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The LHCb collaboration has recently observed three pentaquark peaks, the Pcð4312Þ, Pcð4440Þ and
Pcð4457Þ. They are very close to a pair of heavy baryon-meson thresholds, with the Pcð4312Þ located
8.9 MeV below the D̄Σc threshold, and the Pcð4440Þ and Pcð4457Þ located 21.8 and 4.8 MeV below the
D̄�Σc one. The spin-parities of these three states have not been measured yet. In this work we assume that
the Pcð4312Þ is a JP ¼ 1

2
− D̄Σc bound state, while the Pcð4440Þ and Pcð4457Þ are D̄�Σc bound states of

unknown spin-parity, where we notice that the consistent description of the three pentaquarks in the one-
boson-exchange model can indeed determine the spin and parities of the later, i.e., of the two D̄�Σc

molecular candidates. For this determination we revisit first the one-boson-exchange model, which in its
original formulation contains a short-range deltalike contribution in the spin-spin component of the
potential. We argue that it is better to remove these deltalike contributions because, in this way, the one-
boson-exchange potential will comply with the naïve expectation that the form factors should not have a
significant impact in the long-range part of the potential (in particular the one-pion-exchange part). Once
this is done, we find that it is possible to consistently describe the three pentaquarks, to the point that the
Pcð4440Þ and Pcð4457Þ can be predicted from the Pcð4312Þ within a couple of MeV with respect to their
experimental location. In addition the so-constructed one-boson-exchange model predicts the preferred
quantum numbers of the Pcð4440Þ and Pcð4457Þ molecular pentaquarks to be 3

2
− and 1

2
−, respectively.

DOI: 10.1103/PhysRevD.103.054004

I. INTRODUCTION

The observation of three pentaquarklike resonances by
the LHCb collaboration [1]—the Pcð4312Þ, Pcð4440Þ and
Pcð4457Þ—provides three of the most robust candidates
so far for a hadronic molecule, a type of exotic hadron
conjectured four decades ago [2,3]. As a matter of fact
molecular pentaquarks, i.e., bound states of a charmed
antimeson and a charmed baryon, were predicted in a series
of theoretical works [4–9]. Subsequent theoretical analyses

after the experimental observation of the LHCb penta-
quarks [1] have further explored the molecular hypothesis
[10–19] or considered nonmolecular explanations [20–24],
have indicated the importance of their decays to confirm (or
falsify) their nature [25–28] and have discussed the
existence of new unobserved pentaquark states [29,30].
However a crucial piece of information required to deter-
mine the nature of the LHCb pentaquarks is their quantum
numbers, which have not been experimentally determined
yet, for which molecular and nonmolecular interpretations
usually yield different predictions (with molecular inter-
pretations overwhelmingly preferring negative parity). It is
interesting to notice that the Pcð4440Þ and Pcð4457Þ were
previously identified as a single peak, Pcð4450Þ [31], where
the later collection of data by the LHCb has finally
uncovered the double peak structure. In this regard, the
previous investigations about the old Pcð4450Þ peak are
still expected to be largely relevant for the new peaks, from
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its nature (be it either molecular [32–37] or nonmolecular
[38–44]) to its possible partner states [45], the role of the
D̄Λcð2595Þ threshold [46,47], etc.
Hadronic molecules are bound states among two or more

hadrons. Their existence is contingent on the hadron-
hadron potential. In this regard the one-boson-exchange
(OBE) model provides a physically compelling and intui-
tive picture of hadron interactions [48,49], which can help
us to predict prospective molecular states. According to this
model, the potential between two hadrons is a consequence
of the exchange of a series of light mesons, of which
the most prominent ones are the π, σ, ρ and ω mesons. The
OBE model was originally developed to describe the
nucleon-nucleon potential, providing the first quantitative
successful description of nuclear scattering observables and
the deuteron [48,49]. Besides, it also provided the original
theoretical motivation for the existence of hadronic mol-
ecules [2], with subsequent explorations often relying on
this model to make predictions or to explain already known
states [35,50–52].
The OBE model is endowed with a certain degree of

ambiguity though. The most important limitation of the
OBE model is that it requires the introduction of form
factors and cutoffs to mimic the finite size of the hadrons
involved. The cutoff cannot be determined a priori and is in
principle dependent on external information (e.g., exper-
imental measurements). Even if the cutoff is required to be
of natural size—we expect it to lie within the 1–2 GeV
range—this still leaves room for wildly different predic-
tions. Yet, when applied to hadronic molecules, such a
limitation is easy to overcome provided that there is a clear
molecular candidate: the cutoff can be effectively deter-
mined from the condition of reproducing the aforemen-
tioned molecular candidate [53,54].
But phenomenological models, even the most successful

ones such as the OBE model, usually end up requiring a
certain amount of tweaking (see for instance Ref. [55] for a
lucid exposition of a few of the quirks of the OBE model).
For the OBE model as applied to nuclear physics, it was
quickly realized that the correct description of the deuteron
properties requires the cutoff to be Λπ > 1.3 GeV for the
pion contribution. The theoretical reason is the distortion of
the long-range properties of the one-pion-exchange (OPE)
potential by the form factors, which can be prevented if the
cutoff is hard enough. The present manuscript indicates that
this type of long-range distortion also happens for hadronic
molecules, but proposes a different solution adapted to the
particular circumstances of the application of the OBE
model to the molecular pentaquarks.
The problem is as follows: if the Pcð4312Þ is indeed a

JP ¼ 1
2
− D̄Σc molecule with a binding energy of 8.9 MeV, it

can be described within the OBE model with a monopolar
form factor and a cutoff Λ ¼ 1119 MeV. If we use the
simplest OBE model possible, i.e., we use the same form
factor and cutoff for all the exchanged mesons, then we can

predict the JP ¼ 1
2
− and JP ¼ 3

2
− D̄�Σc binding energies

from the cutoff that we already determined from the
Pcð4312Þ. In particular we arrive at

BE

�
1

2

−
�
≃74MeV and BE

�
3

2

−
�
≃3MeV; ð1Þ

which are incompatible with the binding energies of the
Pcð4440Þ and Pcð4457Þ as D̄�Σc bound states, BE ¼ 21.8
and 4.8 MeV, respectively. This happens regardless of
which state we identify with the JP ¼ 1

2
− and JP ¼ 3

2
−

quantum numbers. The failure of the naïve OBE model to
naturally explain the Pcð4312Þ, Pcð4440Þ and Pcð4457Þ
with the same cutoff can be traced back to a particular
artifact generated by the form factors. The unregularized
spin-spin piece of the OBE potential contains a contact-
range and a finite-range piece, which we write schemati-
cally as

VS ∝
�
−δð3Þðmr⃗Þ þ e−mr

4πmr

�
; ð2Þ

with m the mass of the exchanged meson. It happens that
the inclusion of a form factor regularizes the contact-range
Dirac-delta piece of the OBE potential, making it finite
range. The expectation is that the finite range of the
regularized delta will be considerably shorter than the
range of the Yukawa-like piece. However this condition
is not actually fulfilled for a monopolar form factor and a
cutoff Λ ∼ 1 GeV. This is obvious in the OPE contribution
of the OBE potential, which is in fact distorted at distances
comparable with the Compton wavelength of the pion. In
particular the excessive binding of the 1

2
− D̄�Σc in Eq. (1)

can be traced back to the regularized delta contribution
stemming from the OPE potential: while the Yukawa-like
piece of the OPE potential is repulsive in this system, the
deltalike piece provides the system with a strong, probably
unphysical, short-range attraction. If we remove the delta-
like contribution to the OPE potential by hand, we end up
with the set of predictions

BE

�
1

2

−
�

¼ 13.2 MeV and BE

�
3

2

−
�

¼ 11.6 MeV;

ð3Þ

which are much closer to the expected binding energies of
the molecular pentaquarks. There are similar deltalike
contributions in the spin-spin piece of the vector-meson-
exchange potential. This piece of the OBE potential is of
shorter range than the OPE piece. The removal of their
delta-like contributions is not as crucial as in the OPE
piece, yet it should better be done if we want the OBE
model to be internally consistent, in which case we arrive at
the predictions:
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BE

�
1

2

−
�

¼ 4.2 MeV and BE

�
3

2

−
�

¼ 18.3 MeV; ð4Þ

where the binding energies are in fact very close (within
1–3 MeV) to what we would expect from a molecular
Pcð4440Þ and Pcð4457Þ, namely 21.8 and 4.8 MeV.
Owing to the compatibility of this set of predictions with
the current experimental determination of the Pcð4440Þ
and Pcð4457Þ masses, the removal of the Dirac-delta
contributions could indeed be considered as the preferred
solution to the form-factor problem. In this case the OBE
model as applied to hadronic molecules ends up having the
phenomenological success of its original nuclear physics
version, modulo the larger experimental uncertainties
associated with hadronic molecules. The seemingly ad hoc
removal of the Dirac-delta contributions, which has
also been considered for instance in Ref. [56], finds a
natural explanation within the renormalized OBE model
of Ref. [55].
The manuscript is structured as follows: in Sec. II we

briefly explain how the heavy hadron-hadron interaction is
constrained by heavy-quark spin symmetry (HQSS), where
we also advocate a notation based on the quark model for
heavy-hadron interactions [57]. In Sec. III we explain the
OBE model, while in Sec. IV we explain the regulator
artifact within the OBE model. Then in Sec. V we show the
predictions we arrive at after removing this artifact. We
discuss the relation with renormalization and effective field
theory ideas in Sec. VI. Finally in Sec. VII we summarize
our results.

II. HEAVY-QUARK SPIN SYMMETRY

In this section we review a few basic consequences of
HQSS for heavy antimeson-baryon molecules. As applied
to molecular states, HQSS refers to the fact that interactions
among heavy hadrons do not depend on the spin of the
heavy quarks within the hadrons. This can automatically be
taken into account by writing the heavy hadron interactions
in a suitable notation. The standard notation for this
purpose is to group heavy hadrons with the same light-
quark structure in a single superfield, which we review in
Sec. II A. Here we advocate instead for a simpler notation
in terms of the light-quark degrees of freedom, which has
been recently presented in Ref. [57] (though we note that it
has been intermittently used in the literature for a long time
[58]), which we explain in Sec. II B.

A. Heavy-superfield notation

The P and P� heavy mesons are jQq̄i states with total
spin J ¼ 0 and 1, respectively. They can be grouped into
the single nonrelativistic superfield:

HQ ¼ 1ffiffiffi
2

p ½Pþ P⃗� · σ⃗�; ð5Þ

which has been adapted from its relativistic version [59]
and has good transformation properties with respect to
heavy-quark spin rotations. In the formula above HQ is a
2 × 2 matrix and σ⃗ are the Pauli matrices. The ΣQ and Σ�

Q

heavy baryons are jQqqi states with total spin J ¼ 1
2
and 3

2
.

They can be written together as the following nonrelativ-
istic superfield [60]

S⃗Q ¼ 1ffiffiffi
3

p σ⃗ΣQ þ Σ⃗�
Q; ð6Þ

which corresponds to the relativistic heavy-baryon super-
field written in Ref. [61]. From these superfields, the
simplest contact-range, no-derivative Lagrangian involving
the heavy (anti)meson and heavy baryon fields is [45]

L ¼ CaS⃗
†
Q · S⃗QTr½H̄†

QH̄Q�

þ Cb

X3
i¼1

S⃗†Q · ðJiS⃗QÞTr½H̄†
QσiH̄Q�; ð7Þ

where Ji with i ¼ 1, 2, 3 refers to the spin-1 angular
momentum matrices and with Ca and Cb coupling con-
stants. If we particularize for the D̄Σc family of molecules,
we obtain the following potential:

V

�
D̄Σc; J ¼ 1

2

�
¼ Ca; ð8Þ

V

�
D̄Σ�

c; J ¼ 3

2

�
¼ Ca; ð9Þ

V

�
D̄�Σc; J ¼ 1

2

�
¼ Ca −

4

3
Cb; ð10Þ

V

�
D̄�Σc; J ¼ 3

2

�
¼ Ca þ

2

3
Cb; ð11Þ

V

�
D̄�Σ�

c; J ¼ 1

2

�
¼ Ca −

5

3
Cb; ð12Þ

V

�
D̄�Σ�

c; J ¼ 3

2

�
¼ Ca −

2

3
Cb; ð13Þ

V
�
D̄�Σ�

c; J ¼ 5

2

�
¼ Ca þ Cb: ð14Þ

We notice that, for simplicity, we have ignored isospin
when writing the Lagrangian of Eq. (7) and the potentials of
Eqs. (8)–(14). Isospin can be trivially taken into account by
adding a subindex indicating the isospin of the two-body
state in the couplings: CIa, CIb with I ¼ 1

2
, 3
2
.
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B. Light-quark notation

Actually the heavy-quark symmetric interactions can be
derived in an easier and more direct way if we consider that
the heavy-quark acts as a spectator [57]. Instead of building
superfields for the P and P� heavy mesons, we can simply
express the interactions in terms of the light-quark subfield
within the heavy mesons, qL. Equivalently, for the ΣQ and
Σ�
Q heavy baryons we can use the light-diquark subfield

within them: dL. After introducing these fields, the lowest-
order contact-range Lagrangian can be simply written as

L ¼ Caðq†LqLÞðd†LdLÞ
þ Cbðq†Lσ⃗LqLÞ · ðd†LS⃗LdLÞ; ð15Þ

where σ⃗L and S⃗L refer to the spins of the qL and dL
subfields, respectively. This leads to the contact-range
potential

VCðqLdLÞ ¼ Ca þ Cbσ⃗L1 · S⃗L2; ð16Þ

where we have labeled the heavy meson and baryon with
the light quark and light diquark inside them with the
subscript 1 and 2. The contact-range potential is now
written for the light-quark fields within the heavy hadrons.
The translation into the heavy-hadron degrees of freedom
can be encapsulated in a series of rules. In particular for the
heavy mesons the light-quark spin operators are translated
into

hPjσ⃗LjPi ¼ 0; ð17Þ

hP�jσ⃗LjP�i ¼ S⃗1; ð18Þ

where S⃗1 refers to the spin-1 matrices as applied to the
heavy vector meson. For the heavy baryons the correspon-
dence is

hΣQjJ⃗LjΣQi ¼
2

3
σ⃗2; ð19Þ

hΣ�
QjJ⃗LjΣ�

Qi ¼
2

3
S⃗2; ð20Þ

where σ⃗2 refers to the Pauli matrices (applied to the heavy
spin-1

2
baryon) and S⃗2 are the spin-3

2
angular momentum

matrices. With these substitutions it is easy to check that the
contact-range potential of Eq. (16) written in the light-
quark field basis is indeed equivalent to the contact-range
potential of Eqs. (9)–(14) written in the particle basis. The
notation in terms of the light-quark subfields is however
much more compact and we will adopt it for the rest of
this work.

III. THE ONE-BOSON-EXCHANGE POTENTIAL

In this section we present the OBE model that we use
in this work. In the OBE model the potential between
two hadrons is generated by the exchange of a series of
light mesons, which includes the π, the σ, the ρ and the ω
(plus a few extra light mesons in its more sophisticated
versions, e.g., the η, the a0ð980Þ or even the a1 [62]). We
will propose here a minimalistic OBE model containing
only the four aforementioned light mesons (π, σ, ρ, ω),
which owing to their combination of range and coupling
strength are usually assumed to provide the bulk of the
hadron-hadron interaction (or at least this is the case when
we are dealing with nucleons). Nonetheless, as a cross-
check of the previous choice, we will consider the effects of
additionally including the η meson, which has a similar
range as the other light mesons we are considering (but a
smaller coupling).
The OBE model results in a description of the forces

among hadrons that is both simple and physically compel-
ling, representing a natural generalization of the original
idea by Yukawa for explaining nuclear forces. Yet there are
disadvantages in the OBE model, which usually include a
large number of coupling constants and the requirement of
form factors and a cutoff to remove the unphysical short-
range components of the potential. Here the choice of
coupling constants will be done in terms of experimentally
known information or by recourse to phenomenological
models. For the form factor we will choose a standard
multipolar form, while the cutoff will be determined by the
condition of reproducing a known molecular candidate, the
Pcð4312Þ in this case. By determining the cutoff in this way
we are partially renormalizing the OBE model, i.e.,
removing cutoff ambiguities in terms of observable infor-
mation. This concept is based on the fully renormalized
OBE model of Ref. [55], which in turn helps to understand
a few of the tweaks required in the original OBE model
(e.g., the excessively large coupling to the ω vector meson
that is usually required in nuclear physics). We stress
however that we have not implemented a renormalized
OBE model in this work but merely adapted a few of the
ideas of Ref. [55].

A. The Lagrangian

First we write down the Lagrangians that encode the
couplings between the heavy hadrons and the light mesons
(π, σ, ρ, ω). We use the light-quark notation introduced
in Sec. II B. For the effective light-quark field degree of
freedom within the heavy mesons the Lagrangian reads as
follows

LqLqLπ ¼
g1ffiffiffi
2

p
fπ

q†Lσ⃗L ·∇ðτ⃗ · π⃗ÞqL; ð21Þ

LqLqLσ ¼ gσ1q
†
LσqL; ð22Þ
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LqLqLρ ¼ gρ1q
†
Lτ⃗ · ρ⃗0qL

−
fρ1
4M1

ϵijkq
†
LσL;kτ⃗ · ð∂iρ⃗j − ∂jρ⃗iÞqL; ð23Þ

LqLqLω ¼ gω1q
†
Lω0qL

−
fω1
4M1

ϵijkq
†
LσL;kð∂iωj − ∂jωiÞqL; ð24Þ

where g1 is the pion axial coupling, fπ ¼ 132 MeV the pion
decay constant, gσ1 the coupling to the sigma meson, while
gV1 and fV1 with V ¼ ρ;ω are the electric- and magnetic-
type couplings to the vector mesons;M1 is a mass scale that
we introduce for fV1 to be dimensionless. Finally τ⃗ refers to
the isospin matrices as applied to the charmed meson, which
coincide with the Pauli matrices. For the effective light-
diquark field within the heavy baryons we have

LdLdLπ ¼
g2ffiffiffi
2

p
fπ

d†LS⃗L · ∇ðT⃗ · π⃗ÞdL; ð25Þ

LdLdLσ ¼ gσ2d
†
LσdL; ð26Þ

LdLdLρ ¼ gρ2d
†
LT⃗ · ρ⃗0dL

−
fρ2
4M2

ϵijkd
†
LSL;kT⃗ · ð∂iρ⃗j − ∂jρ⃗iÞdL

þ hρ2
2M2

2

d†LQL;ijT⃗ · ∂i∂jρ⃗0dL; ð27Þ

LdLdLω ¼ gω2d
†
Lω0dL

−
fω2
4M2

ϵijkd
†
LSL;kð∂iωj − ∂jωiÞdL

þ hρ2
2M2

2

d†LQL;ij∂i∂jω0dL. ð28Þ

The spin of the light-diquark field is SL ¼ 1, which means
that there are three possible type of interactions with a vector
field: electric, magnetic and quadrupole type. They corre-
spond to the gV2, fV2 and hV2 couplings. The mass M2 is
introduced tomake thefV2 andhV2 couplings dimensionless.
T⃗ represents the isospin matrices for the charmed baryons,
which are identical to the spin-1 matrices but applied to
isospin space instead. For the quadrupole-type term we have
introduced the spin-2 tensor

QL;ij ¼
1

2
½SL;iSL;j þ SL;jSL;i� −

S⃗2L
3
δij; ð29Þ

which can be translated into its charmed baryon version with

hΣcjQL;ijjΣci ¼ 0; ð30Þ

hΣ�
cjQL;ijjΣ�

ci ¼
1

3
Q2;ij; ð31Þ

with Q2;ij analogous to Eq. (29), but written in terms of the
spin-3

2
angular momentum matrices. We expect the quadru-

pole-type term to be small though.
The previous Lagrangians have been derived in the

heavy-quark limit, mQ → ∞. But the mass of the charm
quark is finite and HQSS-breaking terms can in principle
be included. Yet the relative size of the 1=mQ terms is
expected to be of the order of ΛQCD=mQ ∼ 15% in the
charm sector. In Sec. VA we will consider the effect of
these uncertainties in more detail.
Finally a few comments are in order at this point: first,

the electric-type and quadrupole interactions of the vector
mesons (ρ, ω) with the charmed mesons and baryons
depend only on the zeroth component of the vector meson
fields, which at first sight is anti-intuitive. This is actually a
result of the heavy quark limit and our choice of para-
metrization for the heavy hadron fields, which we explain
in Appendix A. Second, the relation with the multipole
expansion can be better understood from a comparison
with the electromagnetic Lagrangian of the heavy hadrons,
which we explain in Appendix B. Third, the Lagrangian for
the interaction of the heavy hadrons with the η, which we
do not include in the basic version of the OBE model, can
be found in Appendix C.

B. The OBE potential

The OBE potential can be easily derived from the
previous Lagrangians for the light-quark and light-diquark
fields. We write the potential in the following form

VOBE ¼ ζVπ þ Vσ þ Vρ þ ζVω; ð32Þ

where ζ ¼ �1 is a sign, for which the convention is

ζ ¼ þ1 for qLdLðe:g: D̄ΣcÞ; ð33Þ

ζ ¼ −1 for q̄LdLðe:g: DΣcÞ; ð34Þ

that is, we take ζ ¼ þ1 for the most representative type of
molecule, the (hidden-charm) D̄Σc in this case. In momen-
tum space the different components of the OBE potential
read

Vπðq⃗Þ ¼ −
g1g2
2f2π

τ⃗1 · T⃗2

σ⃗L1 · q⃗S⃗L2 · q⃗
q⃗2 þm2

π
; ð35Þ

Vσðq⃗Þ ¼ −
gσ1gσ2
q⃗2 þm2

σ
; ð36Þ

Vρðq⃗Þ ¼ τ⃗1 · T⃗2

�
gρ1

q⃗2 þm2
ρ

�
gρ2 −

hρ2
2M2

2

q⃗ · ðQL2qÞ
�

−
fρ1
2M1

fρ2
2M2

ðσ⃗L1 × q⃗Þ · ðS⃗L2 × q⃗Þ
q⃗2 þm2

ρ

�
; ð37Þ
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Vωðq⃗Þ ¼
gω1

q⃗2 þm2
ω

�
gω2 −

hω2
2M2

2

q⃗ · ðQL2qÞ
�

−
fω1
2M1

fω2
2M2

ðσ⃗L1 × q⃗Þ · ðS⃗L2 × q⃗Þ
q⃗2 þm2

ω
: ð38Þ

If we Fourier transform the previous expressions to
coordinate space then we have

Vπðr⃗Þ ¼ þτ⃗1 · T⃗2

g1g2
6f2π

½−σ⃗L1 · S⃗L2δðr⃗Þ

þ σ⃗L1 · S⃗L2m3
πWYðmπrÞ

þ SL12ðr⃗Þm3
πWTðmπrÞ�; ð39Þ

Vσðr⃗Þ ¼ −gσ1gσ2mσWYðmσrÞ; ð40Þ

Vρðr⃗Þ ¼ τ⃗1 · T⃗2

�
gρ1gρ2mρWYðmρrÞ

þ gρ1
hρ2
2M2

2

QL2ðr̂Þm3
ρWTðmρrÞ

þ fρ1
2M1

fρ2
2M2

�
−
2

3
σ⃗L1 · S⃗L2δðr⃗Þ

þ 2

3
σ⃗L1 · S⃗L2m3

ρWYðmρrÞ

−
1

3
SL12ðr̂Þm3

ρWTðmρrÞ
��

; ð41Þ

Vωðr⃗Þ ¼ gω1gω2
mωWYðmωrÞ

þ gω1
hω2
2M2

2

QL2ðr̂Þm3
ωWTðmωrÞ

þ fω1
2M1

fω2
2M2

�
−
2

3
σ⃗L1 · S⃗L2δðr⃗Þ

þ 2

3
σ⃗L1 · S⃗L2m3

ωWYðmωrÞ

−
1

3
SL12ðr̂Þm3

ωWTðmωrÞ
�
; ð42Þ

where we have introduced the dimensionless functions

WYðxÞ ¼
e−x

4πx
; ð43Þ

WTðxÞ ¼
�
1þ 3

x
þ 3

x2

�
e−x

4πx
; ð44Þ

while SL12 represents the standard tensor operator

SL12ðr̂Þ ¼ 3σ⃗L1 · r̂S⃗L2 · r̂ − σ⃗L1 · S⃗L2; ð45Þ

and QL2ðr̂Þ is a second type of tensor operator

QL2ðr̂Þ ¼ r̂ · ðQL2r̂Þ ¼ QL2;ijr̂ir̂j; ð46Þ

with QL2;ij defined in Eq. (29). This second type of tensor
operator is theoretically interesting, but probably not
particularly relevant as the hω2 coupling is expected to
be small, see Sec. III D for a more detailed discussion.
Finally it is important to notice that we have com-

puted the OBE potentials under the assumption that the
exchanged light mesons (π, σ, ρ, ω) have zero width. This
approximation is evident for the π and ωmesons, which are
narrow, but it is also known to work well for the ρ meson.
The situation is more subtle for the σ meson, yet even in
this case a broad σ meson can be substituted with a zero-
width one (sometimes called σ0) by a suitable redefinition
of its mass and coupling. Yet here we will treat the σ meson
more as an effective degree of freedom of the OBE model
(i.e., as a “σOBE”) than as a physical particle. We refer to
Ref. [48] and references therein for a complete discussion
of this topic.

C. Form factors

We have derived the previous OBE potential under the
assumption that the interactions between heavy hadrons
and light mesons are pointlike. Hadrons have however a
finite size, which can be taken into account by the intro-
duction of a form factor for each vertex. In momentum
space we will simply have

VMðq⃗;Λ1;Λ2Þ ¼ VMðq⃗ÞFM1ðq⃗;Λ1ÞFM2ðq⃗;Λ2Þ: ð47Þ

We will assume a monopolar form factor for vertices 1
and 2:

FMiðq⃗;ΛiÞ ¼
Λ2
i −m2

M

Λ2
i þ q⃗2

: ð48Þ

In principle we can use different cutoffs for different
vertices to take into account the different internal structure
of the heavy mesons and heavy baryons. Yet this is only
necessary if we want to describe heavy meson-meson,
heavy meson-baryon and heavy baryon-baryon molecules
consistently. If we are only interested in the heavy meson-
baryon system then we can simply assume a unique cutoff
for both vertices 1 and 2.
If we now Fourier transform the momentum space

potential with a monopolar form factor into coordinate
space, then the outcome is that we simply have to make the
following substitutions:

δðx⃗Þ → m3dðx; λÞ; ð49Þ

WYðxÞ → WYðx; λÞ; ð50Þ

WTðxÞ → WTðx; λÞ; ð51Þ
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where

dðx; λÞ ¼ ðλ2 − 1Þ2
2λ

e−λx

4π
; ð52Þ

WYðx; λÞ ¼ WYðxÞ − λWYðλxÞ

−
ðλ2 − 1Þ

2λ

e−λx

4π
; ð53Þ

WTðx; λÞ ¼ WTðxÞ − λ3WTðλxÞ

−
ðλ2 − 1Þ

2λ
λ2
�
1þ 1

λx

�
e−λx

4π
: ð54Þ

The corresponding expressions for form factors of higher
polarity (e.g., dipolar) can be consulted in the Appendix
of Ref. [54].

D. Couplings

For the axial coupling between the D and D� heavy
mesons and the pion we take

g1 ¼ 0.60; ð55Þ

which is compatible with g1 ¼ 0.59� 0.01� 0.07 as
extracted from the D� → Dπ decay [63,64]. For the Σc
and Σ�

c heavy baryons the axial coupling is not experimen-
tally available, but there is a lattice QCD calculation [65]

g2 ¼ 0.84� 0.2; ð56Þ

which is the value we adopt here. We notice in passing that
there are several conventions for the axial coupling to the
heavy baryons in the literature and here we are effectively
using the one inRef. [65]. Other two popular conventions are
the ones by Cho [61] and Yan [66], which are related to our
convention by the relations g2 ¼ −g2;Cho and g2 ¼ 3

2
g1;Yan

(in Ref. [66] the axial coupling to the heavy baryons is
denoted as g1).
For the couplings to the σ meson, in the case of the

nucleon-nucleon interaction it can be determined from the
linear sigma model [67] yielding

gσNN ¼
ffiffiffi
2

p MN

fπ
≃ 10.2: ð57Þ

For the case of the D, D� mesons and Σc, Σ�
c baryons we

can estimate the coupling to the σ from the quark model. By
assuming that the σ only couples to the u and d quarks, we
expect

gσ1 ¼
gσ2
2

¼ gσNN

3
≃ 3.4: ð58Þ

The choice of couplings for the ρ and ω mesons is more
laborious. First, from SU(3)-flavor symmetry and the
Okubo-Zweig-Iizuka (OZI) rule we expect that

gρ1 ¼ gω1; gρ2 ¼ gω2; ð59Þ

fρ1 ¼ fω1; fρ2 ¼ fω2; ð60Þ

hρ2 ¼ hω2: ð61Þ

For the determination of the electric, magnetic and quadru-
pole couplings we will use the vector-meson dominance
assumption. The original formulation of this idea states that
hadrons do not couple directly to the electromagnetic field
but by means of the neutral vector meson fields, ρμ3 and ω

μ,
where μ refers to the Lorentz indices of these fields, and the
subindex 3 indicates that we are dealing with the neutral
rho meson. A practical way to apply this idea is to derive
the electromagnetic Lagrangian from the substitutions

ρμ3 → eλρAμ; ð62Þ

ωμ → eλωAμ: ð63Þ

We can fix λρ and λω from the nucleon case, in which case
we obtain

λρ ¼
1

2gρNN
¼ 1

2gρ
; ð64Þ

λω ¼ 1

2gωNN
¼ 1

6gρ
; ð65Þ

where in the right-hand side we have written gρNN and
gωNN in terms of the universal ρ coupling (Sakurai’s
universality [68])

gρ ¼
mρ

2fπ
∼ 2.9; ð66Þ

where we have also made use of the relation gωNN ¼ 3gρNN ,
which is derived from SU(3)-flavor symmetry and the
OZI rule. In can be trivially checked that this choice
correctly reproduces that the proton and neutron charges
are ep ¼ þe and en ¼ 0, respectively.
The application to the heavy hadrons requires a few

modifications. For instance, vector-meson dominance is
expected to reproduce the total charge of the light quarks
only. It does not apply to the heavy quark, which we
consider to couple directly to the electromagnetic field.
Thus the application to the D̄0 (c̄u) charmed meson yields

gρ1

�
1

2gρ
þ 1

6gρ

�
¼ 2

3
e; ð67Þ

from which we deduce

gρ1 ¼ gρ ≃ 2.9: ð68Þ
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For the magnetic moments we define the following quantity
for the sake of convenience

fρ1 ¼ κρ1gρ1; ð69Þ

which is related to the D̄�0 magnetic moment, μðD̄�0Þ, by
the relation

2

3
κρ ¼

2M1

e
μðD̄�0Þ: ð70Þ

If we set the scaling mass to be the nucleon mass
M1 ¼ MN , κρ1 simply coincides with μðD̄�0Þ in units of
the nuclear magneton. If we use the quark model
μðD̄0Þ ¼ μu, with μu ¼ 1.85μN , we find

κρ1ðM1 ¼ MNÞ ≃ 2.8: ð71Þ

Notice that the definition of κρ1 is dependent on the
mass scaleM1 in the Lagrangian. ForM1 ¼ mD it happens
that κρ1 ≃ 5.5. It should be noticed that the vector-
meson dominance model we have presented here can be
further refined to obtain improved determinations of gρ1
and κρ1. For instance, Ref. [69] applies a more sophisti-
cated vector-meson dominance model to the weak
decays of the charmed mesons, which translates into the
couplings [53]

gρ1 ≃ 2.6 and κρ1ðM1 ¼ MNÞ ≃ 2.3� 0.4: ð72Þ

As can be appreciated this determination is compatible with
the one in Eqs. (68) and (71) within errors. We will use the
set derived from Ref. [69], i.e., the values in Eq. (72), to
follow the same convention as in our previous works.
Now we apply the previous ideas to the Σc and Σ�

c
baryons. First we define the reduced couplings

fρ2 ¼ κρ2gρ2; hρ2 ¼ ηρ2gρ2: ð73Þ

We now apply vector-meson dominance to arrive at the
relations

gρ2 ¼ 2gρ; ð74Þ

κρ2 ¼
3

4

�
2M2

e

�
μðΣ�þþ

c Þ; ð75Þ

ηρ2 ¼
9

2

�
M2

2

e

�
QðΣ�þþ

c Þ; ð76Þ

where μðΣ�þþ
c Þ and QðΣ�þþ

c Þ are the magnetic and quadru-
pole moment of the Σþþ

c baryon. From the quark model
(and the assumption that the charm quark provides a minor
contribution to the magnetic and quadrupole moments)
we expect μðΣ�þþ

c Þ ¼ 2μu and QðΣ�þþ
c Þ ¼ 0. We note

that a nonvanishing quadrupole moment will require the
light-diquark wave function to have a D-wave component,
which is not the case in the naïve quark model. Thus for
M2 ¼ MN we arrive at

κρ2 ≃ 2.8; ηρ2 ≃ 0: ð77Þ

The fact that the quadrupole vector-meson coupling
vanishes in the naïve quark model probably indicates a
relatively small contribution from this piece of the poten-
tial. This is actually good news in the sense that it sim-
plifies the OBE potential. However the estimations from the
quark model have been superseded by recent lattice QCD
calculations, at least for the magnetic moment of the Σþþ

c
baryon [70]. If we use the magnetic moment of the Σþþ

c to
determine κρ2, we first note that the vector-meson domi-
nance relation reads

κρ2 ¼
9

8

�
2M2

e

�
μðΣþþ

c Þ: ð78Þ

Reference [70] obtains μðΣþþ
c Þ ¼ 1.499ð202Þ, which

leads to

κρ2 ≃ 1.7� 0.2: ð79Þ

This is the value we will adopt here. The charmed-
antimeson and charmed-baryon masses that we use in this
work, together with the couplings, can be consulted in
Tables I and II.

TABLE I. Masses and quantum numbers of the light mesons of
the OBE model (π, σ, ρ, ω) and the heavy hadrons (D, D�, Σc,
Σ�
c). Notice that we work in the isospin-symmetric limit and take

the isospin-averaged masses of the π, D, D�, Σc and Σ�
c as listed

in the PDG [71]. For the ρ and ω we approximate their masses to
the closest tens of MeV, while for the σ we settle for a
conventional value of its mass within the OBE model (which
does not necessarily coincide with its physical mass).

Light Meson IGðJPCÞ M (MeV)

π 1− ð0−þÞ 138
σ 0þ ð0þþÞ 600
ρ 1þ ð1−−Þ 770
ω 0− ð1−−Þ 780

Heavy Hadron IðJPÞ M (MeV)

D 1
2
ð0−Þ 1867

D� 1
2
ð1−Þ 2009

Σc 1ð1
2
þÞ 2454

Σ�
c 1ð3

2
þÞ 2518
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E. Wave functions and partial wave projection

The wave function for a heavy meson-baryon system is

jΨi ¼ ΨJMðr⃗ÞjIMIi; ð80Þ

where jIMIi is the isospin wave function and ΨJM the spin
and spatial wave function, which can be written as a sum
over partial waves

ΨJMðr⃗Þ ¼
X
LS

ψLSJðrÞj2Sþ1LJi: ð81Þ

We use the spectroscopic notation 2Sþ1LJ, which denotes a
partial wave with total spin S, orbital angular momentum L
and total angular momentum J:

j2Sþ1LJi ¼
X

MS;ML

hLMLSMSjJMijSMSiYLML
ðr̂Þ; ð82Þ

where hLMLSMSjJMi are the Clebsch-Gordan coeffi-
cients, jSMSi the spin wave function and YLML

ðr̂Þ the
spherical harmonics. For the PΣQ and PΣ�

Q systems the
spin wave functions are trivial

jSMSðPΣQÞi ¼
���� 12MS

�
; ð83Þ

jSMSðPΣ�
QÞi ¼

���� 32MS

�
; ð84Þ

as they correspond to the spin wave functions of the heavy
baryon (the heavy meson P is a pseudoscalar). For the
P�ΣQ and P�Σ�

Q systems,

jSMSðP�ΣQÞi ¼
X

MS1;MS2

	
1MS1

1

2
MS2jSMS

�

× j1MS1i
���� 12MS2

�
; ð85Þ

jSMSðP�Σ�
QÞi ¼

X
MS1;MS2

	
1MS1

3

2
MS2jSMS

�

× j1MS1i
���� 32MS2

�
; ð86Þ

with j1MS1i, jJ2MS2i the spin wave function of particles 1
and 2.
The partial-wave projection of the potential depends on

the matrix elements of the spin-spin, tensor and quadrupole
tensor operators, which are independent of J and M,

hS0L0J0M0jO12jSLJMi ¼ δJJ0δMM0OJ
SL;S0L0 ; ð87Þ

with O12 ¼ C12, S12, Q2, which are in turn defined as

C12 ¼ a⃗1 · a⃗2; ð88Þ

S12 ¼ 3a⃗1 · r̂a⃗2 · r̂ − a⃗1 · a⃗2; ð89Þ

Q2;ij ¼
1

2
½a2ia2j þ a2ja2i� −

a⃗22
3
δij; ð90Þ

with a⃗1 (a⃗2) the corresponding spin operator for the D̄, D̄�
mesons (Σc, Σ�

c baryons). In this work we are using the
light-quark notation, which means that we have written the
potentials in terms of the light-quark spin. The correspon-
dence between the light-quark spin operators and C12, S12
is given by

σ⃗L1 · S⃗L2 ¼ f12C12; ð91Þ

SL12 ¼ f12S12; ð92Þ

QL2 ¼ f2Q2; ð93Þ

where f12 and f2 are factors related to the conversion from
the light-quark to the hadron spin degrees of freedom (for
all nonvanishing cases f12 ¼ 2

3
and f2 ¼ 1

3
). The specific

matrix elements of the spin-spin, tensor and quadrupole-
tensor operators can be consulted in Tables III–V for all the
molecular configurations that contain an S-wave (i.e., the
ones that are more likely to bind).

TABLE II. Couplings of the light mesons of the OBE model (π,
σ, ρ, ω) to the heavy-meson and heavy-baryon fields. For the
magnetic-type coupling of the ρ and ω vector mesons we have
used the decomposition fV ¼ κVgV , with V ¼ ρ;ω. M refers to
the mass scale (in MeV) involved in the magnetic-type couplings.

Coupling Value for P=P�

g1 0.60
gσ1 3.4
gρ1 2.6
gω1 2.6
κρ1 2.3
κω1 2.3
M1 940

Coupling Value for ΣQ=Σ�
Q

g2 0.84
gσ2 6.8
gρ2 5.8
gω2 5.8
κρ2 1.7
κω2 1.7
ηρ2 0
ηω2 0
M1 940
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TABLE III. Matrix elements of the spin-spin operator for the partial waves we are considering in this work.

Molecule Partial Waves JP σ⃗L1 · S⃗L2 ¼ f12 × a⃗1 · a⃗2

D̄Σc
2S1=2 1

2
− 0 × 0

D̄Σ�
c

4S3=2-4D3=2
3
2
− 0 ×



0 0

0 0

�
D̄�Σc

2S1=2-4D1=2
1
2
− 2

3
×

−2 0

0 1

�

D̄�Σc
2D3=2-4S1=2-4D1=2

3
2
− 2

3
×

 −2 0 0

0 1 0

0 0 1

!

D̄�Σ�
c

2S1=2-4D1=2-6D1=2
1
2
− 2

3
×

0
B@− 5

2
0 0

0 −1 0

0 0 3
2

1
CA

D̄�Σ�
c

2D3=2-4S3=2-4D3=2-6D3=2-6G3=2
3
2
− 2

3
×

0
BBBBB@

− 5
2

0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 3
2

0

0 0 0 0 3
2

1
CCCCCA

D̄�Σ�
c

2D5=2-4D5=2-4G5=2-6S5=2-6D5=2-6G5=2
5
2
− 2

3
×

0
BBBBBB@

− 5
2

0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 3
2

0 0

0 0 0 0 3
2

0

0 0 0 0 0 3
2

1
CCCCCCA

TABLE IV. Matrix elements of the tensor operator for the partial waves we are considering in this work.

Molecule Partial Waves JP SL12ðr̂Þ ¼ f12 × S12ðr̂Þ
D̄Σc

2S1=2 1
2
− 0 × 0

D̄Σ�
c

4S3=2-4D3=2
3
2
− 0 ×



0 0

0 0

�
D̄�Σc

2S1=2-4D1=2
1
2
− 2

3
×



0
ffiffiffi
2

pffiffiffi
2

p
−2

�

D̄�Σc
2D3=2-4S1=2-4D1=2

3
2
− 2

3
×

 
0 −1 1

−1 0 2

1 2 0

!

D̄�Σ�
c

2S1=2-4D1=2-6D1=2
1
2
− 2

3
×

0
B@

0 − 7

2
ffiffi
5

p − 3ffiffi
5

p

− 7

2
ffiffi
5

p − 8
5

− 3
10

− 3ffiffi
5

p − 3
10

− 12
5

1
CA

D̄�Σ�
c

2D3=2-4S3=2-4D3=2-6D3=2-6G3=2
3
2
− 2

3
×

0
BBBBBBBBBB@

0 7

2
ffiffiffiffi
10

p − 7

2
ffiffiffiffi
10

p 3ffiffiffiffi
35

p −3
ffiffiffiffi
6
35

q
7

2
ffiffiffiffi
10

p 0 8
5

− 3
10

ffiffi
7
2

q
0

− 7

2
ffiffiffiffi
10

p 8
5

0 − 3

2
ffiffiffiffi
14

p − 3
5

ffiffi
3
7

q
3ffiffiffiffi
35

p − 3
10

ffiffi
7
2

q
− 3

2
ffiffiffiffi
14

p − 6
7

9
ffiffi
6

p
35

−3
ffiffiffiffi
6
35

q
0 − 3

5

ffiffi
3
7

q
9
ffiffi
6

p
35

− 15
7

1
CCCCCCCCCCA

(Table continued)
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IV. THE CONSISTENT DESCRIPTION OF THE
PENTAQUARK TRIO

In this section we investigate whether the OBE model
can describe the LHCb pentaquark trio consistently. We
find that the removal of the short-range Dirac-delta con-
tributions to the OBE potential is a necessary step for

achieving this goal. We discuss the possible interpretations
and justifications of this modification to the OBE model.

A. Predictions of the Pcð4440Þ and Pcð4457Þ
In this manuscript, following the ideas of Refs. [53,54],

we propose the determination of the cutoff from the

TABLE IV. (Continued)

Molecule Partial Waves JP SL12ðr̂Þ ¼ f12 × S12ðr̂Þ

D̄�Σ�
c

2D5=2-4D5=2-4G5=2-6S5=2-6D5=2-6G5=2
5
2
− 2

3
×

0
BBBBBBBBBBBBB@

0 1
2

ffiffi
7
5

q
−

ffiffiffiffi
21
10

q
−

ffiffi
3
5

q
2
ffiffiffiffi
6
35

q
−3

ffiffiffiffi
2
35

q
1
2

ffiffi
7
5

q
8
7

16
ffiffi
6

p
35

ffiffiffiffi
21

p
10

− 1
7

ffiffi
3
2

q
− 12

ffiffi
2

p
35

−
ffiffiffiffi
21
10

q
16
ffiffi
6

p
35

− 8
7

0 9
70

− 3
ffiffi
3

p
14

−
ffiffi
3
5

q ffiffiffiffi
21

p
10

0 0 2
ffiffiffiffi
14

p
5

0

2
ffiffiffiffi
6
35

q
− 1

7

ffiffi
3
2

q
9
70

3
ffiffiffiffi
14

p
5

6
7

27
ffiffi
3

p
35

−3
ffiffiffiffi
2
35

q
− 12

ffiffi
2

p
35

− 3
ffiffi
3

p
14

0 27
ffiffi
3

p
35

− 6
7

1
CCCCCCCCCCCCCA

TABLE V. Matrix elements of the quadrupolelike tensor operator for the partial waves we are considering in
this work.

Molecule Partial Waves JP QL2ðr̂Þ ¼ f2 ×Q2ðr̂Þ
D̄Σc

2S1=2 1
2
− 0 × 0

D̄Σ�
c

4S3=2-4D3=2
3
2
− 1

3
×


0 1

1 0

�
D̄�Σc

2S1=2-4D1=2
1
2
− 1

3
×


0 0

0 0

�

D̄�Σc
2D3=2-4S1=2-4D1=2

3
2
− 1

3
×

 
0 0 0

0 0 0

0 0 0

!

D̄�Σ�
c

2S1=2-4D1=2-6D1=2
1
2
− 1

3
×

0
B@

0 2ffiffi
5

p 1ffiffi
5

p
2ffiffi
5

p − 1
5

2
5

1ffiffi
5

p 2
5

− 4
5

1
CA

D̄�Σ�
c

2D3=2-4S3=2-4D3=2-6D3=2-6G3=2
3
2
− 1

3
×

0
BBBBBBBBBB@

0 −
ffiffi
2
5

q ffiffi
2
5

q
− 1ffiffiffiffi

35
p

ffiffiffiffi
6
35

q
−

ffiffi
2
5

q
0 1

5

ffiffiffiffi
14

p
5

0ffiffi
2
5

q
1
5

0
ffiffi
2
7

q
4
5

ffiffi
3
7

q
− 1ffiffiffiffi

35
p

ffiffiffiffi
14

p
5

ffiffi
2
7

q
− 2

7
3
ffiffi
6

p
35ffiffiffiffi

6
35

q
0 4

5

ffiffi
3
7

q
3
ffiffi
6

p
35

− 5
7

1
CCCCCCCCCCA

D̄�Σ�
c

2D5=2-4D5=2-4G5=2-6S5=2-6D5=2-6G5=2
5
2
− 1

3
×

0
BBBBBBBBBBBBB@

0 − 2ffiffiffiffi
35

p 2
ffiffiffiffi
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condition of reproducing the mass of a known molecular
candidate. As there are three hidden-charm pentaquarks, we
are left with three possibilities: Pcð4312Þ (as a D̄Σc bound
state), Pcð4440Þ and Pcð4457Þ (as D̄�Σc bound states).
Owing to the aforementioned regulator artifact in the spin-
spin piece of the OBE potential, the most suitable choice is
the Pcð4312Þ, which for the parameters of Table II is
reproduced for

Λ1 ¼ 1119 MeV: ð94Þ

In the naïve OBE model, this cutoff leads to the predictions

M

�
1

2

�
¼ 4388 MeV and M

�
3

2

�
¼ 4459 MeV; ð95Þ

which are not compatible with the experimental masses of
the Pcð4440Þ and the Pcð4457Þ, i.e.,

MPc2 ¼ 4440.3� 1.3þ4.1
−4.6 MeV and

MPc3 ¼ 4457.3� 0.6þ4.1
−1.7 MeV: ð96Þ

As already explained, the reason for this mismatch is the
distortion of the OBE potential at relatively long distances
owing to the deltalike contribution to the spin-spin inter-
action, which we will explain in what follows.

B. The one-pion-exchange potential with
a monopolar form factor

Now if we inspect the OPE contribution to the OBE
potential, it contains a spin-spin and a tensor piece

Vπ ¼ σ⃗L1 · S⃗L2VπðSÞ þ SL12ðr̂ÞVπðTÞ; ð97Þ

The spin-spin piece reads

VπðSÞ ¼
g1g2
6f2π

τ⃗1 · T⃗2m3
π

×

�
−d
�
mπr;

Λ
mπ

�
þWY

�
mπr;

Λ
mπ

��
; ð98Þ

where d and WY are the regularized deltalike and Yukawa-
like contributions defined in Eqs. (49) and (50).
As can be seen from Eq. (98) and Fig. 1, these two

contributions have opposite sign: the deltalike contribution
will generate a strong short-range attraction/repulsion that
is unphysical. If the range of this unphysical contribution is
short enough, it will have no observable effect in the
predictions of the OBE model. However the problem is
that this is not the case. If we compute the OPE potential
contribution with a monopolar cutoff Λ1 ¼ 1119 MeV, the
OPE potential changes sign at r ¼ 1.1 fm, which is
comparable with the range of the OPE potential Rπ ¼
1=mπ ¼ 1.4 fm. This is unsettling to say the least: the

modifications of the form factors to the OBE potential are
expected to be short-ranged but certainly not of the order of
the pion range. This indicates that it is better to remove this
contribution. If we remove the deltalike contributions of the
pion and the vector mesons, we end up with the predictions

M

�
1

2

�
¼ 4458.0 MeV and M

�
3

2

�
¼ 4443.9 MeV;

ð99Þ

which are basically compatible with the experimental
determination of the masses of the Pcð4440Þ and Pcð4457Þ.

V. THE PENTAQUARK MULTIPLET

In this section we compute the predictions of the OBE
model for the hidden-charm molecular pentaquarks. We
determine the cutoff in the calculation from the condition
of reproducing the Pcð4312Þ, as explained in Sec. IV. From
this condition and the OBE potential we can simply
determine the full hidden-charm molecular spectrum. We
also explain how we estimate the uncertainties of the
OBE model.

A. Error estimations

The OBE model has a series of uncertainties, mostly
stemming from the choice of the coupling constants. This
error source can be dealt with by assigning a relative
uncertainty to the OBE potential:

VðPcÞ ¼ VOBEð1� δOBEÞ; ð100Þ

where VðPcÞ is the molecular pentaquark potential in a
given channel and VOBE is the central value of the OBE
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)
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V (S )( 1)  with 

V (S )( 1)  without 

FIG. 1. The spin-spin piece of the OPE potential as a function
of the radius r with and without the deltalike contributions. For
simplicity we show this piece for τ⃗1 · T⃗2 ¼ þ1, which corre-
sponds to I ¼ 3

2
.

LIU, WU, SÁNCHEZ, VALDERRAMA, GENG, and XIE PHYS. REV. D 103, 054004 (2021)

054004-12



potential with the central value of the couplings, see
Table II for details. We will assume the relative uncertainty
to be δOBE ¼ 30%, which is equivalent to assume that the
average relative uncertainty of the coupling constants in
Table II is δcoupling ¼ δOBE=2 ∼ 15% (assuming a Gaussian
uncertainty distribution for the couplings).1 With the
average uncertainty δOBE we can recalculate the cutoff
Λ1 by determining the location of the Pcð4312Þ, leading to

Λ1 ¼ 1.119þ0.190
−0.094 GeV: ð101Þ

The error in the binding energies is simply obtained by
propagating the (1� δOBE) uncertainty in the OBE poten-
tial, with the condition of recalculating the cutoff as to
reproduce the Pcð4312Þ. This condition implies the partial
renormalization of the OBE model, which manifests in the
fact that the errors derived from the overall uncertainty in
the potential are rather small. For the particular case of the
D̄�Σc bound states we arrive at

BE

�
1

2

−
�
¼ 4.2þ0.6

−0.7 MeV and BE

�
3

2

−
�
¼ 18.3þ0.6

−0.0 MeV;

ð102Þ

where the errors, besides being small, are also asymmetric.
There is a second error source: HQSS is not exact for finite
heavy quark masses. The relative size of HQSS violations
is expected to be of the order of δHQSS ∼ ΛQCD=mQ, with
ΛQCD ∼ ð200–300Þ MeV and mQ the mass of the heavy
quark. This error manifests in random variations of the
OBE potential around its expected HQSS limit

VðPcÞ ¼ V
ðmQ¼∞Þ
OBE ð1� δHQSSÞ; ð103Þ

where in the charm sector we expect δHQSS ∼ 15%. It is
worth stressing the difference between the OBE error of
Eq. (100) and the HQSS error of Eq. (103): the OBE error
takes into account the error in the coupling constants but
assumes that these couplings are identical for all the
possible molecules, while the HQSS error considers that
these couplings might be different for each of the molecular
states. For the D̄�Σc bound states the HQSS uncertainty is

BE

�
1

2

−
�
¼ 4.2þ5.3

−3.3 MeV and BE

�
3

2

−
�
¼ 18.3þ11.6

−9.2 MeV;

ð104Þ

which is considerably larger than the OBE uncertainty. The
reason why this happens is that the OBE uncertainty is
renormalized away: changes in the couplings of the light
mesons to the heavy hadrons are compensated by a change
in the cutoff. On the contrary HQSS violations imply that
the couplings are different for the ground and excited spin
states of a heavy hadron, i.e., the couplings for the D and
D� (or Σc and Σ�

c) are a bit different. This uncertainty is not
absorbed by the cutoff variation and results in a larger error.
Finally for the full error we will sum in quadrature the OBE
and HQSS errors.
In addition to the binding energies of the molecular

pentaquarks, we also compute the S-wave scattering
lengths of the charmed antimeson-baryon systems. The
reason is to identify molecular configurations in which
the attraction is strong, but not strong enough to bind. The
basis of this idea is a well-known relation between the two-
body scattering length and binding energy, a2 and B2, that
works in the limit in which the bound state is weakly bound

a2 ¼
1ffiffiffiffiffiffiffiffiffiffi
2μB2

p þO
� ffiffiffiffiffiffiffiffiffiffi

2μB2

p
mπ

�
; ð105Þ

with μ the reduced mass of the system and mπ the pion
mass. For a shallow bound state, i.e.,mπ >

ffiffiffiffiffiffiffiffiffiffi
2μB2

p
> 0, the

scattering length is positive and large (mπa2 ≫ 1). For
B2 → 0 the scattering length diverges and for a system that
almost binds, the scattering length is negative and large. We
notice that we compute the scattering lengths under the
assumption that the charmed antimeson and the charmed
baryon are stable hadrons with respect to the strong
interaction, which is not true in general. This is not
important as we are actually using the scattering length
as a tool to identify configurations that are close to binding.

B. Predictions

With the OBE model regularized without the deltalike
contributions, we can predict the seven possible S-wave

D̄ð�ÞΣð�Þ
c molecules. The results are summarized in

Table VI. For the isodoublet (I ¼ 1
2
) molecular pentaquarks,

the states predicted in the OBE model are indeed very
similar to the ones obtained in scenario B of the contact-
range EFT of Ref. [13] and the pionful one of Ref. [19].
Here we note that within the pionless and pionful descrip-
tions of Refs. [13,19] there are two coupling constants
whose values have to be determined from experimental
information. Thus two scenarios were considered: scenario
A, in which Pcð4440Þ and Pcð4457Þ are the J ¼ 1

2
and 3

2

D̄�Σ molecules, and scenario B for the opposite identi-
fication. Our OBE model naturally selects scenario B.

1The previous 15% figure is an educated guess, as it is
markedly difficult to assess the specific errors in the couplings.
The biggest uncertainty lies probably in the gσ coupling, which
comes from the nonlinear sigma model and the quark model:
though difficult to determine, it could very well be about 20%–
30%. For gρ and gω the uncertainty is expected to be smaller,
maybe at the 10% level, as can be deduced from comparing (at
least in the heavy meson case) the value deduced from Sakurai’s
universality (gρ ≃ 2.9) with the one calculated in the lattice
(gρ ¼ 2.6� 0.1� 0.4) [72], or the value deduced from semi-
leptonic decays and vector meson dominance (gρ ¼ 2.6) [69].
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For the isoquartet (I ¼ 3
2
) molecular pentaquarks, we find

that the J ¼ 1
2
D̄�Σc and the J ¼ 1

2
D̄�Σ�

c bind. Yet this
conclusion is not particularly strong: these two molecular
pentaquarks are weakly bound and once we consider the
error in the binding energies the outcome is that there is a
fair likelihood that they will not bind. The isoquartet J ¼ 3

2

D̄�Σ�
c molecule is close to binding, as can be inferred from

the large negative scattering length. Conversely, the uncer-
tainties in the OBE model mean that this molecular
pentaquark might be able to bind. The other isoquartet
molecules display mild attraction, a conclusion which can
be deduced from the negative (but natural) values of the
scattering length shown in Table VI.

C. Inclusion of the η meson as a
theoretical cross-check

Finally we will consider the effect of including the η
meson in the OBE model. With this we want to check
whether our theoretical error estimations are reliable or not.
As a matter of fact we have a partial check in the prediction

of the Pcð4440Þ and Pcð4457Þ pentaquark masses in
Table VI, which are compatible with the experimental
ones. We find it worth mentioning that the recent theoreti-
cal analysis of Ref. [73] indicates possible evidence of a
narrow Pcð4380Þ D̄Σ� molecule within the current exper-
imental data, a result which is also compatible with
Table VI. Yet a robust experimental confirmation would
still require the detection of the full pentaquark multiplet
and their quantum numbers. Be it as it may, besides
experiment, another method to cross-check our results is
a theory-with-theory comparison. By including the ηwe are
indeed comparing the OBE model with itself.
The OBE model is a phenomenological model and its

formulation is dependent on a set of arbitrary choices that
might affect its predictions. The choice of the form-factor
cutoff, which we addressed in Sec. IV, is the most obvious
example. Yet the selection of which light mesons to include
in the description is equally important. Here we advocate
for a minimalistic OBE in which only the π, σ, ρ and ω are
taken into account. Interestingly whether this choice is
good enough can be explicitly tested by including addi-
tional light mesons. The obvious candidate is the η meson,
the mass of which (mη ¼ 548 MeV) is comparable to
the one of the σ meson and thus they will both have a
comparable range. The derivation of the η-exchange
potential is presented in Appendix C, while here we simply
notice that it contains a spin-spin and tensor pieces but not a
central one. As a consequence the inclusion of the η meson
has no effect for the D̄Σc and D̄Σ�

c molecules, in which the
OBE potential is purely central. In particular the Pcð4312Þ
pentaquark, which we use for determining the form-factor
cutoff, is unaffected. Thus we end up with the same cutoff
as before, i.e., Λ1 ¼ 1119 MeV. However η exchange will
affect the location of the other pentaquarks, where in
Table VII we show a detailed comparison of the η-less
and η-full OBE models.
In Table VII we observe that in general the effects

of including the η are relatively modest, of the order of
0.5–1.0 MeV in the binding energies in most cases. That is,
the effects of η exchange are within the error bands we had
already computed, providing further support for our error
estimations. This also indicates that the inclusion of η
exchange is not necessary for the pentaquarks as molecular
states. Yet we warn that this conclusion might be specific to
pentaquarks, as there might be other molecular states in
which η exchange could play an important role [74].
However for the particular case of the pentaquarks it has
been argued that pion exchanges might be perturbative
[19]. If this were to be the case, then it is not surprising that
η exchange plays a minor role in the OBE model, as it is
considerably weaker than pion-exchange owing to SU(3)-
flavor geometric factors and also to fη > fπ , which further
weakens η exchange.

TABLE VI. Scattering lengths (a2 in fm) and binding energies
(B2 in MeV) of prospective isodoublet and isoquartet hidden-
charm antimeson-baryon molecules. The column “Molecule”
refers to the two-body system under consideration, while I and JP

denote the isospin and total angular momentum and parity of the
system. The error comes from an estimated relative uncertainty
for the OBE potential of the order of 30% and from HQSS
violations of the order of 15%, where the second error source
dominates. M refers to the predicted mass (the central value)
of a particular heavy antimeson-baryon molecule (if it binds). The
calculation of the scattering length assumes that the hadrons
are stable.

Molecule I JP a2 (fm) B2 (MeV) M (MeV)

D̄Σc
1
2

1
2
− 1.9þ1.0

−0.4 Input Input
D̄Σ�

c
1
2

3
2
− 1.9þ0.9

−0.4 9.3þ7.7
−5.7 4376.0

D̄�Σc
1
2

1
2
− 2.5þ2.3

−0.6 4.2þ5.3
−3.4 4458.0

D̄�Σc
1
2

3
2
− 1.4þ0.5

−0.3 18.3þ11.6
−9.2 4443.9

D̄�Σ�
c

1
2

1
2
− 2.6þ2.5

−0.7 2.9þ4.5
−2.6 4523.8

D̄�Σ�
c

1
2

3
2
− 1.9þ1.0

−0.4 9.2þ7.9
−5.8 4517.5

D̄�Σ�
c

1
2

5
2
− 1.3þ0.4

−0.3 22.4þ13.1
−10.6 4504.3

Molecule I JP a2 (fm) B2 (MeV) M (MeV)

D̄Σc
3
2

1
2
− −1.8þ1.2

−2.9 � � � � � �
D̄Σ�

c
3
2

3
2
− −1.8þ1.2

−3.2 � � � � � �
D̄�Σc

3
2

1
2
−

7.1þ∞ð−19.5Þ
−4.8

0.4þ2.2
† 4461.8

D̄�Σc
3
2

3
2
− −0.8þ0.5

−1.4 � � � � � �
D̄�Σ�

c
3
2

1
2
− 3.9þ9.8

−1.7 1.4þ3.2
−1.8 4325.3

D̄�Σ�
c

3
2

3
2
− −10.6þ11.2

−∞ð10.0Þ � � � � � �
D̄�Σ�

c
3
2

5
2
− −0.6þ0.4

−0.8 � � � � � �
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VI. THE OBE MODEL FROM A MODERN
PERSPECTIVE

In this section we will consider the OBE model—in
particular the removal of the Dirac-delta contributions—
from a modern understanding grounded on renormalization
and EFT ideas. From a phenomenological perspective this
removal is motivated because the range of the regularized
Dirac-delta contributions is unexpectedly long, resulting in
the distortion of theOPE potential at distances comparable to
the pion Compton wavelength. From a modern perspective
this distortion will be considered a regulator artifact, which
should be taken care of by means of the renormalization
procedure. In the following lines wewill explain these points
of view in order to put the OBE model in context.
From a traditional perspective the existence of short-

range ambiguities in the OBE model is apparent from the
fact that the unregularized OBE potential is singular, with
the tensor contributions diverging as 1=r3 for distances
mr ≪ 1, with m the mass of the exchanged boson. This
type of potentials require regularization if we want to have a
unique solution of the Schrödinger equation [75] (for more
modern treatments of singular interactions see Refs. [76–
79]). However we do not expect the behavior of the OBE
potential at distances shorter than the size of the hadrons to
be physical. Thus, we remove these unphysical short-range

contributions by regularizing the OBE potential. This is the
reason that justified the inclusion of form factors in the
original OBE model and this is also the reason why we
removed the Dirac deltas in Sec. IV.
Nowadays we know that the removal of short-range

ambiguities requires not only regularization but also
renormalization. By this we mean the following: we expect
to trade-off the short-range ambiguities by observable
information. In the original OBE model we simply regu-
larize the potential by choosing a sensible form factor and
cutoff. The renormalization process is more systematic: we
explicitly include a contact-range potential to model the
unknown short-range physics. By fitting the couplings in
this contact-range potential to experimental information we
are effectively absorbing the dependence on the form factor
and the cutoff in these couplings. The price to pay is a
reduction in the predictive power, as we have to include
new parameters in the theory which have to be determined
from experimental data.
Yet renormalization helps to understand in hindsight the

success of phenomenological models. In the particular
case of the OBE potential, choosing the form factor and
the cutoff as to reproduce experimental information basi-
cally amounts to an implicit (but usually incomplete)
renormalization process (for an explicit and complete

TABLE VII. Comparison of the scattering lengths and binding energies in our original OBE model without η
exchange (aη2 and Bη

2, in fm and MeV units, respectively) and after including η exchange (aη2 and Bη
2). The columns

“Molecule,” I and JP read as in Table VI, while Mη and Mη refer to the masses of the pentaquarks in the η-less and
η-full OBE model. The error estimations are estimated in the same way as in Table VI (i.e., assume a 30%
uncertainty in the strength of the OBE potential and HQSS violations at the 15% level). The addition of the ηmeson
in the OBE model leaves the prediction for the D̄Σ and D̄Σ� molecules unchanged, as these molecules depend only
on the central components of the potential while η exchange only generates spin-spin and tensor components. In
general the predictions of the η-less and η-full OBE model overlap within the estimated error bands and are thus
indistinguishable at the theoretical level.

Molecule I JP aη2 (fm) aη2 (fm) Bη
2 (MeV) Bη

2 (MeV) Mη (MeV) Mη

D̄Σc
1
2

1
2
− 1.9þ1.0

−0.4 1.9þ1.0
−0.4 Input Input Input Input

D̄Σ�
c

1
2

3
2
− 1.9þ0.9

−0.4 1.9þ0.9
−0.4 9.3þ7.7

−5.7 9.3þ7.7
−5.7 4376.0 4376.0

D̄�Σc
1
2

1
2
− 2.5þ2.3

−0.6 2.4þ2.0
−0.6 4.2þ5.3

−3.4 4.8þ5.7
−3.6 4458.0 4457.4

D̄�Σc
1
2

3
2
− 1.4þ0.5

−0.3 1.3þ0.5
−0.2 18.3þ11.6

−9.2 17.3þ11.1
−8.8 4443.9 4442.9

D̄�Σ�
c

1
2

1
2
− 2.6þ2.5

−0.7 2.4þ2.1
−0.6 2.9þ4.5

−2.6 3.8þ5.4
−3.2 4523.8 4522.9

D̄�Σ�
c

1
2

3
2
− 1.9þ1.0

−0.4 1.9þ1.0
−0.4 9.2þ7.9

−5.8 9.4þ8.0
−5.8 4517.5 4517.3

D̄�Σ�
c

1
2

5
2
− 1.3þ0.4

−0.3 1.3þ0.6
−0.3 22.4þ13.1

−10.6 21.1þ12.3
−10.1 4504.3 4503.0

Molecule I JP aη2 (fm) aη2 (fm) Bη
2 (MeV) Bη

2 (MeV) Mη (MeV) Mη

D̄Σc
3
2

1
2
− −1.8þ1.2

−2.9 −1.8þ1.2
−2.9 � � � � � � � � � � � �

D̄Σ�
c

3
2

3
2
− −1.8þ1.2

−3.2 −1.8þ1.2
−3.2 � � � � � � � � � � � �

D̄�Σc
3
2

1
2
−

7.1þ∞ð−19.5Þ
−4.8 5.7þ∞ð−97.3Þ

−3.4
0.4þ2.2

† 0.7þ2.0
† 4461.8 4461.5

D̄�Σc
3
2

3
2
− −0.8þ0.5

−1.4 −0.8þ0.4
−1.1 � � � � � � � � � � � �

D̄�Σ�
c

3
2

1
2
− 3.9þ9.8

−1.7 3.6þ5.2
−1.6 1.4þ3.2

−1.8 2.0þ3.2
−1.7 4525.3 4524.7

D̄�Σ�
c

3
2

3
2
− −10.6þ11.2

−∞ð10.0Þ −15.6þ17.8
−∞ð7.9Þ � � � � � � � � � � � �

D̄�Σ�
c

3
2

5
2
− −0.6þ0.4

−0.8 −0.5þ0.5
−0.8 � � � � � � � � � � � �
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renormalization of the OBE potential we recommend
Ref. [55]). In particular we will consider in detail the
following two perspectives

(i) the removal of the Dirac-delta contributions as a
renormalization choice, and

(ii) the relation of the OBE model with EFT descriptions
of the pentaquarks.

A. Renormalization and the OBE model

As we have already mentioned, the most important
difference of the OBE model as presented in this work
with its standard implementation is the removal of the
contact-range pieces that appear in the spin-spin compo-
nent of the potential. That is, we have identified that the
OBE potential can be divided into two pieces

VOBE ¼ VOBEðFÞ þ VOBEðCÞ; ð106Þ

where F and C refer to the finite- and contact-range piece
contributions. The contact-range piece conforms to the
general structure of Eq. (16), i.e.,

VOBEðCÞ ¼ COBE
a þ COBE

b σ⃗L1 · S⃗L2 ð107Þ

where the couplings are given by

COBE
a ¼ 0; ð108Þ

COBE
b ¼ þ½Cδπ

b þ Cδρ
b þ Cδω

b �; ð109Þ

where Cδπ
b , Cδρ

b and Cδω
b are determined by the Dirac-delta

contributions to the spin-spin component of the OBE
potential (hence the notation δπ, δρ, δω). These compo-
nents come from π exchange and the magneticlike piece of
ρ and ω exchange2:

Cδπ
b ¼ −

g1g2
6f2π

τ⃗1 · T⃗2; ð110Þ

Cδρ
b ¼ −

2

3

fρ1
2M1

fρ2
2M2

τ⃗1 · T⃗2; ð111Þ

Cδω
b ¼ −

2

3

fω1
2M1

fω2
2M2

: ð112Þ

The removal of these contact-range pieces is equivalent to
the following substitution:

VOBE ¼ VOBEðFÞ þ VOBEðCÞ → VOBE ¼ VOBEðFÞ;

that is, instead of using the complete OBE potential we
restrict ourselves to the finite-range piece of the OBE
potential, where the justification we have provided so far is
the unexpected long-range distortion of the finite-range
pieces when the VOBEðCÞ piece is kept.
Although there is indeed a physical justification for

this removal, it would be interesting whether this can be
justified from a renormalization perspective. A straightfor-
ward justification is the explicit inclusion of a contact-range
component in the potential

V ¼ δVC þ VOBEðFÞ þ VOBEðCÞ; ð113Þ
where δVC merely represents the unknown short-range
physics not explicitly included in the OBE model, where
the structure of δVC still follows Eq. (16):

δVC ¼ δCa þ δCbσ⃗L1 · S⃗L2; ð114Þ

Obviously the choice,

δVc ¼ −VOBEðCÞ; ð115Þ

will do the trick, where this choice corresponds to

δCa ¼ 0 and δCb ¼ −COBE
b : ð116Þ

From this point of view the removal of the Dirac-delta
contributions merely amounts to playing a shell game
between unknown short-range interactions and the Dirac-
delta contributions already present in the OBE potential.
Complementarily the observation that with this choice we
end up with a correct prediction of the masses of the
Pcð4440Þ and Pcð4457Þ pentaquarks motivates and pro-
vides physical content to Eq. (116).
Here it is worth noticing that the rationale of renorm-

alization is very different from that in the original OBE
model, where this strong distortion of the pion contribution
to the potential at long distances was avoided by the use of
a large enough cutoff, usually Λπ > 1.3 GeV. Besides, the
finite-range piece of the spin-spin piece of the OPE
potential is attractive in the S-wave singlet and triplet
partial waves, which in turn leads to a repulsive Dirac-delta
contribution. But for the heavy antimeson-baryon system it
is difficult to have a large enough cutoff that still reproduces
the three pentaquark poles.3 In any case it would be
interesting to check whether the present identification of
the quantum numbers of Pcð4440Þ and Pcð4457Þ will still
be correct in a fully renormalized OBE model as the one
presented in Ref. [55], i.e., with a cutoff that is not fixed but
floats within a given range.

2Notice that there is no Dirac-delta contribution stemming
from the central pieces of the potential, i.e., from the exchange
of the scalar meson σ or from the electric-type couplings of the ρ
and ω.

3This will require making the ω-meson contribution consid-
erably more repulsive by breaking the SU(3) relation gρ ¼ gω,
which is what happens in the OBE model as applied to the
nucleon-nucleon system.
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B. The EFT description and the OBE model

The previous interpretation is rather formal, merely
showing that it is possible to renormalize away the Dirac
deltas appearing in the OBE potential. It is more interesting
though to compare the OBE model with the EFT approach,
as this would provide us with some interesting insights.
Within EFTwe divide physics into long- and short-range

contributions, where the long-range contributions are
assumed to be known while the short-range ones are
not. If we are dealing with a nonrelativistic problem, what
we can do is to build an effective potential which can be
decomposed into two pieces

VEFT ¼ VC þ VF: ð117Þ

Here VC and VF refers to the contact- and a finite-range
piece, which represent the long- and short-range physics,
respectively. Actual EFTs are arranged in terms of a power
counting, which orders the different contributions to VC
and VF from more to less relevant. However the issue of
power counting is not particularly relevant to the current
discussion: thus we will implicitly assume that we are
working at leading order (LO); i.e., we only take into
account the most important contributions to the effective
potential. Notice that the decomposition into long- and
short-range physics is not unique and neither is the choice
of power counting. Thus the meaning and interpretation
of the contact-range potential VC will depend on these
choices.
Here we will compare the OBE model with the EFTs

of Refs. [13,19], which differ on their choices for the
finite-range part of the effective potential. In Ref. [13] pion
exchanges are considered to be perturbative and thus
subleading, which means that the LO potential reads

V=πF ¼ 0: ð118Þ

In Ref. [19] pion exchanges are considered to be non-
perturbative and included at LO

Vπ
F ¼ Vπ; ð119Þ

where Vπ coincides with the OPE potential calculated here.
For these two EFTs [13,19] the LO contact-range potential
takes the form

VC ¼ Ca þ Cbσ⃗L1 · S⃗L2; ð120Þ

where Ca and Cb are couplings that have to be determined
from experimental information, in particular from the
masses of the pentaquarks. It happens that there are
three pentaquarks to which to fit Ca and Cb. Besides,
the couplingCb represents a spin-dependent interaction and
its determination depends on which is the spin of the
Pcð4440Þ and Pcð4457Þ pentaquarks. Thus these EFTs

consider two possible scenarios (A and B) for which the
spin of these two pentaquarks is
(A) the Pcð4440Þ (Pcð4457Þ) is J ¼ 1=2 (J ¼ 3=2),
(B) the Pcð4457Þ (Pcð4440Þ) is J ¼ 1=2 (J ¼ 3=2).

Scenario A corresponds to the standard quark model
expectation that hadrons with higher spin should have
higher mass, while scenario B describes the opposite
situation. These EFTs cannot discriminate a priori between
these two possibilities, but only a posteriori if the pre-
dictions of each scenario are different enough.
The OBE model operates differently: the OBE potential

is assumed to be a complete description of the hadron-
hadron interaction. Thus we do not include a contact-range
potential. Indeed we could interpret the OBE model as a
EFT for which at LO

VC ¼ 0 and VF ¼ VOBEðFÞ: ð121Þ

Yet this interpretation is admittedly liberal and we have
included it for illustrative purposes only: it would be
difficult to construct an EFT when the mass of the vector
mesons is so close to the expected breakdown scale.
Besides, the fact that predictions depend on the cutoff
shows that it is indeed not an EFT. Be it as it may, from an
operational standpoint we have a free parameter in the OBE
model, the form-factor cutoff Λ, which we have determined
from the Pcð4312Þ. From this cutoff we can predict the
masses and spins of the other two pentaquarks, while
within EFT we could not predict their spins. We present a
summary of the EFT and OBE model predictions in
Table VIII, where it turns out that the predictions
of the OBE model coincide with those of scenario B in
Refs. [13,19].
Further support towards scenario B from the OBE model

can be found from analyzing the values of the Ca and Cb
couplings. Though these are running couplings, they still
might carry information about the short-range physics not
explicitly included within the EFT description, i.e., about σ,
ρ and ω exchange. The mechanism for this is the saturation
hypothesis, i.e., that the value of the EFT couplings are
saturated by light meson exchange. This idea works in
pion-nucleon [80] and nucleon-nucleon [81] scattering,
though its application in a purely nonperturbative context
such as nucleon-nucleon scattering (or hadronic molecules)
is considerably less clean and depends on the EFT cutoff
being of the same order of magnitude as the exchanged
mesons from which saturation comes.
Following the formalism of Ref. [82], we expect the EFT

couplings in Refs. [13,19] to be saturated primarily by
scalar and meson vector exchange

Csat
a ðΛ ∼mσ; mVÞ ∝ CS

a þ CV
a ; ð122Þ

Csat
b ðΛ ∼mσ; mVÞ ∝ CV

b ; ð123Þ
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where the superscript sat indicates that we are considering
the part of the couplings given by saturation and with
Λ ∼mσ, mV indicating that saturation is expected to
work only at EFT cutoffs close to the mass of the
exchanged mesons, in this case σ, ρ and ω, suggesting
Λ ∼ 0.6–0.8 GeV. The value of the saturated couplings is
expected to be proportional to the potential contribution
VMðq⃗Þ of the light mesons M evaluated at jq⃗j ¼ 0 once we
have removed the spurious Dirac-delta contributions [82].
This gives us

CsatðσÞ
a ðΛ ∼mσÞ ∝ −

gσ1gσ2
m2

σ
; ð124Þ

CsatðVÞ
a ðΛ ∼mρÞ ∝ þ gV1gV2

m2
V

ð1þ τ⃗1 · T⃗2Þ; ð125Þ

CsatðVÞ
b ðΛ ∼mρÞ ∝ þ fV1fV2

6M2
ð1þ τ⃗1 · T⃗2Þ; ð126Þ

where V ¼ ρ, ω and we have made the simplification
thatmρ ¼ mω ¼ mV , and we do not include the pion as it is
not expected to contribute for saturation at Λ ≫ mπ . The
proportionality constant is unknown and will depend on the
details of the renormalization process. However, assuming
this proportionality constant is the same for Csat

a and Csat
b ,

we can compute their ratio

CsatðVÞ
b

CsatðVþσÞ
a

≃ 0.123: ð127Þ

We will compare this reference value with the ratio we
obtain in EFT at a momentum space cutoff Λ ¼ 750 MeV,

which is close to the vector meson masses. For the EFT of
Ref. [13] in which pions are subleading, we obtain the
ratios

CðEFT=πÞ
b

CðEFT=πÞ
a

����A
Λ¼750 MeV

¼ −0.176; ð128Þ

CðEFT=πÞ
b

CðEFT=πÞ
a

����B
Λ¼750 MeV

¼ þ0.158; ð129Þ

which for scenario B is qualitatively compatible with the
OBE estimate. For the EFT of Ref. [19], in which pions are
included at leading order, the comparison is not direct. The
reason is that the momentum space version of the one pion
exchange potential used in Ref. [19] contains the spurious
Dirac-delta contributions that we have removed in the
OBE model here. Of course within the EFT framework
these spurious contributions are not a problem because
they can be reshuffled into the contact-range couplings.
However, if we want to make a comparison with the
saturated couplings then we have to explicitly remove this
spurious pion contribution given by Eq. (110) and which
evaluation yields Cδπ

b ¼ 0.375 fm2. Now, if we remove
Cδπ
b , we will obtain the ratios

CðEFTπÞ
b − Cδπ

b

CðEFTπÞ
a

����A
Λ¼750 MeV

¼ −0.229; ð130Þ

CðEFTπÞ
b − Cδπ

b

CðEFTπÞ
a

����B
Λ¼750 MeV

¼ þ0.136; ð131Þ

TABLE VIII. Comparison of the predicted masses of the pentaquarks in the OBE model and the EFT frameworks of Refs. [13,19].
Following the notation of Table VI, the columns “Molecule,” I and JP refer to the type of two-body system, its isospin and total spin and
parity. For the masses,MOBE is the predicted mass in the OBE model,MðEFTπÞ to the mass within the EFTof Ref. [13] (in which pions are
subleading) whileMðEFTπÞ to the EFTof Ref. [19] (in which pions are leading). Both EFTs are unable to determine the quantum numbers
of the Pcð4440Þ and Pcð4457Þ from first principles and thus a choice has to be made: in scenario A the Pcð4440Þ is the JP ¼ 1

2
− D̄�Σc

molecule, while in scenario B it is the Pcð4457Þwhich is the JP ¼ 1
2
− D̄�Σc molecule. The scenarios are indicated by a superscript in the

mass (MA
EFT and MB

EFT). The mass ranges are derived from varying the cutoff Λ within the EFT descriptions, where for the EFT of
Ref. [13] (Ref. [19]) the cutoff window is Λ ¼ 0.5–1.0 GeV (Λ ¼ 0.75–1.5 GeV). In general the predictions of the OBE model agree
well with scenario B, but not with scenario A.

Molecule I JP MOBE (MeV) MA
ðEFTπÞ (MeV) [13] MB

ðEFTπÞ (MeV) [13] MA
ðEFTπÞ (MeV) [19] MB

ðEFTπÞ (MeV) [19]

D̄Σc
1
2

1
2
− Input 4312–4313 4306–4308 4314–4320 4313–4320

D̄Σ�
c

1
2

3
2
− 4376.0 4371–4372 4376–4377 4378–4383 4373–4385

D̄�Σc
1
2

1
2
− 4458.0 Input Input Input Input

D̄�Σc
1
2

3
2
− 4443.9 Input Input Input Input

D̄�Σ�
c

1
2

1
2
− 4523.8 4500–4501 4523–4524 4483–4500 4513–4523

D̄�Σ�
c

1
2

3
2
− 4517.5 4511 4517 4507–4512 4511–4516

D̄�Σ�
c

1
2

5
2
− 4504.3 4523–4524 4500–4501 4520–4523 4497–4501
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where scenario B is again closer to the ratio expected
within the OBE model (in fact it basically reproduces the
expected ratio).
It is interesting to notice that the EFT couplings can also

be used to check the necessity of including certain light
mesons within the OBE model. For instance, if we remove
the σ meson, the Csat

a coupling will not be saturated by this
meson, and we will end up with the ratio

CsatðVÞ
b

CsatðVÞ
a

≃ 0.426; ð132Þ

which is not compatible with scenario A or B in the two
EFTs of Refs. [13,19] by a factor of three, give or take. This
favors the inclusion of the σ in our OBE model. Coversely,
if we remove the ω or the ρ the ratios will change to

CsatðρÞ
b

CsatðρþσÞ
a

≃ 0.193;
CsatðωÞ
b

CsatðωþσÞ
a

≃ −0.282; ð133Þ

which, surprisingly, are somewhat similar to the EFT ratios
for scenarios A and B, respectively, see Eqs. (130) and (131).
Removing theω (ρ) leads to a version of scenario B (A) with
larger hyperfine splittings than in Refs. [13,19]. However
from flavor symmetry we expect the ρ and ω to have similar
couplings and thus we do not consider removing onewithout
the other. Removing the vector mesons completely would
lead to Cb=Ca ≃ 0, which results in a spectrum were the
isospin splitting comes fromOPE only: it would be similar to
scenario B but with smaller hyperfine splittings. If we now
turn our attention to the ηmeson,whose exchange potential is
computed in Appendix C, this meson will be able to saturate
the Cb coupling:

CsatðηÞ
a ðΛ ∼mηÞ ∝ 0; ð134Þ

CsatðηÞ
b ðΛ ∼mηÞ ∝

g1g2
18f2η

; ð135Þ

with g1 and g2 the axial couplings for the charmed antimeson
and baryon and fη ≃ 150 MeV the weak decay constant of
the η meson. In this case we obtain the ratio

CsatðVþηÞ
b

CsatðVþσÞ
a

≃ 0.109; ð136Þ

which is compatiblewith the η-less ratiowithin the 10% level
and with the EFT ratios in scenario B within the ð25–45Þ%
level. Owing to the qualitative nature of saturation, it is
probably difficult to argue strongly for or against the
inclusion of the η in the OBE as applied to the molecular
pentaquarks, as its effect seems to be small in this case. This is
in contrast with the σ meson, for which the evidence is more
conclusive. As already mentioned, the previous conclusions
about η exchange are molecule specific: while in the

pentaquarks it probably is a minor effect, in other two-
hadron systems (particularly if they involve strange hadrons
[74]) it might represent an important contribution to binding.

VII. SUMMARY

In this paper we have investigated the spectroscopy of
the hidden-charm pentaquarks from the point of view of the
OBE model. In particular we considered the impact of the
short-range delta-like contributions in the OBE potentials.
The removal of these contributions, in combination with the
condition of reproducing the mass of the Pcð4312Þ penta-
quark as a D̄Σc bound state, leads to the following
predictions for the D̄�Σc molecules:

M

�
1

2

−
�

¼ 4458.0þ3.4
−5.3 MeV and

M
�
3

2

−
�

¼ 4443.9þ9.2
−11.6 MeV; ð137Þ

which are close to the experimental masses of the Pcð4440Þ
and Pcð4457Þ pentaquarks. This suggests the identification
of the Pcð4440Þ with the J ¼ 3

2
D̄�Σc bound state and the

Pcð4457Þ with the J ¼ 1
2
one. In fact the expectation from

OPE alone is that the J ¼ 3
2
molecule should be more bound

than the J ¼ 1
2
one [7], as a consequence of (the spin-spin

component of) OPE being attractive (repulsive) in the J ¼ 3
2

(1
2
) channel. The combination of OPE with short-range

physics, as in Ref. [83] (which uses the hidden-gauge
approach to which it adds pion-exchange diagrams), leads
to the same conclusion. The recent work of Ref. [84] also
explains the molecular pentaquark spectrum on the basis of
OPE and proposes the same spin-parity identification as
here, but suggest that the reason why the J ¼ 3

2
molecule is

more bound is the tensor component of the OPE potential
(instead of the spin-spin component, as in Ref. [7]). Be it as
it may, we warn that theoretical predictions in the OBE
model have significant uncertainties and that these uncer-
tainties cannot be systematically estimated, as we are
dealing with a model (instead of an effective field theory).
Another aspect to consider is the decays of the pentaquarks:
within the molecular picture the natural expectation is that
the pentaquarks would predominantly decay into D̄Λc and
D̄�Λc, with the decay mediated by pion and vector meson
exchange. In principle it could be possible to extend the
OBE model to the Σc → Λc transition to calculate this
decay width, but this is beyond the scope of this work. It is
also worth mentioning that the decays of molecular
pentaquarks into J=ΨN and ηcN are expected to be
suppressed, which raises the question of whether this is
compatible with the original detection of the Pc’s in the
J=Ψp channel by the LHCb [1]. However the nonobser-
vation of the Pc’s by the GlueX collaboration [85] sets
higher limits on the branching ratios of the pentaquarks into
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J=Ψp, which are in the singlet digit percent level and thus
might be compatible with the molecular picture. Yet this
remains to be confirmed by concrete calculations of both
charmed antimeson-baryon and charmonium decays.
Besides proposing a possible identification for the

quantum numbers of the three hidden-charm pentaquarks,
we predict the existence of other four molecular penta-
quarks with I ¼ 1

2
. This prediction indeed confirms the

conclusion of Ref. [13], which used a contact-range
effective field theory to describe the molecular pentaquarks,
and of Ref. [14], which used the hidden-gauge formalism
(constrained by HQSS) instead. Among the predicted states
there is the J ¼ 5

2
D̄�Σ�

c molecule, which was conjectured in
Refs. [6,45] and reproduced in a few recent theoretical
works [13–15,86]. Finally, in the isoquartet sector (I ¼ 3

2
)

there might be two or three molecular pentaquarks that
bind. We note that this will impact the size of the proposed
isospin-breaking decay ΓðPc → J=ΨΔþÞ=ΓðPc → J=ΨpÞ
calculated in Ref. [25] (in a similar way, for instance, as the
presence of a bound or virtual state in the DD̄ system will
affect the decay of the Xð3872Þ to D0D̄0π0 [87]).
Conversely, the experimental measurement of the iso-
spin-breaking decay ratio proposed in Ref. [25] might
provide important clues regarding the existence of iso-
quartet molecular pentaquarks.
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APPENDIX A: LAGRANGIAN FOR VECTOR
MESON EXCHANGE FOR HEAVY HADRONS

AND THE CHOICE OF A VELOCITY
PARAMETER

The Lagrangians describing the interaction of the vector
meson with the charmed mesons and baryons contains
electric-, magnetic- and quadrupolelike components, i.e., it
is a multipole expansion. It is worth noticing that the
electric- and quadrupole-like terms depend only on the
zeroth component of the vector meson field, which is
expected to be suppressed for nonrelativistic processes.
If we take the electric-type term as an example, the
Lagrangian can be generically written as

LhhV ¼ gVh†V0h; ðA1Þ

with gV a coupling, h a nonrelativistic field representing the
heavy hadron (e.g., h ¼ HQ, SQ for superfield notation to
hQ ¼ qL, dL for subfield notation) and V0 the zeroth
component of the vector meson field. This prompts the
question of how it is possible to derive a potential from a
Lagrangian that generates vanishing amplitudes in the
heavy quark limit (i.e., when the heavy hadron masses
go to infinity). Indeed from the previous Lagrangian we can
derive the nonrelativistic amplitude

Aðh → hVμÞ ¼ gVϵμδμ0; ðA2Þ

where ϵμ refers to the polarization of the vector meson and
δμν is the Kronecker delta. If we evaluate this amplitude for
a physical vector meson, for which the polarization vector
obeys the relation qμϵμ ¼ 0 with qμ the four-momentum of
the vector meson, and assume that the initial and final
hadrons are on-shell, then we have qμ ¼ p0μ − pμ, i.e., the
difference of the final and initial heavy hadron momenta. it
is apparent that in the heavy quark limit q0 scales as 1=mQ

with mQ the mass of the heavy quark inside the heavy
hadron. For mQ → ∞ the relation qμϵμ ¼ 0 simplifies to
q⃗ · ϵ⃗ ¼ 0, which implies that ϵ0 ¼ 0 for a physical vector
meson in this limit, thus resulting in the aforementioned
vanishing amplitude.
There are however two factors to consider here: (i) the

potential is a nonobservable quantity which actually results
from the exchange of a virtual vector meson instead of a
physical one (i.e., we end up with a nonvanishing potential
in the mQ → ∞ limit because qμϵμ ¼ 0 only applies to
physical states), (ii) the fact that the Lagrangian vanishes
for on shell heavy hadrons in this limit does not mean that
the gV coupling is detached from physical processes, with
this detachment being an artifact of the notation instead. To
specifically address this second point, we notice that the
full Lagrangians for a relativistic hadron field and a vector
meson are

LMMV ¼ gVðiM†∂↔μMÞVμ; ðA3Þ

LBBV ¼ gVB̄γμVμB; ðA4Þ

where M and B are meson and baryon fields, respectively,
Vμ the vector meson field and γμ the Dirac matrices. As we
are dealing with heavy hadrons, we consider them to move
with constant speed v ¼ ðv0; v⃗Þ, with vμvμ ¼ 1, prompting
the (schematic) field redefinitions

MvðxÞ ∝ eimQv·xMðxÞ; ðA5Þ

BvðxÞ ∝ eimQv·xBðxÞ; ðA6Þ
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with mQ the mass of the heavy quark inside the heavy
hadron, which in the heavy quark limit can be basically
identified with the heavy hadron mass, and v the velocity
parameter. After a few manipulations we end up with the
Lagrangians

LMMV ¼ gVM
†
vv · VMv; ðA7Þ

LBBV ¼ gVB
†
vv · VBv; ðA8Þ

which are formally identical, leading to the more simple
notation:

LhhV ¼ gVh
†
vv · Vhv; ðA9Þ

where hv stands for a heavy hadron field with velocity v, for
which we obtain the nonrelativistic amplitude

Aðhv → hvVμÞ ¼ gVϵ · v: ðA10Þ

If we choose v ¼ ð1; 0⃗Þ, we end up with Eq. (A1).
Finally, for deriving the potential for the exchange of a

vector meson we first define

A ¼ ϵμAμ → Aμ ¼ gVvμ: ðA11Þ
With this new amplitude plus the convenient normalization
we have used in Eqs. (A1) and (A11), we can write the
potential as

Vðq⃗Þ ¼ Aμðq⃗ÞAμð−q⃗Þ
q⃗2 þm2

V
;

¼ g2V
q⃗2 þm2

V
; ðA12Þ

where q⃗ is the exchanged momentum, mV the mass of the
vector meson and with the second line being a consequence
of v2 ¼ 1, meaning that the potential is independent of the
velocity parameter. The addition of the isospin degrees of
freedom in the case of the ρ is trivial. Further details about
the mechanics of the calculation of the potential for heavy
hadrons can be consulted in Ref. [88].

APPENDIX B: LAGRANGIANS FOR THE
MAGNETIC AND QUADRUPOLE MOMENTS

In this Appendix we discuss the magnetic and quadru-
pole couplings of a heavy hadron to the electromagnetic
field. This is useful for the derivation of the magnetic- and
quadrupolelike couplings to the vector mesons in the
vector-meson dominance model. In particular we write

Lμ ¼ μðhÞh†
�

1

jS3j
ϵijkSi∂jAk

�
h; ðB1Þ

LQ ¼ QðhÞh†
�

1

jQ33j
Qij∂i∂jA0

�
h; ðB2Þ

for the magnetic-dipole and electric-quadrupole coupling
of a heavy hadron field h to the photon field Aμ ¼ ðA0; A⃗Þ.
In the magnetic term, μðhÞ is the magnetic-dipole moment
of the heavy hadron h and S⃗ represents the spin operator of
this heavy hadron, which we assume to be spin-S (with
S ≥ 1

2
if we want the magnetic moment to be nonvanishing).

In the quadrupole term, QðhÞ is the electric-quadrupole
moment of the heavy hadron and Qij is a spin-2 tensor that

can be constructed from the spin operator S⃗:

Qij ¼
1

2
½SiSj þ SjSi� −

1

3
SðSþ 1Þδij; ðB3Þ

which requires S ≥ 1 to be nonvanishing. Finally jS3j ¼ S
and jQ33j ¼ 1

3
Sð2S − 1Þ refer to the evaluation of the S3

and Q33 operators for a state with maximum third compo-
nent of the spin. These definitions ensure that

hSSjμ̂3jSSi ¼ μðhÞ; ðB4Þ

hSSjQ̂33jSSi ¼ QðhÞ; ðB5Þ

where jSSi represents a spin state of the heavy hadron h
where the third component is S3 ¼ þS, while μ̂3 and Q̂33

are the i ¼ 3 and ij ¼ 33 components of the magnetic and
tensor operators, which can be identified with

μ̂i ¼ μðhÞ 1

jS3j
Si; ðB6Þ

Q̂ij ¼ QðhÞ 1

jQ33j
Qij: ðB7Þ

Conversely, the moments of order n can be defined
analogously as

MðnÞ
i1���in ¼ MðnÞðhÞ 1

jTðnÞ
3���3j

TðnÞ
i1���in ; ðB8Þ

with MðnÞðhÞ the n-polar moment of hadron h, TðnÞ a spin
nth order tensor constructed from the hadron spin operator

S⃗ and jTðnÞ
3…3j the evaluation of its i2 ¼ i2 ¼ � � � ¼ i3 ¼ 3

component for the jSSi spin state.
For the heavy-baryon sextet, assuming that the multipole

moments are dominated by the light-quarks, only the
magnetic-dipole and electric-quadrupole moments will
be relevant; as discussed, the quadrupole moment is
expected to be small (it requires either HQSS breaking
or a sizable D-wave component for the light quark pair).
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APPENDIX C: LAGRANGIAN FOR
THE η MESON

In thisAppendixwediscuss the inclusion of theηmeson in
the OBE model. Even though it is well known within
the standard OBE model as applied to nucleon-nucleon
interactions that the contribution of the η meson is not
particularly important, it is nonetheless interesting to include
it explicitly not only to test this hypothesis but also to assess
the systematic uncertainties of the OBE model.
To include the η we first notice that the pion, kaon and η

mesons are pseudo Nambu-Goldstone bosons associated
with the breakdown of chiral symmetry, which can be
grouped together into the field

M ¼

0
BBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 −
ffiffi
2
3

q
η

1
CCCA: ðC1Þ

Analogously the charmed meson and baryon fields can also
be arranged into SU(3)-flavor matrices

H ¼

0
B@

D̄0

D−

D̄s

1
CA; ðC2Þ

S ¼

0
BBB@

Σþþ
c

1ffiffi
2

p Σþ
c

1ffiffi
2

p Ξþ0
c

1ffiffi
2

p Σþ
c Σ0

c
1ffiffi
2

p Ξ00
c

1ffiffi
2

p Ξþ0
c

1ffiffi
2

p Ξ00
c Ω0

c

1
CCCA: ðC3Þ

The flavor structure of the interaction between the pseudo
Nambu-Goldstone and charmed meson and baryon fields
will take the form

HaMabHb and SabMbcSca; ðC4Þ
from which we can deduce that the Lagrangians will take
the form

LqLqLη ¼
1ffiffiffi
3

p g1ffiffiffi
2

p
fη

q†Lσ⃗L · ∇⃗ηqL; ðC5Þ

LdLdLη ¼
1ffiffiffi
3

p g2ffiffiffi
2

p
fη

d†LS⃗L · ∇⃗ηdL; ðC6Þ

where g1 and g2 are the axial coupling to the charmed
mesons and baryons, respectively, which are expected to be
identical to those for the pion, while for the weak decay
constant we use fη ≃ 150 MeV instead of fπ . It is interest-
ing to notice that the previous Lagrangians can also be
obtained from the substitution rules

τaπa and Taπa →
ηffiffiffi
3

p ; ðC7Þ

which can be traced back to the form of the pseudo Nambu-
Goldstone meson octet matrix, Eq. (C1). From the previous
Lagrangians we deduce the momentum space potential

Vηðq⃗Þ ¼ −
g1g2
2f2η

1

3

σ⃗L1 · q⃗S⃗L2 · q⃗
q⃗2 þm2

η
ðC8Þ

or, if we Fourier-transform into coordinate space

Vηðr⃗Þ ¼ þ 1

3

g1g2
6f2η

½−σ⃗L1 · S⃗L2δðr⃗Þ

þ σ⃗L1 · S⃗L2m3
ηWYðμηrÞ

þ SL12ðr⃗Þm3
ηWTðmηrÞ�; ðC9Þ

which is to be regularized with a suitable form factor and
cutoff. To include it into the full OBE potential, we notice

VOBE ¼ ζVπ þ Vη þ Vσ þ Vρ þ ζVω; ðC10Þ

with ζ ¼ �1 the sign for distinguishing the qLdL and q̄LdL
cases, and where we notice that the G parity of the η meson
is G ¼ þ1, and thus this piece of the potential does not
depend on whether we have particles or antiparticles.

[1] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122,
222001 (2019).

[2] M. Voloshin and L. Okun, JETP Lett. 23, 333 (1976), http://
www.jetpletters.ac.ru/ps/1801/article_27526.shtml.

[3] A. De Rujula, H. Georgi, and S. Glashow, Phys. Rev. Lett.
38, 317 (1977).

[4] J.-J. Wu, R. Molina, E. Oset, and B. S. Zou, Phys. Rev. Lett.
105, 232001 (2010).

[5] J.-J. Wu, R. Molina, E. Oset, and B. S. Zou, Phys. Rev. C 84,
015202 (2011).

[6] C. W. Xiao, J. Nieves, and E. Oset, Phys. Rev. D 88, 056012
(2013).

[7] M. Karliner and J. L. Rosner, Phys. Rev. Lett. 115, 122001
(2015).

[8] W. L. Wang, F. Huang, Z. Y. Zhang, and B. S. Zou, Phys.
Rev. C 84, 015203 (2011).

LIU, WU, SÁNCHEZ, VALDERRAMA, GENG, and XIE PHYS. REV. D 103, 054004 (2021)

054004-22

https://doi.org/10.1103/PhysRevLett.122.222001
https://doi.org/10.1103/PhysRevLett.122.222001
http://www.jetpletters.ac.ru/ps/1801/article_27526.shtml
http://www.jetpletters.ac.ru/ps/1801/article_27526.shtml
http://www.jetpletters.ac.ru/ps/1801/article_27526.shtml
http://www.jetpletters.ac.ru/ps/1801/article_27526.shtml
http://www.jetpletters.ac.ru/ps/1801/article_27526.shtml
http://www.jetpletters.ac.ru/ps/1801/article_27526.shtml
https://doi.org/10.1103/PhysRevLett.38.317
https://doi.org/10.1103/PhysRevLett.38.317
https://doi.org/10.1103/PhysRevLett.105.232001
https://doi.org/10.1103/PhysRevLett.105.232001
https://doi.org/10.1103/PhysRevC.84.015202
https://doi.org/10.1103/PhysRevC.84.015202
https://doi.org/10.1103/PhysRevD.88.056012
https://doi.org/10.1103/PhysRevD.88.056012
https://doi.org/10.1103/PhysRevLett.115.122001
https://doi.org/10.1103/PhysRevLett.115.122001
https://doi.org/10.1103/PhysRevC.84.015203
https://doi.org/10.1103/PhysRevC.84.015203


[9] Z.-C. Yang, Z.-F. Sun, J. He, X. Liu, and S.-L. Zhu, Chin.
Phys. C 36, 6 (2012).

[10] H.-X. Chen, W. Chen, and S.-L. Zhu, Phys. Rev. D 100,
051501 (2019).

[11] R. Chen, Z.-F. Sun, X. Liu, and S.-L. Zhu, Phys. Rev. D 100,
011502 (2019).

[12] J. He, Eur. Phys. J. C 79, 393 (2019).
[13] M.-Z. Liu, Y.-W. Pan, F.-Z. Peng, M. Sánchez Sánchez,

L.-S. Geng, A. Hosaka, and M. Pavon Valderrama, Phys.
Rev. Lett. 122, 242001 (2019).

[14] C. Xiao, J. Nieves, and E. Oset, Phys. Rev. D 100, 014021
(2019).

[15] Y. Shimizu, Y. Yamaguchi, and M. Harada, arXiv:1904
.00587.

[16] Z.-H. Guo and J. A. Oller, Phys. Lett. B 793, 144 (2019).
[17] C. Fernández-Ramírez, A. Pilloni, M. Albaladejo, A.

Jackura, V. Mathieu, M. Mikhasenko, J. Silva-Castro, and
A. Szczepaniak (JPAC Collaboration), Phys. Rev. Lett. 123,
092001 (2019).

[18] Q. Wu and D.-Y. Chen, Phys. Rev. D 100, 114002
(2019).

[19] M. Pavon Valderrama, Phys. Rev. D 100, 094028 (2019).
[20] M. I. Eides, V. Y. Petrov, and M. V. Polyakov, Mod. Phys.

Lett. A 35, 2050151 (2020).
[21] Z.-G. Wang, Int. J. Mod. Phys. A 35, 2050003 (2020).
[22] J.-B. Cheng and Y.-R. Liu, Phys. Rev. D 100, 054002

(2019).
[23] J. Ferretti and E. Santopinto, J. High Energy Phys. 04 (2020)

119.
[24] F. Stancu, Phys. Rev. D 101, 094007 (2020).
[25] F.-K. Guo, H.-J. Jing, U.-G. Meißner, and S. Sakai, Phys.

Rev. D 99, 091501 (2019).
[26] C.-J. Xiao, Y. Huang, Y.-B. Dong, L.-S. Geng, and D.-Y.

Chen, Phys. Rev. D 100, 014022 (2019).
[27] M. Voloshin, Phys. Rev. D 100, 034020 (2019).
[28] S. Sakai, H.-J. Jing, and F.-K. Guo, Phys. Rev. D 100,

074007 (2019).
[29] C.-W. Shen, J.-J. Wu, and B.-S. Zou, Phys. Rev. D 100,

056006 (2019).
[30] C. Xiao, J. Nieves, and E. Oset, Phys. Lett. B 799, 135051

(2019).
[31] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115,

072001 (2015).
[32] L. Roca, J. Nieves, and E. Oset, Phys. Rev. D 92, 094003

(2015).
[33] J. He, Phys. Lett. B 753, 547 (2016).
[34] C. W. Xiao and U. G. Meißner, Phys. Rev. D 92, 114002

(2015).
[35] R. Chen, X. Liu, X.-Q. Li, and S.-L. Zhu, Phys. Rev. Lett.

115, 132002 (2015).
[36] H.-X. Chen, W. Chen, X. Liu, T. G. Steele, and S.-L. Zhu,

Phys. Rev. Lett. 115, 172001 (2015).
[37] U.-G. Meißner and J. A. Oller, Phys. Lett. B 751, 59 (2015).
[38] V. Kubarovsky and M. B. Voloshin, Phys. Rev. D 92,

031502 (2015).
[39] D. Diakonov, V. Petrov, and M. V. Polyakov, Z. Phys. A

359, 305 (1997).
[40] R. L. Jaffe and F. Wilczek, Phys. Rev. Lett. 91, 232003

(2003).

[41] S. G. Yuan, K. W. Wei, J. He, H. S. Xu, and B. S. Zou, Eur.
Phys. J. A 48, 61 (2012).

[42] L. Maiani, A. D. Polosa, and V. Riquer, Phys. Lett. B 749,
289 (2015).

[43] R. F. Lebed, Phys. Lett. B 749, 454 (2015).
[44] G.-N. Li, X.-G. He, and M. He, J. High Energy Phys. 12

(2015) 128.
[45] M.-Z. Liu, F.-Z. Peng, M. Sánchez Sánchez, and M. P.

Valderrama, Phys. Rev. D 98, 114030 (2018).
[46] T. J. Burns, Eur. Phys. J. A 51, 152 (2015).
[47] L. Geng, J. Lu, and M. P. Valderrama, Phys. Rev. D 97,

094036 (2018).
[48] R. Machleidt, K. Holinde, and C. Elster, Phys. Rep. 149, 1

(1987).
[49] R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989), https://www

.springer.com/gp/book/9781461399094.
[50] X. Liu, Z.-G. Luo, Y.-R. Liu, and S.-L. Zhu, Eur. Phys. J. C

61, 411 (2009).
[51] Z.-F. Sun, J. He, X. Liu, Z.-G. Luo, and S.-L. Zhu, Phys.

Rev. D 84, 054002 (2011).
[52] F.-L. Wang, R. Chen, Z.-W. Liu, and X. Liu, Phys. Rev. C

101, 025201 (2020).
[53] M.-Z. Liu, T.-W. Wu, J.-J. Xie, M. Pavon Valderrama, and

L.-S. Geng, Phys. Rev. D 98, 014014 (2018).
[54] M.-Z. Liu, T.-W. Wu, M. Pavon Valderrama, J.-J. Xie, and

L.-S. Geng, Phys. Rev. D 99, 094018 (2019).
[55] A. Calle Cordon and E. Ruiz Arriola, Phys. Rev. C 81,

044002 (2010).
[56] L. Meng, N. Li, and S.-L. Zhu, Phys. Rev. D 95, 114019

(2017).
[57] M. Pavon Valderrama, Eur. Phys. J. A 56, 109 (2020).
[58] A. V. Manohar and M. B. Wise, Nucl. Phys. B399, 17

(1993).
[59] A. F. Falk and M. E. Luke, Phys. Lett. B 292, 119 (1992).
[60] J.-X. Lu, L.-S. Geng, and M. P. Valderrama, Phys. Rev. D

99, 074026 (2019).
[61] P. L. Cho, Nucl. Phys. B396, 183 (1993); B421, 683(E)

(1994).
[62] J. Durso, G. Brown, and M. Saarela, Nucl. Phys. A430, 653

(1984).
[63] S. Ahmed et al. (CLEO Collaboration), Phys. Rev. Lett. 87,

251801 (2001).
[64] A. Anastassov et al. (CLEO Collaboration), Phys. Rev. D

65, 032003 (2002).
[65] W. Detmold, C. J. D. Lin, and S. Meinel, Phys. Rev. D 85,

114508 (2012).
[66] T.-M. Yan, H.-Y. Cheng, C.-Y. Cheung, G.-L. Lin, Y. C. Lin,

and H.-L. Yu, Phys. Rev. D 46, 1148 (1992); 55, 5851(E)
(1997).

[67] M. Gell-Mann andM. Levy, Nuovo Cimento 16, 705 (1960).
[68] J. J. Sakurai, Ann. Phys. (N.Y.) 11, 1 (1960).
[69] R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto,

F. Feruglio, and G. Nardulli, Phys. Lett. B 299, 139 (1993).
[70] K. U. Can, G. Erkol, B. Isildak, M. Oka, and T. T.

Takahashi, J. High Energy Phys. 05 (2014) 125.
[71] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).
[72] W. Detmold, K. Orginos, and M. J. Savage, Phys. Rev. D 76,

114503 (2007).

SPIN-PARITIES OF THE PCð4440Þ AND PCð4457Þ … PHYS. REV. D 103, 054004 (2021)

054004-23

https://doi.org/10.1088/1674-1137/36/1/002
https://doi.org/10.1088/1674-1137/36/1/002
https://doi.org/10.1103/PhysRevD.100.051501
https://doi.org/10.1103/PhysRevD.100.051501
https://doi.org/10.1103/PhysRevD.100.011502
https://doi.org/10.1103/PhysRevD.100.011502
https://doi.org/10.1140/epjc/s10052-019-6906-1
https://doi.org/10.1103/PhysRevLett.122.242001
https://doi.org/10.1103/PhysRevLett.122.242001
https://doi.org/10.1103/PhysRevD.100.014021
https://doi.org/10.1103/PhysRevD.100.014021
https://arXiv.org/abs/1904.00587
https://arXiv.org/abs/1904.00587
https://doi.org/10.1016/j.physletb.2019.04.053
https://doi.org/10.1103/PhysRevLett.123.092001
https://doi.org/10.1103/PhysRevLett.123.092001
https://doi.org/10.1103/PhysRevD.100.114002
https://doi.org/10.1103/PhysRevD.100.114002
https://doi.org/10.1103/PhysRevD.100.094028
https://doi.org/10.1142/S0217732320501515
https://doi.org/10.1142/S0217732320501515
https://doi.org/10.1142/S0217751X20500037
https://doi.org/10.1103/PhysRevD.100.054002
https://doi.org/10.1103/PhysRevD.100.054002
https://doi.org/10.1007/JHEP04(2020)119
https://doi.org/10.1007/JHEP04(2020)119
https://doi.org/10.1103/PhysRevD.101.094007
https://doi.org/10.1103/PhysRevD.99.091501
https://doi.org/10.1103/PhysRevD.99.091501
https://doi.org/10.1103/PhysRevD.100.014022
https://doi.org/10.1103/PhysRevD.100.034020
https://doi.org/10.1103/PhysRevD.100.074007
https://doi.org/10.1103/PhysRevD.100.074007
https://doi.org/10.1103/PhysRevD.100.056006
https://doi.org/10.1103/PhysRevD.100.056006
https://doi.org/10.1016/j.physletb.2019.135051
https://doi.org/10.1016/j.physletb.2019.135051
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevD.92.094003
https://doi.org/10.1103/PhysRevD.92.094003
https://doi.org/10.1016/j.physletb.2015.12.071
https://doi.org/10.1103/PhysRevD.92.114002
https://doi.org/10.1103/PhysRevD.92.114002
https://doi.org/10.1103/PhysRevLett.115.132002
https://doi.org/10.1103/PhysRevLett.115.132002
https://doi.org/10.1103/PhysRevLett.115.172001
https://doi.org/10.1016/j.physletb.2015.10.015
https://doi.org/10.1103/PhysRevD.92.031502
https://doi.org/10.1103/PhysRevD.92.031502
https://doi.org/10.1007/s002180050406
https://doi.org/10.1007/s002180050406
https://doi.org/10.1103/PhysRevLett.91.232003
https://doi.org/10.1103/PhysRevLett.91.232003
https://doi.org/10.1140/epja/i2012-12061-2
https://doi.org/10.1140/epja/i2012-12061-2
https://doi.org/10.1016/j.physletb.2015.08.008
https://doi.org/10.1016/j.physletb.2015.08.008
https://doi.org/10.1016/j.physletb.2015.08.032
https://doi.org/10.1007/JHEP12(2015)128
https://doi.org/10.1007/JHEP12(2015)128
https://doi.org/10.1103/PhysRevD.98.114030
https://doi.org/10.1140/epja/i2015-15152-6
https://doi.org/10.1103/PhysRevD.97.094036
https://doi.org/10.1103/PhysRevD.97.094036
https://doi.org/10.1016/S0370-1573(87)80002-9
https://doi.org/10.1016/S0370-1573(87)80002-9
https://www.springer.com/gp/book/9781461399094
https://www.springer.com/gp/book/9781461399094
https://www.springer.com/gp/book/9781461399094
https://doi.org/10.1140/epjc/s10052-009-1020-4
https://doi.org/10.1140/epjc/s10052-009-1020-4
https://doi.org/10.1103/PhysRevD.84.054002
https://doi.org/10.1103/PhysRevD.84.054002
https://doi.org/10.1103/PhysRevC.101.025201
https://doi.org/10.1103/PhysRevC.101.025201
https://doi.org/10.1103/PhysRevD.98.014014
https://doi.org/10.1103/PhysRevD.99.094018
https://doi.org/10.1103/PhysRevC.81.044002
https://doi.org/10.1103/PhysRevC.81.044002
https://doi.org/10.1103/PhysRevD.95.114019
https://doi.org/10.1103/PhysRevD.95.114019
https://doi.org/10.1140/epja/s10050-020-00099-8
https://doi.org/10.1016/0550-3213(93)90614-U
https://doi.org/10.1016/0550-3213(93)90614-U
https://doi.org/10.1016/0370-2693(92)90618-E
https://doi.org/10.1103/PhysRevD.99.074026
https://doi.org/10.1103/PhysRevD.99.074026
https://doi.org/10.1016/0550-3213(93)90263-O
https://doi.org/10.1016/0550-3213(94)90522-3
https://doi.org/10.1016/0550-3213(94)90522-3
https://doi.org/10.1016/0375-9474(84)90099-X
https://doi.org/10.1016/0375-9474(84)90099-X
https://doi.org/10.1103/PhysRevLett.87.251801
https://doi.org/10.1103/PhysRevLett.87.251801
https://doi.org/10.1103/PhysRevD.65.032003
https://doi.org/10.1103/PhysRevD.65.032003
https://doi.org/10.1103/PhysRevD.85.114508
https://doi.org/10.1103/PhysRevD.85.114508
https://doi.org/10.1103/PhysRevD.46.1148
https://doi.org/10.1103/PhysRevD.55.5851
https://doi.org/10.1103/PhysRevD.55.5851
https://doi.org/10.1007/BF02859738
https://doi.org/10.1016/0003-4916(60)90126-3
https://doi.org/10.1016/0370-2693(93)90895-O
https://doi.org/10.1007/JHEP05(2014)125
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.76.114503
https://doi.org/10.1103/PhysRevD.76.114503


[73] M.-L. Du, V. Baru, F.-K. Guo, C. Hanhart, U.-G. Meißner,
J. A. Oller, and Q. Wang, Phys. Rev. Lett. 124, 072001
(2020).

[74] M. Karliner and J. L. Rosner, Nucl. Phys.A954, 365 (2016).
[75] K. M. Case, Phys. Rev. 80, 797 (1950).
[76] S. R. Beane, P. F. Bedaque, L. Childress, A. Kryjevski, J.

McGuire, andU. vanKolck, Phys. Rev.A 64, 042103 (2001).
[77] M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 72,

054002 (2005).
[78] M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 74,

054001 (2006).
[79] M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 74,

064004 (2006).
[80] G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phys.

B321, 311 (1989).

[81] E. Epelbaum, U. G. Meissner, W. Gloeckle, and C. Elster,
Phys. Rev. C 65, 044001 (2002).

[82] F.-Z. Peng, M.-Z. Liu, M. Sánchez Sánchez, and M. Pavon
Valderrama, Phys. Rev. D 102, 114020 (2020).

[83] T. Uchino, W.-H. Liang, and E. Oset, Eur. Phys. J. A 52, 43
(2016).

[84] Y. Yamaguchi, H. García-Tecocoatzi, A. Giachino, A.
Hosaka, E. Santopinto, S. Takeuchi, and M. Takizawa,
Phys. Rev. D 101, 091502 (2020).

[85] A. Ali et al. (GlueX Collaboration), Phys. Rev. Lett. 123,
072001 (2019).

[86] H. Mutuk, Chin. Phys. C 43, 093103 (2019).
[87] F. K. Guo, C. Hidalgo-Duque, J. Nieves, A. Ozpineci, and

M. P. Valderrama, Eur. Phys. J. C 74, 2885 (2014).
[88] M. P. Valderrama, Phys. Rev. D 85, 114037 (2012).

LIU, WU, SÁNCHEZ, VALDERRAMA, GENG, and XIE PHYS. REV. D 103, 054004 (2021)

054004-24

https://doi.org/10.1103/PhysRevLett.124.072001
https://doi.org/10.1103/PhysRevLett.124.072001
https://doi.org/10.1016/j.nuclphysa.2016.03.057
https://doi.org/10.1103/PhysRev.80.797
https://doi.org/10.1103/PhysRevA.64.042103
https://doi.org/10.1103/PhysRevC.72.054002
https://doi.org/10.1103/PhysRevC.72.054002
https://doi.org/10.1103/PhysRevC.74.054001
https://doi.org/10.1103/PhysRevC.74.054001
https://doi.org/10.1103/PhysRevC.74.064004
https://doi.org/10.1103/PhysRevC.74.064004
https://doi.org/10.1016/0550-3213(89)90346-5
https://doi.org/10.1016/0550-3213(89)90346-5
https://doi.org/10.1103/PhysRevC.65.044001
https://doi.org/10.1103/PhysRevD.102.114020
https://doi.org/10.1140/epja/i2016-16043-0
https://doi.org/10.1140/epja/i2016-16043-0
https://doi.org/10.1103/PhysRevD.101.091502
https://doi.org/10.1103/PhysRevLett.123.072001
https://doi.org/10.1103/PhysRevLett.123.072001
https://doi.org/10.1088/1674-1137/43/9/093103
https://doi.org/10.1140/epjc/s10052-014-2885-4
https://doi.org/10.1103/PhysRevD.85.114037

