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We introduce a novel grooming procedure, which is an extension of the modified MassDrop tagging
algorithm, tailored to the needs of deep inelastic scattering (DIS). The new algorithm, which grooms the
event as a whole, takes advantage of the natural separation of current and target fragmentation in the Breit
frame, in order to eliminate radiation in the beam and central rapidity regions. We study the groomed
invariant mass in DIS and within soft-collinear effective theory we construct a factorization theorem for the
cross section in the back-to-back limit. In this limit we show that, up to a normalization factor, the cross
section does not depend on the incoming hadronic matrix element and we propose this measurement at
HERA and the future electron-ion collider (EIC) as a probe to hadronization, precision QCD, and cold
nuclear matter effects. We also give an event based definition of the winner-take-all axis and comment on
possible applications.
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I. INTRODUCTION

Some of the main goals of the future Electron-Ion-
Collider [1] are the study of hadronization, QCD dynamics,
and 3D-imaging of the nucleon and nuclei. Among others,
event shapes, jet, and jet substructure observables are
proposed to achieve these goals. These proposals are often
motivated by the fact that event shapes and jet observables
have already been applied successfully in various aspects of
QCD phenomenology. However, the applicability and the
necessity for such observables strongly depends on the
experiment and the objective in consideration. For exam-
ple, while for the clean environment of lepton-lepton
colliders, event shape measurements can be directly com-
pared to theoretical predictions, in hadronic colliders such
comparison is spoiled by the contamination from under-
lying event (UE) and soft multi-parton interactions. A
remedy to this problem is to use jet and jet substructure
observables which are often extension of event shapes but
limited only to the particles within the jets. Nonetheless,
soft and uniformly distributed radiation can still signifi-
cantly modify jet substructure measurements. To this end,
theorists and experimentalists often employ grooming
techniques [2–8] to remove wide angle soft radiation,
isolating this way the energetic core of the jet which is
usually found near the jet axis. Groomed jets are shown to

be mostly insensitive to the contamination from UE in
hadronic colliders and thus constitute a robust framework
for comparison between theory and experiment. In the past
few years there has been a significant theoretical progress
[9–26] in our understanding of groomed observables.
These studies were further complemented by experimental
results [27–32] both in pp and AA collisions.
Groomed jet substructure observables have also been

considered for the EIC. However, the role and the appli-
cability of grooming at EIC is still a new and unexplored
subject. While at EIC contamination from UE is not going
to be an issue, there are many other motivations for the use
of grooming techniques. Some of those are: (i) constructing
observables free from nonglobal-logarithms, (ii) mitigation
of hadronization corrections, (iii) phenomenological handle
on soft radiation, and (iv) as a dial for nonperturbative
contributions. Despite the many motivations for the use of
grooming, at EIC we anticipate jets with rather low particle
multiplicities. In this case it is unclear what the effect of
grooming will be and how groomed jet observables should
be interpreted. In this paper we introduce an event-level
grooming procedure which restores the role of grooming at
EIC. To achieve that we modify a widely used grooming
algorithm, the modified MassDrop tagging (mMDT) [4].
By creating an angular ordering, measuring the angle from
the direction of the photon in the Breit frame, the proposed
grooming algorithm removes radiation away from the
struck quark direction and close to proton remnants.
Then, groomed events at EIC can be treated in an
equivalent manner to groomed jets.
Beyond the motivations mentioned above, the event-

grooming algorithm we discuss in this paper can be used
for eliminating beam remnants and initial state radiation
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which can be a significant source of uncertainty to global
event observables at EIC and HERA. As we discuss later
using the example of groomed invariant mass, the shape of
the groomed distribution is insensitive to the initial state
hadronic matrix element and the kinematic variables of the
hard process. Furthermore, the groomed distributions are
also insensitive to the activity in the forward region where
(due to detector acceptance) constraints have been imple-
mented at HERA and are expected to be implemented at the
future electron-ion-collider (EIC) as well.
This paper is organized as follows. In Sec. II we briefly

introduce our notation, review the DIS kinematics in the
Breit frame, and we introduce the new grooming algorithm.
Then we discuss the application of our algorithm to event
shape observables using as an example the groomed
invariant mass. We formulate a factorization theorem in
the back-to-back limit within the soft and collinear effective
theory (SCET) [33–37], we compute the next-to- (NLL)
and next-to-next-to-leading logarithmic (NNLL) accuracy
distributions, and compare against the partonic shower of
PYTHIA 8. We close this section with a brief discussion on
hadronization effects. In Sec. III we give an event based
definition of the winner-take-all (WTA) axis and we discuss
possible applications. We finally conclude in Sec. IV. In the
Appendix we have collected fixed order results of various
elements of the factorized cross section, as well as the
leading order full-QCD cross section.

II. THE GROOMING ALGORITHM

In this paper we work explicitly in the Breit frame, where
exist a clean geometrical separation of target and current
fragmentation.1 To avoid contributions from the resolved
photon events we will be considering only events with large
photon virtuality, i.e., Q ¼

ffiffiffiffiffiffiffiffi
−q2

p
≫ 1 GeV, where qμ is

the four-momentum of the virtual photon. In the Breit
frame we have,

qμ ¼ Q
2
ðn̄μ − nμÞ ¼ Qð0; 0; 0;−1Þ; ð1Þ

where nμ ≡ ð1; 0; 0;þ1Þ and n̄μ ≡ ð1; 0; 0;−1Þ. The proton
momentum (up to mass corrections) is,

Pμ ≃
Q
2xB

nμ ¼ Q
2xB

ð1; 0; 0;þ1Þ; ð2Þ

with xB the standard Bjorken variable, xB ≡Q2=ð2q · PÞ.
At Born level, the struck quark back-scatters against the
proton and has momentum (x ≃ xB):

pμ
q ¼ xPμ þ qμ ≃ ðQ=2Þn̄μ: ð3Þ

The fragmentation of the struck-quark leads to collimated
(jet-like) radiation pointing to the opposite of the beam
direction as illustrated in Fig. 1. On the other hand, initial
state radiation and beam remnants are moving in the
opposite direction close to the proton’s direction of motion.
It is this feature of the Breit frame, which leads to clean
separation of target and current fragmentation, that we
utilize in the new grooming algorithm.
Throughout this paper we will use the Lorentz invariant

momentum fraction zi,

zi ¼
P · pi

P · q
⟶
Breit

frame
zi ¼ n · pi=Q ¼ pþ

i =Q: ð4Þ

where pμ
i is the four-momentum of the particle i. Here and

in the rest of this paper we use the standard notation, pþ ≡
n · p and p− ≡ n̄ · p. Note that from conservation of
momentum we have

X
i

zi ¼ 1; ð5Þ

where the sum extents over all final state particles in the
event, excluding the scattered lepton or its decay products.
The struck quark fragments, found close the direction of the
virtual photon share the largest fraction of the lightcone
momenta pþ and thus satisfy zi ∼ 1. Then, the constraint in
Eq. (5) requires that soft radiation and particles close to the
direction of the target hadron are described by parametri-
cally smaller values of the momentum fraction zi ≪ 1.

A. Clustering and declustering

We aim to remove radiation in the region close to the
beam, but not in the opposite direction where the struck
quark fragments are found. Therefore, the grooming
procedure we introduce it is necessarily asymmetric under
ẑ → −ẑ. Following a similar procedure to mMDT and
SoftDrop, all particles in the event (excluding the scattered
lepton or its decay products) are organized in a clustering
tree based on their angular separation and their distance
from the direction of the virtual photon. To do exactly that

FIG. 1. Diagrammatic illustration of the Born level process in
deep inelastic quark scattering in the Breit frame.

1However, all of the kinematic variables we introduce are
either Lorentz invariant or boost invariant along the direction of
the proton in Breit frame. Thus, the grooming algorithm we
develop will also be boost invariant along that same direction,
e.g., in the γ�p center of mass frame.
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we use the Centauro measure introduced in Ref. [38] in the
context of jet algorithms for DIS in the Breit frame. The
clustering procedure is:
(1) For every pair of particles fi; jg in the event, we

calculate the Centauro measure,

dij ¼ ðΔη̄ijÞ2 þ 2η̄iη̄jð1 − cosΔϕijÞ; ð6Þ

where

η̄i ≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q · pi

xBP · pi

r
!Breit
frame

2p⊥
i

pþ
i
; ð7Þ

and Δη̄ij ¼ η̄i − η̄j. Note that in the very backward
limit (close to the photon axis) η̄i is up to power-
corrections the angle of the particle i and the
photon axis.

(2) We find the minimum of all dij and we merge the
particles i and j into a new “branch” by adding their
momenta and removing the merged particles i and j
from the list.

(3) Repeat until all particles in the event are merged
together.

Keeping the history of all mergings, maps the event into an
angular ordering tree where nearby particles are merged
together in early stages. Then, clusters of particles near to
the direction of the photon are combined first. Last in the
tree, are clustered particles near the target hadron beam.
With this angular ordering in hand we may now start the
declustering process. The procedure is similar to SoftDrop,
with some modifications. We open the tree back up in the
reverse order of clustering. At each stage of the decluster-
ing, we have two branches available, label them i and j. We
require:

minðzi; zjÞ
zi þ zj

> zcut; ð8Þ

where zcut is the grooming parameter, and zi is the
momentum fraction variable of the branch i as defined
in Eq. (4). If the two branches fail this requirement, the
branch with smaller zi is removed from the event, and we
decluster the other branch, once again testing Eq. (8). The
pruning continues until we have a branch that when
declustered passes the condition in Eq. (8).
We demonstrate the result of grooming in Fig. 2, where

we visualize a sample of events as simulated in PYTHIA 8

and groomed according to the procedure described above.
In this figure, each particle is illustrated as a disk, with area
proportional to its energy, projected onto the unfolded
sphere about the hard-scattering vertex. The vertical dashed
lines correspond to constant θ and curved lines to constant
ϕ. Grayed out disks correspond to particles that have been
“groomed away” where green disks constitute the groomed
event. Characteristic events are event 1 and 2, where the
wide-angle particles are groomed away while the energetic
and collinear particles (close to direction of the struck
quark) pass grooming. However, for (relatively rare) events
where an energetic cluster of particles exist in central
rapidity regions (see for example event 3 in Fig. 2),
grooming will have small effect at central rapidities.
This is due to the fact that such events contain central
rapidity jets with relatively large momentum fraction zi and
capable of passing the momentum-fraction condition in
Eq. (8). The deferment event radiation patterns can be
identified by considering measurements of event shapes
which we discuss next.

B. Groomed invariant mass: A case study

In the case of multiple final-state hadrons, it is hard to
study and understand the collective behavior and

FIG. 2. Visualization of three PYTHIA 8 events at
ffiffiffi
s

p ¼ 63 GeV and Q ∼ 10 GeV before and after grooming. The particles in this
events are represented by disks on the unfolded sphere. Green disks represent particles that pass grooming where grayed-out particles are
removed from the event by the grooming procedure. For the grooming parameter we use here zcut ¼ 0.1
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correlations between those hadrons by simply looking at
individual particle properties such as four-momenta and
charge. It is therefore useful to have a single variable, the
value of which, characterizes the energy flow and distri-
bution of momenta in space. Event shape variables play
exactly this role. For the past several decades, there has
been many event shape observables proposed and studied
extensively, and they have played a central part in our
understudying of quantum chromodynamics (QCD) with
plethora of applications in QCD phenomenology. Some
important examples of such applications are: (i) determi-
nation of the QCD fundamental constants such as the
strong coupling [39–46] and the heavy quark masses [47–
51], (ii) testing perturbative QCD [39,52–58], (iii) studying
nonpertutbative effects and hadronization [59–62], and
(iv) tuning Monte-Carlo event generators [63–66].
The role of event shape studies in this work is twofold.

First, we are considering groomed event shapes as a
possible measurement in a future analysis at HERA and
at the EIC, and second as a theoretical tool for quantita-
tively investigating the various features of the grooming
algorithm that we introduced in this work. For our purposes
we will focus on the groomed invariant mass (GIM) which
we denote with m2

gr: and is given by the invariant mass
squared of the groomed event,

m2
gr: ≡

�X
i

pμ
i

�
2

; ð9Þ

where the sum runs over all particles that pass grooming,
excluding the scattered lepton or its decay products. Note
that if the sum included all hadrons in the event then this
definition would correspond to the photon-proton center-
of-mass energy, W2 ≡ ðPμ þ qμÞ2, which can be uniquely
determined from the kinematics of the hard process.

However, GIM depends on the distribution of radiation
in the event and is a measure of how well collimated is the
radiation that passes grooming. For example, in the back-
to-back limit where radiation is distributed in two pencil-
like “jets” (from which one jet is the beam, see for example
event 1 in Fig. 2), we havem2

gr: ≪ Q2. On the other hand, in
a dijet configuration (i.e., two final state jets, see for
example event 3 in Fig. 2) we have m2

gr: ∼Q2. We will
study the spectrum of the GIM in different kinematic
regimes and for a range of values of the grooming
parameter, zcut. For these studies we are employing
Monte-Carlo event generators as well as effective field
theory (EFT) techniques.
We first consider PYTHIA 8 simulations for potential EIC

beam energies: 10 GeV electron on a 100 GeV proton
(

ffiffiffi
s

p
≃ 63 GeV). After imposing the rapidity cuts on the

final state particles in the Laboratory frame we perform
the transformation in the Breit frame where we construct
the observable and impose the grooming algorithm. We
only focus on events with photon virtuality Q > 10 GeV
and we test the effect of cutoff on the pseudo-rapidities,
jηj < 3.5. The results are shown in Fig. 3. The GIM
distributions are shown for three values of the grooming
parameter zcut ¼ 0.2, 0.1, and 0.05 from left to right
respectively. In each plot we show the results for jηj < 3.5
(red) and no rapidity cuts (blue). To improve readability,
the distributions are normalized and the horizontal axis
has been re-scaled by the square of the minimum value of
Q included in the analysis, in this case Q2

min ¼ 100 GeV2.
It is very clear from these plots that the distributions shift
to smaller GIM values with larger zcut. This is expected
due to the additive property of the observable. The
correction to the distributions due to the rapidity cutoff
at jηj < 3.5 and for all values of zcut is found to be 1%-2%
in the back-to-back limit and about 5% in the tail of the

FIG. 3. PYTHIA 8 groomed invariant mass (GIM) spectrum for EIC kinematics. We present three different values of the grooming
parameter zcut ¼ 0.2, 0.1, and 0.05 from left to right. We compare the GIM distributions before and after imposing rapidity cutoff at
jηj < 3.5 in the Laboratory frame.
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distribution.2 This demonstrates that the groomed events
are practically insensitive to rapidity cutoffs due to
effective removal of initial state radiation and beam
remnants in the forward region. This property of the
grooming algorithm could be proven particularly useful
in measurements of global observables such as thrust,
N-jettiness, angularities, etc., which could suffer from
large systematic uncertainties due to detector acceptance
in the forward region.

C. Factorization

One of the powerful aspects of grooming algorithms,
such as mMDT and SoftDrop, is that the corresponding

groomed jet mass distributions can be calculated in
perturbation theory at very high precision. The mMDT
jet mass in eþe− has been calculated at fixed order up to
NNLO [15,67–69] and up to NNNLL [70] in resummation.
Similarly the GIM distribution can be calculated per-

turbatively in the regime m2
gr: ≫ ΛQCD, by matching onto

the parton distribution functions.3 The order OðαsÞ result
of this matching procedure is given in the Appendix.
However, in the case where m2

gr:=Q2≪1 and/or zcut ≪ 1,
logarithms of these quantities can induce enhancements of
higher order terms and potentially ruin the convergence of
the perturbative expansion. To observe this enhancement it
is sufficient to look at the LO result,

dσ
dxdQ2dm2

gr:

����m2
gr:≪Q2 ;

zcut≪1

¼ σ0ðQ; yÞ
Q2

�
Cð1Þðzcut; m2

gr:Þ
αsðμÞ
4π

Θ
�
1 − x
x

−
m2

gr:

Q2

�X
i¼q;q̄

Q2
i fi=Pðx; μÞ þOðα2sÞ

�
; ð10Þ

whereQi is the charge of the quark flavor i and fi=P are the
corresponding proton PDFs. The coefficient Cð1Þ is ex-
tracted from expanding the full QCD cross section in the
region m2

gr: ≪ Q2 and zcut ≪ 1 keeping only the leading
terms. Doing so we find,

Cð1Þðm2
gr:; zcutÞ ¼ −4CF

Q2

m2
gr:

�
3

4
þ ln zcut

�
: ð11Þ

Evaluating the coefficient for typical values ofm2
gr:=Q2 and

zcut we find Cð1Þ ∼ 50–200. Comparing this to the expan-
sion parameter, αsð20 GeVÞ=ð4πÞ ∼ 0.01, we find that the
convergence of the perturbative expansion in this region of
phase-space might be slow or even unstable and therefore
potentially resulting in large theoretical uncertainties. Thus,
it is crucial that we perform the resummation of these
logarithms to all orders in perturbation theory. To achieve
this we factorize the cross section into various matrix
elements each depending on a single physical scale (or
multiple scales of similar size). The renormalization group
equations satisfied by these matrix elements will then allow
us to establish a systematic framework for the resummation
of large logarithms up to the desired logarithmic accuracy.
Here we will limit our analysis in the case where m2

gr: ≪
Q2 and zcut ≪ 1, and we construct the factorized cross
section for two possible hierarchies,

region 1∶ 1 ≫ zcut ≫ m2
gr:=Q2;

region 2∶ 1 ≫ zcut ∼m2
gr:=Q2: ð12Þ

Although both regions are present in the GIM spectrum,
region 1 is more relevant for larger values of zcut where
region 2 better describes distributions with milder groom-
ing. This is due to the fact that as we decrease zcut, more
radiation passes grooming, which then leads to larger
values of m2

gr:. This can be observed in Fig. 3.

1. Region 1

To establish the factorized form of the cross section we
work in soft collinear effective theory (SCET). We first
identify the degrees of freedom relevant to our observable in
region 1 and then factorize the cross section accordingly
using the EFT techniques. We will not show the details of
such a factorization procedure here but we will simply show
the final result. Details for factorization within SCET in DIS
can be found in Refs. [20,71]. For the discussion that follows
it is instructive to introduce a dimensionless variable, λ,

λ ¼ m2
gr:

Q2
; ð13Þ

which will play the role of expansion and power-counting
parameter of the EFT.
An important element of the grooming algorithm is that

it organizes radiation based on the angular separation and
distribution in space. It is then critical to think of the
relevant modes the same way. The collinear radiation from
the fragmentation of the struck quark is found close to the
photon axis and therefore will merge into the clustering tree
at the very early stages of the clustering process. Also
energetic particles along this direction are anticipated to
have large pþ component, leading to momentum fractions
za ∼ 1 and as a result will pass the energy-fraction con-
dition, thus contributing to the GIMmeasurement. We refer
to these modes as “n̄-collinear”. At relatively wider angles,

2The effects are anticipated to be larger in the tail of the
distribution since this region is populated by uniformly distrib-
uted radiation and dijet configurations which are more sensitive
to radiation in the forward region.

3In principle small hadronization correction are also antici-
pated here.
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but still close to the direction of the virtual photon we can
find radiation energetic just enough to pass the grooming
procedure, i.e., za ∼ zcut and thus can also contribute to the
measurement of GIM. We refer to these modes as “col-
linear-soft” [72]. In the other side of the event (close to the
beam direction) we find initial state radiation and beam
remnants from the incoming target-hadron. While this
radiation is in principle very energetic, its directionality
suggests that it will be merged to the clustering tree last and
thus tested first against the energy momentum-fraction
condition. With za ≪ 1 it is most certain that particles from

this region of phase-space will not pass grooming. We refer
to these modes as “n-collinear”. Finally, radiation in the
mid-rapidity region can only be soft, otherwise will lead
to large values of GIM. Therefore, soft radiation is con-
strained to fail grooming, so it does not induces contri-
butions to the measurement beyond the hierarchy described
in region 1. The directionality, the energy fraction (based
on if they pass or fail grooming), and the GIM measure-
ment, fix the pþ and p− component of each mode. The
p⊥ component is then fixed by the on-shell condition:
ðp⊥Þ2 ∼ pþp−. Thus, for the modes we discussed here we
have the following momenta scaling,

n-collinear∶ pn ∼Qðzcut; 1; ffiffiffiffiffiffiffi
zcut

p Þ;
soft∶ ps ∼Qzcutð1; 1; 1Þ;

collinear-soft∶ pcs ∼Qðλ; zcut;
ffiffiffiffiffiffiffiffiffi
zcutλ

p
Þ;

n̄-collinear∶ pn̄ ∼Qð1; λ;
ffiffiffi
λ

p
Þ; ð14Þ

where we used the standard notation p ¼ ðpþ; p−; p⊥Þ.
The modes are shown on the lnðQ=p0Þ − lnð1=θ̄Þ plane in
Fig. 4 (left panel), where θ̄ ¼ π − θ.
Considering these modes and following Ref. [71] we can

factorize the cross section into the EFT matrix elements and
a hard function (which is derived by the matching of the
EFT operators onto the QCD current). The factorized cross
section reads,

dσ
dxdQ2dm2

gr:
¼ HðQ; y; μÞSðQzcut; μÞ

X
f

Bf=Pðx;Q2zcut; μÞ
Z

den̄decsδðm2
gr: − en̄ − ecsÞJðen̄; μ2ÞCðecszcut; μ2Þ

×
�
1þO

�
zcut;

m2
gr:

zcutQ2

��
; ð15Þ

where H is the hard function, J is the quark thrust jet
function, C is the SoftDrop collinear-soft function for jet-
mass measurement, Bf=P is the quark (flavor f) groomed
beam function, and finally S is the global soft function
which up to clustering effects, in pure dimensional-regu-
lator, is a scaleless function and thus its contribution to the
factorization theorem starts at NNLL.
The beam function [73] describes the initial-state and n-

collinear radiation constrained to be groomed away. For
perturbative values of Q

ffiffiffiffiffiffiffi
zcut

p
and up to power corrections,

the beam function can be matched onto the collinear
parton-distribution-functions (PDFs) [74],

Bf=Pðx;Q2zcut; μÞ ¼
X
i

Z
1

x

dz
z
If=i

�
x
z
;Q2zcut; μ

�

× fi=Pðz; μÞ
�
1þO

�Λ2
QCD

Q2zcut

��
: ð16Þ

The perturbative result of the matching coefficients If=i up
to NLO is the same as for the integrated beam-thrust
measurement which we included in the Appendix. Beyond
NLO, where two or more final state partons are present, we
need to consider clustering effects. The sum over f in
Eq. (15) runs over all quark and antiquark flavours relevant
to the scale we are working, where the sum over i in
Eq. (16) also includes the gluon.
Note that the cross section in Eq. (15) is differential in x

and Q2 as well as in m2
gr:. In order to match experimental

measurements which are binned over various ranges of x
and Q2 one needs to perform the integration numerically.
Here we propose an alternative approach that allow us to
compare with experimental measurements without the
need for integration in x and Q2 by simply looking at
the normalized cross section instead. This relies on the
observation that the cross section dependence on x and
Q2 is isolated in the hard, beam, and soft functions.

FIG. 4. The modes contributing to the factorization theorem of
the groomed-invariant-mass spectrum in region 1 (top-panel) and
region 2 (bottom panel). The modes are represented by locations
on the energy and polar-angle plane, here θ̄≡ π − θ. The shaded
area correspond to regions of phase-space failing grooming.
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These functions do not depend on the GIM measurement.
Therefore, the shape of the GIM distribution in region 1 is
determined by the jet and collinear-soft function which are

independent x and Q2. This is tested using PYTHIA

simulations as shown in Fig. 5.
The normalized cross section is then defined as follows,

dσnorm:

dm2
gr:

ðm2
gr:; emin; emaxÞ≡

�Z
emax

emin

dm2
gr:

Z
x;Q2

dσ
dxdQ2dm2

gr:

�
−1

×
Z
x;Q2

dσ
dxdQ2dm2

gr:
; ð17Þ

where the integration over x and Q2 is determined based on the experimental choice of binning. Expanding in terms of the
factorized cross section we find

dσnorm:

dm2
gr:

ðm2
gr:; emin; emaxÞ ¼ N ðemin; emax; μÞ

Z
den̄decsδðm2

gr: − en̄ − ecsÞJðen̄; μ2ÞCðecszcut; μ2Þ; ð18Þ

where

N −1ðemin; emax; μÞ ¼
Z

emax

emin

dm2
gr:

Z
den̄decsδðm2

gr: − en̄ − ecsÞJðen̄; μ2ÞCðecszcut; μ2Þ: ð19Þ

The moralized cross section can now be calculated without
considering the integration over the variables x and Q2.
There are some obvious practical advantages adapting this
approach. First, the calculation of the normalized cross
section can be achieved significantly easier and avoids
systematic uncertainties associated with PDF errors. Be-
yond these, considering the normalized cross section can
help reduce theoretical uncertainties since it allow us to
push the perturbative calculation at the same order as has
been achieved for mMDT jet invariant mass (i.e., NNNLL).
The latter statement relies on the fact that the Centauro
measure in the collinear limit (along the photon’s direction)
is, up to power corrections, equal to the C/A(SI) measure.
We point out that, although the expression in Eq. (19)

does not explicitly depend onQ the factorization only holds

for m2
gr: ≪ Q2zcut and thus the region of m2

gr: for which we
can use this result depends on the lowest value Q which
we are considering for a particular analysis. Therefore, we
require that we normalize only within that same region,
m2

gr: < emax ≪ Q2
minzcut, or within the region where power

corrections to the factorization theorem remain small.

2. Region 2

Going beyond region 1 the shape of the cross section
depends on both Q2 and x. For example in region 2, which
is described by the hierarchy of scales: 1 ≫ zcut ∼ λ, the
soft-collinear and soft radiation merge into a single mode
which we will refer to us ultra-soft (u-soft). The scaling of
the momenta of the relevant modes is,

FIG. 5. GIM for two values of Q > 30 and 60 GeV for HERA beam energies: 27.5 GeVelectron on 920 GeV proton. We find that for
small values of the GIM spectrum the normalized distributions merge. This confirms what is anticipated from the form of the factorized
cross section as discussed in the main text.
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n-collinear∶ pn ∼Qðzcut; 1;
ffiffiffiffiffiffiffi
zcut

p Þ;
ultra-soft∶ pus ∼Qzcutð1; 1; 1Þ ∼Qλð1; 1; 1Þ;

n̄-collinear∶ pn̄ ∼Qð1; λ;
ffiffiffi
λ

p
Þ: ð20Þ

These modes are shown on the lnðQ=p0Þ − lnð1=θ̄Þ
plane in Fig. 4 (right panel). In addition the veto on
mid-rapidity soft radiation that pass grooming has to be
lifted since u-soft modes may now contribute to the
measurement. The resulting factorization theorem is,

dσ
dxdQ2dm2

gr:
¼ HðQ; y; μÞ

X
f

Bf=Pðx;Q2zcut; μÞ
Z

den̄deusδðm2
gr: − en̄ − eusÞJðen̄; μ2ÞUðeus; Q; zcut; μ2Þ

×

�
1þO

�
zcut;

m2
gr:

Q2

��
: ð21Þ

In the above equation the hard, beam, and jet functions are the same as in region 1, but the product of soft and collinear-soft
functions has been replaced by the u-soft function, U, that now depends explicitly on the hard scale Q, the grooming
parameter, zcut, and the GIM measurement. At fixed order in the strong coupling expansion one can relate the two
expressions within the hierarchy of region 1 up to power corrections,

Uðm2
gr:; Q; zcut; μ2Þjm2

gr:=Q2≪zcut ¼ SðQzcut; μÞCðm2
gr:zcut; μ2Þ

�
1þO

�
m2

gr:

Q2zcut

��
: ð22Þ

We evaluated the u-soft function at NLO and showed that
the power corrections vanish at this order. Therefore we
have that at NLO the u-soft function is simply given by the
collinear-soft function of region 1,

Uðm2
gr:; Q; zcut; μ2ÞjNLO ¼ Cðm2

gr:zcut; μ2ÞjNLO: ð23Þ

With this, we now have all the necessary ingredients to
perform the resummation of all large logarithms in region 1
and region 2 up to NLL.

3. Power corrections

Before we start considering numerical results is impor-
tant to discuss the role of power corrections to the
factorization theorems we analyzed in this section. These
corrections rise due to the fact that we have effectively
expanded the QCD amplitudes in particular kinematic
regimes, specifically the ones shown in Eq. (12). One
can estimate the size of these corrections order-by-order in
perturbation theory by subtracting the singular limit
in Eq. (10) from the full QCD result in Eq. (A29). For
different values of x and Q2 and as a function of zcut and
m2

gr:=Q2 we plot the relative corrections in Fig. 6. We find
that for x≲ 0.1 the power corrections decrease with smaller
x and remain small over a wide range of zcut and m2

gr:=Q2.
However, the corrections seem to increase significantly in
the region x ∼ 1. This increase is due to the fact that at large
x and at large invariant mass the cross section is suppressed
by the constraint,

m2
gr: ≤ W2 ≃

1 − x
x

Q2: ð24Þ

The nonperturbative regime is denoted with the
orange shading in Fig. 6 which corresponds to the most
IR scale of the problem to be of order 1 GeV (in this
case μ2IR ∼m2

gr:zcut ∼ 1 GeV).
Such corrections can in principle be included in the

resummed result order-by-order in the strong coupling
expansion, if the full QCD result is known either analyti-
cally or numerically. This can be done in a matching
procedure where we add the fixed order corrections to the
resummed spectrum after turning off evolution in the region

FIG. 6. The relative size of power corrections as a function of
m2

gr: and zcut for different values of x −Q2. The orange shaded
area denotes the nonperturbative region for which m2

gr:zcut ≤
1.5 GeV2.
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m2
gr: ≳Q2. This way one can obtain a reasonable prediction

in the whole range of the GIM spectrum. Note however
that, in-contrast to the standard groomed observables,4

the observable we discuss here depends on the grooming
parameters in the whole GIM spectrum, 0 < m2

gr:=Q2 <
ð1 − xÞ=x. Thus, logarithmic enhancements for zcut ≪ 1
remain relevant through-out the whole spectrum and as a
result resummation of these logarithms is important for
even large values of GIM. For this reason in this work we
will focus in the resummation regions 1 and 2 and we will
not pursue the task of matching at the tail of the
distribution.

D. Resummed results

The various elements of the factorization have renorm-
alization scale, μ, dependence. The resummed cross sec-
tion, where all large logarithms are resummed up to a
particular logarithmic accuracy, is obtained by evaluating
the elements of factorization at their canonical scales and
then use renormalization group (RG) equations to evolve
them up to a common scale. The RG equation satisfied by
each of the relevant functions is,

d
d ln μ

GðμÞ ¼ γGðμÞGðμÞ; ð25Þ

where G can be any of the functions that appear in the
factorization theorems in Eqs. (15) and (21).5 The anoma-
lous dimensions γGðμÞ are usually written in terms of the
cusp anomalous dimension, γcusp½αs�, and a noncusp
term, γG½αs�,

γGðμÞ ¼ dGγcusp½αs� ln
�

μ

mG

�
þ γG½αs�; ð26Þ

where dG is a number,mG has dimensions of mass and both
dG and mG depend on the function G. The solution of the
RG equation in Laplace space can be written as a product of
the evolution kernel UG and the function G, evaluated at
some initial scale μ0,

GðμÞ ¼ Gðμ0Þ × exp

�Z
μ

μ0

d ln μ0γGðμ0Þ
�

ð27Þ

≡Gðμ0Þ ×UGðμ; μ0Þ: ð28Þ

The kernel UGðμ; μ0Þ is computed at NLL and
NNLL accuracy in terms of dG, mG, γcusp½αs� and γG½αs�
in multiple references in literature (see for example
Refs. [43,75,76]). The initial scale μ0 for each function
is usually chosen to be the canonical scale, i.e., the scale
that minimizes the logarithms in the fixed order expansion.
For the functions we are considering here, the canonical
scales are

μH ¼ Q; μB ¼ Q
ffiffiffiffiffiffiffi
zcut

p
; μS ¼ Qzcut

μ2J ¼ m2
gr:; μ2C ¼ μ2U ¼ m2

gr:zcut: ð29Þ

For small values of the invariant mass the jet and collinear-
soft scales become nonperturbative and the perturbative
expansion breaks. For this reason, at small invariant
masses, we freeze these scales before reaching the
Landau pole using the following prescription:

μG → gðμG; a; bÞ ¼
ð1þ ðaμGÞbÞ1=b

a
; ð30Þ

where we chose a ¼ 2 GeV−1 and b ¼ 5.
Regarding the factorization in region 1, we collect from

the literature all the necessary ingredients for the con-
struction of the NLL cross section in the Appendix. To
achieve this accuracy we need theOðα2sÞ cusp terms and the
OðαsÞ noncusp terms of the anomalous dimensions. For the
NNLL predictions we need the Oðα2sÞ noncusp anomalous
dimensions, which we also have with the exception of the
soft and beam functions. However,the normalized cross
section can still be calculated at NNLL with what is already
known, since it is independent of the soft and beam
functions. For region 2 we only have ingredients sufficient
for a NLL calculation which in this case is identical to
region 1. We compare our NLL numerical results (region 1
and 2) for the normalized distributions and compare against
the partonic shower of PYTHIA 8 in Fig. 7. We give the
NNLL normalized distributions (region 1) including theo-
retical uncertainties in 8.
We first consider the comparison of NLL cross section to

PYTHIA’s partonic shower. This serves a consistency check
of our formalism and we discuss hadronization effects later
in this section. To make meaningful comparison of our
perturbative result with PYTHIA, we require relatively large
values of Q where a perturbative regime exist. Particularly
we choose Qmin ¼ 20 GeV and for this reason we consider
the potential EIC kinematics with beam energies: 18 GeV
electron on 275 GeV proton (

ffiffiffi
s

p ¼ 140.7 GeV). For the
normalization of the cross section the lower boundary is
fixed such that the softest scale of the problem (that is the
collinear-soft scale, μC) remains within the perturbative
regime. This leads to the constraint:

4The standard groomed jet-mass observable does not depend
on the grooming algorithm at sufficiently large values of the jet-
mass, creating a cusp in the distribution where the transition
occurs. The same we would have observed if we studied the
groomed 1-jettiness for example instead of the GIM.

5For functions that depend on the GIM measurement (i.e., J, C,
and U) the above equation applies to the Laplace transformed
expressions (with respect to the variable e), otherwise the lhs can
be expressed as a convolution between γG and G.
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emin ¼
Λ2
NP

zcut
; ð31Þ

where ΛNP is a nonperturbative scale of order ≳1 GeV. In
this paper we chose Λ2

NP ¼ 1.5 GeV2. The upper boundary
should in general be chosen such that power corrections to
the factorization theorem in Eq. (15) remain small. For the
purpose of this comparison we can extend the upper limit as
long as we remain well within region 1 and 2,m2

gr: ≪ Q2
min.

Guided by the size of power corrections in Fig. 6 here we
chose,

emax ¼ 0.2: ð32Þ

For three different values of the grooming parameter
zcut ¼ 0.2, 0.1, and 0.05 the comparison with PYTHIA is
shown in Fig. 7. The values emax and emin are shown with

dashed vertical lines. We find excellent agreement of our
NLL resummed result with the simulation. However, we
see that the perturbative regime shrinks as we decrease zcut.
This effect will be exaggerated if we consider smaller
values of Q where the nonperturbative boundary, emin,
moves to the right toward larger m2

gr:=Q2
min values, further

shrinking this way the perturbative regime. This should
motivate further studies in both directions: in the perturba-
tive tail of the distribution, to the right of emax, and in
the nonperturbative regime, to the left of emin where
m2

gr:zcut ∼ Λ2
NP.

In Fig. 8 we show the NNLL normalized distribution in
region 1. We have also estimated the theoretical uncertainty
by multiplying the three scales μJ, μC, and μ by a factor of 2
and 1=2 separately. The largest deviations from the central
curve are collected into the envelope that represents the
theoretical uncertainty. We find that within the perturbative

FIG. 8. NNLL prediction including theoretical uncertainties. The theory band is constructed by varying all scales in the factorization
theorem by a factor 2 and 1=2.

FIG. 7. Comparing the NLL predictions (dashed) against the partonic shower PYTHIA 8 (solid) for three different values of the
grooming parameter zcut ¼ 0.2, 0.1, and 0.05.
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regime the uncertainty varies between 10%–15%. Note that
the size of this error bands is sensitive to the value of the
nonperturbative scale ΛNP which sets the lower limit of
integration. As this value decreases we incorporate more of
the nonperturbative regime into the normalization factor
resulting in large theoretical uncertainties. This is also
apparent from the fact that the theoretical uncertainty below
the emin increases rapidly as shown in Fig. 8.

E. Hadronization and nonperturbative corrections

In the previous section, as a consistency test of our
factorization we compared our resummed predictions
against PYTHIA 8 partonic shower. In region 1 (1 ≫ zcut ≫
m2

gr:=Q2), comparing our resummed distributions against
PYTHIA’s hadronic spectrum we find significant deviation.
In this section we perform a proof-of-concept exercise
where we incorporate hadronization effects through a
nonperturbative shape function.
Equipped with a factorization theorem and precise

predictions of the perturbative spectrum, one can approach
hadronization effects in a systematic and rigorous manner.
A field-theoretic description and leading power approach to
hadronization effects in groomed jet mass is given in
Ref. [19]. The formalism is also applicable here since
the collinear-soft function that appears in this work, and
which dominates the nonperturbative contributions, is the
same as in the SoftDrop (β ¼ 0) groomed jet-mass. In the
formalism of Ref. [19], two regions of the invariant mass
are identified,

SDNP∶ m2
gr:zcut ≲ Λ2

QCD;

SDOE∶ m2
gr:zcut ≫ Λ2

QCD: ð33Þ

While in the region SDNP hadronization corrections are
encoded into a universal shape function, in the perturbative

region SDOE the hadronization corrections are described
by two nonperturbative matrix elements associated with
the “shift” and “boundary” effects. In our study for sim-
plicity we focus only on the nonperturbative region SDNP
which includes the peak of the distribution and where the
hadronization effects are more apparent. Particularly we
incorporate a shape function for describing the hadroniza-
tion corrections on the GIM spectrum and we use the
parameterazation discussed in ref. [76],

dσhad:
dxdQ2dm2

gr:
¼

Z
dϵ

dσ
dxdQ2dm2

gr:

�
m2

gr: −
ϵ2

zcut

�
fmod :ðϵÞ;

ð34Þ

where

fmod:ðϵÞ ¼ Nmod:
4ϵ

Ω2
exp

�
2ϵ

Ω

�
; ð35Þ

is the model shape function which depends on two non-
perturbative parameters: the mean of the shape function Ω
and the normalization Nmod:. For the numerical implemen-
tation we choose Ω ¼ 1 GeV and Nmod: ¼ 1.1.
We compare the analytic predictions against PYTHIA

simulation in Fig. 9. We denote the end of SDNP region
with a vertical dashed line which is located at

m2
gr: ¼

Λ2
NP

zcut
: ð36Þ

The hadronic and partonic spectra of the simulation are
normalized to the tail of the distributions (m2

gr: ∼Q2) where
nonperturbative effects are anticipated to have small effect.
Then the NLL prediction is normalized to the region emin <
m2

gr: < emax as described above. The normalized NLL

FIG. 9. Hadronic PYTHIA simulations for GIM distribution compared against NLL convolved with shape function fmod: for EIC
(

ffiffiffi
s

p ¼ 140 GeV) kinematics. To emphasize the role of the shape function we also included the NLL distribution without including the
model for hadronization.
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distribution is then convolved to the shape function as in
Eq. (34). We find that normalizing the distribution to
the tail is necessary for the Nmod: to be independent of
the grooming parameter, zcut. Within the SDNP region the
agreement with the simulation is within 5% to 10%,
and since in this region the shape of the cross section is
independent of the incoming hadronic matrix element
it offers a unique opportunity for detail hadronization
studies. Significant deviation is found for m2

gr: ≲ 1 GeV2

where hadron mass effects are anticipated to play a
significant role.

III. AN EVENT-BASED
WINNER-TAKE-ALL AXIS

In the spirit of event-based definition of grooming, in this
section we extent the discussion to the recoil-free Winner-
Take-All (WTA) axis. We will not discuss in detail
applications of such an axis-finding procedure but we
point to some opportunities in the context of TMD physics
and 3D-imaging of the nucleon and nuclei.
The WTA axis [77,78] was introduced in the context of

jets as an alternative recombination scheme which results to
a recoil free jet axis. In contrast to the standard jet axis
(SJA), which is defined by the sum of all particles within
the jet, WTA axis follows the direction of the most
energetic branch during the jet-clustering procedure. The
resulting axis is then insensitive to soft radiation within the
jet and thus free from underlying event contamination.
In DIS and lepton colliders the WTA axis was proposed

[79–81] as a probe to quark TMD-PDFs and TMD-FFs. In
this case the advantage of using this particular axis instead
of the SJA is that in contrast to SJA, a recoil-free axis is
insensitive to nonglobal logarithms (NGLs) which they
could induce large systematic uncertainties. It was also
discussed in refs. [20,80] that a recoil free axis is in general
less sensitive to hadronization corrections compared to the
SJA and thus permit for a cleaner extraction of initial and
final state TMDs. In Ref. [82] it was also discussed the
insensitivity of the WTA based observables to tracks versus
all-particle measurements.
Here we discuss the construction of a WTA axis using an

event level clustering procedure. In practice our approach
differs from the standard definition of WTA axis since here
one does not construct any jets and rather it applies an axis-
finding algorithm directly to the event. The algorithm reads
as follows,
(1) For every pair of particles fi; jg we calculate the

Centauro measure,

dij ¼ ðΔη̄ijÞ2 þ 2η̄iη̄jð1 − cosΔϕijÞ; ð37Þ

(2) We find the minimum of all dij and we merge the
particles i and j into a new “branch”. The momen-
tum of the new branch is given by the magnitude of
the sum of the momenta of particles/branches i and j

but is aligned along the direction of the one with the
highest energy fraction z, defined in Eq. (4).

(3) Repeat until all particles in the event are merged
together.

When all particles are merged together the direction of
momenta of the final single branch is the WTA axis as we
define it in this work.
In the back-to-back limit the finding algorithm we

propose here returns a similar axis as if one reconstructed
theWTA-axis of the leading jet for R ∼ 1 (where R is the jet
radius) using the conventional definition. However, in
multiple-jet configurations or for R ≪ 1 the jet based
definition it returns one axis per jet while the event-based
algorithm returns a unique axis.
In the Breit frame and in the back-to-back limit the angle

between the WTA axis and the virtual photon is sensitive
to the universal TMD-PDFs and the rapidity anomalous
dimension. Note that this measurement involves the back-
to-back soft function, the same matrix element that appears
in the conventional TMD processes. This ensures the
universality of the TMDPDFs relevant for this process to
the ones that appear in conventional SIDIS and Drell-Yan,
in contrast to other proposed observables that involve
lepton-jet correlations in the Laboratory frame and involve
soft functions that are sensitive to the jet kinematics
[83,84]. The details for the theoretical treatment of the
proposed observable is discussed in Sec. 2.3 of Ref. [81]
and the formalism is directly applicable here.

IV. SUMMARY AND OUTLOOK

In this paper we discussed a novel grooming procedure
for deep inelastic scattering (DIS) events. The correspond-
ing algorithm we propose here is an extension of modified
MassDrop Tagger (mMDT). Some of the main differences
between our proposal and mMDT are: (in our proposal)
(i) clustering is done using Centauro measure instead of the
C/A algorithm, (ii) the algorithm takes as an input the DIS
event in the Breit frame rather than a jet, and (iii) the
grooming condition uses the light-cone component of the
momenta rather than the energy or transverse momentum.
With these modifications, we can effectively remove
radiation close to the direction of the proton which usually
consists of beam remnants and initial state radiation. In
practice, it also removes soft particles, isolating this way
the energetic final state radiation which comes from the
fragments of the struck quark in a leading order DIS
process.6 We demonstrate the applicability of this grooming
procedure by considering an event shape measurement.
Particularly, we investigate the groomed invariant mass
(GIM), m2

gr:, which is a measure of how well collimated
are the particles that pass grooming. In the back-to-back

6For recent developments on event-level groomed event shapes
in hadronic colliders see [85].
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limit (i.e., m2
gr: ≪ Q2), this observable is (up to power-

corrections) directly related to the groomed event shape
1-jettiness. We show that the GIM spectrum is insensitive to
rapidity cutoffs in the Laboratory frame usually imposed due
to detector acceptance. We derive factorization theorems
within SCET for the back-to-back limit considering two
different hierarchies: region 1 where 1 ≫ zcut ≫ m2

gr:=Q2

and region 2 where 1 ≫ zcut ∼m2
gr:=Q2. We use the factor-

ized forms to evaluate the resummed cross section at NLL
and compare against the partonic shower of PYTHIA 8. We
find excellent agreement within the perturbative regime. At
NNLL we show that the theoretical uncertainty for the
normalized cross section is about 10%. Furthermore we
discuss hadronization effects and we show that these effects
(for m2

gr:zcut ≲ ΛQCD) can be well described with a shape
function convolved with the resummed spectrum.
Although in this work we only consider the measurement

of GIM, one may also consider a plethora of other event
shape measurements (e.g., N-jettiness and angularities) or
even novel event-level generalizations of jet substructure
measurements. An interesting example is groomed jet radius
Rg ¼ dij, which corresponds to the geometric separation of
the two final branches, i and j, that stopped the pruning. In
the case of jet grooming this observable has been studied
extensively both experimentally [32] and theoretically
[6,86,87]. In DIS and using the proposed algorithm we
can generalize this observable to event level grooming.
Groomed jet substructure observables such as the energy

fraction sharing zg and the groomed radius Rg are particu-
larly sensitive to the parton shower evolution of the jet.
They are therefore great observables to nuclear medium
induced modifications to the evolution of jets. The CMS
[88], ALICE [89], and STAR [90] collaborations have
already measured the modification to the zg spectrum
in heavy-ion coalitions, although, the interpretation of
these modification remains a subject of debate [91–94].
The future Electron-Ion-Collider (EIC) will offer a unique
opportunity for the study of nuclear effects in eA collisions
with unprecedented accuracy. These observables in the
context of groomed jets have been discussed in Ref. [95].
We propose the observables, zg and Rg, adapted to event
grooming in DIS (proposed in this work) as a probe to cold
nuclear matter effects at the EIC.

Beyond event shapes and jet substructure, the use
of groomed jets as probes to TMDs is an other interes-
ting concept that has been gaining significant attention
recently [11,14,20], particularly in the context of EIC.
Generalization of this observables to event level grooming
it is also possible. One can consider the angle between the
virtual photon and the groomed axis (as a probe to
TMDPDFs) or the transverse momentum of an identified
hadron with respect to the groomed axis (as a probe to
TMDFFs and TMD evolution).7

Finally we give an event based definition of the
winner-take-all (WTA) axis using the Centauro measure
to cluster the whole event. We emphasize that initial state
universal TMDs (such as unpolarized TMDPDFs and
quark Siver’s function) can be accessed by measuring
the photon transverse momentum with respect to the
WTA axis, similarly as discussed above for the groomed
jet axis. The theoretical framework for such a measurement
has been discussed in Refs. [80,81]. Furthermore, three
dimensional fragmentation can also be accessed through
measurements of the transverse momentum of an identified
hadron with respect to the WTA axis [79].
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APPENDIX: FIXED ORDER INGREDIENTS

Here we collect from the literature all the fixed order
ingredients we used for the construction of the resummed
cross section. It is organized in five subsections: hard, bean,
jet, collinear-soft, and ultra-soft functions. The soft func-
tion which is scaleless at this order is not discussed. At the
end of the Appendix we also give the leading order full-
QCD cross section for the groomed invariant mass.

1. Hard functions

The relevant DIS hard function given in terms of the
photon’s virtuality is

HðQ; y; μÞ ¼ σ0ðQ; yÞ
�
1þ as

�
−2γ0cuspln2

�
μ

Q

�
þ γ0H ln

�
μ

Q

�
þ CF

�
−16þ π2

3

��
þOðα2sÞ

	
; ðA1Þ

where

σ0ðQ; yÞ ¼ 2πα2e
1þ ð1 − yÞ2

Q4
ðA2Þ

7Groomed axis in the context of event grooming in DIS is defined by the axis pointing along the direction of the total three-momenta
of given by the sum of all particles that passed grooming.
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The hard function satisfies the following RGE:

d
d ln μ

HðQ; y; μÞ ¼ γHðQ; μÞHðQ; y; μÞ; ðA3Þ

with γH the hard function anomalous dimension. Following the standard notation we may decompose the anomalous
dimension into a term proportional to the cusp anomalous dimension, Γcusp, and a noncusp terms and they have the
following,

γHðQ; μÞ ¼ −4γcusp½as� ln
�
μ

Q

�
þ γH½as�; ðA4Þ

where for the expansion in the strong coupling of all anomalous dimensions we are using the following notation

γG½as� ¼
X∞
n¼0

anþ1
s γnG; ðA5Þ

where the subscriptG is a placeholder index for a generic function. For up to the NNLL cross section we need the following
coefficients,

γ0cusp ¼ 4CF;

γ1cusp ¼ 4CF

�
CA

�
67

9
−
π2

3

�
−
20

9
TFnf

�
;

γ2cusp ¼ 4CF

�
C2
A

�
245

6
−
134π2

27
þ 11π4

45
þ 22ζ3

3

�
þ CATFnf

�
−
418

27
þ 40π2

27
−
56ζ3
3

�

þ CFTFnf

�
−
55

3
þ 16ζ3

�
−
16

27
T2
Fn

2
f

�
; ðA6Þ

and

γ0H ¼ −12CF;

γ1H ¼ CF

�
CA

�
−
164

9
þ 104ζ3

�
þ CFð−6þ 8π2 − 96ζ3Þ þ β0

�
−
130

9
− 2π2

��
: ðA7Þ

2. Groomed beam function

At NLO there is only one final state gluon and therefore no clustering effects enter at this order. The beam function is then
given by the cumulant beam-thrust beam function with the replacement tcut → Q2zcut. This result can be found in Ref. [74]

Bq=Pðx;Q2zcut; μÞ ¼
X
i

Z
1

x

dz
z
Iqi

�
x
z
;Q2zcut; μ

�
fi=Pðz; μÞ; ðA8Þ

where the short distance matching coefficients are

Iqiðx;Q2zcut;μÞ ¼ δqiδð1− xÞþas

�
1

2
δqiδð1− xÞ

�
γ0cusp ln

�
μ2

Q2zcut

�
þ γ0B

�
ln

�
μ2

Q2zcut

�
− ln

�
μ2

Q2zcut

�
PqiðxÞþI ð1Þ

qi ðxÞ
	
:

ðA9Þ

The one-loop QCD splitting kernels are,

PqqðxÞ ¼ 2CF

�
1þ x2

1 − x

�
þ
; PqgðxÞ ¼ 2TFð1 − 2xð1 − xÞÞ; ðA10Þ
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and the nonsingular terms are,

I ð1Þ
qq ðxÞ ¼ 2CF

�
ð1þ x2Þ

�
lnð1 − xÞ
1 − x

�
þ
−
π2

6
δð1 − xÞ þ 1 − x −

1þ x2

1 − x
lnðxÞ

�
;

I ð1Þ
qq ðxÞ ¼ 2TF þ PqgðxÞ

�
ln

�
1 − x
x

�
− 1

�
: ðA11Þ

The beam function satisfies the following RGE,

d
d ln μ

Bq=Pðx;Q2zcut; μÞ ¼ γBðQ2zcut; μÞBq=Pðx;Q2zcut; μÞ; ðA12Þ

where

γBðQ2zcut; μÞ ¼ 2γcusp½as� ln
�

μ2

Q2zcut

�
þ γB½as�; ðA13Þ

with

γ0B ¼ 6CF; ðA14Þ

As discussed earlier the two-loop beam anomalous dimension, γ1B, is unknown and requires a nontrivial computation
considering clustering effect. However the combination, γ1B þ γ1S, we can obtain from consistency relations,

γ1B þ γ1S ¼ CF

�
CAð−7.73 − 80ζ3Þ þ CFð20 − 4π2 þ 48ζ3Þ þ β0

�
18.71þ 2π2

3

��
: ðA15Þ

Note for resumming all logarithms lnðzcutÞ at NNLL requires the knowledge one of γ1B or γ1S separately.

3. Jet function

The same jet function appears in the factorization theorem for both regions 1 and 2. In fact the jet function that appears in
these factorization theorems is the same as the jet function that appears the jet-mass measurements [96] and has been
calculate up to three-loop accuracy. Here we collect the one-loop fixed order results and the two-loop anomalous dimension.
In terms of the variable u Laplace conjugate of the invariant mass (in literature usually denoted with s) we have,

Jðu; μ2Þ ¼ 1þ as

�
1

2
γ0cuspln2ðuμ2Þ þ

1

2
γ0J lnðuμ2Þ þ CF

�
7 − 2

π2

3

��
; ðA16Þ

and satisfies the following RGE:

d
d ln μ

Jðu; μ2Þ ¼ γJðu; μ2ÞJðu; μ2Þ; ðA17Þ

where

γJðu; μ2Þ ¼ −2γcusp½as� lnðuμ2Þ þ γJ½as�; ðA18Þ

with

γ0J ¼ 6CF;

γ1J ¼ CF

�
CA

�
146

9
− 80ζ3

�
þ CFð3 − 4π2 þ 48ζ3Þ þ β0

�
121

9
þ 2π2

3

��
: ðA19Þ
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4. Collinear-soft function

The collinear-soft function that appears in our analysis is the same function that also appears in the groomed jet-mass
measurements for SoftDrop grooming for β ¼ 0. This is true since in the collinear limit the Centauro measure and the C/A
clustering measure are converge. The one-loop result for the this collinear-soft function is given in Eqs. (E.4) and (E.5) of
Ref. [76] (for our case α ¼ 2 and β ¼ 0),

Cðm2
cszcut; μÞ ¼

1

NC
tr



T½Y†

nWt�δ
�
m2

cs − Θgr:
Q2êð2Þ2

4

�
T̄½W†

t Yn�
�

¼ Q2

4
SCðzcuteð2Þ2 Þ; ðA20Þ

where Θgr: is a particle level selection function for particles that pass grooming. Taking the Laplace transform of the one-
loop result with respect to m2

cs we have,

Cðu; zcut; μÞ ¼ 1 − as
γ0cusp
2

ln2
�
μ2u
zcut

�
: ðA21Þ

This is the collinear-soft function at one loop for the groomed invariant mass measurement relevant to region 1. It satisfies
the following RG,

d
d ln μ

Cðu; zcut; μÞ ¼ γCðu; zcut; μÞCðu; zcut; μÞ; ðA22Þ

where

γCðu; zcut; μÞ ¼ −2γcusp ln
�
μ2u
zcut

�
þ γC½as�; ðA23Þ

with

γ0C ¼ 0;

γ1C ¼ CF

�
CAð9.73þ 56ζ3Þ − CF17.00þ β0

�
−17.71þ 2π2

3

��
: ðA24Þ

5. Ultra-soft function

We give the operator definition of the collinear ultra-soft function, U, That appears in the factorization theorem for region
2. We then continue with the one loop calculation and show that at this order gives the same result as the collinear-soft
function. The operator definition of ultra-soft function is written in terms of the SCETI ultra-soft Wilson-lines (hence the
name ultra-soft function) along the n and n̄ directions,

Uðm2
us; Q; zcut; μÞ ¼

1

QNC
tr



T½Y†

nYn̄�δ
�
m2

us

Q
− M̂−

gr:

�
T̄½Y†

n̄Yn�
�
; ðA25Þ

where M̂−
gr: its is the operator that returns the n̄ · p component of the total momenta of the particles that pass grooming. We

can cont give a close form for this operator at all orders in perturbation theory since it depends on the number of final state
particles, but it can be defined at the Feynman diagram level. At leading order there are no virtual or real gluons and all
Wilson-lines are set to the identity operator and thus we get,

Uðm2
us; Q; zcut; μÞ ¼ δðm2

usÞ þOðαsÞ; ðA26Þ

At next-to-leading order we need to consider the diagrams shown in Fig. 10. Diagram (a) corresponds to the virtual gluon
exchange between the Wilson-lines in the n and n̄ directions. In pure dimensional regularization this yields a scaleless
integral and thus vanishes in our scheme. Diagram (b) involves one real gluon exchange. The contribution of that gluon with
momentum, kμ, to the invariant mass can be obtained by considering the sum of all radiation that pass grooming,

m2
gr: ¼

�X
i

pμ
i

�
¼ ðpμ

n̄ þ kμÞ2 ¼ p2
n̄ þQk−: ðA27Þ

Y. MAKRIS PHYS. REV. D 103, 054005 (2021)

054005-16



Assuming that the gluon passes grooming there are two terms relevant to the invariant mass measurement: the contribution
from the n̄-collinear radiation, and the interference term Qk− which involves the virtual gluon. Therefore, the diagram
(b) contribution to the one-loop u-soft function is given by

dðbÞ ¼ g2CF

�
eγEμ2

4π

�
ϵ
Z

ddk
ð2πÞd−1

1

k−kþ
δðk2Þ½δðm2

us −Qk−ÞΘðkþ −QzcutÞ þ δðm2
usÞΘðQzcut − kþÞ�: ðA28Þ

The first term in the square brackets corresponds to the case where the ultra-soft gluon passes grooming and the second term
in the case where it fails. The second term also yield a scaleless integral and thus ignore in our calculation. Performing the
trivial integration and multiplying with a factor if two (for the mirror diagram) we find that the u-soft and collinear-soft
functions are identical at this order.

6. Fixed order QCD at OðαsÞ
In this section we give the main aspects and result of theOðαsÞ calculation of the GIM cross section in QCD. For this task

we will closely follow the derivation and notation of Ref. [97] which was suited for the calculation of 1-jettiness in DIS but
also very adaptable to our calculation. The differential cross section can be written in terms of the hadronic tensor,

dσ
dxdQ2dm2

gr:
¼ α2

2Q4
ð½1þ ð1 − yÞ2�WGðx;Q2; m2

gr:Þ þ 2x2½6 − 6yþ y2�WPðx;Q2; m2
gr:ÞÞ; ðA29Þ

where

WGðx;Q2; m2
gr:Þ ¼ −gμνWμνðx;Q2; m2

gr:Þ; WPðx;Q2; m2
gr:Þ ¼

PμPν

Q2
Wμνðx;Q2; m2

gr:Þ; ðA30Þ

which we refer to as the G and P projections of the hadronic tensor. For groomed invariant mass measurement the hadronic
tensor is written in terms of the QCD quark current operator, JμðrÞ, as follows:

Wμνðx;Q2; m2
gr:Þ ¼

Z
d4r expðiq · rÞhPjJμ†ðrÞδðm2

gr: − M̂gr:ÞJνð0ÞjPi: ðA31Þ

The operator M̂gr: projects the value of the hadronic GIM for a given final state. Our goal in this section is to give explicit
results for WG and WP.
The hadronic tensor can be matched onto the collinear parton distribution functions in an operator product

expansion (OPE),

Wjðx;Q2; m2
gr:Þ ¼

X
i∈fq;q̄;gg

Z
1

x

dξ
ξ
fi=Pðξ; μÞwi

j

�
x
ξ
; Q2; m2

gr:; μ

�
×

2
641þO

0
B@ΛQCDffiffiffiffiffiffiffiffi

m2
gr:

q
1
CA
3
75 ðA32Þ

where wi
j are the perturbative matching coefficients calcu-

lable order-by-order in perturbation theory. We now discuss
the calculation of the OðαsÞ (leading order) wi

j functions.
We consider only finite values of the GIM (i.e., m2

gr: > 0)
and thus drop any regulator dependence and only consider
the real emissions. We therefore have two final state partons
that contribute to the measurement. Their momenta (work-
ing in the Breit frame) are given by,

pμ
1 ¼ Qð1 − vÞ n̄

μ

2
þ 1 − x

x
Qv

nμ

2
− pμ

⊥

pμ
2 ¼ Qv

n̄μ

2
þ 1 − x

x
Qð1 − vÞ n

μ

2
þ pμ

⊥ ðA33Þ

(a) (b)

FIG. 10. Diagrams contributing at next-to-leading order in the
perturbative calculation of the u-soft function. Mirror diagrams
not shown in this figure.
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and pμ
⊥ can be obtained from the on-shell condition p2

1 ¼ p2
2 ¼ 0. Thus for fixed values of x −Q2 the only free parameter is

v defined as v≡ pþ
2 =Q. The grooming algorithm will first cluster these two particles and in the declustering process the

grooming condition reads,

min½v; 1 − v� > zcut: ðA34Þ

Therefore if this condition is satisfied both particles will pass grooming and contribute to the measurement,

m2
gr: ¼ ðp1 þ p2Þ2 ¼

1 − x
x

Q2: ðA35Þ

Otherwise, if the condition is not satisfied only one particle pass grooming yielding m2
gr: ¼ p2

i ¼ 0 and thus does not
contribute to the finite GIM spectrum. We then have for the matching coefficients,

wi
μνðx;Q2; m2

gr:; μÞjOðαsÞ ¼ −
1

16π
δ

�
m2

gr: −
1 − x
x

Q2

�Z
1−zcut

zcut

dvMreal
ν ðv;Q2; μÞðMreal

μ ðv;Q2; μÞÞ� ðA36Þ

withMreal
ν the QCD amplitude from real emission in the process γ�i → 12. The projected matching coefficients that appear

in Eq. (A32) are given by

wi
Gðx;Q2; m2

gr:; μÞ ¼ −gμνwi
μνðx;Q2; m2

gr:; μÞ; wi
Pðx;Q2; m2

gr:; μÞ ¼
PμPν

Q2
wi
μνðx;Q2; m2

gr:; μÞ; ðA37Þ

the equivalent projections of the amplitude squared and the integration over v can be done using the expressions in
Eqs. (B.8–B.10) of ref. [97]. Finally the integration over ξ in Eq. (A32) can be trivially performed using the measurement
delta function in Eq. (A36). Therefore the G and P projections of the hadronic tensor are

Wjðx;Q2; m2
gr:Þ ¼ αsðμÞ

2x
ξQ2

Θðx < ξ < 1Þ
X

i∈fq;q̄;gg
Q2

i fi=pðξ; μÞhij
�
x
ξ
; zcut

�
ðA38Þ

with ξ ¼ xð1þm2
gr:=Q2Þ and

hqGðx; zcutÞ ¼ CF
1

2ð1 − xÞ
�
ð1 − 4xÞð1 − 2zcutÞ þ 2ð1þ x2Þ ln 1 − zcut

zcut

�

hqPðx; zcutÞ ¼ CF
1

4x
ð1 − 2zcutÞ

hgGðx; zcutÞ ¼ TFð−2ð1 − 2zcutÞ þ 4ð1 − 2xþ 2x2Þ tanh−1ð1 − 2zcutÞÞ

hgPðx; zcutÞ ¼ TF
1 − x
x

ð1 − 2zcutÞ ðA39Þ

and hq̄G=P ¼ hqG=P. For quarks and antiquarks the charge Q2
i is simply the electric charge of that parton and for gluons we

have,

Q2
g ≡

X
f

Q2
f ðA40Þ

where the sum runs over the quark flavors only.
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