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We examine the thermalization of an ensemble of the octet of pseudoscalar mesons, in the isospin
symmetric limit, whose interactions are constrained through chiral symmetry, unitarity, and measurements.
We use unitarized reaction amplitudes from next-to-leading-order chiral perturbation theory which generate
all resonances up to masses of about 2 GeV, with 12 input parameters, namely, fπ , three masses, and eight
low-energy constants of chiral perturbation theory. In linear response theory, we find that the relaxation
time is around 100 fm at a temperature of 150 MeV and increases rapidly with temperature. The long
relaxation times are directly related to the fact that these mesons are pseudo-Goldstone bosons of chiral
symmetry breaking.
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I. INTRODUCTION

In heavy-ion collisions, as in all collider experiments,
the main observables are the particles in the final state and
their momenta. Everything else of interest is constructed
from these. The simplest of observables are the abundances
of hadrons in the final state. In heavy-ion collisions, these
yields are well explained by an ideal gas of hadronic
resonances at a freeze-out temperature of Tfo ¼ 158.4�
1.4 MeV [1] when the nucleon-nucleon center-of-mass col-
lision energies,

ffiffiffi
s

p
, is larger than 20 GeV. Furthermore, forffiffiffi

s
p

> 100 GeV, the flavor chemical potentials are small.
Many variants of such models have been examined [2], and
they are in reasonable agreement with this result.
A coincidence arises from QCD with its approximate

chiral symmetry. In the limit of exact chiral symmetry,
there would have been a critical point at finite temperature
and in thermodynamic equilibrium. Since the symmetry is

approximate, instead there is a broad crossover [3,4] with a
peak in the chiral susceptibility at Tco ¼ 156.5� 1.5 MeV.
This numerical coincidence has led to the identification of
Tfo with Tco [1]. At present, this is the only point of contact
between heavy-ion collisions and the broken chiral sym-
metry of hadronic physics.
Right from the early days of heavy-ion collisions there

have been efforts to build a complete dynamical description
of thewhole history of the fireball in terms of known particle
physics [5–9]. These transport computations assume that the
fireball is made up of an interacting system of quarks and
gluons in the very initial stages; trace their interactions; and
usually find that the system approaches equilibrium, cools,
and turns into an interacting systemof hadrons. In thiswidely
accepted view of the fireball, the number and momentum
distribution of the final-state hadrons is a result of strong
interaction dynamics. Tfo is the freeze-out temperature, i.e.,
the point at which the expansion rate of the fireball matches
the rate of interactions, and chemistry, and eventually
momenta, can no longer be kept in thermal equilibrium
through interactions [7,8].
Codes which implement these approaches, like URQMD

[10] and AMPT [11], incorporate a lot of known physics
of strong interactions and try to predict the complete course
of a collision. The hadronic interactions which are included
in these approaches use many 2 → 2 hadron processes.
A large fraction of these is not measured yet and has to
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be constrained by various model considerations. We partly
follow this approach in the sense that we examine transport
theory with the approximation of 2 → 2 interactions
between hadrons. However, unlike those codes, it is not
our aim to model the full course of every collision across a
large range of

ffiffiffi
s

p
.

Instead, as in Refs. [6–8], we ask a more limited
question; namely, what would be the relaxation time in a
hadron gas pushed slightly out of chemical equilibrium and
allowed to relax back to equilibrium? The first step is to
decide which hadrons should be included. Certainly, pions,
which are the lightest of hadrons, need to be accounted for.
It turns out that the lightest baryon, i.e., the proton, has an
equilibrium number density, which is almost 2 orders of
magnitude smaller at Tfo. Since pion-proton and pion-pion
cross sections are roughly comparable, within the accuracy
of a few percent in the relaxation rates, to a first approxi-
mation, one may neglect the baryon contribution in this
computation. In this first study, we will do this. Inclusion of
strangeness requires us to add kaons, the lightest strange
particle, to the mixture. Then, the SU(3) flavor structure
would require us to add the η. So, the model contains the
full octet of the light pseudoscalar mesons. These are the
pseudo-Goldstone bosons of approximate chiral symmetry
in QCD.
Even though it is approximate, chiral symmetry is pre-

dictive because it strongly constrains the low-energy
interactions of the pseudoscalar mesons which are the
pseudo-Goldstone bosons of this symmetry breaking
[12–14]. Such a theory is known to be very good at
predicting many properties of the lightest pseudoscalar
mesons including decay constants and reaction cross
sections [14–16]. In this work, we use unitarized cross
sections arising from the full next-to-leading-order (NLO)
computation in chiral perturbation theory (ChPT) of [16].
It turns out that they reproduce the full resonance

spectrum, at least up to masses of 2 GeV. So, using the
pseudoscalar octet with unitarized NLO amplitudes from
ChPT seems to capture a large part of the mesonic physics
that goes into the resonance gas model, while also giving
enough information to make a start on transport compu-
tations. Among other pleasant aspects of the computation is
that it requires a very small number of input parameters,
namely, mπ , mK , mη, fπ, and eight low-energy constants
(LECs) of NLO ChPT. After unitarization, the cross
sections need no UV cutoffs. The eight LECs are obtained
from other hadronic observables. We will keep track of the
error bands on all of them.

Some limitations of this computation are clear enough.
The neglect of baryons is a major approximation. We plan
to add them in a later work. Another major limitation is that
the hadronic approach is unlikely to be a reasonable way to
capture the physics of the chirally symmetric state of QCD;
however, that is not our concern in this work. Our main
concern is to obtain a treatment of transport theory in the
chiral symmetry broken region of QCD using a control-
lable, and independently testable, hadron theory. A step
toward this is what we present here.

II. TRANSPORT THEORY IN THE
HADRON PHASE

A. Chemical rate equations and relaxation times

The kinetic theory underlying chemical equilibrium and
freeze-out is well known [17]. To set up our notation and
the model approximations, we give a brief review here of
the passage from the Boltzmann to the chemical rate
equations. The Boltzmann equation for a species a in
the reactive fluid can be written in the form

Dρaðx; pÞ ¼ C½ρ�; ð1Þ
where ρaðx; pÞ is the Lorentz-invariant phase space density
and x and p are 4-vectors for the position and momentum.
We write the Liouville operator in the form D ¼ pμ∂μ,
appropriate for rectilinear coordinates in flat space. The
Lorentz vector number current is defined as

nμaðxÞ ¼
Z

dΓapμρaðx; pÞ; where dΓa ¼
ga

ð2πÞ3
d3p
2E

;

ð2Þ

and ga is the phase space multiplicity factor, which counts,
in general, the dimensions of both the spin and isospin
representations, i.e., ga ¼ ð2Sa þ 1Þð2Ia þ 1Þ. In our par-
ticular application, since we include only pseudoscalar
mesons, Sa ¼ 0. Note that the particle number density na is
one component of this 4-vector. In the following, we will
examine it in the frame in which the heat bath is at rest.
Integrating both sides of Eq. (1), one may then write

∂μn
μ
a ¼

Z
dΓaC½ρ�: ð3Þ

The right-hand side of this chemical rate equation can be
written as

Z
dΓaC½ρ� ¼

Z �Y
i

dΓi

��Y
f

dΓf

�
ð2πÞ4δ4

�X
i

pi −
X
f

pf

�

×
X
r

�
jMj2rði;fÞ

�Y
i

ρi

��Y
f

ð1� ρfÞ
�
− jMj2r̄ðf;iÞ

�Y
i

ð1� ρiÞ
��Y

f

ρf

��
; ð4Þ
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where the sum is over all reactions rði; fÞ, which include the particle a among the set of initial particles i and with the
appropriate set of final particles f. The reverse reaction r̄ðf; iÞ interchanges the initial and final sets. Since QCD at zero
chemical potentials preserves CP symmetry, one can equate jMj2r and jMj2r̄ . Further, as long as quantum effects like Pauli
blocking or Bose enhancement can be neglected, one can set ρ ≪ 1. As a result, 1� ρ ≃ 1. Using these two
approximations, one can write

Z
dΓaC½ρ� ¼

Z �Y
i

dΓi

��Y
f

dΓf

�
ð2πÞ4δ4

�X
i

pi −
X
f

pf

�X
rði;fÞ

jMj2r
��Y

i

ρi

�
−
�Y

f

ρf

��
: ð5Þ

There are similar equations for the whole coupled chain of
reactions. No assumptions need to be made at this stage
about whether to use Boltzmann or quantum distributions
for the distribution functions ρ. This is the form developed
in Ref. [17], for example.
In the specific case that is of interest here, the temper-

atures could be slightly higher than the pion mass, but
certainly less than twice that;mπ < T < 2mπ . So, reactions
which produce more particles in the final state than in the
initial are rare. Also, since the phase space densities are
much less than unity, collisions of three or more particles
are extremely rare. As a result, one can restrict a first
investigation to reactions involving two particles in the
initial state and two in the final state, i.e., 2 → 2 reactions.
In this case, further reduction of eq. (5) is possible.
The total cross section for the forward reaction

ab → cd is

Fabσr ¼
Z

dΓcdΓdð2πÞ4δ4ðpa þ pb − pc − pdÞjMj2r ; ð6Þ

where the Lorentz-invariant definition of the flux of
particles in the initial state is F2

ab ¼ ðs − ðma þmbÞ2Þ×
ðs − ðma −mbÞ2Þ, where s is the square of the c.m. energy
in the collision of a and b [18]. One can use a similar
expression for the cross section, σr̄, of the reverse reaction,
cd → ab. One may trade the squared matrix element on the
right for the combination on the left in the rate equation, if
one wants to.
We will now choose to work in the frame in which the

heat bath is at rest. Our model consists of the fluid at rest in
this frame so that the spatial components of nμa vanish, and
the time component is the particle density. Then, the rate
equation becomes

dna
dt

¼ −
X
r

hhσrvabiinanb þ
X
r̄

hhσr̄vcdiincnd: ð7Þ

Here, we have used the notation vab ¼ Fab=ð4EaEbÞ; a
Lorentz covariant definition of vab follows from the above
definitions. Further, the double angular bracket indicates
averaging over the instantaneous densities of the initial
particles for a reaction. However, these nonequilibrium
distributions are not universal, and a general study is not of

much interest. It is more useful to examine this in the linear-
response limit as the system reaches close to equilibrium.
Accordingly, we set na ¼ neqa þ δna; expand in the small

deviations from equilibrium, δna, etc.; and retain terms up
to linear order in these small parameters. The terms
independent of the δns vanish due to detailed balance.
We can then replace averages with respect to the non-
equilibrium distributions by averages in equilibrium. These
are denoted by single angular brackets below. To linear
order, the reaction rate equations become

dδna
dt

¼ −
X
r

hσrvabiðneqb δna þ neqa δnbÞ

þ
X
r̄

hσr̄vcdiðneqd δnc þ neqc δndÞ: ð8Þ

The linear system of equations can be represented in the
form _n ¼ −An, where n is a column vector whose
elements are each of the deviations of the number densities
of interest from their equilibrium values. Each element of
the matrix A is a quantity of the form hσvin. One sees that
dimensionally this is the inverse of a time (we have used
natural units throughout). For every conserved quantity,
one has a zero eigenvalue of A. Every other eigenvalue of A
is the inverse of one of the relaxation times of the system.
The longest relaxation time tells us how fast the

disturbed system relaxes back to chemical equilibrium.
Far away from equilibrium, the system can relax either
faster or slower. However, as the system approaches
equilibrium, the rate of approach to thermal equilibrium
cannot be faster than the inverse of the longest relaxation
time [8]. We relate these relaxation times to freeze-out in
the next subsection.

B. Expansion timescale and freeze-out

If chemical freeze-out occurs somewhat late in the
lifetime of the fireball, then one may approximate the fluid
flow by a uniform radial flow. It is most convenient in this
case to choose radial coordinates in the c.m. frame of the
fireball. We can then write the Liouville operator in these
curvilinear coordinates and find that the linearized form of
the chemical rate equations become
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dn
dt

þ 3

t
n ¼ −An; ð9Þ

where the components of n are the deviations from
the equilibrium value of each of the densities, A is the
same matrix as before, and t is the elapsed time in the
chosen frame. A small formal remark is in order: the square
matrix A is not symmetric. Since the vector n is defined

to be a column vector, and A acts on it from the left, the
right eigenvectors are the ones which specify the normal
modes of the system. The eigenvectors need not be
orthogonal to each other. This equation now allows a
simple dimensional argument for the freeze-out time (see
also Refs. [7,8]).
Each eigenvalue of A, λi, is the inverse of the relaxation

time, τi ¼ 1=λi, of one of the eigenmodes of the fluid when
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FIG. 1. Scattering phase shifts, δI;J , and inelasticity, ηI;J , in the scattering of pions and kaons for isospin, I, and angular momentum, J,
channels, shown as a function of the c.m. energy of the colliding mesons (

ffiffiffi
s

p
). The dot-dashed lines (labeled GN&P) shows the results

reported in Ref. [16], the full line shows the central values of our results, and the dashed lines denote the error bands on the predictions
obtained by sampling the error bands of individual LECs through a Gaussian distribution.
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there is no flow. Every conservation law gives an exact zero
eigenvalue; these may be disregarded for the analysis
of freeze-out. If the other τi ≪ t=3, then any deviation
from equilibrium dies away much faster than the expansion
rate, and the fluid may be considered to be in chemical
equilibrium as it expands. If one of the τi > t=3, then the
corresponding eigenmode of A will not be able to relax
back to equilibrium, and that mode may be considered to
have frozen out. The subsequent evolution of the fluid
involves the frozen mode(s) as well as modes which may
remain in equilibrium. If there is a big hierarchy between
the chemical relaxation times, τi, then it may be possible to
use sequential freeze-out scenarios, which are common in
cosmology [17] and have been proposed in heavy-ion
collisions [2].
We note that at very large times, t, the formal solution of

the above equation may still allow τi ≪ t. However, the
system will have diluted to the point that a hydrodynamic
flow is no longer feasible. Even if the τi are so small that
radial flow is not a very good approximation at t ≈ τi, a
dimensional argument shows that hydrodynamic expansion
of the fireball would change the factor 3=t to ξ=t where
the dimensionless number ξ depends on the details of the
flow. With this change, the arguments given above would
continue to be applicable.

C. Hadron cross sections from chiral
perturbation theory

As discussed earlier, in this paper, we report an inves-
tigation of a model hadron fluid made of the pseudo-
Goldstone bosons of chiral symmetry breaking, namely,
the lowest SU(3) flavor octet of pseudoscalar bosons. The
mutual interactions of these mesons are completely con-
strained by chiral symmetry [13–15], and their reaction
cross sections have been computed in ChPT. We use the full
set of unitarized amplitudes which were presented in
Ref. [16]. These include the amplitudes for the reactions
ππ ↔ ππ, KK̄ ↔ KK̄, ππ ↔ ηη, ππ ↔ KK̄, ππ ↔ ηη,
KK̄ ↔ πη, and KK̄ ↔ ηη, with all the allowed crossings.
The amplitudes depend on the meson masses, fπ, and eight
other LECs (L1, L2 � � �, L8) which appear in the Lagrangian
of ChPT to order p4.
Discussions of the extraction of the LECs from hadron

observables can be found in Refs. [14,15]. L1, L2, and L3

can be determined through ππ scattering in the J ¼ 2
channel and from the weak decays of K. Constraints on L1,
L3, L4, and L6 come from Zweig’s rule. L5 may be
determined by the fπ to fK ratio. L4 and L6 are also
obtained from the π scalar and charge radii. L5, L7, and L8

are constrained by the Gell-Mann-Okubo mass formulas.
We have used the values from Ref. [16]. Currently, error
bands in individual constants range from 25%–40%. In this
work, we shall exhibit the uncertainties in predictions due
to the current range of uncertainties in these constants.

Two implementations of unitarized amplitudes from
ChPT are discussed in Ref. [16]. In one, the dimension
of the T-matrix is taken to be equal to the number of
channels which are open so that the dimension changes at
every mass threshold. This strictly implements unitarity at
each energy but may result in a discontinuity of the
amplitude at thresholds where new channels open up.
The other is to use a constant dimension for the T-matrix,
equal to the highest dimension required until about 2 GeV.
This may result in a loss of unitarity in the vicinity of a
threshold, but preserved continuity. The difference between
the two methods for phase shifts was shown to be minor. In
our implementation, we chose the first approach so that
unitarity is always strictly implemented.
In Fig. 1, we compare our numerical implementation

with that of Ref. [16]. In the figures, we have also given the
theory errors on the phase shifts induced by the errors in the
input LECs. These are estimated by Gaussian sampling of
the range of allowed variation for each of the LECs
separately. See the Appendix A for further discussion of
this theory uncertainty. We note that keeping track of theory
errors is important, as one sees in Fig. 1.
The phase shifts δ11 and δ1=2;1 show very clearly the

presence of the ρ and K� mesons. A closer investigation
shows that the interacting gas of pseudoscalar mesons
generates the full SU(3) octet of vector mesons. We also
checked that the interacting system generates all scalar
mesons with masses less than 2 GeV. There are no tensor
mesons in this mass range, so the interacting system of
SU(3) octet of pseudoscalars generates the hadron reso-
nance gas of all SU(3) octets with masses less than 2 GeV.
We use these amplitudes to compute the elements of the
matrix A defined after Eq. (9).
We note that earlier work along these lines [6,7] also

used ChPT. However, they predated Ref. [16], as a result of
which the resonance region was then not captured by this
fundamental approach. So, parametrizations were used to
describe amplitudes in the resonance region. We are able
to avoid this due to advances in QCD, which allows us to
proceed with a small number of LECs in ChPT, which may
be determined by measurements of other hadron properties,
and to write unitary amplitudes for the transport theory
without any ad hoc UV cutoff.

III. RESULTS

In this paper, we neglect the differences in masses due to
SU(2) isospin breaking and treat all pions as having a mass
equal to the mean mass of the isotriplet. We also take all the
kaons to have exactly equal mass and that of the mean mass
of each isodoublet. The matrix elements then distinguish
four classes of mesons: pions, whose number density we
denote by nπ, kaons (with strangeness of −1) having
number density nK; antikaons (strangeness of þ1) with
number density nK̄; and η with number density nη. The
linearized reaction matrix A is then a 4 × 4 matrix.
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Collapsing each isospin multiplet into one species means
that we cannot examine thermalization times associated
with isospin fluctuations. This is an interesting issue which
could be addressed by a fundamental approach such as the
one we take. However, the main interest in this question is
due to isospin fluctuations in the baryon sector, so we defer
this question for later.
The computation of the reaction rate matrix A requires

neqðm; TÞ. We use the expansion of the number density
from the Bose distribution

neqðm; TÞ ¼ gm2T
2π2

X∞
j¼1

1

j
K2

�
j
m
T

�
; ð10Þ

where K2 is the modified Bessel function of order 2, which
decays exponentially as a function of its argument. For
temperatures in the range up to 160 MeVor so, ten terms of
the series are sufficient to get the number density accurate
to five places of decimals for the pion. For the remaining
mesons, the leading term suffices. This corresponds to the
classical Boltzmann gas approximation.
The unitarized amplitudes require a partial wave expan-

sion of the expressions obtained from ChPT, and, up to the
order at which the amplitudes are available, it is sufficient
to keep terms only up to J ¼ 2. It is most convenient to do
this expansion numerically. Our codes used standard
LINPACK routines for unitarization and inversion of
matrices and QUADPACK routines for integrals. Since
our matrices are extremely small (3 × 3 at most), we also
experimented with simpler high accuracy inline code for
eigenvalues and inverses; these improved run times slightly
without compromising accuracy. For the hadronic matrix
elements, we found unitarity of the S-matrix in all channels
up to machine precision for center-of-mass energies of a
little over 2 GeV. Computations of hσvi used Gauss-
Laguerre routines for the integration over momenta and
Gauss-Legendre routines for angular integrations. We
checked that numerical rounding and truncation errors
lie well below the theoretical uncertainties due to the input
hadron parameters. The comparisons shown in Fig. 1 are
part of the check of our codes.
There are two conserved quantities: net strangeness

and total particle number (since we used only 2 → 2
reactions: see Appendix B). As a result, there are two
eigenvalues of A which vanish. It is simple to actually
parametrize the number densities so that this is taken
account of. We can write nπ¼neqπ þhπ and nη¼neqη þhη.
Then, one has nK ¼ neqK − ðhπ þ hηÞ=2 and nK̄ ¼ neqK̄ −
ðhπ þ hηÞ=2. Substituting these parametrizations in Eq. (9),
one can eliminate two of the equations to obtain the
reduced set of equations

dh
dt

þ 3

t
h ¼ −Ch; ð11Þ

where h is a two-dimensional column vector whose
components are hπ and hη, respectively, and C is a reduced
matrix obtained from A by eliminating the equations for nK
and nK̄ using the conservation laws. The eigenvalues of C
are the inverses of the relaxation times of the system. The
two eigenvectors can be specified by the angle, ψ , that they
make with the hπ axes.
The results of our computations are shown in Fig. 2. At a

temperature of about 150 MeV, the fast mode has a
relaxation time of around 10 fm. This increases to about
a 100 fm at a temperature of 100 MeV. The slow mode is an
order of magnitude slower, with a relaxation time of around
100 fm at T ¼ 150 MeV, growing to around 1000 fm at
T ¼ 100 MeV. We note that this growth by a factor of
about 10 is slower than the factor of about 100 seen over the
same range when leading-order ChPTwas used in Ref. [6].
The slow mode is dominantly of pions relaxing toward
equilibrium; the eigenvector makes an angle of 10 to
15 degrees with the pion direction. The fast mode is

 1

 10

 100

 1000

 100  110  120  130  140  150  160  170

τ 
(f

m
)

T (MeV)

fast

slow

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 100  110  120  130  140  150  160  170

ψ
 (

de
gr

ee
s)

T (MeV)

fast

slow

FIG. 2. The relaxation times, τ, for the two normal modes of the
linearized chemical rate equations are shown in the first figure as
a function of the temperature. The eigenmodes are shown in the
second figure; ψ is the angle the eigenvector makes with the pion
direction. In both cases, the error bands shown are obtained from
a Monte Carlo sampling of parameters, as described earlier.
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dominated by the relaxation of the η, since it makes an
angle of about 30 degrees with the η direction.
The interactions of Goldstone bosons are strongly con-

strained and involve derivative interactions, which are
forced by symmetry. The fact that quark masses are
nonzero allows nonderivative couplings. A signal of this
is that the mode dominated by the highest mass pseudo-
Goldstone boson, the η, has lower relaxation time. We
can check this also by dropping the η meson from the
computation. Removing it should decrease the net cross
sections and push up the relaxation time. After removing
the two conservation laws using the equations for nK and
nK̄ , and writing the equation for the pion in terms of hπ , its
deviation from equilibrium, one can write the linearized
chemical rate equation as

dhπ
dt

þ 3

t
hπ ¼ −

1

τ0
hπ; ð12Þ

where the relaxation time, τ0, of the gas without the η is
computed using the remaining amplitudes. The result is
about an order of magnitude larger than τs. The movement
is in the direction that we expected from the argument
based on ChPT. In Ref. [6], a similar order of magnitude
change was found when comparing a pure pion gas with the
more complex hadron gas, which was used there.
Relaxation times of 100 fm may seem unnatural in a

hadron gas, where typical timescales are expected to be
around 1 fm. However, one may recall that 1=τ ≃
σneqðmπ; TÞ, where σ is an average over the hadron cross
sections and neqðmπ; TÞ is given by eq. (10). The fact that
the eigenvector corresponding to the slow mode is almost
fully aligned with the pion direction shows that this
assumption is fairly accurate. In a theory of pions, one
would expect σ ≃m2

π=ð4f4πÞ. It turns out to be useful to use
the dimensionless ratio

Πs ¼ τsðTÞneqðmπ; TÞ
�
m2

π

4f4π

�
; ð13Þ

where τs is the relaxation time of the slow mode. With the
values of τs shown in Fig. 2, we find that Πs is unity at
T ¼ 100 MeV and varies only by a factor of 2 over the full
range of temperature shown. This provides a check that the
very long relaxation time is natural and that its magnitude is
what should be expected. A dimensional argument is not
sensitive to constant factors, so one may consider that the
factor 4 in eq. (13) is used to makeΠs ≃ 1 at T ¼ 100 MeV
or to match the low-energy total ππ cross section to its
physical value of about 25 mb [19]. The surprise is that the
two statements are equivalent; i.e., a simple kinetic theory
argument for τs is nearly right. This seemingly simple result
arises only when NLO ChPT with unitarization reproduc-
ing the meson resonances is used. The leading-order results
of Ref. [6] or the lack of an incomplete octet of Goldstones
spoils it. The slow increase in Πs with T is also a sign of the

complexity of the dynamics captured in the higher-order
ChPT that we used.
A further test of the chiral symmetry operating behind

these observations comes by examining the relaxation
time of the fast mode, τf. For this, one can compute the
dimensionless ratioΠf ¼ τfðTÞneqðmη;TÞm2

η=ð4f4ηÞ. Again,
this turns out to be of order unity, varying from about 2=3 to
4=3 over the same range of temperature. The use of the
quantities for η in this case is suggested by the large
component of the fast eigenmode in the η direction. Both
the fast and slow modes turn out to be natural. The
unexpected size of the relaxation times is due essentially
to the fact that the equilibriumdensities of themesons at these
temperatures are small.
If the early dynamics of the fireball somehow produces

an overabundance of particles in some parts of phase space,
then this can persist into the hadronic phase, which is
dominated by 2 → 2 collisions, which cannot change the
total number of particles. Then, one might have a situation
in which a description of the meson gas requires a chemical
potential for each species (see Appendix B). The relaxation
times in such a gas are expected to be smaller because of the
decreased mean free paths. A quantitative description of
such a situation is provided by eq. (13) and is shown in
Fig. 3. We see that the relaxation times can drop to as low as
30–40 fm when the chemical potential is as high as
100 MeV.

IV. CONCLUSIONS

We examined the chemical relaxation time in a gas of the
SU(3) octet of pseudoscalar mesons in the linear response
approximation. The reaction amplitudes in the gas were
described by the best current results in ChPT available to
date [16]. These interactions generated the full SU(3) octet

FIG. 3. The relaxation time of the slow mode, τs, shown for a
range of μπ , computed using eq. (13). The error band comes from
the statistical errors shown in Fig. 2. The hadron resonance gas
description of heavy-ion collisions usually corresponds to μπ ≈ 0,
although values as large at μπ ≃ 70 MeV have been used on
occasion.
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of vector mesons and all the scalars up to 2 GeV in mass.
The dynamical generation of resonances is one of the most
useful aspects of these cross sections and allows us to
proceed without further free parameters. The amplitudes
are completely parametrized by three masses, one decay
constant, and eight LECs of ChPT, all of which are known
from experimental observables. No ultraviolet cutoff was
needed because we used unitarized amplitudes.
We made a careful analysis of the theoretical uncertain-

ties which arise from uncertainty in the values of the LECs.
These are included in all our results. Another source of
uncertainty is the lack of knowledge of higher-order terms
in ChPT. Their effects are subdominant except in the
vicinity of resonances with higher angular momenta. It
was argued in Ref. [6] that such higher resonances have a
minor effect on relaxation times.
We found that the slowest relaxation time, τs, which

controls the rate of approach to equilibrium, is about
100 fm, just below the QCD crossover temperature.
We found that its magnitude was natural, and essentially
captured in the formula 1=τs ≃ neqπ σ, where σ ≃m2

π=ð4f4πÞ≃
25 mb. We also checked that this deceptively simple
approximation is only accurate when the complexity of
next-to-leading-order ChPT and the meson resonances are
included. The second relaxation time, τf, was found to be
of the order of 10 fm and is also roughly described by a
similar formula. We argued that these long relaxation times
are natural for a gas of pseudo-Goldstone bosons.
A computation in a pure meson gas cannot be used

directly to understand chemical equilibration in heavy-ion
collisions, because of the neglect of baryons. Nevertheless,
it is interesting to compare these timescales with those of
the fireball expansion rate near the crossover. The fireball
probably cools through the crossover temperature at time
between 1 and 10 fm [20]. While such a hydrodynamic
computation is simplistic, it is in rough accord with the
freeze-out time estimates of Ref. [8]. This timescale is
much shorter than the slow mode relaxation time, indicat-
ing that our estimates of relaxation times, if applied to
heavy-ion collisions, would be consistent with such esti-
mates of the freeze-out time. Such an application would be
especially interesting since it would directly utilize the

hadronic cross sections which arise from chiral symmetry
breaking to explain why chemical freeze-out would occur
close to the chiral crossover in QCD, assuming that
relaxation times in the high temperature phase are of the
order of a femtometer. Since a dynamical origin for the
numerical coincidence between Tco and Tfo would establish
a deeper understanding of the strong interactions, this is
certainly a direction worth exploring.
This speculation rests on the assumption that baryons

would not change the relaxation time by orders of magni-
tude. Our justification for this is that one could extend the
argument of eq. (13) to include the effect of adding baryons
by writing a modified slow-mode relaxation time

1

τ0s
≈ neqπ σππ þ neqp σπp: ð14Þ

We know that at low energies σπp=σππ ≃ 2, whereas neqp =n
eq
π

varies between 0.001 and 0.01 when T changes from 100 to
150 MeV. This would imply that the effect of adding
protons is a few percent. This is certainly not negligible,
but it would not change the argument. Whatever reliability
one assigns to this argument, it makes it extremely
interesting to perform an accurate computation of this
more realistic system using an appropriate higher-order
ChPT. Unfortunately, this lies outside the scope of this
paper. We hope to report the results of such a study in the
near future.

APPENDIX A: ANALYSIS OF THEORY
UNCERTAINTIES

This Appendix contains a detailed analysis of theoretical
uncertainties arising from the LECs, through the example
of the ππ scattering amplitude in the J ¼ I ¼ 1 channel.
Below, the threshold for KK̄ production there is only one
reaction channel, and at the threshold, a second reaction
channel opens up. We can therefore understand the errors as
well as the discontinuities at the threshold through this one
scattering channel.
The ChPT amplitude for ππ → ππ scattering below the

KK̄ threshold in the J ¼ 1 and I ¼ 1 channel is given by

TðsÞ ¼ s − 4m2
π

96πf2π

�
1 − 4μπ −

μKm2
π

m2
K

þ s − 10m2
π

64π2f2π
þ 4

f2π
fð−2L1 þ L2 − L3Þsþ 2ð2L4 þ L5Þm2

πg
�
þ PðsÞ; ðA1Þ

where μi are scales related to the renormalization point

μi ¼
M2

i

32π2f20
log

M2
i

μ2
; ðA2Þ

μ is chosen to bemρ, and the Li are LECs evaluated at the scale μ. Apart from the factor of PðsÞ, the amplitude is a smooth,
monotonically increasing polynomial in s and has no peaks. The function PðsÞ has no closed-form expression, being
defined in terms of the branch cuts due to intermediate kaon and eta states at one-loop order in ChPT. TðsÞ increases
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smoothly with s and violates unitarity (as one sees from the increase in σ in Fig. 4). One can unitarize this, using the inverse
amplitude method [21–23], and the resulting unitarized amplitude is

TUðsÞ ¼ s − 4m2
π

96πf2π

�
1þ 4μπ þ

μKm2
π

m2
K

−
s − 10m2

π

64π2f2π
−
4ðLasþ 2Lbm2

πÞ
f2π

−
96πf2π
s − 4m2

π
PðsÞ

�−1
; ðA3Þ

where we introduced the shorthand notation La ¼ −2L1 þ
L2 − L3 and Lb ¼ 2L4 þ L5. TU has a pole off the physical
sheet in the complex s plane, which is at the right position
to provide a good description of the ρ resonance, as can be
seen in Fig. 4. The single-channel problem shows very
transparently how unitarization gives poles in the scattering
amplitude. This NLO ampliutude contains only terms with
J up to 1. It is possible that as higher-order terms in the
T-matrix are computed the unitarized amplitude also
contains poles corresponding to resonance with higher
values of J. This is one motivation for a deeper study of
ChPT beyond NLO.
The expression for the unitarized amplitude in eq. (A3)

also shows that the amplitude depends only on two linear
combinations of the parameters. Since La appears with the
coefficient 4s=f2π and Lb appears with the coefficient
8m2

π=f2π , the amplitude is more sensitive to the combination
La. Since reported values of the LECs give individual
errors but no covariances, we compared two methods of
evaluating the errors on the combinations La and Lb.
In this explanation of the methods, we use the notation L̄i

for the reported central value and δLi for the reported error.
It is useful to consider deviations from the mean in units of
the error; i.e., we can write for an arbitrary value
Li ¼ L̄i þ δLixi. The Gaussian method consists of sam-
pling values of xi independently from a Gaussian distri-
bution of unit width around zero. Contours of equal
probability are hyperspheres centered on the origin in

the space of fxig. Any linear combination can be
sampled through this method and the errors established
through the usual statistical methods. The sampling by a
Gaussian ignores all covariances between the errors in
the LECs.
The alternative method erects a unit hypercube in the

space of fxig and samples the error bounds on La and Lb in
this volume. Opposite “faces” of the hypercube correspond
to errors �δLi on the sample. The corners of the hyper-
cubes are points where all the errors conspire to add or to
cancel each other maximally. Sampling the values at the
corners gives the maximum possible covariances between
the errors. If the LECs appeared linearly in the amplitude,
then the corners would be extrema in the amplitudes. This
would be true for the ununitarized amplitude in eq. (A1).
However, after unitarization, the amplitude in eq. (A3) is no
longer linear in the LECs, so the corners extremize the
errors only if the mathematical extremum lies outside the
hypercube (this happens for TU). The corners are still
points where the errors in the LECs conspire to cancel or
add up maximally.
For the case of TU, the comparison of error bounds from

the two methods is fairly straightforward. Since two linear
combinations of five LECs are involved, we need to
consider the projections of the unit hypercube and unit
hypersphere in five dimensions to a two-dimensional plane.
The unit hypersphere projects to a unit circle. For the
particular plane corresponding to the linear combinations
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FIG. 4. The panel on the left shows the isospin-averaged ππ → ππ cross section obtained in the single-channel approximation with and
without unitarization. Without unitarizing, the cross section increases without bound with increasing

ffiffiffi
s

p
. Unitarization gives a sensible

limit and obviates the need for an unphysical UV cutoff. The bands show the hypercube error estimates. The panel on the right shows the
square of the unitarized single-channel amplitude for I ¼ J ¼ 1 (line and band for the central value and hypercube error estimates). The
vertical line is the experimental value of the ρmeson mass, and the dot with the horizontal error bar shows the location of the peak in the
amplitude with its spread from the hypercube error estimate.
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La and Lb, the hypercube projects to a rectangle with
sides between �4 in the (scaled) La direction and �3
in the (scaled) Lb direction. So, in this case, the hyper-
cube errors are definitely larger, because they examine
only the special cases with maximum covariance between
errors.
Above the KK̄ threshold T is a 2 × 2matrix. We choose

the 11 component to be the amplitude of the ππ → ππ
channel. It turns out that apart from the combinations La
and Lb the matrix also depends on the combination
Lc ¼ 4L1 − 2L2 þ L3, as well as L3, L4, and L5 sepa-
rately. As a result, one can decompose this into the
independent combination L0 ¼ 2L1 − L2 and the other
three LECs. Unitarization mixes the components of the
matrix so that the 1,1 component of the unitarized matrix
is some combinations of the different amplitudes. As a
result, just below the threshold, the uncertainties come
from two linear combinations of five of the LECs. Just
above, they come from four different combinations of the
same five. This is the main reason for the discontinuity in
the width of the error band at the threshold, as shown
in Fig. 5.
The special covariances sampled by the hypercube have

a large effect in this case, as one sees. The first thing to
notice is the huge excursion allowed in the lower limit of
the errors. To understand this further, we do the following
analysis immediately above the threshold. Join the center
of the hypercube with the corner, which gives the mini-
mum of the uncertainty band. As we proceed along this
line, we find that the phase of the amplitude changes
continuously. At the center, the phase is in the second
quadrant (between π=2 and π) and remains in this range,
while decreasing, until about 85% of the distance to the
corner is covered. After that, it crosses over to the first
quadrant (phase angle between 0 and π=2). This is clearly
seen in the second panel of Fig. 5, in which we report the
errors when the unit hypercube is changed to one with
sides of size 1=2, 1=3, and 1=4. The lower error band
shrinks very rapidly.

The other interesting effect is that the upper limit of the
errors is larger when the Gaussian method is used. One can
understand this by noting that 1=3 hypercube gives the
largest upper bound on the error. This happens because the
error in δ1;1 is not linear in the δLi, and the extremum lies
inside the hypercube. The Gaussian error determination
does not suffer from either pathology. This is why we adopt
the Gaussian method in this paper.

APPENDIX B: CONSERVED QUANTITIES
IN THE MESON GAS

The net strangeness is a conserved quantity in strong
interaction processes. Furthermore, when the temperature
is low enough that 2 → 2 reactions are dominant, the total
number of particles is conserved. The net electrical charge
is also conserved, and if we were to distinguish between
the different charges of the pions, we would have to keep
that in mind, too. However, since we neglect that differ-
ence, charge conservation, i.e., isospin conservation, may
be neglected. A microcanonical ensemble of the meson
gas then needs three different extensive quantities: the
energy (E), the total particle number (N), and the total
strangeness (S). The grand canonical ensemble is, corre-
spondingly, described by three thermodynamic intensive
parameters, namely, the temperature T and the chemical
potentials μN and μS corresponding to the two conserved
numbers. In terms of the entropy, Σ, one may define these
as usual,

T ¼ ∂E
∂Σ

				
N;S

μN ¼ ∂E
∂N

				
Σ;S

μS ¼
∂E
∂S

				
Σ;N

: ðB1Þ

In the heavy-ion physics literature [6–8], it is more
common to introduce a chemical potential for each hadron
in the phase below the crossover. In our case, the particles
are π, K, K̄, and η. Their numbers are related to the
conserved quantities by nπ þ nK þ nK̄ þ nη ¼ N, and
nK̄ − nK ¼ S. Then, using the chain rule, one can evaluate
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FIG. 5. The scattering phase shift δ1;1 and its uncertainties, shown as a function of
ffiffiffi
s

p
(using the Gaussian method in the left panel and

the hypercube on the right). The thick full line shows the result when using L̄i and the shaded band bounded by dashed lines the error
estimates. In the panel on the right, we also show the errors when the size of the hypercube is changed.
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μπ ¼
∂E
∂nπ

				
Σ;nK;nK̄ ;nη

¼ μN μK ¼ ∂E
∂nK

				
Σ;nπ ;nK̄ ;nη

¼ μN − μS

μη ¼
∂E
∂nη

				
Σ;nπ ;nK;nK̄

¼ μN

μK̄ ¼ ∂E
∂nK̄

				
Σ;nπ ;nK;nη

¼ μN þ μS: ðB2Þ

The observed net yields in heavy-ion collisions have
been fitted to thermal gas models with small values of μS
and with nearly vanishing isospin chemical potential [1,2].
The Goldstone boson densities which come out of these
corresponds to using μN ≃ μS ≃ 0. On the other hand,
Ref. [8] has explored μπ as large as 60 MeV. We report
our main results for μN ¼ μS ¼ 0 but also show estimates
of the relaxation time when μN is as large as 100 MeV.
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