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We study the pair description of heavy tetraquark systems jQQQ̄ Q̄i in the frame of a nonrelativistic
potential model. By taking the two heavy quark pairs ðQQ̄Þ as colored clusters, the four-quark Schrödinger
equation is reduced to a two-pair equation, when the inner motion inside the pairs can be neglected. Taking
into account all the Casimir scaling potentials between two quarks and using the lattice QCD simulated
mixing angle between the two color-singlet states for the tetraquark system, we extracted a detailed pair
potential between the two heavy quark pairs.
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Among the studies of exotic hadrons which cannot be
explained as normal mesons and baryons, there are many
theoretical works focusing on heavy tetraquark systems
QQQ̄ Q̄ (Q means charm quark c or bottom quark b)
[1–22]. Recently, a narrow structure around 6.9 GeV,
named as Xð6900Þ, is observed by the LHCb Collabora-
tion at colliding energy

ffiffiffi
s

p ¼ 7, 8, and 13 TeV [23]. This is
the first candidate of fully heavy tetraquarks observed in
experiment.
The molecular picture is an often used mechanism to

understand the properties of multiquark states, for instance
the phenomenon that some of the tetraquark states locate
below the threshold of the corresponding two mesons
[9,14,16,24–29]. The key quantity to control the molecular
structure of heavy tetraquark states is the interaction
potential between the two molecules. However, if one
directly takes a tetraquark state as a meson-meson con-
figuration, there will be no interaction between the two
mesons at one-gluon-exchange level, see Ref. [30] and the
discussion below. A direct way to introduce meson-meson
interaction at quark level is to include multigluon exchange.
In this paper, we consider a different molecular picture, by
taking into account pair-pair interaction at one-gluon-
exchange level. We study a colored pair description for
general heavy tetraquark systems in the frame of a non-
relativistic potential model. By taking the two heavy quark
pairs ðQQ̄Þ as two colored clusters and neglecting the quark
motion inside the pairs, we translate the four quark problem
into a two-pair problem and derive the interaction potential
between the two pairs.

The two independent color-singlet states js1i ¼
jðQQÞ3̄cðQ̄ Q̄Þ3ci and js2i ¼ jðQQÞ6cðQ̄ Q̄Þ6̄ci form a com-
plete and orthonormal basis in the color space, any
tetraquark state can be expanded in terms of them,

jQQQ̄ Q̄i ¼ sinΘjs1i þ cosΘjs2i; ð1Þ

where the mixing angleΘ [30] between the two color-singlet
states characterizes the color dynamics of the tetraquark
state. Considering the color structure of the two indepen-
dent meson-meson states jm1i ¼ jðQ1Q̄3Þ1cðQ2Q̄4Þ1ci and
jm2i ¼ jðQ1Q̄4Þ1cðQ2Q̄3Þ1ci,

jm1i ¼
ffiffiffiffiffiffiffiffi
1=3

p
js1i þ

ffiffiffiffiffiffiffiffi
2=3

p
js2i;

jm2i ¼ −
ffiffiffiffiffiffiffiffi
1=3

p
js1i þ

ffiffiffiffiffiffiffiffi
2=3

p
js2i; ð2Þ

a general tetraquark state can be expanded as a linear
combination of the two meson-meson states [30].

jQQQ̄ Q̄i ¼
ffiffiffiffiffiffiffiffi
3=4

p
½ðcosΘ=

ffiffiffi
2

p
þ sinΘÞjm1i

þ ðcosΘ=
ffiffiffi
2

p
− sinΘÞjm2i�; ð3Þ

Note that, different from the two color-singlet states js1i and
js2i, the two independent meson-meson states are normal-
ized but not orthogonal to each other. It is easy to check that, a
general tetraquark state jQQQ̄ Q̄i is reduced to the meson-
meson state jm1i at the mixing angleΘ ¼ Θ0 with tanΘ0 ¼
1=

ffiffiffi
2

p
and the other meson-meson state jm2i at Θ ¼ −Θ0.

An often used method to investigate multi heavy-
quark systems is the potential model [5,16,17,19–22,31].
For a heavy tetraquark system, the wave function
Ψðr1; r2; r3; r4Þ ¼ hr1; r2; r3; r4jQQQ̄ Q̄i and energy E
satisfy the Schrödinger equation in coordinate space,
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�X4
i¼1

−∇2
i

2M
þ V

�
Ψ ¼ EΨ ð4Þ

with quark mass M. As a first approximation, we consider
only the one-gluon-exchange potential between two
quarks, and take the total potential Vðr1; r2; r3; r4Þ as a
sum of such Casimir scaling potentials [32],

V ¼
X4
i<j

hQQQ̄ Q̄ jλai ⊗ λaj jQQQ̄ Q̄i
−16=3

VcðjrijjÞ; ð5Þ

where the matrix λai is defined as 2Ta for quark i and
−2ðTaÞ� for antiquark i with Ta being the Gell-Mann
matrices, jrijj ¼ jrj − rij is the distance between the two
quarks i and j, and VcðrÞ is the static Cornell potential

VcðrÞ ¼ −
α

r
þ σr: ð6Þ

The two parameters α and σ can be fixed by fitting the
charmonium masses in vacuum [31].
Since the Cornell potential depends only on the distance

between two interacting quarks, the four-body Schrödinger
equation can be divided into a center-of-mass part and a
relative partΨ ¼ Θψ . The center-of-mass motion is a plane
wave ΘðRÞ ¼ eiP·R with total coordinate R ¼ ðr1 þ r2 þ
r3 þ r4Þ=4 and total momentum P, and the relative motion
is governed by the potential V. There are three independent
coordinates for the relative motion. In order to achieve the
goal of translating the four-quark problem into a problem of
two molecules, we take r13 ¼ r3 − r1; r24 ¼ r4 − r2 and
the vector r between the two quark pairs ðQ1Q̄3Þ and
ðQ2Q̄4Þ,

r ¼ ðr2 þ r4 − r1 − r3Þ=2 ð7Þ

as the three independent coordinates, see Fig. 1. The other
coordinate vectors can be expressed in terms of them,

r12 ¼ rþ ðr13 − r24Þ=2;
r14 ¼ rþ ðr13 þ r24Þ=2;
r32 ¼ r − ðr13 þ r24Þ=2;
r34 ¼ r − ðr13 − r24Þ=2: ð8Þ

Note that, the quark pairs ðQ1Q̄3Þ and ðQ2Q̄4Þ here
are not mesons, they are not required to be color-singlets.
The reason to choose r13, r24 and r as the relative
coordinates is for comparing the two-pair structure
jðQ1Q̄3ÞðQ2Q̄4Þi with the two-meson structure jm1i ¼
jðQ1Q̄3Þ1cðQ2Q̄4Þ1ci of the tetraquark system. We will
see that the former approaches to the latter in the limit of
r → ∞. We can also choose r14, r23, and r between the two

quark pairs ðQ1Q̄4Þ and ðQ2Q̄3Þ as the relative coordinates
for comparing the two-pair structure jðQ1Q̄4ÞðQ2Q̄3Þiwith
the two-meson structure jm2i ¼ jðQ1Q̄4Þ1cðQ2Q̄3Þ1ci. For
a tetraquark system with the same mass for the four quarks,
the two groups of coordinates make no difference in the
final result.
Calculating directly the matrix elements in (5) leads to

the total static potential Vðr; r13; r24Þ for the tetraquark
system,

V¼ 1

8
ð1−3cosð2ΘÞÞ½Vcðr12ÞþVcðr34Þ�

þ 1

16
ð7þ3cosð2ΘÞþ6

ffiffiffi
2

p
sinð2ΘÞÞ½Vcðr13ÞþVcðr24Þ�

þ 1

16
ð7þ3cosð2ΘÞ−6

ffiffiffi
2

p
sinð2ΘÞÞ½Vcðr14ÞþVcðr23Þ�:

ð9Þ

It is clear to see that, at the specific mixing angleΘ ¼ Θ0 or
Θ ¼ −Θ0 the tetraquark state is reduced to a meson-meson
state, the total potential contains only the inner potentials of
the two mesons, V ¼ Vcðr13Þ þ Vcðr24Þ at Θ ¼ Θ0 and
V ¼ Vcðr14Þ þ Vcðr23Þ at Θ ¼ −Θ0, and the interaction
between the two mesons totally disappear. In this case, the
four-quark system becomes two free mesons, and it is
impossible to form a tetraquark state.
With the known potential, the relative wave function

ψðr; r13; r24Þ and energy ϵ which characterize the tetra-
quark structure are determined by the Schrödinger equation

�
−

1

2M
ð∇2

r þ 2ð∇2
13 þ ∇2

24ÞÞ þ V

�
ψ ¼ ϵψ : ð10Þ

While we have considered the two quark pairs ðQ1Q̄3Þ and
ðQ2Q̄4Þ as two colored clusters, this relative equation
cannot be factorized as three equations characterizing
separately the structures of the two pair states and the
two-pair state, since the potential V is a highly mixed
function of r13, r24, and r and cannot be written as a sum of
three independent parts. To construct a cluster description
of the tetraquark state, we have to neglect the quark motion
inside the pairs, namely we take the variables r13 and r24 as

FIG. 1. The relative coordinates of the quarks in a tetraquark
system. O is the center-of-mass of the system.
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the averaged pair sizes r̄13 and r̄24. By subtracting the inner
potentials of the two pairs from the tetraquark potential,

Vppðr; r̄13; r̄24Þ ¼ Vðr; r̄13; r̄24Þ−Vcðr̄13Þ−Vcðr̄24Þ; ð11Þ

the relative Schrödinger equation (10) for the four-quark
system becomes the equation for the two-pair system,

�
−

∇2
r

2M
þ Vpp

�
ψpp ¼ ϵppψpp; ð12Þ

where 2M is the reduced mass of the pair-pair system, Vpp

is the potential between the two pairs which contains the
direct interactions between the two pairs V12, V14, V23 and
V34 and the mixing induced change in the inner potentials,
and ϵpp ¼ ϵ − Vcðr̄13Þ − Vcðr̄24Þ and ψppðr; r̄13; r̄24Þ are,
respectively, the binding energy and relative wave function
of the two-pair system.
In general case, the Schrödinger equation (12) cannot

be further separated into an angular part and a radial part,
since the pair potential Vppðr; r̄13; r̄24Þ depends still on
the relative direction between the two molecules. For the
mixing angle Θ, we can take the lattice QCD simulated
Θðr; r̄13; r̄24Þ [30] as a function of the distance between the
two pairs with fixed sizes r̄13 and r̄24. To derive a pair
potential Vpp depending only on the distance r, we
integrate the tetraquark potential over all the angles,

Vðr; r̄13; r̄24Þ ¼
1

16π2

Z
dΩ1dΩ2Vðr; r̄13; r̄24Þ ð13Þ

with Ω1 ¼ ðθ1;ϕ1Þ;Ω2 ¼ ðθ2;ϕ2Þ and the definition of

r̄13 ¼ r̄13ðsin θ1 cosϕ1; sin θ1 sinϕ1; cos θ1Þ;
r̄24 ¼ r̄24ðsin θ2 cosϕ2; sin θ2 sinϕ2; cos θ2Þ ð14Þ

for the azimuth angles of r̄13 and r̄24. After a straightfor-
ward calculation, we obtain

Vðr; r̄13; r̄24Þ

¼
�
1

4
ð1− 3cosð2ΘÞÞþ 1

8
ð7þ 3cosð2ΘÞ− 6

ffiffiffi
2

p
sinð2ΘÞÞ

�

×Vðr; r̄13; r̄24Þ

þ 1

16
ð7þ 3cosð2ΘÞþ 6

ffiffiffi
2

p
sinð2ΘÞÞðVcðr̄13ÞþVcðr̄24ÞÞ

ð15Þ

with

Vðr; r̄13; r̄24Þ

¼ −
α

r
þ σrþ σ

12

r̄213 þ r̄224
r

þ

8>>><
>>>:

α ðrþ−rÞ2−ðr−−rÞ2
r̄13r̄24r

− σ ðrþ−rÞ4−ðr−−rÞ4
6r̄13 r̄24r

; r < r−

α ðrþ−rÞ2
r̄13 r̄24r

− σ ðrþ−rÞ4
6r̄13 r̄24r

; r− ≤ r < rþ
0; r ≥ rþ

ð16Þ

and r� ¼ jr13 � r24j=2.
Now the factor to determine the central pair potential

Vppðr; r̄13; r̄24Þ¼Vðr;r̄13; r̄24Þ−Vcðr̄13Þ−Vcðr̄24Þ ð17Þ

is the mixing angle Θðr; r̄13; r̄24Þ. It is impossible to self-
consistently determine it in the frame of potential models.
We take here the lattice QCD simulatedΘ [30] as a function
of r at fixed pair sizes r̄13 ¼ r̄24 ¼ rp, see Fig. 2. In the
limit of r → ∞ but with finite pair size rp, Θ approaches to

FIG. 2. The lattice QCD simulated mixing angle Θðr; rp; rpÞ=Θ0 as a function of r=a at rp=a ¼ 3; 4;…; 11 (from left to right) [30].
The scaled parameters areΘ0 ¼ arctanð1= ffiffiffi

2
p Þ and a ¼ 0.069 fm. The curves are the fitted results using Eq. (20) with different values of

the parameters λ1, λ2, and x.
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Θ0, the tetraquark system becomes two free mesons, and
the pair (meson) potential vanishes,

Vppðr → ∞; rp; rpÞ ¼ 0: ð18Þ

In the other limit of r̄13; r̄24 → ∞ but with finite r, Θ
approaches to −Θ0, the tetraquark system becomes again
two free mesons, and the averaged pair potential becomes

Vppðr; rp → ∞; rp → ∞Þ ¼ 2ðσr − VcðrpÞÞ: ð19Þ

The case of r → 0 but with finite r̄13 and r̄24 is close to the
second limit, see Fig. 2.
In general case with 0 < r < ∞, the lattice QCD

simulated Θ [30] can be well fitted by

Θðr; rp; rpÞ
Θ0

¼ cos2 x sinh ½λ1ðr − rpÞ� þ sin2 x sinh ½λ2ðr − rpÞ�
cos2 x cosh ½λ1ðr − rpÞ� þ sin2 x cosh ½λ2ðr − rpÞ�

ð20Þ
with three parameters λ1, λ2, and x. The lattice data and the
fitted lines with different values of the parameters are
shown in Fig. 2.
Employing the lattice simulatedmixing angleΘðr; rp; rpÞ

with different molecular size rp=a ¼ 3; 4;…; 11, we

calculated the pair potential as a function of the distance r
between the two pairs. The result is shown in Fig. 3, and the
corresponding parameters are taken to be α ¼ 0.5 and σ ¼
0.17 ðGeVÞ2 [31].Note that, for tetraquark systemsQQQ̄ Q̄,
the pair potential is quark mass independent. Of course, the
Schrödinger equation or the wave function of the system
depends on the mass value. If we take the pair size rp as two
times the J=ψ radius ∼0.8 fm, the pair potential should
approach to the J=ψ − J=ψ potential in the limit of large r.
The potential is attractive at small r which bounds the two
pairs together, then becomes continuously repulsive around
the pair size rp, and finally approaches to zero when the
distance is large enough. The numerical result here is
similar to a recent calculation of J=ψ − J=ψ potential where
the colorless Pomeron exchange produces the attractive
force [33].
With the central pair potential VppðrÞ, the relative wave

function ψppðrÞ for the two-pair system can be factorized
as a spherical harmonic function and a radial function, the
latter is controlled by the potential. In the above calcu-
lations we have taken, for simplicity, the same mass for the
four quarks, but the method to effectively reduce a four-
quark system to a two-pair system is valid for general
tetraquark systems with different quark masses.
In summary, we obtained a pair description of heavy

tetraquark systems jQQQ̄ Q̄i in the frame of a potential
model. Taking the two quark pairs ðQQ̄Þ as colored clusters
and neglecting the quark motion inside the pairs, the four-
body Schrödinger equation for the tetraquark system
becomes a two-body equation describing the relative
motion of the two-pair state. Considering all the Casimir
scaling potentials between two heavy quarks and using the
lattice QCD simulated mixing angle between the two
independent color singlets, we obtained a detailed inter-
action potential between the two pairs.
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