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We apply the method of QCD sum rules to study the sqs̄q̄ tetraquark states with the exotic quantum
number JPC ¼ 3−þ, and extract mass of the lowest-lying state to be 2.33þ0.19

−0.16 GeV. To construct the
relevant tetraquark currents we need to explicitly add the covariant derivative operator. Our systematical
analysis on their relevant interpolating currents indicates that (a) this state well decays into the P-wave
ρϕ=ωϕ channel but not into the ρf2ð1525Þ=ωf2ð1525Þ=ϕf2ð1270Þ channels, and (b) it well decays into
the K�ð892ÞK̄�

2ð1430Þ channel but not into the P-wave K�ð892ÞK̄�ð892Þ channel.
DOI: 10.1103/PhysRevD.103.054006

I. INTRODUCTION

There have been many candidates of exotic hadrons
observed in particle experiments, which cannot be well
explained in the traditional quark model [1–10]. Many of
them still have “traditional” quantum numbers that tradi-
tional q̄q mesons and qqq baryons can also have. This
makes them not so easy to be clearly identified as exotic
hadrons. However, there exist some “exotic” quantum
numbers that traditional hadrons cannot have, such as
the spin-parity quantum numbers JPC ¼ 0−−, 0þ−, 1−þ,
2þ−, 3−þ, etc. These exotic quantum numbers are of
particular interest, because the hadrons with such quantum
numbers cannot be explained as traditional hadrons any
more. Such hadrons are definitely exotic hadrons, whose
possible interpretations are tetraquark states [11–17],
hybrid states [18–23], glueballs [24–26], etc. Note that
these different exotic structures may mix together, and there
would exist various possibilities whenever there is found a
state in experiment with some exotic quantum number.
Among the above exotic quantum numbers, the hybrid

states of JPC ¼ 1−þ have been extensively studied, since
they are predicted to be the lightest hybrid states [18] and
there are some experimental evidence on their existence
[27–29]. The light tetraquark states of JPC ¼ 1−þ have also

been studied in Refs. [11,12] using the method of QCD
sum rules, and their masses and possible decay channels
were predicted there for both isospin-0 and isospin-1 states.
Later, the same QCD sum rule method was applied to
extensively study light tetraquark states of JPC ¼ 0−− in
Refs. [13–15], and those of JPC ¼ 0þ− in Refs. [16,17].
In this paper we shall investigate the exotic quantum

number JPC ¼ 3−þ, and the other one JPC ¼ 2þ− will be
studied in the future. We shall investigate the light qsq̄s̄
(q ¼ up=down and s ¼ strange) tetraquark states with such
a quantum number. They may exist in the energy region
around 2.0 GeV. With a large amount of the J=ψ sample,
the BESIII Collaboration is carefully examining the physics
happening in this energy region [30–36]. The Belle-II [37]
and GlueX [38] experiments also do this. Hence, these
states are potential exotic hadrons to be observed in future
experiments. There has not been any theoretical study
directly on this subject. In Ref. [39] the authors used the
one-boson-exchange model to study the D�D̄�

2 molecular
state of JPC ¼ 3−þ. They found that the isoscalar (I ¼ 0)
state has the most attractive potential, suggesting that this
D�D̄�

2 molecular state of JPC ¼ 3−þ may exist, and the
K�ð892ÞK̄�

2ð1430Þ molecular state of JPC ¼ 3−þ might
also exist. Besides, there was a Lattice QCD study on
the 3−þ glueball, but this was done forty years ago [40].
In this paper we shall investigate the qsq̄s̄ tetraquark

state with the exotic quantum number JPC ¼ 3−þ using the
method of QCD sum rules. Recently, we have applied this
method to study the sss̄s̄ tetraquark states of JPC ¼ 1�− in
Refs. [41–43]. In the present study we shall improve it by
explicitly adding the covariant derivative operator in order
to construct the qsq̄s̄ tetraquark currents of JPC ¼ 3−þ.
This will be discussed in detail in the next section.
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This paper is organized as follows. In Sec. II, we
systematically construct the qsq̄s̄ tetraquark currents with
the exotic quantum number JPC ¼ 3−þ. Then we use them
to perform QCD sum rule analyses in Sec. III, and perform
numerical analyses in Sec. IV. The results are summarized
and discussed in Sec. V, where we discuss their special
decay behavior.

II. INTERPOLATING CURRENTS

In this section we construct the qsq̄s̄ (q ¼ up=down
and s ¼ strange) tetraquark currents with the exotic
quantum number JPC ¼ 3−þ. This quantum number is
exotic, and cannot be simply composed by using one
quark and one antiquark. Moreover, we cannot use only
two quarks and two antiquarks without derivatives,
and two quarks and two antiquarks together with at least
one derivative are necessary to reach such a quantum
number.
Besides, the sss̄s̄ tetraquark currents of JPC ¼ 3−þ

cannot be constructed using two quarks and two anti-
quarks with just one derivative; in the present study
we shall not investigate the qqq̄q̄ tetraquark currents, since
the widths of the qsq̄s̄ tetraquark states (if they exist)
are probably narrower, making them easier of being
observed.
First let us consider the diquark-antidiquark ½qs�½q̄s̄�

construction. In principle, the derivative can be either inside
the diquark/antidiquark field or between the diquark and
antidiquark fields, i.e.,

η ¼ ½qTaCΓ1D
↔

αsb�ðq̄cΓ2Cs̄TdÞ; ð1Þ

η0 ¼ðqTaCΓ1sbÞ½q̄cΓ2CD
↔

αs̄Td �; ð2Þ

η00 ¼ ½ðqTaCΓ3sbÞD
↔

αðq̄cΓ4Cs̄TdÞ�; ð3Þ

where ½XD↔αY� ¼ X½DαY� − ½DαX�Y, with the covariant
derivative Dα ¼ ∂α þ igsAα; a � � �d are color indices,
and the sum over repeated indices is taken; Γ1;2;3;4

are Dirac matrices. However, we find that only the
former construction can reach the quantum number
JPC ¼ 3−þ.
Altogether we find six nonvanishing diquark-antidiquark

currents of JPC ¼ 3−þ:

η1α1α2α3 ¼ ϵabeϵcde × Sf½qTaCγα1D
↔

α3sb�ðq̄cγα2Cs̄TdÞ
þ ðqTaCγα1sbÞ½q̄cγα2CD

↔

α3 s̄
T
d �g; ð4Þ

η2α1α2α3 ¼ðδacδbd þ δadδbcÞ × Sf½qTaCγα1D
↔

α3sb�ðq̄cγα2Cs̄TdÞ
þ ðqTaCγα1sbÞ½q̄cγα2CD

↔

α3 s̄
T
d �g; ð5Þ

η3α1α2α3 ¼ ϵabeϵcde × Sf½qTaCγα1γ5D
↔

α3sb�ðq̄cγα2γ5Cs̄TdÞ
þ ðqTaCγα1γ5sbÞ½q̄cγα2γ5CD

↔

α3 s̄
T
d �g; ð6Þ

η4α1α2α3 ¼ ðδacδbd þ δadδbcÞ
× Sf½qTaCγα1γ5D

↔

α3sb�ðq̄cγα2γ5Cs̄TdÞ
þ ðqTaCγα1γ5sbÞ½q̄cγα2γ5CD

↔

α3 s̄
T
d �g; ð7Þ

η5α1α2α3 ¼ ϵabeϵcde × gμνSf½qTaCσα1μD
↔

α3sb�ðq̄cσα2νCs̄TdÞ
þ ðqTaCσα1μsbÞ½q̄cσα2νCD

↔

α3 s̄
T
d �g; ð8Þ

η6α1α2α3 ¼ ðδacδbd þ δadδbcÞ
× gμνSf½qTaCσα1μD

↔

α3sb�ðq̄cσα2νCs̄TdÞ
þ ðqTaCσα1μsbÞ½q̄cσα2νCD

↔

α3 s̄
T
d �g; ð9Þ

where S denotes symmetrization and subtracting the trace
terms in the set fα1α2α3g. Three of them η1;3;5α1α2α3 have
the antisymmetric color structure ðqsÞ3̄Cðq̄s̄Þ3C , and the

other three η2;4;6α1α2α3 have the symmetric color structure
ðqsÞ6Cðq̄s̄Þ6̄C . Considering that the diquark fields
sTaCγμsb=sTaCγμγ5sb=sTaCσμνsb have the quantum numbers
JP ¼ 1þ=1−=1�, respectively, the first current η1α1α2α3 has
the most stable internal structure and may lead to the best
sum rule result.
Besides the above diquark-antidiquark currents, we can

construct six color-singlet-color-singlet mesonic-mesonic
currents of JPC ¼ 3−þ:

ξ1α1α2α3 ¼ Sfðq̄aγα1qaÞD
↔

α3ðs̄bγα2sbÞg; ð10Þ

ξ2α1α2α3 ¼ Sfðq̄aγα1γ5qaÞD
↔

α3ðs̄bγα2γ5sbÞg; ð11Þ

ξ3α1α2α3 ¼ gμνSfðq̄aσα1μqaÞD
↔

α3ðs̄bσα2νsbÞg;
ξ4α1α2α3 ¼ Sf½q̄aγα1D

↔

α3sa�ðs̄bγα2qbÞ
− ðq̄aγα1saÞ½s̄bγα2D

↔

α3qb�g; ð12Þ

ξ5α1α2α3 ¼ Sf½q̄aγα1γ5D
↔

α3sa�ðs̄bγα2γ5qbÞ
− ðq̄aγα1γ5saÞ½s̄bγα2γ5D

↔

α3qb�g; ð13Þ

ξ6α1α2α3 ¼ gμνSf½q̄aσα1μD
↔

α3sa�ðs̄bσα2νqbÞ
− ðq̄aσα1μsaÞ½s̄bσα2νD

↔

α3qb�g: ð14Þ

The former three ξ1;2;3α1α2α3 have the quark combination
½q̄q�½s̄s�, and the derivatives are between the two
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quark-antiquark pairs; the latter three ξ4;5;6α1α2α3 have the quark
combination ½q̄s�½s̄q�, and the derivatives are inside the
quark-antiquark pairs. This difference is useful when
investigating their decay properties, which will be dis-
cussed in Sec. V.
We can further construct six color-octet-color-octet

mesonic-mesonic currents, which can be related to the
above color-singlet-color-singlet mesonic-mesonic currents
through the Fierz transformation. Moreover, we can apply
the Fierz transformation to derive the relations between
diquark-antidiquark and mesonic-mesonic currents:

0
BBBBBBBBBB@

η1α1α2α3
η2α1α2α3
η3α1α2α3
η4α1α2α3
η5α1α2α3
η6α1α2α3

1
CCCCCCCCCCA

¼

0
BBBBBBBBBB@

− 1
2

1
2

1
2

− 1
2

1
2

1
2

− 1
2

1
2

1
2

1
2

− 1
2

− 1
2

1
2

− 1
2

1
2

− 1
2

1
2

− 1
2

1
2

− 1
2

1
2

1
2

− 1
2

1
2

1 1 0 1 1 0

1 1 0 −1 −1 0

1
CCCCCCCCCCA

0
BBBBBBBBBB@

ξ1α1α2α3
ξ2α1α2α3
ξ3α1α2α3
ξ4α1α2α3
ξ5α1α2α3
ξ6α1α2α3

1
CCCCCCCCCCA
:

ð15Þ

Therefore, these two constructions are equivalent, and in
the following we shall only use η1���6α1α2α3 to perform QCD
sum rule analyses. Note that this equivalence is just
between diquark-antidiquark and mesonic-mesonic cur-
rents, while compact diquark-antidiquark tetraquark states
and weakly bound meson-meson molecular states are
totally different. To exactly describe them, one needs
nonlocal interpolating currents, but we are still not capable
of using such currents to perform QCD sum rule analyses.

III. QCD SUM RULE ANALYSIS

In this section we use the currents η1���6α1α2α3 to perform
QCD sum rule analyses. We assume that they couple to
some exotic state X through

h0jηα1α2α3 jXi ¼ fXϵα1α2α3 ; ð16Þ

where fX is the decay constant and ϵα1α2α3 is the traceless
and symmetric polarization tensor, satisfying the following:

ϵα1α2α3ϵ
�
β1β2β3

¼ S0½g̃α1β1 g̃α2β2 g̃α3β3 �: ð17Þ

In this expression g̃μν ¼ gμν − qμqν=q2, and S0 denotes
symmetrization and subtracting the trace terms in the sets
fα1α2α3g and fβ1β2β3g.
Based on Eq. (16), we study the two-point correlation

function

Πα1α2α3;β1β2β3ðq2Þ

≡ i
Z

d4xeiqxh0jT½ηα1α2α3ðxÞη†β1β2β3ð0Þ�j0i

¼ ð−1ÞJS0½g̃α1β1 g̃α2β2 g̃α3β3 �Πðq2Þ; ð18Þ

at both hadron and quark-gluon levels.
At the hadron level we use the dispersion relation to

express Eq. (18) as

Πðq2Þ ¼
Z

∞

4m2
s

ρðsÞ
s − q2 − iε

ds; ð19Þ

where ρðsÞ is the spectral density. Then we parametrize it
using one pole dominance for the ground state X and a
continuum contribution:

ρðsÞ≡X
n

δðs −M2
nÞh0jηjnihnjη†j0i

¼ f2Xδðs −M2
XÞ þ continuum: ð20Þ

At the quark-gluon level we insert η1���6α1α2α3 into Eq. (18)
and calculate it using the method of operator product
expansion (OPE). After performing the Borel transforma-
tion to Eq. (18) at both hadron and quark-gluon levels, we
can approximate the continuum using the spectral density
above a threshold value s0, and obtain the sum rule
equation

Πðs0;M2
BÞ≡ f2Xe

−M2
X=M

2
B ¼

Z
s0

4m2
s

e−s=M
2
BρðsÞds: ð21Þ

We can use it to further evaluate MX, the mass of X,
through,

M2
Xðs0;MBÞ ¼

∂
∂ð−1=M2

BÞ
Πðs0;M2

BÞ
Πðs0;M2

BÞ

¼
R s0
4m2

s
e−s=M

2
BsρðsÞdsR s0

4m2
s
e−s=M

2
BρðsÞds : ð22Þ

In the present study we have calculated OPEs up to the
tenth dimension, including the perturbative term, the
strange quark mass, the gluon condensate, the quark
condensate, the quark-gluon mixed condensate, and their
combinations:
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Π11 ¼
Z

s0

4m2
s

�
s5

691200π6
−

m2
ss4

14336π6
þ
�
−
179hg2sGGi
5806080π6

þ m4
s

2016π6
−
mshq̄qi
720π4

þ mshs̄si
1512π4

�
s3

þ
�
37hg2sGGim2

s

122880π6
−
91mshgsq̄σGqi

30720π4
þm3

shq̄qi
80π4

−
m3

shs̄si
240π4

þ hq̄qihs̄si
60π2

�
s2

þ
�
−
hg2sGGim4

s

18432π6
þ 3m3

shgsq̄σGqi
256π4

þ 5hg2sGGimshq̄qi
3456π4

−
7hg2sGGimshs̄si

8640π4
þ 5hgsq̄σGqihs̄si

288π2
−
m2

shq̄qihs̄si
12π2

þ 5hq̄qihgss̄σGsi
288π2

�
sþ

�hg2sGGimshgsq̄σGqi
4608π4

−
m2

shgsq̄σGqihq̄qi
12π2

þ hg2sGGim3
shs̄si

13824π4
−
3m2

shgsq̄σGqihs̄si
128π2

−
hg2sGGihq̄qihs̄si

324π2
þ 17hgsq̄σGqihgss̄σGsi

3456π2
−
m2

shq̄qihgss̄σGsi
576π2

��
e−s=M

2

ds

þ
�
−
m2

shgsq̄σGqi2
24π2

þ 2mshgsq̄σGqihq̄qihs̄si
9

�
; ð23Þ

Π22 ¼
Z

s0

4m2
s

�
s5

345600π6
−

m2
s

7168π6
s4 þ

�
−
199hg2sGGi
5806080π6

þ m4
s

1008π6
−
mshq̄qi
360π4

þmshs̄si
756π4

�
s3

þ
�
41m2

shg2sGGi
122880π6

−
239mshgsq̄σGqi

30720π4
þm3

shq̄qi
40π4

−
m3

shs̄si
120π4

þ hq̄qihs̄si
30π2

�
s2

þ
�
−
5m4

shg2sGGi
18432π6

þ 7m3
shgsq̄σGqi
256π4

−
5mshq̄qihg2sGGi

3456π2
−
mshs̄sihg2sGGi

1080π4
þ 13hs̄sihgsq̄σGqi

288π2
−
m2

shs̄sihq̄qi
6π2

þ 13hq̄qihgss̄σGsi
288π2

�
sþ

�
49hgsq̄σGqihgss̄σGsi

3456π2
−
5m2

shq̄qihgss̄σGsi
576π2

−
mshg2sGGihgsq̄σGqi

4608π4
−
m2

shq̄qihgsq̄σGqi
6π2

þ 5m3
shs̄sihg2sGGi
13824π4

−
7m2

shs̄sihgsq̄σGqi
128π2

þ hq̄qihs̄sihg2sGGi
324π2

��
e−s=M

2
Bds

þ
�
−
m2

shgsq̄σGqi2
12π2

þ 4mshs̄sihq̄qihgsq̄σGqi
9

�
; ð24Þ

Π33 ¼
Z

s0

4m2
s

�
þ s5

691200π6
−

m2
ss4

14336π6
þ
�
−
179hg2sGGi
5806080π6

þ m4
s

2016π6
þmshq̄qi

720π4
þ mshs̄si
1512π4

�
s3

þ
�
37hg2sGGim2

s

122880π6
þ 91mshgsq̄σGqi

30720π4
−
m3

shq̄qi
80π4

−
m3

shs̄si
240π4

−
hq̄qihs̄si
60π2

�
s2

þ
�
−
hg2sGGim4

s

18432π6
−
3m3

shgsq̄σGqi
256π4

−
5hg2sGGimshq̄qi

3456π4
−
7hg2sGGimshs̄si

8640π4
−
5hgsq̄σGqihs̄si

288π2
þm2

shq̄qihs̄si
12π2

−
5hq̄qihgss̄σGsi

288π2

�
sþ

�
−
hg2sGGimshgsq̄σGqi

4608π4
−
m2

shgsq̄σGqihq̄qi
12π2

þ hg2sGGim3
shs̄si

13824π4
þ 3m2

shgsq̄σGqihs̄si
128π2

þ hg2sGGihq̄qihs̄si
324π2

−
17hgsq̄σGqihgss̄σGsi

3456π2
þm2

shq̄qihgss̄σGsi
576π2

��
e−s=M

2

ds

þ
�
−
m2

shgsq̄σGqi2
24π2

þ 2mshgsq̄σGqihq̄qihs̄si
9

�
; ð25Þ
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Π44 ¼
Z

s0

4m2
s

�
s5

345600π6
−

m2
ss4

7168π6
þ
�
−
199hg2sGGi
5806080π6

þ m4
s

1008π6
þmshq̄qi

360π4
þmshs̄si

756π4

�
s3

þ
�
41m2

shg2sGGi
122880π6

þ 239mshgsq̄σGqi
30720π4

−
m3

shq̄qi
40π4

−
m3

shs̄si
120π4

−
hq̄qihs̄si
30π2

�
s2

þ
�
−
5m4

shg2sGGi
18432π6

−
7m3

shgsq̄σGqi
256π4

þ 5mshq̄qihg2sGGi
3456π4

−
mshs̄sihg2sGGi

1080π4
−
13hs̄sihgsq̄σGqi

288π2
þm2

shs̄sihq̄qi
6π2

−
13hq̄qihgss̄σGsi

288π2

�
sþ

�
mshg2sGGihgsq̄σGqi

4608π4
þ 5m3

shg2sGGihs̄si
13824π4

−
m2

shq̄qihgsq̄σGqi
6π2

þ 7m2
shs̄sihgsq̄σGqi

128π2

−
hs̄sihq̄qihg2sGGi

324π2
−
49hgsq̄σGqihgss̄σGsi

3456π2
þ 5m2

shq̄qihgss̄σGsi
576π2

��
e−s=M

2
Bds

þ
�
4mshq̄qihs̄sihgsq̄σGqi

9
−
m2

shgsq̄σGqi2
12π2

�
; ð26Þ

Π55 ¼
Z

s0

4m2
s

�
þ s5

345600π6
−

m2
ss4

7168π6
þ
�
−

73hg2sGGi
1451520π6

þ m4
s

1008π6
þmshs̄si

756π4

�
s3 þ

�hg2sGGim2
s

2048π6
−
m3

shs̄si
120π4

�
s2

þ
�
−
hg2sGGim4

s

11520π6
−
23hg2sGGimshs̄si

17280π4

�
s −

m2
shgsq̄σGqihs̄si

6π2
þ hg2sGGim3

shs̄si
6912π4

�
e−s=M

2
Bds

þ
�
−
m2

shgsq̄σGqi2
12π2

þ 4mshgsq̄σGqihq̄qihs̄si
9

�
; ð27Þ

Π66 ¼
Z

s0

4m2
s

�
s5

172800π6
−

m2
ss4

3584π6
þ
�
−
25hg2sGGi
290304π6

þ m4
s

504π6
þmshs̄si

378π4

�
s3 þ

�
9m2

shg2sGGi
10240π6

−
m3

shs̄si
60π4

�
s2

þ
�
−
m4

shg2sGGi
2304π6

−
43mshg2sGGihs̄si

17280π4

�
s −

m2
shgsq̄σGqihq̄qi

3π2
þ 5m3

shg2sGGihs̄si
6912π4

�
e−s=M

2
Bds

þ
�
−
m2

shgsq̄σGqi2
6π2

þ 8mshgsq̄σGqihq̄qihs̄si
9

�
: ð28Þ

Based on these expressions, we shall perform numerical
analyses in the next section.

IV. NUMERICAL ANALYSES

In this section we use the sum rules given in
Eqs. (23)–(28) to perform numerical analyses. The follow-
ing values are used for various quark and gluon parameters
[1,44–50]:

msð2 GeVÞ ¼ 96þ8
−4 MeV;

hg2sGGi ¼ ð0.48� 0.14Þ GeV4;

hq̄qi ¼ −ð0.240� 0.010Þ3 GeV3;

hs̄si ¼ ð0.8� 0.1Þ × hq̄qi;
hgsq̄σGqi ¼ −M2

0 × hq̄qi;
hgss̄σGsi ¼ −M2

0 × hs̄si;
M2

0 ¼ ð0.8� 0.2Þ GeV2: ð29Þ

To begin with, we show Eqs. (23)–(28) in Fig. 1
as functions of the threshold value s0. We find that
Π33ðM2

B; s0Þ and Π44ðM2
B; s0Þ are both negative when s0

is around 6 GeV2. This suggests that they are both
nonphysical in this energy region, so we shall not inves-
tigate η3α1α2α3 and η4α1α2α3 any more.
The mass MX depends on two free parameters, the

threshold value s0 and the Borel mass MB. To find their
proper working regions, we investigate three aspects:
(a) the OPE convergence, (b) the pole contribution, and
(c) the mass dependence on MB and s0.
Taking the current η1α1α2α3 as an example, whose sum

rules are given in Eq. (23), we first investigate the
convergence of OPE, which is the cornerstone of a reliable
QCD sum rule analysis. We require the D ¼ 10 term to be
less than 5%:

Convergence ðCVGÞ≡
����Π

D¼10
11 ðs0;M2

BÞ
Π11ðs0;M2

BÞ
���� ≤ 5%: ð30Þ
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As shown in Fig. 2 using the solid curve, the lower bound
of the Borel mass is determined to be M2

B > 1.32 GeV2,
when setting s0 ¼ 7.2 GeV2.
Then we investigate the one-pole-dominance assumption

by requiring the pole contribution (PC) to be larger
than 45%:

PC≡
����Π11ðs0;M2

BÞ
Π11ð∞;M2

BÞ
���� ≥ 45%: ð31Þ

As shown in Fig. 2 using the dashed curve, the upper bound
of the Borel mass is determined to be M2

B < 1.45 GeV2,
when setting s0 ¼ 7.2 GeV2.
Altogether we obtain the Borel window to be

1.32GeV2<M2
B <1.45GeV2 when setting s0¼7.2GeV2.

Redoing the same procedures by changing s0, we find
that there are nonvanishing Borel windows as long as
s0 > 6.7 GeV2.
Finally, we study the mass dependence on MB and s0.

We show the mass MX in Fig. 3 with respective to these
two parameters. It is stable around s0 ∼ 7.2 GeV2, and its
dependence on MB is weak in the Borel window
1.32 GeV2 < M2

B < 1.45 GeV2. Accordingly, we choose
the working regions to be 6.2 GeV2 < s0 < 8.2 GeV2 and
1.32 GeV2 < M2

B < 1.45 GeV2, where the mass MX is
evaluated to be

Mη1 ¼ 2.33þ0.19
−0.16 GeV: ð32Þ

Here the central value corresponds to s0 ¼ 7.2 GeV2 and
M2

B ¼ 1.38 GeV2, and the uncertainty comes fromMB, s0,
and various quark and gluon parameters listed in Eq. (30).
Similarly, we use η2α1α2α3 to perform numerical analyses.

We show the mass extracted in Fig. 4 as a function of
the threshold value s0 (left) and the Borel mass MB (right).

FIG. 3. Mass calculated using the current η1α1α2α3 , as a function of the threshold value s0 (left) and the Borel massMB (right). In the left
panel the short-dashed/solid/long-dashed curves are depicted when settingM2

B ¼ 1.32=1.38=1.45 GeV2, respectively. In the right panel
the short-dashed/solid/long-dashed curves are depicted when setting s0 ¼ 6.2=7.2=8.2 GeV2, respectively.

FIG. 2. CVG [solid curve, defined in Eq. (30)] and PC
[dashed curve, defined in Eq. (31)] as functions of the Borel
mass MB. These curves are obtained using the current η1α1α2α3
when setting s0 ¼ 7.2 GeV2.

FIG. 1. The two-point correlation functions, Π11ðs0;M2
BÞ (left-solid), Π22ðs0;M2

BÞ (left-dashed), Π33ðs0;M2
BÞ (middle-solid),

Π44ðs0;M2
BÞ (middle-dashed), Π55ðs0;M2

BÞ (right-solid), and Π66ðs0;M2
BÞ (right-dashed), as functions of the threshold value s0.

These curves are obtained by setting M2
B ¼ 1.4 GeV2.
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After extracting the working regions to be 6.6 GeV2 <
s0 < 8.6 GeV2 and 1.33 GeV2 < M2

B < 1.48 GeV2, we
obtain

Mη2 ¼ 2.45þ0.27
−0.18 GeV; ð33Þ

where the central value corresponds to s0 ¼ 7.6 GeV2

and M2
B ¼ 1.40 GeV2.

The same procedures are applied to analyses of the
currents η5α1α2α3 and η6α1α2α3 , but the masses extracted from
them are significantly larger than those from η1α1α2α3 and
η2α1α2α3 . We summarize all the results in Table I.
It is interesting to investigate the mixing of η1α1α2α3 and

η2α1α2α3 , since the possibly existing physical state may have a
structure much more complicated than those described by
these two single currents [41–43]:

ηmix
α1α2α3ðθÞ≡ cos θη1α1α2α3 þ sin θη2α1α2α3 : ð34Þ

However, we find that the mass minimum is arrived just at
θ ¼ 0°, that is ηmix

α1α2α3ð0°Þ ¼ η1α1α2α3 . Hence, this mixing
does not change the extracted mass, and we shall use the
results extracted from the current η1α1α2α3 to draw conclu-
sions in the next section.

V. SUMMARY AND DISCUSSIONS

In this paper we use the method of QCD sum rules
to study light tetraquark states with the exotic quantum
number JPC ¼ 3−þ. We find that two quarks and two
antiquarks together with at least one derivative are neces-
sary to reach such a quantum number; besides, the quark
content can be qsq̄s̄ (q ¼ up=down and s ¼ strange), but
cannot be sss̄s̄.
Altogether we have constructed six diquark-antidiquark

interpolating currents, where the derivative can only be
inside the diquark/antidiquark field, i.e.,

η ¼ ½qD↔s�½q̄s̄� þ ½qs�½q̄D↔s̄�: ð35Þ

We use them to perform QCD sum rule analyses, and the
results are summarized in Table I. The lowest mass,

Mη1 ¼ 2.33þ0.19
−0.16 GeV;

is extracted from the current η1α1α2α3 , which is defined
in Eq. (4). From its definition, we clearly see that it
contains one “good” diquark of sqs ¼ 1 and one “good”
antidiquark of sq̄s̄ ¼ 1 [51], with one of them orbitally
excited:

jJPC ¼ 3−þ; sqs ¼ sq̄s̄ ¼ 1; lqs ¼ 1 or lq̄s̄ ¼ 1i: ð36Þ

Since the derivative cannot be between the diquark and
antidiquark fields, this combination is the most stable one,
phenomenologically.
In the present study we have also constructed six

meson-meson interpolating currents, as defined in
Eqs. (10)–(14). Three of them have the quark combination
½q̄q�½s̄s�, and the derivative is between the two quark-
antiquark pairs,

ξ ¼ ½q̄q�D↔½s̄s�; ð37Þ

TABLE I. Masses extracted from the currents η1;2;5;6α1α2α3 .

Currents M2
B ½GeV2� s0 ½GeV2� Pole [%] Mass [GeV]

η1α1α2α3 1.32–1.45 7.2� 1.0 44.9–53.3 2.33þ0.19
−0.16

η2α1α2α3 1.33–1.48 7.6� 1.0 45.1–54.1 2.45þ0.27
−0.18

η5α1α2α3 1.46–1.60 9.6� 1.0 45.1–53.4 2.72þ0.11
−0.12

η6α1α2α3 1.45–1.58 9.4� 1.0 45.2–53.1 2.67þ0.11
−0.12

FIG. 4. Mass calculated using the current η2α1α2α3 , as a function of the threshold value s0 (left) and the Borel massMB (right). In the left
panel the short-dashed/solid/long-dashed curves are depicted when settingM2

B ¼ 1.33=1.40=1.48 GeV2, respectively. In the right panel
the short-dashed/solid/long-dashed curves are depicted when setting s0 ¼ 6.6=7.6=8.6 GeV2, respectively.
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the other three have the quark combination ½q̄s�½s̄q�, and the
derivative is inside the quark-antiquark pairs,

ξ0 ¼ ½q̄D↔s�½s̄q� − ½q̄s�½s̄D↔q�: ð38Þ

Hence, a special decay behavior of the sqs̄q̄ tetraquark
states with JPC ¼ 3−þ is that (a) they well decay into
the P-wave ðq̄qÞS-waveðs̄sÞS-wave final states but not into the
ðq̄qÞS-waveðs̄sÞP-wave or ðq̄qÞP-waveðs̄sÞS-wave final states, and
(b) they well decay into the ðq̄sÞS-waveðs̄qÞP-wave final states
but not into the P-wave ðq̄sÞS-waveðs̄qÞS-wave final states.
Especially, we use the Fierz transformation given in

Eq. (15) to investigate the light sqs̄q̄ tetraquark state
defined in Eq. (36). It is well coupled by the current
η1α1α2α3 , and its mass has been calculated to be
2.33þ0.19

−0.16 GeV. Its isospin can be either I ¼ 0 or I ¼ 1,
which cannot be differentiated in the present study. It has
the following special decay behavior: (a) it decays well
into the P-wave ρϕ=ωϕ channel but not into the
ρf2ð1525Þ=ωf2ð1525Þ=ϕf2ð1270Þ channels, and (b) it
decays well into the K�ð892ÞK̄�

2ð1430Þ channel but not
into the P-wave K�ð892ÞK̄�ð892Þ channel. Note that some
of these features can also be derived by analyzing quantum
numbers of the initial and final states.
This state lies very close to the K�ð892ÞK̄�

2ð1430Þ
threshold. Theoretically, it is not so easy to differentiate
them, since we do not yet understand the K�

2ð1430Þmeson
well. However, experimentally, one may be able to do

this, since the K�ð892Þ and K�
2ð1430Þmesons are both not

very narrow, i.e., ΓK�ð892Þ ¼ 50.3� 0.8 MeV and
ΓK�

2
ð1430Þ ¼ 98.5� 2.7 MeV [1]. We propose to investi-

gate the P-wave ρϕ=ωϕ channel in future BESIII,
Belle-II, and GlueX experiments. If there existed a
narrower resonance of JPC ¼ 3−þ, it would be more
likely to be a compact sqs̄q̄ tetraquark state other than
a K�ð892ÞK̄�

2ð1430Þmolecular state. For completeness, in
the present study we have also studied its partner state
with the quark content qqq̄q̄, whose mass is extracted to
be 2.27þ0.28

−0.17 GeV.
To end this paper, we note that the BESIII Collaboration

is possibly able to analyze some of the above decay
channels simultaneously. For example, in Ref. [36] they
performed a partial-wave analysis for the process
eþe− → KþK−π0π0. They analysed the four subprocesses
Kþð1460ÞK−, Kþ

1 ð1400ÞK−, Kþ
1 ð1270ÞK−, and

K�þð892ÞK�−ð892Þ, where they clearly observed the
ϕð2170Þ=Yð2175Þ in the former two processes but not in
the latter two processes.
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