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We investigate the effect of repulsive interaction between hadrons on the fluctuations of the conserved
charges. We calculate the baryon, the electric charge, and the strangeness susceptibilities within the ambit
of hadron resonance gas model extended to include the short range repulsive interactions. The repulsive
interactions are included through a mean-field approach where the single particle energy gets modified due
to mean-field interactions between hadrons proportional to the number density of hadrons. We assume
different mean-field interactions for mesons and baryons. It is shown that the repulsive interactions play a
very crucial role to describe hadronic matter near transition temperature. We also show that in order to
consistently describe higher order conserved charge fluctuations mesonic repulsive interactions cannot be
neglected. Further, we demonstrate that the repulsive interaction of baryons is essential to describe the
lattice simulation results at finite baryon chemical potential for higher order fluctuations.
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I. INTRODUCTION

Studies of strongly interacting matter at high temper-
atures and/or densities have been a vibrant area of research
for several decades. At such high temperatures and/or
densities, the effective degrees of freedom of the strongly
interacting matter are colored quarks and gluons whereas at
low temperatures and/or densities these are colorless
hadrons. There are several ongoing and upcoming experi-
ments with ultrarelativistic heavy-ion collision which are
recreating such phases of strongly interacting matter. The
experimental programs, Large Hadron Collider at Geneva
and Relativistic Heavy Ion Collider at Brookhaven, have
already provided a plethora of data. The upcoming facilities
like Facility for Antiproton and Ion Research and
Nuclotron-based Ion Collider fAcility are expected to shed
more light in this area of research.
One of the main objectives of these explorations is to

understand the phase diagram of strongly interacting
matter. At high temperature and at vanishing or small

values of baryon chemical potential, the transition between
the hadronic matter and the quark-gluon matter is estab-
lished to be a crossover [1,2]. On the other hand, at low
temperature and high baryon densities, it is generally
expected that such a transition is possibly a first order
phase transition [3–8]. Therefore, in the phase diagram of
strong interaction in the temperature and baryon chemical
potential plane, one expects a first order line ending in a
critical point [9–12]. The search for this elusive critical end
point (CEP) of strong interaction has become an extremely
active field of research since last few years, although its
existence as a fundamental property of strong interaction
still remains to be confirmed experimentally. The CEP is
typically characterized by large fluctuations of the static
thermodynamic quantities due to large correlation length.
One of the crucial realizations in this context has been the
fact that the measurement of the moments of the conserved
quantities, viz., baryon number, charge, and strangeness,
can be accessible in heavy-ion collisions experiments and
can be linked to susceptibilities that can be computed in
QCD based calculations. In order to confirm, whether the
thermalized system, produced in heavy-ion collisions, has
passed through the quark-hadron phase transition, it is
necessary to make theoretical calculations of the fluctua-
tions of conserved charges from both sides of the phase
transition line.
Though quantum chromodynamics (QCD) is the theory

of strong interactions, the traditional perturbative methods
of field theory cannot be applied in the case of temperature/
density of interest. Lattice QCD (LQCD) has been the
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principle tool to understand the equilibrium phase structure
of strongly interacting matter and the fluctuations of con-
served charges have been extensively studied [1,13–27].
Despite its success at zero baryon density, LQCD calcu-
lations have limited applicability at finite baryon density.
Hence, in the finite density region of QCD phase diagram,
one needs to take resort to effective models of QCD which
preserve some essential properties of QCD at a given energy
scale. For instance, Polyakov-Nambu-Jona-Lasinio model
[28–43], hadron resonance gas (HRG) model [44–54],
polyakov-quark-meson model [55–58], chiral perturbation
theory [59], etc. have been rather successful in describing
different parts of the finite density region of the phase
diagram. These models have also been found to reproduce
the lattice data at zero density quite successfully [37,38].
Apart from investigations of the phase structure of strong
interaction in such effective models, there have been
significant progress in this field using functional methods
for first principle QCD like functional renormalization
group approach [60] and Dyson-Schwinger approach [61].
Hadron resonance gas model is a low temperature

statistical thermal model describing hadronic phase of
QCD. This model is based on S-matrix formulation of
statistical mechanics [62]. In the relativistic virial expan-
sion of the partition function, the interactions are man-
ifested in the form of phase shifts in the two particle
scattering. If such scattering occurs through exchange of a
narrow resonance state, then the interacting partition
function just becomes a noninteracting partition function
with the additional contribution from the exchanged res-
onance [63–65]. Indeed, it turns out that the nonresonant
terms cancel out in the estimation of certain thermody-
namic quantities. Thus, in the HRG model, the thermody-
namic quantities of low temperature hadronic matter can be
obtained from the partition function which contains all
relevant degrees of freedom of the confined QCD phase and
implicitly includes the (attractive) interactions that result in
resonance formation.
Despite its success, it was soon realized that noninter-

acting HRG model is not sufficient to describe hadronic
matter, particularly, near quark-hadron transition temper-
ature, Tc. As temperature increases, gas density increases
and at high temperature the assumption of dilute gas
approximation, a principal assumption of HRG model,
need not be valid. The hadronic repulsive interaction
becomes increasingly important as one approaches the
critical temperature. The validity of HRG model can only
be checked by confronting its equation of state (EOS) with
LQCD simulations. Various studies have confronted ideal
HRG EOS with lattice results and found reasonable agree-
ment all the way up to Tc except for interaction measure
[66]. Later studies found good agreement with the lattice
data for trace anomaly as well, when continuous Hagedorn
states are included in HRG model [67,68]. However, recent
studies have shown that commonly performed comparisons

of ideal HRGmodel with LQCD simulations and heavy-ion
data may lead to misconceptions which might further
render wrong conclusions and it is necessary to take into
account short range repulsive interactions among the
hadrons as they play a crucial role in the thermodynamics
of hadron gas [69].
In the present investigation, we would like to estimate

conserved charge fluctuations within the ambit of an
interacting HRG model that includes the repulsive inter-
actions. Equilibrium fluctuations, of conserved charges, has
been studied using the ideal HRG model [70–73] (See
Ref. [74] for a review). This analysis showed that the lower
order cumulants are reasonably well reproduced but higher
order cumulants show significant deviation. One possible
way to include such repulsive interaction is through the van
der Walls excluded volume approach as in Refs. [75,76].
Another approach has been to include repulsive interaction
through a repulsive density-dependent mean field [77–80].
Such a mean-field HRG (MFHRG) model has been used to
compute fluctuations in the net baryon number and the
strangeness-baryon correlation at vanishing chemical
potentials [79]. This was also considered for hadron
thermodynamics and transport properties [80] of hadronic
matter. Specifically, we wish to estimate in the present
work, the second and the fourth order fluctuations for
baryon number (B), electric charge (Q), and strangeness (S)
quantum numbers using MFHRG. We also estimate the
ratios as well as the differences of second and fourth order
fluctuations. While the ratios of fluctuations are important
so as to remove the effect of system volume, differences of
fluctuations remove the effect of mass spectrum included in
HRG model and one can distill the effect of only repulsive
interactions on the fluctuations. It may further be noted that
differences of susceptibilities are also indicators of decon-
finement phase transition [81]. We estimate these suscep-
tibilities both at vanishing and finite baryon densities.
We have organized the paper as follows. In Sec. II,

we discuss the thermodynamics of relativistic mean-
field hadron resonance gas model and define the suscep-
tibilities. Results of cumulants are discussed in Sec. III.
Finally, in Sec. IV, we summarize our findings and present
our conclusions.

II. HADRON RESONANCE GAS MODEL WITH
A REPULSIVE MEAN-FIELD INTERACTION

Thermodynamic properties of ideal hadron resonance
gas model can be derived from the grand canonical partition
function given by

lnZðT; μB; μQ; μS; VÞ ¼
X
mesons

lnZðT; μQ; μS; VÞ

þ
X

baryons

lnZðT; μB; μQ; μS; VÞ;

ð1Þ

PAL, KADAM, MISHRA, and BHATTACHARYYA PHYS. REV. D 103, 054015 (2021)

054015-2



where μB, μQ, and μS are the chemical potentials corre-
sponding to baryon number, electric charge, and strange-
ness, respectively. The pressure can be obtained from the
partition function as

PðT; μB; μQ; μS; VÞ
¼ lim

V→∞

T
V
lnZðT; μB; μQ; μS; VÞ: ð2Þ

Partition function of ith hadronic species is

lnZðT; V; μaÞ ¼ �V
Z

dΓa ln½1� e−
ðEa−ciμiÞ

T �; ð3Þ

where, for the ith species of hadrons, ci ≡ ðBi;Qi; SiÞ
corresponds to the respective conserved charges and μi ≡
ðμB; μQ; μSÞ is the corresponding chemical potential. Also,

dΓa ≡ gad3p
ð2πÞ3 with ga being the spin degeneracy factor and

Ea ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

a

p
is the relativistic single particle energy

with mass ma. Upper (lower) sign corresponds to fermions
(bosons).
Ideal HRG model can be extended by including short

range repulsive interactions between hadrons. These repul-
sive interactions can be treated in mean-field approach
where the single particle energies ϵa get shifted by the
mean-field repulsive interaction as [77,78]

εa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

a

q
þUðnÞ ¼ Ea þUðnÞ; ð4Þ

where n is the total hadron number density. The potential
energy U represents repulsive interaction between hadrons
and it is taken to be function of total hadron density n. For
an arbitrary interhadron potential VðrÞ, the potential energy
U is given by

UðnÞ ¼ Kn; ð5Þ

where K is a phenomenological parameter given by the
spatial integration of the interhadron potential VðrÞ.
In the present investigation, we assume different repul-

sive interaction parameter for baryons and mesons. We
denote the mean-field parameter for baryons (B) and
antibaryons (B̄) by KB, while for mesons we denote it
by KM. Thus, for baryons (antibaryons),

UðnBfB̄gÞ ¼ KBnBfB̄g ð6Þ

and for mesons

UðnMÞ ¼ KMnM: ð7Þ

Few comments in this context may be of relevance. In the
present investigation, we have assumed the same repulsive
interactions between all the baryonic species which perhaps

is an oversimplification. For example, the interaction
between nucleon hyperon or hyperon hyperon which has
been studied both in lattice and in chiral effective theories
indicates that while the interactions are dominantly repul-
sive, there are differences as compared to nucleon nucleon
interactions. However, we do not have sufficient informa-
tion about baryon baryon interaction to have a more
sophisticated mean-field model. Furthermore, the baryons
can interact with antibaryons and one might expect that this
may also be significant. However, at least within the
Boltzmann approximation for the baryonic distribution
functions, the contribution to the pressure from such
interactions will be independent of the chemical potential
and hence will not contribute to the susceptibilities.
Similarly, one does not have the scope of introducing
the baryon/antibaryon and meson repulsive interaction
within the mean-field model. We will continue with the
simple approximation of including the same repulsive
interaction between baryon and among mesons given by
Eqs. (6) and (7) similar to Refs. [79,80]. This is in contrast
to the approach of including hadronic repulsive interaction
through a van der Walls excluded volume approach [82,83]
where the repulsive interaction among all the hadrons is
taken into account.
The total hadron number density is

nðT; μÞ ¼
X
a

na ¼ nB þ nB̄ þ nM; ð8Þ

where na is the number density of ath hadronic species.
Also, nB, nB̄, and nM are total baryon, antibaryon, and
meson number densities, respectively. For baryons,

nB ¼
X
a∈B

Z
dΓa

1

e
ðEa−μeff;BÞ

T þ 1
; ð9Þ

where μeff;B ¼ ciμi − KBnB and ci ¼ ðBi;Qi; SiÞ; μi ¼
ðμB; μQ; μSÞ. The sum is over all the baryons. Similarly,
the number density of antibaryons is

nB̄ ¼
X
a∈B̄

Z
dΓa

1

e
ðEa−μeff;B̄Þ

T þ 1
; ð10Þ

where μeff;B̄ ¼ c̄iμi − KBnB̄. Note that repulsive mean-field
parameter is same for baryons as well as antibaryons. For
mesons,

nM ¼
X
a∈M

Z
dΓa

1

e
ðEa−μeff;M Þ

T − 1
; ð11Þ

where μeff;M ¼ ciμi − KMnM and the sum is over all the
mesons.
Equations (9)–(11) are actually self-consistent equations

for number densities which can be solved numerically. The
expressions for the pressures of baryons and mesons are
then given, respectively, as
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PBfB̄gðT; μÞ ¼ T
X

a∈BfB̄g

Z
dΓa ln½1þ e−ð

Ea−μeff fμ̄eff g
T Þ�

− ϕBfB̄gðnBfB̄gÞ; ð12Þ

PMðT; μÞ ¼ −T
X
a∈M

Z
dΓa ln½1 − e

ðEa−μeff;M Þ
T � − ϕMðnMÞ;

ð13Þ

where

ϕBðnBfB̄gÞ ¼ −
1

2
KBn2BfB̄g ð14Þ

and

ϕMðnMÞ ¼ −
1

2
KMn2M: ð15Þ

Thermodynamic quantities can be readily calculated by
taking appropriate derivative of the partition function or
equivalently of the pressure.
The nth-order susceptibility is defined as

χni ¼
∂nðPðT; μiÞ=T4Þ

∂ðμiTÞn
; ð16Þ

where μi is the chemical potential for conserved charge ci.
In this work, we will take i to be baryon number (B),
electric charge (Q), and strangeness (S). The n ¼ 1, 2, 3, 4
susceptibilities are related to the mean, variance, skewness,
and kurtosis of the distribution of the conserved charges.
Before proceeding further, let us discuss some approxi-

mate expressions for the pressure and the number densities
and hence on the susceptibilities which are useful to
analyze the behavior of susceptibilities with temperature
and/or chemical potentials. One can expand the logarithm
in the expression for (noninteracting HRG) pressure in
powers of fugacity so that the baryonic pressure in Eq. (12)
can be written as (with β ¼ T−1)

PBfB̄g
T4

¼
X

a∈BfB̄g

ga
2π2

ðβmÞ2
X∞
l¼1

ð−1Þlþ1l−2K2ðβlmaÞzl

þ KBT2

2

�
nBfB̄g
T3

�
2

: ð17Þ

In the above, we have defined the fugacity as z ¼
expðβμeffÞ and K2 is the Bessel function. It can be easily
shown that as long as βðma − μeffÞ≳ 1, the contribution to
the pressure Pid

BfB̄g can be approximated by the leading

term, i.e., l ¼ 1 in the summation which, in fact, corre-
sponds to Boltzmann approximation. In this limit, the
pressure from the baryons becomes

PBfB̄g
T4

¼
X
a∈B

ga
2π2

ðβmaÞ2K2ðβmaÞ

× expðβμaeffÞ þ
KBT2

2

�
nBfB̄g
T3

�
2

: ð18Þ

In a similar approximation, the number density for
baryons can be written as

nB
T3

¼
X
a∈B

ga
2π2

ðβmÞ2K2ðβmaÞeβμaeff : ð19Þ

Thus, the interacting gas pressure in the Boltzmann
approximation can be written as

PBfB̄g ¼ TnBfB̄g þ
KB

2
n2BfB̄g: ð20Þ

One can further approximate for the number densities
given in Eq. (19) by noting that, for temperatures below
the QCD transition temperatures such that nB ðnB̄Þ are
small, one can expand the exponential expðμeffÞ≃
expðciμiÞð1 − βKBnBÞ. This leads to nB ¼ nidB =ð1þ nidB Þ.
Here nidB is the number density without any repulsive
interaction [Eq. (21)], i.e.,

nidB
T3

¼
X
a∈B

ga
2π2

ðβmaÞ2K2ðβmaÞ expðβciaμiÞ: ð21Þ

The pressure due to baryons can then be approximated as

PB ¼ TnidB −
KB

2
ðnidB Þ2: ð22Þ

A similar expression can be obtained for antibaryon
pressure. As may be noted, the effect of the density-
dependent repulsive interaction essentially lies in reducing
the pressure at finite densities.
The total pressure from baryons and antibaryons can

then be written as

PBþPB̄

T4
≃
X
a∈B

FaðβmaÞcoshðβciaμiÞ

−
KBT2

2

�X
a
Gaðβma;βμQ;βμsÞ

�
2

e2βμB

−
KBT2

2

�X
a
Gaðβma;−βμQ;−βμsÞ

�
2

e−2βμB :

ð23Þ

Here we have defined the chemical potential–
independent function FaðβmaÞ as

FaðβmaÞ ¼
ga
π2

ðβmaÞ2K2ðβmaÞ ð24Þ
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and the baryon chemical potential–independent function as

Gaðβma; βμQ; βμsÞ ¼
ga
2π2

ðβmaÞ2K2ðβmaÞ
×expðQaβμQ þ SaβμsÞ: ð25Þ

In a similar manner, for the mesons, in the Boltzmann
approximation, and with βKmnm ≤ 1, we have

PM

T4
≃
X
a∈M

nida
T3

−
1

2
ðKMT2Þ

�
nida
T3

�
2

; ð26Þ

with

nida ¼ ga
2π2

K2ðβmaÞ expðβμaÞ: ð27Þ

The total pressure P ¼ PB þ PB̄ þ PM is thus given
approximately by the sum of Eqs. (23) and (26). These
approximate expressions for pressure have interesting
consequences. First, in the context of baryonic susceptibil-
ities, the odd order susceptibilities will be small for small
chemical potential and will vanish for zero baryonic
chemical potential. Further, for the even order baryonic
susceptibilities, e.g., χ4B and χ2B will be identical but for the
repulsive interaction term. Indeed, the difference between
these is given approximately as

χ2B − χ4B ≃ 12
KBT2

2
ðβ3nidB Þ2: ð28Þ

Thus, while the difference between the higher(even) order
and lower(even) order baryonic susceptibilities will vanish
for ideal HRG, it will not vanish when there is mean-field
repulsive terms. In the following, we shall discuss the
results where we take the actual Fermir-Dirac or Bose-
Einstein statistics for the hadrons and solve for the self-
consistent equations for the number densities for the
estimation of susceptibilities. However, as we shall
observe, the above assertions made with the approximate
expressions for the pressure remain valid.

III. RESULTS AND DISCUSSION

In this section, we are going to discuss the results of
susceptibilities of different conserved quantities calculated
from the MFHRG model. We will compare our results with
those obtained from LQCD; namely with Ref. [84] for
vanishing chemical potential and with Ref. [85] for non-
vanishing chemical potentials. Fluctuations of conserved
charges like net baryon number, electric charge, strangeness
are useful indicators of thermalization and hadronization of
matter produced in ultrarelativistic heavy-ion collision
[37,38,86–92]. Large fluctuations in various thermody-
namic quantities are important signatures of existence of
CEP in the phase diagram. To estimate the different

thermodynamic quantities, we have taken all the hadrons
and resonances up to 3 GeV listed in particle data review
[93]. The only parameters in our model are KM and KB as
mentioned in the previous section.We choose three different
representative values for meson mean-field parameter, viz.,
KM ¼ 0, 0.1, and 0.15 GeV · fm3, while we fix baryon
mean-field parameter KB ¼ 0.45 GeV · fm3 [79,80].
In Fig. 1, we plot the second and fourth order baryon

number susceptibilities and compare them with the recent
lattice QCD results of Ref. [94]. In the absence of any
repulsion, the susceptibilities, calculated in the HRGmodel,
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FIG. 1. Baryon number susceptibilities of different orders. This
result is independent of Km. The lattice data of both χ2B and χ4B are
taken from Ref. [94].
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increase monotonically with temperature. However, as the
interaction, among the baryons, is switched on through KB,
the susceptibilities (especially χ4B) show nonmonotonic
behavior. We note that HRG model reproduces the
LQCD results up to a temperature of T ¼ 160 MeV after
which it deviates. On the other hand, MFHRG provides a
very good qualitative and quantitative description. The
broad bump in χ4B [Fig. 1(b)], as obtained in the lattice
simulations, is very well reproduced in MFHRG model. It
may be observed that while the behavior of χ2B is only
qualitatively matches with the lattice results, the agreement
of the same for χ4B is both qualitative and quantitative. The
repulsive interaction reduces the baryonic susceptibility at
higher temperatures. This may be expected from the
approximate expressions for pressure given in Eq. (23).
This also explains that the reduction is more for the higher
order susceptibility.Note thatmesons do not contribute to χB
and hence the results are independent of the value of Km.
Since all the baryons have baryonnumber one, the numerical
values of χ2B and χ4B are same for HRG. However, this is not
true for the interacting (MFHRG) scenario. Agreement of
MFHRG with LQCD emphasizes the role of repulsive
interaction in the thermodynamics of hadron gas especially
at higher temperature. Recently, similar studies have
observed that if we switch off the repulsive interactions
between mesons and include van der Waals parameters
characterizing repulsive and attractive interaction between
baryons, the resulting model turns out to be in better
agreement with the lattice data [69]. Thus, ideal HRG is
insufficient to describe higher order susceptibilities and the
agreement with the results from mean-field HRG, which
takes into account repulsive interactions, indicates that these
interactions cannot be neglected in the studies which are
being carried out to probe quark-hadron phase transition as
well as QCD critical point.
Figure 2 shows second and fourth order electric charge

susceptibilities as calculated in HRG, MFHRG, and lattice
QCD. The lattice results from χ2Q are taken from Ref. [95],
while the same for χ4Q is taken fromRef. [96].As in the case of
baryon number susceptibilities, the electric charge suscep-
tibilities increase monotonically with temperature for HRG.
However, the numerical values of χ2Q and χ4Q are not same
for HRG, which is unlike baryon number susceptibilities.
We note that there is no qualitative and almost no quantitative
difference between results obtained from HRG andMFHRG
model whenKM ¼ 0 except at high temperature. The reason
is that the dominant contribution to χnQ arises from charged
mesons for which there is no repulsive interactions for
Km ¼ 0. But when we switch on mean-field interactions
for mesons, theMFHRGmodel becomes closer to the LQCD
results for the susceptibility χ2Q. Reasonable quantitative
agreement is achieved for KM ¼ 0.1 GeV · fm3. In case of
χ4Q, MFHRG overestimates the susceptibility for all the three
choices of KM. Nonetheless, qualitative agreement can be

seen for higher values of KM which also emphasizes the
important role of repulsive interactions among mesons.
In Fig. 3, we have plotted second and fourth order

strangeness susceptibilities. Here, the lattice results for χS
and χ4S are taken from Ref. [96]. As may be observed, the
HRG results seem to be more close to the lattice results for
χ2S compared to the MFHRG results. On the other hand,
for χ4S, while HRG results match up to T ¼ 160 MeV, for
higher temperatures HRG shows a monotonic increase with
temperature while lattice results seem to flatten out around
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FIG. 2. Charge susceptibilities of different orders. The lattice
data of χ2Q are taken from Ref. [95] and the lattice data of χ4Q are
taken from [96].
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T ¼ 180 MeV. Such behavior is qualitatively reproduced
by MFHRG model. Further, it is also observed that the
repulsive interactions seem to underestimate strangeness
susceptibilities. Previous studies have also observed similar
behavior of strangeness susceptibilities as well as correla-
tors involving strangeness [97]. This observation can be
attributed to the unknown strange hadronic states that are
not included in the hadronic mass spectrum. In fact,
inclusion of these unknown states has been found to
improve HRG model estimations [98].

Figure 4 shows the ratios of second and fourth order
susceptibilities of baryon, charge, and strangeness. These
ratios are related to the moments of conserved charge
fluctuations and hence they are important in the context of
heavy-ion collision experiments. In the MFHRG model, as
mentioned earlier, in the Boltzmann approximation (and in
the limit of βU ≪ 1), the susceptibility χnB can be approxi-
mated as

χnB ¼ ðχidB Þn − 2nβ4KBðnidB Þ2; ð29Þ

where ðχidB Þn is the nth order noninteracting susceptibility.
We note from the above equation that when repulsive

interactions are switched off (KB ¼ 0) one gets χ4B
χ2B

¼ 1. In

HRG, and in the Boltzmann approximation, net-baryon
kurtosis shows expected Skellam behavior [69,74]. The
effect of repulsive interactions [second term in Eq. (29)] is
to decrease this ratio. This is because the decrease of the
susceptibility compared to ideal HRG due to the repulsive
interaction increase with the order of the susceptibility. This
behavior is also consistent with the lattice QCD data
obtained in Refs. [94,99]. It was shown in Ref. [99] that
at low temperature the ratio has a value unity and it
decreases with temperature to reach the free quark limit
at high temperature. Thus, our result, of MFHRG model,
reproduces the lattice result. Deviation from the Skellam
behavior can be attributed to the repulsive interactions
between baryons, and again, we cannot neglect its con-
tribution in the conserved charge fluctuation studies.
We next display the ratios for the electric charge

susceptibilities in Fig. 4(b). Let us note that for electric
charge susceptibilities, the mesons contribute dominantly
and hence Boltzmann approximation will not be good
approximation. Thus, simple expression similar to Eq. (29)
cannot be obtained. Further, in the HRG model, only
baryons with baryon number B ¼ 1 contribute to χnB, while
in case of χnQ multiple charged hadrons contribute. In fact,
these multiply charged hadrons get larger weight in higher
order fluctuations where both meson and baryons contrib-

ute. Upshot of this is the characteristic deviation of
χ4Q
χ2Q

seen

in Fig. 4(b). The effect of repulsive interactions is to
suppress the number density at high temperature. This can

be seen in Fig. 4(b) as the ratio
χ4Q
χ2Q

in MFHRG deviates from

HRG model results. We have not displayed here any lattice
results for the charge susceptibility ratio as the two
susceptibilities, χ2Q and χ4Q, are from different lattice
simulation results, namely, χ2Q taken from Ref. [95] and
χ4Q is taken from [96].
Finally, we show the similar ratio for the strangeness

susceptibilities. The ratio of strangeness susceptibilities
more or less gives a similar picture. Like the electric charge
scenario, in the case of strangeness also the Boltzmann
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approximation is not valid. Furthermore, the particles with
multiple strangeness contribute to the scenario. For HRG,
the ratio increases monotonically with temperature. Once
we switch on the interaction, the ratio is suppressed.
Furthermore, the ratio becomes nonmonotonic at high
temperatures. The repulsive interaction seems to have a

significant contribution in this quantity. Here again while
the HRG results are closer to lattice for low temperatures, at
high temperatures (T ≥ 160 MeV), HRG does not show
the nonmonotonic behavior as the corresponding lattice
results. On the other hand, MFHRG results display a
qualitative similarity with nonmonotonic behavior with
temperature as in lattice QCD results. In case of ratios of
susceptibilities, it may not be easy to separate the effect of
repulsive interactions from medium effects, like in-medium
mass modification or the widening of spectral width. If one
takes the difference of susceptibilities, the results are
independent of mass spectrum included in the HRG model.
Figure 5 shows differences of second and fourth order
susceptibilities. The difference χ2B − χ4B is zero in HRG
model. But if we include the repulsive interactions using
mean-field approach, then this difference increases with
temperature. This behavior is in agreement with LQCD
results [94]. The lattice result shows that the difference
increases with temperature as has been found in the
MFHRG model. The charge and strangeness sectors show
different behavior as opposed to baryon sector in HRG
model. Here, the differences of susceptibilities decrease
with increase in temperature. This observation can again be
attributed to multiple charged hadrons which contribute
more to higher order susceptibilities. The effect of repulsive
interactions is to suppress the heavier charged hadrons
density at high temperature. Hence, we observe less steeper
decrease in MFHRG as compared to HRG.
So far, we have shown the results for vanishing baryon

chemical potential. Next, we discuss the case of non-
vanishing values for the chemical potentials μB, μQ, and μS.
As shown in Ref. [85], in general, the susceptibilities at
finite chemical potential can be expanded in powers of μi=T
(i ¼ B, Q, S) with coefficients being generalized suscep-
tibilities that can be evaluated at vanishing chemical
potentials. The constraints of fixed strangeness and electric
charge to baryon number fix the relation between the
electric charge chemical potential and the strangeness
chemical potential to the baryon chemical potential at a
given temperature [100]. As in Ref. [85], we shall consider
the case of strangeness neutral system i.e., nS ¼ 0 and
nQ=nB ¼ 0.4 which are representative conditions met in
heavy-ion collision experiments with gold or uranium
nuclei. Thus, one has the relation with μ̂i ¼ μi=T,

μ̂Q ≃ q1ðTÞμ̂B þ q3ðTÞμ̂3B
μ̂S ≃ s1ðTÞμ̂B þ s3ðTÞμ̂3B: ð30Þ

The coefficient functions qi and si are given in terms of
the susceptibilities at zero chemical potential and the ratio
r ¼ nQ=nB as in Ref. [99]. We have calculated here these
susceptibilities in MFHHRG model to calculate the coef-
ficients on rhs of Eq. (30). Different susceptibilities are then
estimated using Eq. (16) for a given μB, μQ, and μS.
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In Fig. 6, we have plotted the ratio of the cumulants
for the net baryon number fluctuations as functions of
μB=T. We have taken here, T ¼ 158 MeV as in Ref. [85]
corresponding to the upper end of the error band of
the pseudocritical temperature for vanishing chemical
potential. On the top panel, we have plotted R12

B , the ratio
of mean to variance of net baryon number, i.e.,

χ1BðT; μBÞ=χ2BðT; μBÞ as a function of μB=T. On the middle
panel, we have plotted the ratio of skewness ratio

R31
B ðT; μBÞ ¼ χ3BðT;μBÞ

χ1BðT;μBÞ
. Similarly, in the bottom panel, we

have plotted the kurtosis ratio, i.e., R42
B ¼ χ4BðT;μBÞ

χ2BðT;μBÞ
as a

function of μB=T. As may be observed, the lower cumulant,
i.e., R12

B from lattice simulations are in good agreement
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with the HRG model estimation which takes the hadrons to
be pointlike and noninteracting. However, the simple HRG
model is inadequate to describe the behavior of the higher
order cumulants RB

31 and RB
42 obtained from lattice simu-

lations. In fact, for simple HRG model, the values of both
these higher order cumulant ratios are unity. When one
includes the repulsive interactions among hadrons within
MFHRG model, the lattice QCD results seem to be in
agreement with the MFHRG model even at finite chemical
potential. We have taken here the value of the baryonic
repulsive parameter KB ¼ 0.45 GeV · fm3 as was taken for
zero baryon density case. Further, the baryonic suscep-
tibilities are independent of KM.

IV. SUMMARY

We have studied the effect of repulsive interaction
on the susceptibilities of conserved charges. For this
purpose, we have used the MFHRG model. We have
two parameters, namely, KB and KM, to describe the
baryonic and mesonic interactions, respectively. We have
keptKB fixed at 0.45 GeV · fm3 and varied Km in the range
0–0.15 GeV · fm3. Our results have been confronted with
the lattice data. We conclude the following important
points:

(i) The results of HRG model, as such, cannot explain
the LQCD data for baryonic susceptibilities. A
repulsive interaction, through MFHRG model, is
required to explain the data for the higher order
susceptibilities. For low temperatures, HRG results
for χ2B are somewhat closer to the lattice results as
compared to MFHRG. However, for χ4B, a repulsive
mean field becomes a necessity to be consistent
with the lattice QCD results for the same. The
baryonic susceptibilities are independent of mesonic
interactions.

(ii) The repulsive interactions are further required to
reproduce charge susceptibilities. The χ2Q is better
reproduced with interactions compared to HRG.
However, χ4Q is overestimated with the choice of
the Km that we use though there is a qualitative
matching. The trend shows a stronger mesonic
interaction may reproduce data better.

(iii) The fourth order strangeness susceptibility is better
reproduced, with the repulsive interactions, as com-
pared to the second order susceptibility. However,
calculation of strangeness susceptibilities have some
inherent problems. The problem arises due to un-
known strange hadronic states not included into the
hadronic mass spectrum.

(iv) The ratios and differences of susceptibilities provide
important information regarding interactions. These
quantities provide us important details regarding the
deviation from ideal gas scenario. Both the ratios
and differences of susceptibilities are indicative of
repulsive interaction of the hadrons. Such repulsive
interaction, modeled by a repulsive mean field, as
here, gives a reasonable description with the corre-
sponding available lattice data particularly for those
involving the higher order susceptibilities.

(v) The repulsive interactions for baryons become
particularly important for finite density results.
Our results, for the ratios of susceptibilities at finite
density, have an excellent match with those obtained
from the LQCD simulations.
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