for the elastic collisions. In the
absenceof amagnetic field, the choice ofνwill not dependon
the temperature behavior of the thermoelectric coefficient. It
is observed that the collisional effect to the thermoelectric
coefficient is more prominent in the temperature regime near
Tc. The current density has contributions from the temper-
ature gradient (with nonzero quark chemical potential) in the
medium and also from the generated electric field. Both the
contributions get corrections within the BGK analysis in
comparisonwith the RTA result as described in Eq. (16). The
collisional aspects of the medium are seen to be negligible at
lower values of μ. Notably, in the massless and ultrarelativ-
istic limit (zk → 1) limit, Swill be independent of the choice
of collision integral, as the corrections to both contributions
to the current density cancel exactly each other while
defining the Seebeck coefficient.
The magnetic field induces anisotropy in the system and

leads to a magnetic-field-dependent Seebeck coefficient
and Nernst coefficient associated with the thermoelectric

effect in the magnetized medium as described in Eqs. (47)
and (48). The impact of the magnetic field on the Seebeck
coefficient is shown in Fig. 2. In the weakly magnetized
medium, the magnetic field dependence of the thermoelec-
tric coefficient is entering through the Lorentz force via
cyclotron frequency jΩckj. The effect of the magnetic field
is observed to be more significant in the lower-temperature
regimes. As the temperature increases, the particle motion
is completely dominated by the temperature, and the effect
of the magnetic field vanishes. However, in the temperature
regimes near Tc the Seebeck coefficient decreases with an
increase in the strength of the field due to the factor 1

1þτ2Rk
Ω2

ck
.

It is important to emphasize that Eq. (49) reduces back to
Eq. (15) at the limit of B ¼ 0.
The motion of the charged fermion gets deflected in the

presence of a weak magnetic field due to the Lorentz force.
The Hall-type conductivity associated with the thermal and
electric charge transport in the hot QCD has been explored
in Refs. [35,56]. The temperature variation of the Hall-type
transport coefficient associated with the thermoelectric
effect, Nernst coefficient, in the magnetized medium is
depicted in Fig. 3. In contrast to the Seebeck coefficient, the
Nernst coefficient is a positive quantity and is critically
dependent on the quark chemical potential and strength of
the magnetic field. It is seen that theNjBj decreases with an
increase in chemical potential at a finite magnetic field. The
dependence of the strength of the magnetic field on the

Nernst coefficient is studied by plotting the ratio NjBj
S with

the temperature in Fig. 3 (right). The ratio approaches zero
asymptotically, which indicates that the impact of the
magnetic field on the thermoelectric transport is negligible
at sufficiently high temperature in the weakly magnetized
QGP. However, the magnetic field effects on the Nernst
coefficient are visible in the low-temperature regimes near
Tc. Further, it is important to emphasize that the Nernst
coefficient vanishes in a strongly magnetized medium due
to the 1þ 1-dimensional constraint motion of the charged
particle.

FIG. 2. Temperature dependence of Seebeck coefficient at
μ ¼ 100 MeV in a weakly magnetized medium.

FIG. 3. Left: dependence of chemical potential on the temperature behavior of the Nernst coefficient at jeBj ¼ 0.03 GeV2. Right: the
impact of the magnetic field on the Nernst coefficient at μ ¼ 100 MeV.
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V. CONCLUSION AND OUTLOOK

In this article, we have presented an analysis on the
thermoelectric transport process and the associated trans-
port coefficients in a collisional and magnetized hot QCD
medium. The realistic EOS effects are embedded in the
analysis within the framework of the EQPM through the
temperature-dependent fugacity parameters. The nonequi-
librium part of the momentum distribution of effective
degrees of freedom is obtained by solving the effective
transport equation within the EQPM employing an iterative
Chapman-Enskog-like approach while choosing a proper
collision kernel. The electric field generated due to temper-
ature gradient in the hot QCD medium at finite quark
chemical potential is quantified in terms of the Seebeck
coefficient. The temperature behavior of the Seebeck
coefficient in the collisional two-flavor QGP medium
has been investigated. The effects of collision are incorpo-
rated in the analysis through the RTA and BGK collision
kernels. The thermal medium interactions of the QCD
medium are seen to have a significant impact on the
thermoelectric behavior of the medium. The effects of
the collisions and quark chemical potential are more visible
in the temperature regimes near the transition temperature.
Further, we have studied the thermoelectric behavior of a

weakly magnetized QCD matter. In the analysis, the
temperature is considered to be the dominant energy scale
in comparison with the strength of the magnetic field. The
magnetic field induces anisotropy in the thermoelectric
behavior of the medium. We have estimated the transport
coefficients characterizing the thermoelectric behavior of
the magnetized QCD medium, magnetic-field-dependent
Seebeck and Nernst coefficients, within the effective trans-
port equation. We have demonstrated the dependence of the

magnetic field and quark chemical potential on thermo-
electric coefficients in the weakly magnetized medium. The
analysis is further extended to the strong magnetic field
regime while considering the Landau level kinematics of
the charged particle. Notably, the Nernst coefficient van-
ishes in a strongly magnetized medium due to the longi-
tudinal motion of the particles.
The phenomenological aspects of the thermoelectric

behavior may have a significant role in the baryon-rich
medium and will be more relevant in the context of lower-
energy collisions probed in the RHIC beam energy scan
and for upcoming experiments at Facility for Antiproton
and Ion Research and in Nuclotron-based Ion Collider
facility. The study of thermoelectric behavior of the
collisional QCD medium in the presence of space-time-
varying magnetic fields would be an interesting direction
to work. The induced electric field from the decay of the
magnetic field may put a constraint in the generated
electric field from the temperature gradient at a finite
chemical potential. A very recent study [71] proposed
that temperature and chemical potential gradient in the
heavy-ion collision experiment may induce spin Hall
current. These aspects will be taken up for future
investigations.

ACKNOWLEDGMENTS

The author would like to acknowledge Vinod Chandra
for the immense encouragement, helpful discussions, and
critical reading of the manuscript. The author acknowledges
Indian Institute of Technology Gandhinagar for Institute
postdoctoral fellowship. The author thanks the anonymous
referee for the constructive inputs and suggestions.

[1] Adams et al. (STAR Collaboration), Nucl. Phys. A757, 102
(2005); K. Adcox et al. (PHENIX Collaboration), Nucl.
Phys. A757, 184 (2005); B. B. Back et al. (PHOBOS
Collaboration), Nucl. Phys. A757, 28 (2005); A. Arsence
et al. (BRAHMS Collaboration), Nucl. Phys. A757, 1
(2005).

[2] K. Aamodt et al. (ALICE Collaboration), Phys. Rev. Lett.
105, 252301 (2010).

[3] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28,
1340011 (2013).

[4] A. Jaiswal and V. Roy, Adv. High Energy Phys. 2016,
9623034 (2016), and the references therein.

[5] D. Teaney, Phys. Rev. C 68, 034913 (2003).
[6] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99,

172301 (2007).
[7] J. Adam et al. (ALICE Collaboration), Phys. Rev. Lett. 117,

182301 (2016).

[8] J. Adam et al. (ALICE Collaboration), Phys. Rev. Lett. 116,
132302 (2016).

[9] S. Acharya et al. (ALICE Collaboration), Phys. Rev. Lett.
125, 022301 (2020).

[10] J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 123,
162301 (2019).

[11] V. Skokov, A. Y. Illarionov, and V. Toneev, Int. J. Mod.
Phys. A 24, 5925 (2009).

[12] W. Deng and X. Huang, Phys. Rev. C 85, 044907 (2012).
[13] K.Fukushima,D. E.Kharzeev, andH. J.Warringa, Phys.Rev.

D 78, 074033 (2008); D. E. Kharzeev, L. D. McLerran, and
H. J.Warringa,Nucl. Phys.A803, 227 (2008);D. E.Kharzeev,
Ann. Phys. (Amsterdam) 325, 205 (2010); D. E.Kharzeev and
D. T. Son, Phys. Rev. Lett. 106, 062301 (2011).

[14] A. V. Sadofyev and M. V. Isachenkov, Phys. Lett. B 697,
404 (2011); A. V. Sadofyev, V. I. Shevchenko, and V. I.
Zakharov, Phys. Rev. D 83, 105025 (2011).

MANU KURIAN PHYS. REV. D 103, 054024 (2021)

054024-10

https://doi.org/10.1016/j.nuclphysa.2005.03.085
https://doi.org/10.1016/j.nuclphysa.2005.03.085
https://doi.org/10.1016/j.nuclphysa.2005.03.086
https://doi.org/10.1016/j.nuclphysa.2005.03.086
https://doi.org/10.1016/j.nuclphysa.2005.03.084
https://doi.org/10.1016/j.nuclphysa.2005.02.130
https://doi.org/10.1016/j.nuclphysa.2005.02.130
https://doi.org/10.1103/PhysRevLett.105.252301
https://doi.org/10.1103/PhysRevLett.105.252301
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1155/2016/9623034
https://doi.org/10.1155/2016/9623034
https://doi.org/10.1103/PhysRevC.68.034913
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.117.182301
https://doi.org/10.1103/PhysRevLett.117.182301
https://doi.org/10.1103/PhysRevLett.116.132302
https://doi.org/10.1103/PhysRevLett.116.132302
https://doi.org/10.1103/PhysRevLett.125.022301
https://doi.org/10.1103/PhysRevLett.125.022301
https://doi.org/10.1103/PhysRevLett.123.162301
https://doi.org/10.1103/PhysRevLett.123.162301
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1103/PhysRevC.85.044907
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.aop.2009.11.002
https://doi.org/10.1103/PhysRevLett.106.062301
https://doi.org/10.1016/j.physletb.2011.02.041
https://doi.org/10.1016/j.physletb.2011.02.041
https://doi.org/10.1103/PhysRevD.83.105025


[15] K. Fukushima, K. Hattori, H. U. Yee, and Y. Yin, Phys. Rev.
D 93, 074028 (2016).

[16] B. Singh, S. Mazumder, and H. Mishra, J. High Energy
Phys. 05 (2020) 068.

[17] M. Hasan, B. Chatterjee, and B. K. Patra, Eur. Phys. J. C 77,
767 (2017).

[18] B. Singh, L. Thakur, and H. Mishra, Phys. Rev. D 97,
096011 (2018).

[19] A. Bandyopadhyay, C. A. Islam, and M. G. Mustafa, Phys.
Rev. D 94, 114034 (2016); A. Das, N. Haque, M. G.
Mustafa, and P. K. Roy, Phys. Rev. D 99, 094022 (2019).

[20] S. Li, K. A. Mamo, and H. U. Yee, Phys. Rev. D 94, 085016
(2016).

[21] A. Bandyopadhyay, B. Karmakar, N. Haque, and M. G.
Mustafa, Phys. Rev. D 100, 034031 (2019); B. Karmakar, R.
Ghosh, A. Bandyopadhyay, N. Haque, and M. G. Mustafa,
Phys. Rev. D 99, 094002 (2019).

[22] S. Koothottil and V. M. Bannur, Phys. Rev. C 99, 035210
(2019).

[23] J. Dey, S. Satapathy, A. Mishra, S. Paul, and S. Ghosh,
arXiv:1908.04335; J. Dey, S. Satapathy, P. Murmu, and S.
Ghosh, arXiv:1907.11164.

[24] K. Tuchin, Phys. Rev. C 88, 024911 (2013); 93, 014905
(2016).

[25] L. McLerran and V. Skokov, Nucl. Phys. A929, 184 (2014).
[26] S. Mitra and V. Chandra, Phys. Rev. D 96, 094003 (2017).
[27] P. Kalikotay, N. Chaudhuri, S. Ghosh, U. Gangopadhyaya,

and S. Sarkar, Eur. Phys. J. A 56, 79 (2020).
[28] R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin, and H.

Berrehrah, Phys. Rev. C 88, 045204 (2013).
[29] G. P. Kadam, H. Mishra, and L. Thakur, Phys. Rev. D 98,

114001 (2018).
[30] P. Deb, G. P. Kadam, and H. Mishra, Phys. Rev. D 94,

094002 (2016).
[31] M. Greif, F. Reining, I. Bouras, G. Denicol, Z. Xu, and C.

Greiner, Phys. Rev. E 87, 033019 (2013).
[32] D. Fernandez-Fraile and A. Gomez Nicola, Eur. Phys. J. C

62, 37 (2009).
[33] B. Feng, Phys. Rev. D 96, 036009 (2017).
[34] A. Das, H. Mishra, and R. K. Mohapatra, Phys. Rev. D 101,

034027 (2020); 99, 094031 (2019).
[35] A. Das, H. Mishra, and R. K. Mohapatra, Phys. Rev. D 100,

114004 (2019).
[36] L. Thakur and P. K. Srivastava, Phys. Rev. D 100, 076016

(2019).
[37] S. Ghosh, A. Bandyopadhyay, R. L. S. Farias, J. Dey, and G.

Krein, Phys. Rev. D 102, 114015 (2020).
[38] B. Chatterjee, R. Rath, G. Sarwar, and R. Sahoo, Eur. Phys.

J. A 57, 45 (2021).
[39] S. Rath and B. K. Patra, Phys. Rev. D 100, 016009 (2019);

arXiv:2005.00997.
[40] K. K. Gowthama, M. Kurian, and V. Chandra, arXiv:

2012.07156.
[41] M. Matusiak, K. Rogacki, and T. Wolf, Phys. Rev. B 97,

220501(R) (2018).

[42] M.M. Wysokinski and J. Spalek, J. Appl. Phys. 113,
163905 (2013).

[43] J. R. Bhatt, A. Das, and H. Mishra, Phys. Rev. D 99, 014015
(2019).

[44] A. Abhishek, A. Das, D. Kumar, and H. Mishra,
arXiv:2007.14757.

[45] A. Das, H. Mishra, and R. K. Mohapatra, Phys. Rev. D 102,
014030 (2020).

[46] H. X. Zhang, J. W. Kang, and B.W. Zhang, arXiv:2004
.08767.

[47] D. Dey and B. K. Patra, Phys. Rev. D 102, 096011 (2020).
[48] V. Chandra and V. Ravishankar, Phys. Rev. D 84, 074013

(2011); V. Chandra, R. Kumar, and V. Ravishankar, Phys.
Rev. C 76, 054909 (2007).

[49] M. Kurian and V. Chandra, Phys. Rev. D 96, 114026 (2017).
[50] S. Mitra and V. Chandra, Phys. Rev. D 97, 034032 (2018).
[51] A. Czajka, S. Hauksson, C. Shen, S. Jeon, and C. Gale,

Phys. Rev. C 97, 044914 (2018).
[52] S. Plumari, A. Puglisi, F. Scardina, and V. Greco, Phys. Rev.

C 86, 054902 (2012).
[53] A. Jaiswal, R. Ryblewski, and M. Strickland, Phys. Rev. C

90, 044908 (2014).
[54] A. K. Panda, A. Dash, R. Biswas, and V. Roy, arXiv:2011

.01606.
[55] S. Bhadury, W. Florkowski, A. Jaiswal, and R. Ryblewski,

Phys. Rev. C 102, 064910 (2020).
[56] M. Kurian, Phys. Rev. D 102, 014041 (2020).
[57] J. L. Anderson and H. R. Witting, Physica (Amsterdam) 74,

466 (1974).
[58] K. Hattori, X. G. Huang, D. H. Rischke, and D. Satow, Phys.

Rev. D 96, 094009 (2017); K. Hattori and D. Satow, Phys.
Rev. D 94, 114032 (2016).

[59] A. Hosoya and K. Kajantie, Nucl. Phys. B250, 666 (1985).
[60] A. Jaiswal, Phys. Rev. C 87, 051901 (2013).
[61] B. Schenke, M. Strickland, C. Greiner, and M. H. Thoma,

Phys. Rev. D 73, 125004 (2006).
[62] A. Kumar, M. Y. Jamal, V. Chandra, and J. R. Bhatt, Phys.

Rev. D 97, 034007 (2018).
[63] S. A. Khan and B. K. Patra, arXiv:2011.02682.
[64] B. F. Jiang, D. F. Hou, and J. R. Li, Phys. Rev. D 94, 074026

(2016).
[65] M. E. Carrington, T. Fugleberg, D. Pickering, and M. H.

Thoma, Can. J. Phys. 82, 671 (2004).
[66] A. Ayala, C. A. Dominguez, S. Hernandez-Ortiz, L. A.

Hernandez, M. Loewe, D. Manreza Paret, and R. Zamora,
Phys. Rev. D 98, 031501 (2018).

[67] A. Dash, S. Samanta, J. Dey, U. Gangopadhyaya, S. Ghosh,
and V. Roy, Phys. Rev. D 102, 016016 (2020).

[68] M. Kurian, S. Mitra, S. Ghosh, and V. Chandra, Eur. Phys. J.
C 79, 134 (2019).

[69] K. Fukushima and Y. Hidaka, Phys. Rev. Lett. 120, 162301
(2018).

[70] M. Kurian and V. Chandra, Phys. Rev. D 99, 116018
(2019).

[71] S. Y. F. Liu and Y. Yin, arXiv:2006.12421.

THERMOELECTRIC BEHAVIOR OF HOT COLLISIONAL AND … PHYS. REV. D 103, 054024 (2021)

054024-11

https://doi.org/10.1103/PhysRevD.93.074028
https://doi.org/10.1103/PhysRevD.93.074028
https://doi.org/10.1007/JHEP05(2020)068
https://doi.org/10.1007/JHEP05(2020)068
https://doi.org/10.1140/epjc/s10052-017-5346-z
https://doi.org/10.1140/epjc/s10052-017-5346-z
https://doi.org/10.1103/PhysRevD.97.096011
https://doi.org/10.1103/PhysRevD.97.096011
https://doi.org/10.1103/PhysRevD.94.114034
https://doi.org/10.1103/PhysRevD.94.114034
https://doi.org/10.1103/PhysRevD.99.094022
https://doi.org/10.1103/PhysRevD.94.085016
https://doi.org/10.1103/PhysRevD.94.085016
https://doi.org/10.1103/PhysRevD.100.034031
https://doi.org/10.1103/PhysRevD.99.094002
https://doi.org/10.1103/PhysRevC.99.035210
https://doi.org/10.1103/PhysRevC.99.035210
https://arXiv.org/abs/1908.04335
https://arXiv.org/abs/1907.11164
https://doi.org/10.1103/PhysRevC.88.024911
https://doi.org/10.1103/PhysRevC.93.014905
https://doi.org/10.1103/PhysRevC.93.014905
https://doi.org/10.1016/j.nuclphysa.2014.05.008
https://doi.org/10.1103/PhysRevD.96.094003
https://doi.org/10.1140/epja/s10050-020-00074-3
https://doi.org/10.1103/PhysRevC.88.045204
https://doi.org/10.1103/PhysRevD.98.114001
https://doi.org/10.1103/PhysRevD.98.114001
https://doi.org/10.1103/PhysRevD.94.094002
https://doi.org/10.1103/PhysRevD.94.094002
https://doi.org/10.1103/PhysRevE.87.033019
https://doi.org/10.1140/epjc/s10052-009-0935-0
https://doi.org/10.1140/epjc/s10052-009-0935-0
https://doi.org/10.1103/PhysRevD.96.036009
https://doi.org/10.1103/PhysRevD.101.034027
https://doi.org/10.1103/PhysRevD.101.034027
https://doi.org/10.1103/PhysRevD.99.094031
https://doi.org/10.1103/PhysRevD.100.114004
https://doi.org/10.1103/PhysRevD.100.114004
https://doi.org/10.1103/PhysRevD.100.076016
https://doi.org/10.1103/PhysRevD.100.076016
https://doi.org/10.1103/PhysRevD.102.114015
https://doi.org/10.1140/epja/s10050-021-00348-4
https://doi.org/10.1140/epja/s10050-021-00348-4
https://doi.org/10.1103/PhysRevD.100.016009
https://arXiv.org/abs/2005.00997
https://arXiv.org/abs/2012.07156
https://arXiv.org/abs/2012.07156
https://doi.org/10.1103/PhysRevB.97.220501
https://doi.org/10.1103/PhysRevB.97.220501
https://doi.org/10.1063/1.4802503
https://doi.org/10.1063/1.4802503
https://doi.org/10.1103/PhysRevD.99.014015
https://doi.org/10.1103/PhysRevD.99.014015
https://arXiv.org/abs/2007.14757
https://doi.org/10.1103/PhysRevD.102.014030
https://doi.org/10.1103/PhysRevD.102.014030
https://arXiv.org/abs/2004.08767
https://arXiv.org/abs/2004.08767
https://doi.org/10.1103/PhysRevD.102.096011
https://doi.org/10.1103/PhysRevD.84.074013
https://doi.org/10.1103/PhysRevD.84.074013
https://doi.org/10.1103/PhysRevC.76.054909
https://doi.org/10.1103/PhysRevC.76.054909
https://doi.org/10.1103/PhysRevD.96.114026
https://doi.org/10.1103/PhysRevD.97.034032
https://doi.org/10.1103/PhysRevC.97.044914
https://doi.org/10.1103/PhysRevC.86.054902
https://doi.org/10.1103/PhysRevC.86.054902
https://doi.org/10.1103/PhysRevC.90.044908
https://doi.org/10.1103/PhysRevC.90.044908
https://arXiv.org/abs/2011.01606
https://arXiv.org/abs/2011.01606
https://doi.org/10.1103/PhysRevC.102.064910
https://doi.org/10.1103/PhysRevD.102.014041
https://doi.org/10.1016/0031-8914(74)90355-3
https://doi.org/10.1016/0031-8914(74)90355-3
https://doi.org/10.1103/PhysRevD.96.094009
https://doi.org/10.1103/PhysRevD.96.094009
https://doi.org/10.1103/PhysRevD.94.114032
https://doi.org/10.1103/PhysRevD.94.114032
https://doi.org/10.1016/0550-3213(85)90499-7
https://doi.org/10.1103/PhysRevC.87.051901
https://doi.org/10.1103/PhysRevD.73.125004
https://doi.org/10.1103/PhysRevD.97.034007
https://doi.org/10.1103/PhysRevD.97.034007
https://arXiv.org/abs/2011.02682
https://doi.org/10.1103/PhysRevD.94.074026
https://doi.org/10.1103/PhysRevD.94.074026
https://doi.org/10.1139/p04-035
https://doi.org/10.1103/PhysRevD.98.031501
https://doi.org/10.1103/PhysRevD.102.016016
https://doi.org/10.1140/epjc/s10052-019-6649-z
https://doi.org/10.1140/epjc/s10052-019-6649-z
https://doi.org/10.1103/PhysRevLett.120.162301
https://doi.org/10.1103/PhysRevLett.120.162301
https://doi.org/10.1103/PhysRevD.99.116018
https://doi.org/10.1103/PhysRevD.99.116018
https://arXiv.org/abs/2006.12421

