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CP violation (CPV) in D° — D° mixing is described in terms of the dispersive and absorptive “weak
phases” (,b}” and (/)E. They parametrize CPV originating from the interference of D° decays with and without
dispersive mixing, and with and without absorptive mixing, respectively, for CP conjugate hadronic final
states f, f. These are distinct and separately measurable effects. For CP eigenstate final states, indirect
CPVonly depends on qﬁj}-” (dispersive CPV), whereas ¢JE (absorptive CPV) can only be probed with non-CP
eigenstate final states. Measurements of the final state dependent phases (f)_’)‘f , d)_l; determine the intrinsic
dispersive and absorptive mixing phases ¢ and ¢}. The latter are the arguments of the dispersive and
absorptive mixing amplitudes M, and I'},, relative to their dominant (AU = 2) U-spin components. The
intrinsic phases are experimentally accessible due to approximate universality: in the SM, and in extensions
with negligible new CPV phases in Cabibbo favored/doubly Cabibbo suppressed (CF/DCS) decays, the
deviation of (,b];“ from $3"" is negligible in CF/DCS decays D° — K*X, and below 10% in CF/DCS
decays D° - Kg; X (up to precisely known O(eg) corrections). In singly Cabibbo suppressed (SCS)
decays, QCD pollution enters at O(¢) in U-spin breaking and can be significant, butis O(e?) in the average
over f = KTK~, z"z~. SM estimates yield ¢, ¢5 = 0(0.2%). A fit to current data allows O(10) larger
phases at 20, from new physics. A fit based on naively extrapolated experimental precision suggests that

sensitivity to ¢} and ¢ in the SM may be achieved at the LHCb Phase II upgrade.

DOI: 10.1103/PhysRevD.103.053008

I. INTRODUCTION

In the Standard Model (SM), CP violation (CPV) enters
D° — DY mixing and D decays at O(V ,V,p/V Vi)~
1073, due to the weak phase y. Consequently, all three types
of CPV [1] are realized: (i) direct CPV, (ii) CPV in pure
mixing (CPVMIX), which is due to interference of the
dispersive and absorptive mixing amplitudes, and (iii) CPV
due to the interference of decay amplitudes with and
without mixing (CPVINT). In this work, we are particularly
interested in the latter two, which result from D° — DO
mixing, and which we collectively refer to as “indirect
CPV”. We would like to answer the following questions:
How large are the indirect CPV asymmetries in the SM?
What is the minimal parametrization appropriate for the
LHCb/Belle-II precision era? How large is the current
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window for new physics (NP)? Can this window be closed
by LHCb and Belle-I1?

In order to address these questions we first develop the
description of indirect CPV in terms of the CP violating
(CP-o0dd) and final state dependent dispersive and absorp-
tive “weak phases.” These phases, which we denote as ¢}”
and ¢;, respectively, for CP conjugate final states f and f,
parametrize CPVINT contributions originating from the
interference of D° decays with and without dispersive
(absorptive) mixing, respectively. These are distinct meas-
urable effects, as we will see below. Their difference equals
the CPVMIX weak phase.

An immediate consequence of our approach is that it
yields simplified expressions for the indirect CP asymme-
tries, which have a transparent physical interpretation
(unlike the more familiar description in terms of the mixing
parameter |g/ p|, and the weak phase ¢, )-In particular, the

requirement that the underlying interfering amplitudes
possess nontrivial CP-even “strong-phase” differences is
manifest, and accounts for the differences between the 4)’}”
and qb; dependence of the CP asymmetries. For example,

we will see that the time-dependent CPVINT asymmetries
in decays to CP eigenstate final states are purely dispersive,

Published by the American Physical Society
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i.e., they only depend on ¢§‘? (apart from subleading direct
CPV effects).

In the SM, the dispersive and absorptive D° — D° mixing
amplitudes are due to the long distance exchanges of all off-
shell and on-shell intermediate states, respectively (short
distance dispersive mixing is negligible). The CPVINT
asymmetries are due to the CP-odd contributions of the
subleading AC = 1 transitions to the mixing amplitudes
(via intermediate states) and the decay amplitudes (via final
states). The combined effects of these two CPV contribu-
tions can be expressed in terms of the underlying final state
dependent phases (/)]}’I T, as noted above. Unfortunately, due
to their nonperturbative nature, these phases cannot cur-
rently be calculated from first principles QCD. However,
we will be able to make meaningful statements using
SU(3)p flavor symmetry arguments.

In order to estimate the magnitudes and final state
dependence of ¢1;/1,r in the different classes of decays,
we compare them to a theoretical pair of dispersive and
absorptive phases. The latter are intrinsic to the mixing
amplitudes, and follow from their U-spin decomposition. In
general, they are defined as the arguments of the total
dispersive and absorptive amplitudes, respectively, relative
to a basis choice for the real axis in the complex mixing
plane, given by the common direction of the dominant
AU = 2 mixing amplitudes. Hence, we denote them as ¢
and ¢}, respectively. Note that these phases are quark (or
meson) phase convention independent and physical, like
the phases ¢1;” directly measured in the decays. U-spin

based estimates yield ¢/, ¢, = 0(0.2%) in the SM. In
principle, they could be measured on the lattice in the
future. Their difference yields the CPVMIX phase, like the
final state dependent phases.

In the SM, and for the Cabibbo favored and doubly
Cabibbo suppressed decays (CF/DCS), the differences
between ¢} and ¢5', or ¢ and ¢ are essentially known.
This allows for precise experimental determinations of the
theoretical phases, and their comparison with U-spin based
estimates and future lattice measurements. A single pair of
intrinsic dispersive and absorptive mixing phases suffices
to parametrize all indirect CPV effects in CF/DCS decays,
whereas for SCS decays this may cease to be the case as
SM sensitivity is approached. We refer to this fortunate
state of affairs as approximate universality. In particular,
the approximate universality phases are identified with the
intrinsic mixing phases, ¢4’ and ¢}. Once nonuniversality
is hinted at in the SCS phases, the SCS observables could
be dropped from the global fits. Instead, one could compare
the CF/DCS based fit results for ¢}"" with measurements
of d)];’] T and direct CPV in the SCS decays, to learn about
the anatomy of the (subleading) SCS QCD penguin
amplitudes. For example, in the SM one could separately
determine their relative magnitudes, and strong phases.

Approximate universality generalizes beyond the SM
under the following conservative assumptions regarding
subleading decay amplitudes containing new weak phases:
(i) they can be neglected in Cabibbo favored and doubly
Cabibbo suppressed (CF/DCS) decays, given that an exotic
NP flavor structure would otherwise be required in order to
evade the eg constraint [2]; (ii) in singly Cabibbo sup-
pressed (SCS) decays, their magnitudes are similar to, or
smaller than the SM QCD penguin amplitudes, as already
hinted at by current bounds on direct CPV in D’ —
KtK~,z"n~ decays. These assumptions can ultimately
be tested by future direct CPV measurements at LHCb and
Belle-II.

The most stringent experimental bounds on indirect CPV
phases have been obtained in the superweak limit [3-5], in
which the SM weak phase y and potential NP weak phases
in the decay amplitudes are set to zero in the indirect CPV
observables. In this limit, the dispersive and absorptive
mixing phases satisfy ¢} = #5' and ¢, = ¢ = 0. Thus,
indirect CPV is entirely due to short-distance NP. The
superweak fits are highly constrained, given that only
one CPV phase controls all indirect CPV. Comparison of
superweak fit results with our estimate, ¢%, ¢, = 0(0.2%)
suggests that there is currently an O(10) window for NP in
indirect CPV.

Moving forward, the increased precision at LHCb and
Belle-II will require fits to the indirect CPV data to be
carried out for both ¢4 and ¢}, in the approximate
universality framework. The addition of ¢} yields a less
constrained fit. However, this should ultimately be over-
come by a large increase in statistics.

Throughout this work we develop, in parallel, the
description of indirect CPV for the three relevant classes
of decays: (i) SCS (both CP eigenstate and non-CP
eigenstate final states), (i) CF/DCS decays to KX, and
(iii) CF/DCS decays to K°X, K°X. The last one requires
special care due to the intervention of CPV in K° — K
mixing. In Sec. II, the formalism for mixing and indirect
CPV is presented, based on the final state dependent
dispersive and absorptive CPVINT observables. A trans-
lation between the dispersive and absorptive CPV phases,
¢}4 , qﬁ;, and more widely used CPV parameters is also
provided. In Sec. III, we apply this formalism to the
derivation of general expressions for the time dependent
decay widths and indirect CP asymmetries in terms of ¢/,
(;5;. In CF/DCS decays to K°X, K°X, the widths depend on
two elapsed time intervals: the time at which the D decays,
and the time at which the K decays, following their
respective production. Approximate universality is dis-
cussed in Sec. I'V. We begin with the U-spin decomposition
of the mixing amplitudes in the SM, introduce the intrinsic
mixing phases ¢!, ¢}, estimate their magnitudes, and derive
their deviations from the final state dependent phases. In
Sec. V we explain how to convert the expressions for the
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time dependent decay widths and indirect CP asymmetries,
collected in Sec. III, to the approximate universality frame-
work. In the case of CF/DCS decays to K°X, KX, the effects
of ex on the K decay timescales of relevance for LHCb and
Belle-1II are compared. Superweak and approximate univer-
sality fits to the current data are presented in Sec. VI,
together with future projections. We conclude with a
summary of our results in Sec. VII. The Appendix contains
expressions for a selection of time-integrated CP asymme-
tries, demonstrating that they can also be used to separately
measure ¢3! and ¢

II. FORMALISM

A. Mixing and time evolution

The time evolution of an arbitrary linear combination of
the neutral D° and D° mesons,

a|D%) + b|D°) (1)

follows from the time-dependent Schrodinger equation

(see, e.g., [1]),
d (a a i a

| — =H =(M--T . 2

al)=7G)= () ) o
The 2 x 2 matrices M and I' are Hermitian. The former is
referred to as the mass matrix, and the latter yields
exponential decays of the neutral mesons. CPT invariance
implies H,; = H»,. The transition amplitudes for D° — D°

mixing are given by the off-diagonal entries

_ i
<DO|H|DO> =M - §F12,
i

(DO|H|DY) = M}, -5

. (3)
M, is the dispersive mixing amplitude. In the SM it is
dominated by the long-distance contributions of off-shell
intermediate states. A significant short distance effect
would be due to NP. '}, is the absorptive mixing amplitude,
and is due to the long distance contributions of on-shell
intermediate states, i.e., decays.
The D meson mass eigenstates are

|D15) = p|D°) £ q|D°), (4)
where
() =i )
p M, - %Flz

The differences between the masses and widths of the mass
eigenstates, AMp =m, —m; and Al'p =1, -1, are
expressed in terms of the observables

_AI
T

_ AM,,

x 9
I'p

(6)

where the averaged D° lifetime and mass are denoted by I'j,
and M . We can define three “theoretical” physical mixing
parameters: two CP conserving ones,

X2 = 2|M12|/FD’ Y12 = |F12|/FD’ (7)

and a CP violating pure mixing (CPVMIX) phase

P (%) — - (8)

The CP-odd phases

M = arg(M,), ¢" = arg(T'),), )

are separately meson and quark phase convention depen-
dent and unphysical. The CP conserving parameters in (6)
and (7) are related as

= x%, — ¥}, = 2ix;ay 12 cos o, (10)

yielding

x| = x12, [y] = Y12 (11)

up to negligible corrections quadratic in sin ¢;,. Two other
useful relations are

(7

Measurements of the D° meson mass and lifetime
differences and CPV asymmetries imply that x;,, yj,~
0.5%, while sin¢, < 0.1, cf. Sec. VI. One is free to
identify D, or D; with either the short-lived meson, or the
heavier meson, by redefining ¢ — —¢. This is equivalent to
choosing a sign-convention for y, which in turn fixes the
sign of x, or vice-versa, via the imaginary part of (10). In
the HFLAV [6] convention, D, is identified with the would
be CP-even state in the limit of no CPV. Given that the
short-lived meson is approximately CP-even, this is equiv-
alent to the choice y > 0.

The time-evolved mesons D°(¢) and D°(¢) denote the
mesons which start out as a D° and D° at t = 0, respec-
tively. Solving (2) for their time-dependent components
yields,

>lp

q

)

2
) X (x* 4+ y?) = x}, + yi, £ 2xpy12 singyy.
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_ I )
<DO|DO(Z)> = _e—l(Mn—er)t <elﬂ/2M>i<2 +§FT2>Z
sin [} (AMp — i1 AT )]
L(AMp — i1 AT )t
(D°|D(1)) = (D°|D°(1))

. T 1 N
= ¢~ (Mp=iP)t cog [E (AMD — zEAFD> t] ,

’

(12)

with (D°|D(¢)) obtained from (D°|D°(¢)) by substituting
M, - My, and T'j, - I'j. The phase z/2 in the first
relation of (12) originates from the time derivative in (2),
and is a dispersive CP-even “strong phase.” We will keep
track of its role in the derivation of the indirect CP
asymmetries in Sec. III. For the time intervals relevant
to experiment, i.e., t < 1/I"p, (12) reduces to

(DO[D0(0) = 100014 (ePbay, 5 )
e G T
(DVIDO(1)) = (D°|D°(1)) = e~/ o= 0

X <1 - % [xT2 = ¥1o = 2ix12y12 €08 4)12}1—‘2012) :

(13)

up to negligible corrections entering at O(#*) and beyond,
where use has been made of (10) in the last relation.

B. The decay amplitudes

The amplitudes for D° and D° decays to CP conjugate
final states f and f are denoted as

Ay = (fIH|D°),
Ap = (fIH|D®),

Ay = (fIH|D"),
Ap = (fIHID"), (14)

where H is the |AC| =1 weak interaction effective
Hamiltonian. The tree-level dominated decay amplitudes
can, in general, be written as

Ap= A?e+i¢})-[1 + rpeiCrt)],

Aj = A%ei(AgJﬂ/I‘})[l n rfei(5f+¢f)]’

A; = A?e—iaﬁ?[l + rpel@rn),

A= A%ei(A(}—ﬁ’-)[l + rf-ei(‘sf_‘f’f)], (15)

where A} and A(]% are the magnitudes of the dominant SM
contributions, the ratios ry and rp are the relative

magnitudes of the subleading amplitudes (which are
CKM suppressed in the SM, and potentially contain NP
contributions), ¢j}, #Y, ¢y, and ¢ are CP-odd weak phases

and A?, 5f, and 5f are CP-even strong phases. With the
exception of the weak phases, the quantities entering (15)
are understood to be phase space dependent for three-body
and higher multiplicity decays. Note that ¢ and gb% are

quark and meson phase convention dependent. However,
this dependence cancels in physical observables.

In the case of decays to CP eigenstates, A?c = 0(x)
for CP-even (odd) final states. Equation (15) therefore
reduces to

Af — A?ce+l¢(;[1 + rfei(§f+¢f)]’

Ap=nf"Aje W1+ rgel0t0), - (16)

where n}:P = +4(—) for CP-even (odd) final states.

For SCS decays, the choice of the dominant and
subleading SM amplitudes in (15) and (16) is convention
dependent. For example, using CKM unitarity, the leading
SCS D decay amplitudes could be chosen to be propor-
tional to ViV, Vi,V or their difference ViV, —
V?,V.a- The last choice is a particularly convenient one
that is motivated by U-spin flavor symmetry, cf. Sec. [V A.
In all cases, the subleading SM amplitudes are o< V7,V ;.
and are included in the second term on the right-hand side
(rhs) of each relation in (15), (16). However, the physical
observables must be convention independent.

We divide the CF/DCS decays into two categories:
(i) decays to K=X, where indirect CPV requires interfer-
ence between a CF and a DCS decay chain, e.g., DO —
K~z and D° — D° — Kz, respectively; (ii) decays to
K°X, KX, where indirect CPV is dominated by interfer-
ence between two CF decay chains, e.g., D° — K%zt 7~
and D’ — DY - K%z*z~, with subsequent decays
K°/K® - ztz~. In the SM, the CF and DCS D° decay
amplitudes are proportional to ViV, and V?,V,, respec-
tively. Thus, only the first terms in (15) are present. We
choose the CF and DCS amplitudes to be Af,;\f and
Az, A 7> respectively. For the computation of the indirect CP
asymmetries in case (i), all four amplitudes in (15) must be
included, whereas in case (ii) we will see that the
contributions of the two DCS amplitudes can be neglected
to good approximation.

C. The CPVINT observables

The time dependent hadronic decay amplitudes sum over
contributions with and without mixing, e.g., for CP
conjugate decay modes,
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+Ap(DID(1)).
AFDIDO(x)).  (17)

Factoring out the unmixed contributions, the time depen-
dent CP asymmetries are seen to depend on the ratios
A(D°|D°(1))/A;(D°|D°()), and their CP conjugates. In
turn, (13) implies that the CP asymmetries are determined
by the quantities M ,A, /A rand I'pA, /A - as well as their
CP conjugates. Keeping this in mind, we are now ready to
define the CPV phases qbf and cj)f, respons1ble for
dispersive and absorptive CPVINT, respectlvely

1. SCS decays to CP eigenstates

For SCS decays to CP eigenstate final states, ¢}/ and $}
are the arguments of the CPVINT observables

M12 Af Af

lM . l¢f
M| A, 7 Ay
I, A Al
=12 = e i (18)
|F12|Af Af

They are given by

¢j‘f’1( ¢M + 2¢f + 2rpcos &y singy, (19)

to first order in r, cf. (9), (16). We will see that (1)1]‘/ , gb; ~0
(rather than =), given the sign of the CP conserving
observable yl.,, f = Tz, KTK~, cf. (60), (62).

2. SCS decays to non-CP eigenstates

For SCS decays to non-CP eigenstate final states, e.g.,
D° — K**K~, two pairs of observables are introduced,

2 = M Ar 'Af i(#Y-Ay)
|M12|Af Ay
_ T Ay |As] igi-a,
and
= My, Af ‘Af i@+ap)
M| A7 | Af
/11j — FIZ ﬁ Af ((/);JrAf)‘ (21)
Il Ap | Af

n [7] it was noted that a nonzero value for
arg[M},A,A5A fAj*;] or arg[lHHAAGA fA;‘—], equivalent to 2¢}
and 2(/);, respectively, cf. (18), (20), (21), implies CP violation.
However, the phenomenology of these phases was not discussed.

The dispersive and absorptive CPV phases now satisfy,
cf. (9), (15),

M
¢ = MO + 9 + 4
+ rycosdpsingyy + rpcosdpsingz,  (22)

while the overall strong phase difference in the decay
amplitude ratios is given by

Ap =AY —rysindycos gy + rysindzcos gz, (23)

to first order in ry and ry.

3. CF/DCS decays to K*X
For CF/DCS decays to K*X, e.g., D - K*z¥, the
definitions in (20), (21) apply (recall that A, is the CF

amplitude), however we introduce overall minus signs in
the equalities, i.e.,

A= —’ f_ﬁ P20 piA _‘ f_ﬁ o @=8))
,1}1‘;1 = _’ ‘i @A) /1; _ _’ i ol WAy) (24)
47 7

Thus, the dispersive and absorptive CPV phases satisfy

7" = M0 ¢+ @)t

+ rycosdysingy + rycosdzsingz,  (25)

and the expression for the strong phase in (23) is not
modified. The sign convention in (24) yields ¢}, ¢, %0
(rather than z), as in SCS decays. In the SM and, more
generally, in models with negligible new weak phases in
CF/DCS decays, the second line in (25) is absent, and the
dispersive and absorptive phases are separately equal for all
decays in this class. Moreover, the absence of direct CPV
yields the relation [A7/A7| = |A;/Af|~".

4. CF/DCS decays to K°X,K°X

Next, we define the CPVINT observables for D°/D°
decays to final states f = [zt7z7|X, where the square
brackets indicate that the pion pair originates from decays
of a Ky or KL, i.e., two step transitions of the form
D® - [Kg; — ztx~] + X. In order to achieve SM sensi-
tivity to CPVINT, the contributions of CPV in the K system
must be taken into account. The neutral K mass eigenkets
are written as,

|Ks) = px|K®) + qk|K°).
K1) = px|K®) — qx|K°). (26)
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The corresponding eigenbras are given in the “reciprocal
basis” [7,8],

—~
=

a
|

(P (K°| + g5 (K°

).

(Px' (K| = g (K?]).

—~
=Nt
[l

N — N —

(27)

where CPT invariance has been assumed. To excellent
approximation (see, e.g., [1]),

Pk

= 1 + 2Re[ek].
9k

(28)

The experimental values of the real and imaginary parts of
the kaon CPV parameter ¢y are [9],

er = Refeg] = (1.62 £0.01) x 1073,

e; = Im[eg] = (1.53 £0.01) x 1073, (29)

We have obtained them from the quoted measurements of
Noo and n, _, ignoring correlations in their errors.

In general, due to the presence of the two intermediate
states KgX and K;X, there are four pairs of CPVINT
observables,

Hx= &Ii‘mx ] kx = i’i‘K{;X J
|M ;| Ag x ¢ Ty, Ak,x
u_ = Mo A% ro_Tedex g,
KX |M12|AKQX’ KoX |F12|AK{1X’ o
(30)

where the first and second lines correspond to the CP
conjugate final states f = [z7z7]X and f = [zT77]X,
respectively. Note that for the important case of
X =zt 7™, f corresponds to interchange of the Dalitz plot
variables (px + pr+)* < (px + ps-)> in f. We can
express the CPVINT observables (30) in the form

A
]It(/[’rX N i O el (" [Ks/ X]-A[K g/ X])
o 1 9
S/L AKS/LX
A
mMr o _ | KX ol (K X|+A[K gy X)) (31)
KspX KyiX

where the overall plus and minus signs refer to the K¢ and
K, respectively. The four CPVINT phases and two strong
phases in (31) are " T[K s/, X] and A[K5,, X], respectively.

The D decay amplitudes in (30) satisfy,

1
AKS/LX = 2 (iCII_(lAKOX + pl_(lAKox),
_ 1, - -
AKS/LX = 5 (pK AKOX = 9k AI_(UX>7
1 - —
AKS/LX = E (quAm + pKlAm),
_ 1 _ _
AKS/LX = B (iP}IAW + q,}‘Aﬁ), (32)

where we have used the reciprocal basis (27), and the
first and second terms on the rhs in each relation
are the dominant CF and subleading DCS contributions,
respectively.

In the SM and, more generally, in models with negligible
new CPV phases in CF/DCS decays, the DCS decay
amplitudes introduce relative corrections of O(6%) to
the weak phases, strong phases, and magnitudes of

A%;};X, %’ making it a good approximation to neglect
S/L

them. (We assess the impact of the DCS amplitudes on
approximate universality in Sec. IV C 3.) In this limit, (30)
reduces to

M= — _m _ Mo PrAgx
f KsX K; X |M]2| qx AKOX P
'y prAgo

/IFE/lr :_/11" _ 12__1()(’
f KsX K. X _|F12| Gk Agox
= — g M P

! KX KX My, gk Am’
s KX Dl gk Ay

Thus, in the limit of negligible new CPV phases in CF/DCS
decays, it is a good approximation to consider a single pair
of CPVINT observables for final state f = [z*7~]X, and a
single pair for f = [z z~]X, which we have denoted in (33)
as 2}/, Ay and 1}4 , /1]1;, respectively. They can be expressed in
terms of dispersive and absorptive CPVINT phases as

ijfl(r) _ PK{‘I?OX ei((p;”.’(”—Af)’
qrAgox
o [P s gy
: qxAgox
where the amplitude relations,
|Azog/Arox| = [Agag/Agox| = 1, (35)

valid in the limit of vanishing direct CPV, have been
employed in the second relation. Note that the weak phases
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d"V[Ks/ X] and strong phases A[Kg/ X], defined in
general in (31), reduce to ¢y T and A £, respectively.

The strong phase difference A, (between Aoy and Agoy)
is generally nonvanishing and phase space dependent for
multi-body intermediate states, e.g., X = z"x~. The weak
phases satisfy

o = M0 1290, +arg(pr/ak). (36

where ¢ 7oy 18 the weak phase of the CF amplitudes Agoy,
Az cf. (15), while arg(px/qx) introduces a dependence
on CPV in the K system, cf. Sec. IV C 3. Note that 451}” and
gbjrc are separately equal for all final states in this class.

In the case of two-body (and quasi two-body) inter-
mediate states, the CPVINT observables in (34) reduce to

M(T)

/lM(F) _ 77CP Pk 'y , 37)

f f gk (
where

e’ = (=)" x CP[X], (38)

L is the orbital angular momentum of the intermediate
states K g /LX and CP[X] = +(—) for CP-even (odd) X. For
example, 77" = —1 for f = Ko, Ksz°, and 5¢” = +1 for
f = Kgfy. (Equivalently, i’]lép = +1(=1) for CP-even
(odd) intermediate state K¢X.)

Finally, we point out that in all three classes of D° decays
discussed in this section, the quark (CKM) phase con-
vention dependence cancels in (/)}’I and ¢;, 1.€., between the
first two terms on the rhs of (19), the first three terms on
the rhs of (22), and between all three terms in (36),
cf. Sec. IV C. Moreover, they are always related to the
pure mixing phase ¢, as

b = ¢y — ¢, (39)

i.e., the final state dependent effects are common to the
dispersive and absorptive phases.

5. Relation to other parametrizations of CPVINT

It is instructive to relate the parametrization of indirect
CPV effects in terms of absorptive and dispersive phases to
the more familiar one currently in use. The latter consists of
the CPVMIX parameter,

lg/pl -1, (40)

and the final state dependent phenomenological CPVINT
phases ¢,1f, which appear in the arguments of the

observables A, see, e.g., [1]. We begin with the definitions
of the Ay, corresponding to the absorptive and dispersive
observables /1]}4 ,r, in the different classes of decays. For
SCS decays to CP eigenstate final states, they correspond
to the observables in (18), and are given by”

_4q Af cP i,

Ay ==L = —nPlasle . (41)
f p Af f

For SCS decays to non-CP eigenstate final states, and CF/

DCS decays to K*X, the 1, corresponding to the observ-
ables in (20), (21), and (24) are given by,

_q_f i(¢; +A)
Ap=2L = g e Pty
1= A, Asle’
_q4y (s, -y)
Ar=20 e, 42
pAf T f|e (42)

where the F sign conventions in the right-most relations
apply to the SCS and CF/DCS cases, respectively.

Finally, for CF/DCS decays to K°X, K°X (given neg-
ligible new CPV phases in the decay amplitudes, and
neglecting the DCS contributions) the 4 correspond to the
absorptive and dispersive observables in (33), (34), and are
given by

A (4
Ay = AELE ol
P Pk Agx
A= .
A= %Z_ZALK = —[ale" P57, (43)
KX

for final states f = [ztz~|X and f = [z 7~ ]X. In the case
of two-body or quasi two-body intermediate states, corre-
sponding to the observables in (37), these expressions
reduce to,

9 ax
P Pk

M T _ cp

=1y ey . (44)

The sign conventions in the right-most relations of (41)—
(44) yield all ¢ iy R 0 (HFLAV convention for D,), or all

~r, for the three classes of decays.
The CPV parameters |¢/p| — 1 and ¢, are expressed in

terms of the absorptive and dispersive CPV phases as

‘g‘ STy hGng) (45)

p X, + 1

*In our convention for /1M /11; the numerators correspond to the
transitions D° — D% — f whereas in Ay they correspond to
DY - DY = f.
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where ¢, = ¢} — ¢y, cf. (39), and

X1, sin 2 + yi, sin 24 ) (46)

tan2¢; = —
sy (x%2 cos 2} + yi, cos 2

Equation (46) is obtained by multiplying both sides of (5)
by (Ay/A;)? and (A;A7/AA7) for CP eigenstate and non-
CP eigenstate final states, respectively, and holds for all
classes of decays. To lowest order in the CPV phases, it
equates the phenomenological CPVINT phase ¢, , o
a sum over the dispersive and absorptive CPVINT phases,
¢} and ¢, weighted by the ratios xi,/(x{, + yi,) and
y3,/(x3, +¥3,), respectively. These weights are, respec-
tively, the leading dispersive and absorptive contributions
to the CP averaged mixing probability, |(D°|D°(t))|*+
[(D°|D°(2))?, cf. (13).

Indirect CPV can be equivalently described in terms of
the parameters emphasized in this work, i.e., qﬁ?” , (;5;, X125
Y12, or the more familiar ones |¢/ p|, (l)ﬂf, x,y,cf. (11), (39),
(45), (46). Indeed, (39) implies that the same number of
independent parameters is employed in each case.

Finally, we remark on the CPV observables Ax, [10] and
Ay, which have been measured in tandem by the LHCb
collaboration [11] in D° — K¢atn~ decays. They are
defined in terms of ¢, and |q/p| as’

2 =xeost G1{G]) wvonan (71412
“N\IPl 1Y P14

23 =eon (| 71{7]) -omes (1+[])
Pl 14 Pl 14

The observable —Ay/ is equivalent to the familiar CPVINT
asymmetry AY, for SCS decays to CP eigenstate final
states, cf. (59). Translating to the dispersive/absorptive
parametrization via (45), (46), we obtain®

A_Xf = —=Y12 Sin ¢?, Ayf = X2 Sin ¢1;47 (47)

to leading order in sin (j)}" T Thus, the use of the parameters
Ax; and Ayy is equivalent to the CPVINT parametrization
in terms of ¢} and ¢}, respectively, modulo the corre-
sponding dispersive and absorptive mixing factors. (It is
amusing that interchange of the Ax and Ay labels turns out
to be appropriate). Interestingly, we will see that exper-
imental sensitivity to (,b; (or Axy) requires a nontrivial
strong phase difference between decay amplitudes, i.e.,
non-CP eigenstate final states, e.g., f = Kgztn~, KTn~

3To be fully general, we have replaced ¢ with ¢ 4> and added a
subscrlpt f to Ax and Ay in the definitions of [10].

*We have used the relations ycos 45,1 = Y1, COS ¢ and
XCOS ¢h; = X13COS ¢M, which hold up o negligible relatlve
corrections quadratic in the CPV phases.

III. THE INDIRECT CP ASYMMETRIES

We can now derive expressions for the time-dependent
decay widths and CP asymmetries in terms of the absorp-
tive and dispersive CPV phases. (A discussion of CPV in
certain time-integrated decays is deferred to the Appendix.)

A. Semileptonic decays

We begin with the CPVMIX “wrong sign” semileptonic
CP asymmetry,

(D) - £-X) = T(D(1) —

I'(D°(
r(D°(t) » £~X) + T(D(t) —
_ DYID°(0)* - (D 01D (1)) ? (48)
[(DODO(1)) > + [(D°|DO(1))[*

£+X)
~ X))

agy, =

In the second line the semileptonic decay amplitude factors
have been cancelled, given negligible direct CPV in these
decays, i.e., |As-x| = |Az+x|. In turn, the expressions for
the mixed amplitudes in (12) or (13) yield the semileptonic
asymmetry,

2X10y12 .
ag;, = 55— Sin ¢y,. (49)
Xt + 1

Note that the CP-even phase difference between the
interfering dispersive and absorptive mixing amplitudes,
required to obtain CPVMIX, is provided by the dispersive
mixing phase z/2 in the first line of (12).

B. Hadronic decays

The hadronic decay amplitudes sum over contributions
with and without mixing, cf. (17) (substitute f <> f for the
CP conjugate final states). The corresponding time-depen-
dent decay rates are identified with their magnitudes
squared. They are expressed in terms of the CPVINT

observables /1%, lgf, cf. (18), (20), (21), as (z =T'p1),

r(D°(t) = f) = e—f|Af|2{1 —tRe[i2} x5 + 2y 1]

2
T
+ o (A1 = Dy + (4 P+ 1y

+ 2x12y121m[/1}”*/1?])},
r(D°(t) - f) = e—f|Af|2{1 —tRelixp/ A} + y12/ 4]
2

7
+Z((1/M}4|2 = Dy + (/125> + D)yt

+zx12y121m[1/u}4m§>]>}, (50)
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with the expressions for I'(D°(f) — f) and T'(D°(t) — f)
obtained via the substitutions f — f in (50). Note that
throughout this work appropriate normalization factors are
implicit in all decay width formulas, including (50). The
expressions in (50) are applied to the following cases: SCS
decays to CP eigenstates, SCS decays to non-CP eigen-
states, and CF/DCS decays to K*X. The description of CF/
DCS decays to K°X, K°X requires a separate treatment,
cf. Sec. III C.

1. SCS decays to CP eigenstates

This category includes, for example, the decays
D’ - K*K~/ztn~. (We comment on the decay D° —
K°K?" at the end of Sec. IV C 1). The time-dependent decay
widths D(¢) — f and D°(¢) — f, expressed in terms of
gb;‘f , ;, cf. (19), and the direct CP asymmetry,

af=1-|A;/As| = =2r;siné;singpy, (51)
cf. (16), are given by
L(D°(1) = f) = e |AfP(1 + cfr + ¢ 72),
L(D°(r) = f) = e " |Af*(1 + ciT+ i), (52)

where the coefficients cjf, c’fjE satisfy

cF = nlp[Fainsin gl — yio cos (1 F ad)],
1

1
= 5)’%2 + 1 (x7, + ¥y (asL —2af). (53)

Terms involving a? have been expanded to first order in
CPV quantities, and the semileptonic CP asymmetry,
expressed in terms of ¢y,, is given in (49).

The O(7?) terms in the SCS widths are usually
neglected, due to an O(x;,,y;,) suppression relative to
the O(z) term. Thus, it has been traditional to express the
SCS widths in the approximate exponential forms,

L(D°(1) = f) = |As” exp[~Tpo_ 7],

T(DO(t) > f) = |A[? exp[-T55 fr], (54)
where the decay rate parameters satisfy
Fpoposy=1-c*, (55)

cf. (5§3). As the goal of SM sensitivity comes into view, i.e.,
Py, ¢l = O(few) x 107, this will not necessarily be a
good approximation, as can be seen by comparing the

CP-0odd terms in c%, and the CP-even term in c}i.

However, the CP-odd terms in c’fi

are further suppressed
by CPV parameters, and can be neglected. Thus, to good

approximation,

1
C}i - Ey%z- (56)
Measurements of the time-dependent decay rates at
linear order in 7 yield the known CP conserving observ-
ables,

(¢t +c7)
Vep = —%, (57)

and the CPVINT asymmetries,

(cf = ¢F)
The average of AY; over f = K*K~,z"z~ is denoted by
Ar. In the exponential approximation, the corresponding
definitions are,

S FDO_}f cp + Iﬂﬁ—’f c _1
Ycp > s

FD0—>f _FDO—>j

(59)

Applying (53), and neglecting contributions quadratic in
CPV, we obtain

yep = 0Py, cos B (60)

The experimental average over f = KTK~, z7z~ [6] yields
nyP/nfC.P > 0, or

nyP = W?PYU = ﬂfpb’ ) (61)
to excellent approximation. Furthermore, fits to the data
[6,12] yield xy > 0 at 30, or ¢, =0 (rather than x),
cf. (10). Thus, we learn that both
qb}” ~ 0, qb? ~ 0. (62)
At first order in CPV, (53) yields the relation (already
noted in (47) for the CPVINT part),

AY; = nlp(—xyy sin Y + afyi). (63)

The direct CPV contribution in (63) is formally subleading,
cf. Sec. IVC 1. In general, it can be disentangled exper-
imentally from the dispersive CPV contribution with the
help of time integrated CPV measurements, in which a?
enters without mixing suppression, cf. the Appendix.

It is noteworthy that AY ; depends on (f)fy , but not on (,b?.
This is because CP asymmetries require a nontrivial CP-
even phase difference 6 between the interfering amplitudes,
i.e., they are proportional to sind. In general, for CP
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eigenstate final states there is a CP-even phase difference
between decays with and without dispersive mixing,
namely the z/2 dispersive phase in (12). However, there
is none between decays with and without absorptive mixing
(the strong phase between A, and A ¢ 1s trivial). Therefore,
in general, (,bjE can only be measured in decays to non-CP
eigenstate final states, where the requisite CP-even phase is
provided by the strong phase difference A between A, and
Af, as we will see explicitly below. Finally, in the case of
CP averaged decay rates, interference terms are in general
proportional to cos J, rather than sin 6. Therefore, in the CP
averaged time dependent decay rates for CP eigenstate
final states, the interference between decays with and
without dispersive mixing will vanish at leading order in
the mixing, i.e., O(7), only leaving a dependence on y,.
This is borne out by the expression for yéP in (60).

2. SCS decays to non-CP eigenstates

This category includes, for example, the decays
D° — pr, K*TK~. The time dependent decay widths are
of the form

D(D°(1) = f) = e |AfP(1 + /Rycf T+ Rpc %),
1 L 1 >
;T
VR Ry v

(64)

WWM+ﬁ=f%#O

for final state f, and

L(D(1) = f) = e~ AP (1 + \/—c T—l—Rfc’+ 72),
D) = )= g (1 et ere)

(65)

for final state f, where

Ry =1|A;/As |A7/Az. (66)

In general, the ratios satisfy Ry, R = O(1) for SCS
decays. The coefficients cf and c;-F in (64), (65), expressed

in terms of gb;‘{’ , qurc, and Ay, cf. (20)~(23), are given by

Y12 COS(¢ - Af)
V12 COS(¢f + A]) (67)

= Fx12 sin(qﬁjy -A )
= Fapsin(@} +Ay) -

. 2]
‘HI+ \H

The coefficients in the O(z?) terms satisfy

1
cff =7 [RF' 0%, = xh) + (¢h +9}) (1 £ as))
1
ot =2 IRE'Oh =) + (o) (1 £as ). (68)

As in the prior case of decays to CP eigenstates, the CP-
even terms in ¢’ 7 should be kept, with future sensitivity at

the level of SM indirect CPV in mind. However, the CP-
odd terms (x agp) can be neglected.

The time dependent measurements yield pairs of
CPVINT asymmetries (normalized rate differences for
D°(t) = f vs D°(t) = f, and D°(t) — f vs D°(t) = f)
at linear order in 7,

\ /Rfc}r - c}/, /R;
2 b
Ront — o~/ R

2

AY; (69)

To first order in CPV parameters, (67) yields the expres-
sions,

AY; = \/R; {—xlz sin g cos Ay — yy, sin ¢l sin A,

( —+ a“ )(xlzsinAf—ylchSAf)],

l\)l>—‘

B>
-
I

S
<

[—xlz sin ¢f cos Ay + yj, sin ¢f sin Ay

+ 5 (af + a?)(xlz sin Ay + yy, cos Af)] , (70)

| =

where the direct CP asymmetries,

— |Af/Af| = =2rpsingysinoy,
- |Aj/Af| = —er sin¢f Sinéf, (71)

d
ay
d
7

cf. (15), enter via the deviation of |/R/R; from unity. In
(70), replacing the numerator and denominator in the ratio
Ry, cf. (66), with their CP averaged counterparts would
introduce a negligible higher order correction in the CPV
parameters.

Note that the CP-even phase differences for dispersive
and absorptive CPVINT are given by A, — /2 and Ay,
respectively, where /2 is the “dispersive” phase in the first
line of (12), thus accounting for the factors cos Ay and
sin As in the first two terms of AY, and AY; in (70). In
particular, Eq. (70) confirms that sensitivity to the absorp-
tive phase ¢I]: requires a strong phase difference between
decay amplitudes, i.e., non-CP eigenstate final states, as
argued at the end of Sec. III B 1.
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3. CF/DCS decays to K*X

This category consists of the CF/DCS decays
D° — K*X, with a single K in the final state. As noted
previously, we choose the DCS decay amplitudes in (15),
(20), (21), and (24),tobe Afand A, e.g., f = K™z~ Thus,
we denote the time dependent CF/DCS decays to “wrong-
sign” (WS) final states as D°(¢) — f and D°(¢) — f, while
the “right-sign” (RS) decays are D°(t) — f and D°(¢) — f.
The O(z?) terms in (50) and its CP conjugate cannot be
neglected given that the decay amplitude ratios entering

M " f are now of O(1/6%). The RS and WS decay widths

following from (50) and (62) can be expressed as
+ /Rycis 7+ Rycgs (7).
_ - - 1 1
I(D°(1) > f) = e~ |Af[? <1 + ﬁ Crs.fT T Rfc;;S.f#)
(72)

L(DO(1) = f) = e |AfP(1

and

D(DY(1) = ) = e |A (R} + \ /Ry s 7+ cis ;7).

L(D%(1) = f) = e |AF* (R} + /Ry cyys 7 + Clys 7°)
(73)
where R? are the DCS to CF ratios
R} = |A7/AsP, Ry = |A;/Af]%, (74)
the ratios Ry, R 7 are defined in (66), and the coefficients
Clj{s(ws), £ CEES(WS). s+ to first order in CPV parameters, are
given by
CRs; = —X128iNAf 4 yj;cos Af
+ (xppsingy cos Ay + ypp sing sin Ay),
cwss = (1 F af)fxipsin Ay + yipcos Ay
+ xppsin P} cos Ap F yppsingyy sin Ay,

1
szisj =7 (¥, + 1) (1 £ asL) + fi(y%z - x12)],
1
C%S,f = Z(x%z Tyl £as. F Zaf] ()’12 1),
(75)

with &% = R;!, & = R;. The (CF) direct CP asymmetry,
a;‘i, appearing in (75) is given by

af =1~ |Aj/Af| = ~2r;singysingy.  (76)

and vanishes in the SM. In the SM, the O(7?) coefficients
are well approximated as

1
ﬁtS(WS)f 4 < (0% + D). (77)

The prefactors in (73) are, to excellent approximation,
equal to the RS time dependent decay widths,

L(D%(1) = f) ~ e
L(D(r) > f) ~ e Az, (78)

where the subleading DCS contributions in (72) have been
neglected.

A fit to the time-dependence in (73), (78) yields
measurements of R%, C\j?:»/S,f’ C%S.f’ and the indirect CP

asymmetries,

1 .
Ocws,f = 3 (C\fvs’f — Cys.f) = X128in gz')fM cos Ay
— yizsingysin Ay — af(xipsin Ay + yjp cos Ay),

Cws 7~ Cwsy

Scys p = = ag, —2af. (79)

s st Cws f
Note that the last terms in (79) for dcyws r and 5C/WS,f are
absent in the SM and, more generally, in models with
negligible CP violating NP in CF/DCS decays. As in (70),
the cos A, and sin A, dependence in the first two terms of
Ocws,r originates from the total CP-even phase differences
Ay—n/2 and Ay, between decays with and without
dispersive mixing and decays with and without absorptive
mixing, respectively. This again confirms that strong phase
differences are required in order to measure the absorptive
CPV phases, ¢§.

C. CF/DCS decays to KX, K'X

We derive expressions for the time-dependent D° and D°
decay rates for two step CF/DCS decays of the form
Do(t) e [KS‘L(ZJ) b ﬂ+ﬂ_] + X, (80)
to final states f = [z "z~ ]X. These decays depend on two
elapsed time intervals, ¢ and 7, at which the D and K decay
following their respective production.
The D°(t) and D°(¢) decay amplitudes now sum over
contributions with and without D° — D° mixing, and with

and without K° — K° mixing. The kaon time evolution is
conveniently described in the mass basis,

|Ks(1)) = e™Mse 52 Kg),

KL (1)) = eMute T2 K ). (81)
where Mg, I's;, and 75 are the corresponding masses,
widths, and lifetimes. The time-dependent amplitudes for
the decay of an initial D° to final state f = [z"z7]X, and

for the CP conjugate decay of an initial D° to final state
f = [z"77]X, are given by
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= > A(K, - 1)

a=S,L
x e~ M (A (DO|DO(1))
+ Ak x(D°|D(1))).

sy ZAK —>atn)
a=S,L

X e_(iMu+%Fa)tl (A

+ Ag5 (D°|D°(¢

x(D°[D°(1))
) (82)

where expressions for the D decay amplitudes Ag x, etc.

appear in (32). The K, — nx decay amplitudes satisfy,
|

Ag(t,0) = e (MoHTo)1 ZA (K,—ntn)Ag x

a=S,L

Ap(10)=
a=S,L

where A/ (t, /') is obtained by substituting Ag x — Ak x and
PRV
tained by substituting Az — Az and 11[\(4_(;)

in the first relation, and Af(t, 1) is ob-

M(T) .
-1 MT,(X) in
the second relation.

The time-dependent decay rates are obtained by squaring
the magnitudes of the amplitudes in (85), e.g., ['s(1.7) =
|Af(2,)* etc., and assuming that CP violating NP is
negligible in CF/DCS decays. Therefore, as in the SM, we
assume vanishing direct CPV in the CF decays, neglect the
DCS amplitudes (their impact is discussed in Sec. IV C 3),
and employ the expressions for the CPVINT observables
given in (34). We work to first order in CPV quantities, and
also employ the relations (see, e.g., [1])
|

Tp(t,7) = e |A L _[PAgox [F{e™ " [cT + /Rpcfz + Rycf 2

+ (d+ + \/Rifd;’h') sin(AMgt')]},

AKg > ntn) =
AK, - ntn) =

PrAL_+qrA
PkA,_ — QKA+—’ (83)

with

A = (7 |HIK®),A _ = (72" |H|IK?). (84)
The amplitudes A/(7,#') and A7(7,1) are obtained by
substituting |D°(¢)) — |D°(¢)) and vice versa in the first
and second relations of (82), respectively. Expressing the
amplitudes in terms of the CPVINT observables in (30)
yields the general expressions, valid to linear order in 7:

1 X y
—(iM,+L,)? <1__ { X2, 12])7
2 A x Aikx

1
(lMD+ I'p)t ZA K >t )A—e (iM jL2 )t <1—§T{1x121—+y12/1—]>, (85)

|A(Kg = n77)|* = 4| prA_[*(1 — 2¢g)
= 4|qgA. (1 4 2¢p).

A(Kg = nta)A(K, = nta™)* = 4|pgA,_ | €k
= 4|(IKA+—| €k
A(K, — 7t 77)]> = O(eg). (86)

In particular, the last relation in (86) implies that we can
neglect the purely K; contributions to the widths. The
expressions for the time-dependent decay rates are then of
the form,

J+ e [(b" + \/Rybj7) cos(AM ')

_ - - , 1 1 1

Ci(t,f) =e"|A _|*|Ago 2{€_F5[ [c‘—i— T+ — ] —|—e‘FK’JKb_+—b_7) cos(AM 1)

VAN + KX K
VR TRy s VR

+ (d— + %d}r) sin(AMKt’)] }

for final state f, and

f(0.0) = APl P{ et o+

+ <dJr +Ld+r> sin(AM ;)/ﬁ f
VR -

1
ctr +

(87)

1
} + e Tk [(b+ + —bTT> cos(AM ')

R
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Ci(1,1) = e |A,_|*|Agox[*{es" [c™ + VRt + Rfc}.‘rz] + e T [(b™ + /Rybz7) cos(AMt)

+(d™ + /Rpdzt) sin(AM )]},

for final state f, where
Ry = [Agox/Agox|*, (89)

AMyg =M, — Mg, and Ty = (I, +I's)/2. We have taken
|A._| =|A,_|, given that the two magnitudes differ by
negligible corrections of O(e%, €} ). The coefficients in
(87), (88) depend on the quantities qb}” , ¢J§, Ay, cf. (34)-
(36), and eg. For the purely KX contributions (e™'s”
dependence), they are given by
ct =14 2¢p,
¢; = (£x1p = yppsingy)sin A,
— (Y12 £ xpp8in ¢}}4) cos Ay,
Cfi = (Fxi2 +yipsingy) sin A,
— (Y12 £ xpp8in 4’}}4) cos Ay,

1
C}i = Zl( L+ Db - x%z]R?I)’
1
¢ = 1 (X% + i + iy = xRJRF). (90)

CP-odd contributions to the coefficients c’fi, 'F are of

O|[(x%,,y1,) x (ex, ¢12)] and have been neglected, i.e., they
are O(xy,,y1o) suppressed relative to the CP-odd terms
arising at O(z). Interference between the amplitudes con-
taining intermediate KX and K; X (e Tx” dependence)
yields,

di = :F2€1,

by =2(£x15c08 Ay + yppsin Ay
+_

by

bi = :F2€R,

Jer.
tx15c08 Ar — yppsinAy)eg,

=2(
d]% = 2(Fx13c08 Ay — yppsin Ap)ep,
d;‘;: :2(:FX12COS Af+y12 SinAf>€R. (91)

We have neglected interference contributions of O(x3,e,
y3,ex) arising at O(7?) in (87), (88). Again, they are
O(x15, y12) suppressed relative to the CP-odd terms arising
at O(z).

The indirect CP asymmetries are obtained by taking
normalized rate differences between Ff and ff, and
between I'; and ff. To first order in CPV quantities, the
phases ¢1;” , 451; only enter the CP asymmetries of the purely
K contributions, while the CP asymmetries induced by
K — K; interference only probe €. The first set of CP

(88)

[

asymmetries, between the coefficients in (90), are given by
(8¢’ is negligible),

= (yipsin @ sin Ay — xyp sin @} cos Ay). (92)

Again, Ay # 0, 7 is required in order to measure 45_1;, due
to the lack of a nontrivial CP-even phase in the absorptive
mixing amplitude. The six CP asymmetries in the second
set of coefficients, cf. (91), are

1
b = 3 (bt —b™) = —2¢p,
1
éd = 5 (dt —d) = =2¢,
1 _
ob, = E(b? - bf)
= 2(x12 COS Af + Y12 sin Af)é‘],
1 _
ob; = 3 (b; - b7)
=2(xjpcos Ay =y sinAg)ey,
1
- +_ -
ddy =7 (dy — dy)
= —2(X]2 COS Af —+ Y12 sin Af)eR,
1
= +_ g
od =§(df - dy)
=2(=x12C08 Ap + yjpsin Ay)ep. (93)

In principle, each of the CP asymmetries in (92), (93) can
be measured by fitting to the dependence of the decay rates
ontand 7.

In Sec. IV B we will see that in the SM, ¢}’ and ¢/, are

expected to be of same order as e, implying that the
CPVINT asymmetries in (92) and (93) are also of same
order. Thus, the impact of e, particularly at linear order in
7, on the asymmetry measurements needs to be considered.
We will address this point in Sec. V, taking into account the
typical decay times ¢ for the intermediate K*’s detected at
LHCb and Belle-II.
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In the case of two body (and quasi two body) intermediate
states, e.g., X = 7°, w, f,, expressions for the time depen-
dent decay rates and CP asymmetries are obtained by setting
Ry =1 [and |Agoy| = |Agox| in (87)], and sinA; =0,
cos Ay = 7” in (90)-(93), where 7¢" is defined in (37).
The resulting decay widths are
Up(t,) = e |A L _P|Agox [P {5 [c™ + cf7 + ']

+ e Tk [(b* + b}’r) cos(AMgt')
+ (dT + djfr) sin(AMg?')]}, (94)

By(0.0) = e AP lAgx (e e + e+ 2]
4 e Tk [(b_ + b?’l’) COS(AMKf/)
+(d” + dyz)sin(AM )]}, 93)

with coefficients,

¢t =14 2, Cj‘cr = —’7?13()’12 + xpp sin ¢?€4)
1
= Ey%z, b* = F2ep, bf1L = :I:2;1]§Px12€,,
d* = F2e, di = F25 x1pep. (96)

The corresponding C P asymmetries, as defined in (92), (93),
are given by

dc = 2ep, dcy = —nFPxiysin gl
ob = —2ep, oby = 2nj€que,,
od = —2¢, 6dp = =205 xep. (97)

Note that éc s is purely dispersive, similarly to AY s for SCS
decays to CP eigenstates, cf. (63) (again, the only CP-even
phase available for charm CPVINT is the dispersive mixing
phase 7/2).

Finally, the CP conserving observable, yéP, for SCS
decays to CP eigenstates, cf. (57), (59), can be carried
over to the case of two body and quasi two body
intermediate states discussed above. It is analogously
defined as

Yer =775 - (98)

However, the K¢ decay time dependence, e‘FS’/, in (94),
(95), must be accounted for in order to avoid additional
systematic errors in its extraction. Employing (96) yields

y]ép = 'Ijgp)’n = W?Pb’ ) (99)

up to negligible corrections quadratic in CPV parameters.

For example, we expect yéP =—y;, for X =0w,7°

(opposite in sign to yl, for K*K~, ztz"), and yl, =
+y1p for X = fo.

IV. APPROXIMATE UNIVERSALITY

In the previous section, all indirect CPV effects were
parametrized in full generality, in terms of final state
dependent pairs of dispersive and absorptive weak phases
(@}, ¢}). In order to understand how best to parametrize
indirect CPV effects in the upcoming precision era, we need
to estimate the final state dependence. We accomplish this
via a U-spin flavor symmetry decomposition of the SM
DY — D° mixing amplitudes. Crucially, this also yields
estimates of indirect CPV effects in the SM.

A. U-spin decomposition

The SM D° — D° mixing amplitudes I';, and M, have
flavor transitions AC = —AU =2 and AS = AD = 0. We
can write them as

SM __ SM __
Iy =- E Aidilij MYy = — E M,
i,j=d.,s i,j=d,s.b

(100)

where 1, =V,V,.. At the quark level, the transition
amplitudes I';; and M;; are identified with box diagrams
containing, respectively, on-shell and off-shell internal i
and j quarks. Thus, they possess the flavor structures (Dirac
structure is unimportant for our discussion) I';;, M;;~

(@e)?(ii) (7j) ~ (mc)*(ij) (ji), or

Lyq ~ (dd)?, |

j°

Iy, ~ (55)2, (55)(dd), (101)
and similarly for the M;;. Employing CKM unitarity
(Ag + A + 4, = 0), the U-spin decomposition of I'$M is
given by

A=2P o (=) . A
oy = - ) 4 2d) °Ty+ 21, (102)

where the U-spin amplitudes I';;, are the AU; =0
elements of the AU =2, 1, 0 multiplets, respectively.
This can be seen from their quark flavor structures,

FZ = F.\'s + Fdd - 2de ~ (ES - ad)z = 0(62)’
Iy =T =Ty~ (55 —dd)(5s + dd) = O(e),

1—‘0 = Fss + Fdd + erd ~ (S‘S + dd)2 = 0<1) (103)
The orders in the U-spin breaking parameter e at which
they enter are also included, corresponding to the power of
the U-spin breaking spurion M, ~ e(5s — dd) required to
construct each I';. The U-spin decomposition of M, is
analogous to (102), with the exception of additional
contributions to M, and M, given by (M, — M) and
(Mg, + My, + My,), respectively, and corresponding to
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box diagrams with internal b quarks at the quark level. The
small value of 4, implies that we can neglect the AU = 1,0
contributions to the mass and width differences, even
though the AU = 2 piece is of higher order in e. Thus,
X2 and y;, are due to I'; and M,, respectively, and arise at
O(€?) [13-15]. Similarly, CPV in mixing arises at O(¢) due
to I'; and M, while the contributions of Iy and M|, are
negligible.
The U-spin amplitudes I';, M; are of the form,

M; =} |M;|e**,

I = ’7;|Fi|€2i§a n{_w’”}“ ==+

(104)

The exponential factors originate from the choice of meson
phase convention, and trivially cancel in physical observ-
ables. However, the #; in (104) are physical, can a priori be
of either sign, and can be determined from experiment. For
example, since ¢, ~ 0, we already know that
arg[M,/T',] =0, (105)
or that ¥ =n.. Moreover, as we shall see shortly,
cf. (125), existing measurements also imply that
m=n5 = +. (106)
The inclusive [16-23] and exclusive [13-15,24,25]
approaches to estimating Al'j yield several observations
of relevance to our discussion of CPV below. In the
inclusive OPE based approach, the flavor amplitudes
satisfy I';; ~T'p. This is reflected in the ability of this
approach to accommodate the charm meson lifetimes
[23,26]. The individual T';; contributions to y;, are, there-
fore, about five times larger than the experimental value
[27], suggesting that U-spin violation is large, e.g., O(€?) ~
20% for T'5, cf. (103), (120).5 The exclusive approach
estimates sums over exclusive decay modes. Unfortunately,
the charm quark mass is not sufficiently light for D° meson
decays to be dominated by a few final states. Moreover, the
strong phase differences entering y;,, and the off-shell
decay amplitudes in x;, are not calculable from first
principles. However, there is consensus in the literature
that accounting for y;, near 1% requires significant con-
tributions from high multiplicity final states (n > 4), due to
the large SU(3) - breaking near threshold. This observation
is consistent with the large U-spin breaking required
(potentially from duality violations) in the OPE/HQE
approach.

*Inclusive OPE based GIM-cancelations between the I'; ; yield
y four orders of magnitude below experiment. Evidently, m, and
(mg —mg)/Agep are not sufficiently large and small, respec-
tively, for this approach to properly account for U-spin breaking
m yp,.

B. CPV phases intrinsic to mixing

We introduce three intrinsic CPV mixing phases, defined
with respect to the direction of the dominant AU =2
dispersive and absorptive mixing amplitudes in the com-

plex plane,
r
r 12
Eh [j (A - Wrz] |
M
M — 12
=g [ﬁ (4s = id)zMj ’

¢, = arg F%}
V4

where I'},, M5, and ¢g/p can contain NP contributions.
These phases can be viewed as the pure mixing analogs of
the final state dependent phases ¢}, ¢, and ¢, , respec-

(107)

tively. Note that they are quark and meson phase con-
vention independent, like the final state dependent ones, as
required for physical phases. For later use we give the
expressions for the (phase convention dependent) argu-
ments of M1, and I}, in terms of ¢3! and ¢, respectively,
cf. (104),

M = 2arg[d, — Ay + 2i& + x(1 —nil)/2 + P,

¢' = 2arg[d, — Ay + 2iE +x(1 —15)/2 + ¢5. (108)

Employing (105), the theoretical or intrinsic mixing
phases are seen to satisfy the relations

b2 = Y — ¢,

and the analog of (46),

(109)

a2y — - <x§2 sin 2¢)" + y1, sin 29} ) )

X1, cos 2¢" + yi, cos 24

Combining the two relations, ¢, can be related to ¢;,, and
@5 or ¢}, to first order in CPV quantities, as

2

X )
tan 2( + @) & — 2 —-sin 2,
X2 T V12

2
y .
tan 2(¢2 + 4712”) ~ lezs]n 2¢12.
12 T V12

(111)

Together with (45), the above relations allow translation
between ¢, and |g/ p|, and any two out of the three phases
Py, ¢5, and ¢

We estimate the magnitudes of the theoretical phases in
the SM (', =M, M, = MSM), as well as their devia-
tions from the corresponding final state dependent phases
¢y, ¢Y, and ¢, , using U-spin based arguments and
experimental input. To very good approximation, the
CKM hierarchy |4,/(4; — 44)| < 1 yields,
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A

Oc

¢F—1m< 20 r1> B
r_ -

. I
— —. 112
=i siny X (112)

2

Taking into account the U-spin breaking hierarchy
I[,/T, = O(1/e), cf. (103), yields the rough SM estimates’

) 1
siny X —,
€

A
ro| 2t
¢2 9

C

(113)

and similarly for ¢3'. In terms of the most recent CKM fits
[28,29], we obtain

0.3
Do~y ~ P ~ (22 x 1073) x [—] (114)
€
The third phase, ¢,, is seen to be of same order, barring
large cancelations, cf. (110).
An alternative expression for ¢ in the SM follows from
(112), via the relation || & |y|T'p /A2,

Apdy siny| [T
r _ | %’s 14 11l
0.66% |I
= 0.005( "> T4l 0.005e, (115)
[yl I'p

where in the second relation we have incorporated the
current central value of |y| [6], and in the last relation we
have taken I'} ~el'p (recall that the inclusive approach
yields T';; ~I'p). The estimates for ¢g in (114) and (115)
are consistent with each other (for illustrative purposes, if
we identify their respective e factors, the two estimates
would coincide for ¢ ~ 0.36).

The ¢ dependence in (115) has been shifted to the
numerator, compared to (114) [note that y = O(e?)]. This
allows us to obtain an approximate upper bound on ¢},
which we briefly describe here. A detailed discussion will
be given elsewhere [30]. We rewrite the ratio of widths in
(115) as

r r
el _ Il “’|el, (116)
I'p Ip
where, cf. (103),
r,,—TI
1EM:O(G). (117)
|F.vd|

Moreover, SU(3) flavor symmetry arguments yield the
bound

T,
|f—‘d|< 14 0(e). (118)

D

®We thank Yuval Grossman for this estimate.

The O(e) correction in (118) originates from differences
between the D° decay matrix elements for U-spin related
DCS and CF final states, modulo the CKM factors. It is
expected to be small since it does not depend on U-spin
breaking from phase space differences.” (It is interesting to
note that |I'y,|/T'p ~0.6-0.75 has been obtained in the
OPE based approach [19].) Thus, we obtain the absorptive
CPV upper bound,

0.66%
M

where, conservatively, ¢; < 1.
Combining (118) with the measured value of y also
yields the lower bound, cf. (103),

|Fss + Fdd B 2Fsd| |y|
0.14 1+ O(e)|.
T, > 0-14( G607 ) |1 +O€)]

(120)

|p5| < 0.005< )61[1 + 0(e)], (119)

(52)2

Given that (e,)> = O(€?), (120) confirms the existence of
large U-spin breaking in D° — D° mixing.

In principle, I'; can be estimated via the exclusive
approach, as more data on SCS D° decay branching ratios
and direct CP asymmetries become available. It relies on
the U-spin decomposition of exclusive contributions to I';.
Details can be found in [31]. Unfortunately, the potentially
large contributions from high multiplicity final states would
complicate this program, as in the case of AI'j.

C. Final state dependence

The misalignments between the final state dependent
phases ¢, ¢, ¢, . and their theoretical counterparts are
equal in magnitude, satisfying

5¢f5¢§—¢5 =¢}4 —4534 :¢2—¢,1,v-

Below, we discuss the size of ¢, in the SM for (i) SCS
decays, (ii) CF/DCS decays to K*X, and (iii) CF/DCS
decays to K°X, K°X.

(121)

1. SCS decays
The amplitudes for the SCS decay modes D° — f and
D° — f in the SM can be written as, see e.g., [32],

1
Ap =S (4 = 2 Apy + 25 Ar o,

_ 1 - _
Af = 5 (ﬂs - Ad).AfJ + AbAf,o,

[\

(122)

with substitutions f — f for the CP conjugate modes. The
first and second terms in each relation are the AU = 1 and

"Phase space differences enter the rhs of (118) at 0(€e?) [30].
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AU =0 transition amplitudes, respectively, where the
former is due to the current-current operators Q;, Q,,
and the latter is dominated by their QCD penguin con-
tractions. Generically, both amplitudes are O(1) in SU(3)
breaking, and the AU = 0 amplitude is parametrically
suppressed by O(4,/0c). (Two exceptions are men-
tioned below).

The amplitudes for decays to CP eigenstates are gen-
erally of the form given in (16). In the case of SCS decays,
comparison with (122) yields the weak phase,

ar Cpﬂ = 2arg[d, — A,| = 2iE+2 S, si
g 1§ 1l= arg[A, — 4] i§ + 2rycos s singy,
f
(123)

where the sum of the first two terms on the rhs is identified
with 241)(} (the second term originates from the choice of
meson phase convention), and in the SM,

A Aro
Oc As,
(124)

5y = arg[As o/ A1l dr= -7, ryp=

Combining (108) and (123) yields the following expres-
sions for the CPVINT phases ¢}, ¢, cf. (18), (19),

qﬁ’}” = (1l —=n¥")/2+ ¢¥ —2r;cos6;siny,

¢y = n(l —n5)/2 + ¢ —2rpcos§;siny. (125)
Given that ¢}, ¢}, ~0 (rather than z) for f=7z"z",
KTK~, cf. (62), we learn that the first term on the rhs
of each relation in (125) must vanish, i.e., 7}/ = 75 = +, as
claimed in (106). In turn, the misalignment in (121) for a
CP eigenstate final state, is given by

8¢y = —2rycos§psiny = —afcotdy,  (126)

where the direct CP asymmetry, a}i-, has been defined
in (51).

It is instructive to rewrite the CPVINT asymmetry AY
cf. (63), in terms of ¢¥, and the subleading decay
amplitude parameters rf, ¢¢, and &y, cf. (124),

AY, . , .
WT = =Xy singhy' — 2r;sin¢h (x5 0867 + 1 sin ;).
cp

(127)

Previously, we saw that the leading amplitude contribution
is purely dispersive for CP eigenstate final states, because
the requisite CP-even phase difference is only present in
the dispersive mixing amplitude (§ = z/2). Similarly, it is
now clear that the strong phase dependence of the

dispersive and absorptive contributions entering at first
order in the subleading amplitudes, cf. (127), can be
attributed to the strong phase differences 7/2 + &, and
0y, between their respective interfering decay chains.

In the case of SCS decays to non-CP eigenstates, the
misalignments of the CPVINT phases, cf. (20)—(22),
generalize as

O¢ps = —(rycosdy + rycos §z) siny

= —(afcotd; + a? cot87)/2, (128)

where ry, 6, are defined as in (124); I, 5f- correspond to
the substitutions f — f therein; and ¢y =d¢;=—r. The
direct CP asymmetries have been defined in (71).

The misalignments (126), (128) for SCS decays are
nonperturbative, and incalculable at present, like the direct
CP asymmetries. However, the strong phases are expected
to satisfy 6, 7 = O(1), due to large rescattering at the charm
mass scale, yielding the order of magnitude estimates
8¢y = O(Apsiny/6c). In particular, the misalignments,
like the direct CP asymmetries af are O(1) in SU(3).
breaking. Thus, they are parametrically suppressed relative
to the theoretical phases in the SM, cf. (112),

o0y o0y = Oe).

)
For example, the recent LHCb discovery [33] of a
nonvanishing difference between the D — K*K~ and

D° — ztz~ direct CP asymmetries yields the world
average [6],

(129)

Aadl, = a;’(+K, - al‘i+ﬂ, = —0.00164 + 0.00028. (130)
In the U-spin symmetric limit, ai+ﬂ, = —af<+ k- [34],
implying the rough estimate 6¢p; ~ 0.08% for these decays.
Dividing by the SM estimates for ¢ and ¢} in (114) or
(115) yields significant misalignments, consistent with the
parametric suppression in (129) for sizable ¢ ~ 0.4.

Fortunately, the K™ K~ and # z~ misalignments, like the
direct CP asymmetries [34], are equal and opposite in the
U-spin limit, i.e.,

(0pk+k- + Oppn-) = O(€8Pk+K- 2+ )

(afip +al ) =0(eayp i) (131)

Thus, the average of ¢>1;4 Tover f = K*K~, 7~ satisfies,

G5+ M) = T 0()],  (132)

NS

and the average of the time dependent CP asymmetries in
(63) satisfies,
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Ap = —xpdY[1 + O(e?)], (133)

where we have used the relations x;, ~ yj, and 5¢p; ~ a;‘f.

As has already been noted, large U-spin violation is likely
to play an important role in mixing. Moreover, the 5¢, for
SCS decays are inherently nonperturbative. Therefore,
while (129) implies that the order of magnitude estimates
(114), (115) for ¢M T apply equally well to the measured
phases (/)M T'in the SM, O(1) variations cannot be ruled out.
The latter possibility would correspond to the weakest form
of approximate universality. Ultimately, precision measure-
ments of the indirect and direct CP asymmetries in a host of
SCS decays will clarify the situation.

We point out that in the presence of NP in SCS decays,
the expressions for the misalignments, d¢, in the second
relations of (126), (128) remain valid. In particular, the

direct CP asymmetries a? ¢ F and the strong phases 6, 7 now

depend on the total subleading amplitudes, i.e., the sums of
the QCD penguin and NP amplitudes. The ¢, would be of
same order as in the SM, provided that the CP-odd NP
amplitudes are similar in size, or smaller than the SM QCD
penguin amplitudes, as already hinted at by the current
bounds on direct CPV in D — K*K~ 7tz decays.

Finally, we mention two SCS decay modes, D° — K°K°
and D° — K*°K°, which violate the O(e) counting in
(129). For D° — K°K?", the first term in (122) is suppressed
by O(¢) (as reflected in the rate), yielding O(1/¢) enhance-
ments of o¢, the direct CP asymmetry [35,36], and the
misalignment, i.e., 5¢f/¢§4~r = O(1) in the SM. For D° —
K*OKO, the first term in (122) is not formally suppressed by
O(e). However, a large accidental cancelation between
contributions related by K** <> K interchange (again
reflected in the measured decay rate), again enhances
o¢s, and the direct CP asymmetry [37]. Thus, in effect,
the misalignment could be O(1), as for K°K°.

2. CF/DCS decays to K*X

The CPVINT observables in this class are given in (20),
(21), with the modified sign convention of (24). The CKM
factors enter the CF/DCS amplitudes as Ay < ViV, (CF)
and Af x V., Vio (DCS). Thus, in the SM and, more
generally, in models with negligible new weak phases in
CF/DCS decays, Eqgs. (25) and (108) yield the absorptive
and dispersive phases,

ViV
o = g5 +arg [— or ud (AS—W]. (134)

Employing CKM unitarity, the misalignments, given by the
second term on the rhs, are seen to satisfy

12
Sy =0 (—b>.
f 23

(135)

Thus, for CF/DCS decays to K*X, the misalignments
vanish up to a negligible (and precisely known) final-state
independent correction of O(107°%). This represents the
strongest form of approximate universality, i.e., the uni-

versal limit ¢} = ¢5'"”. In particular, CPVINT mea-

surements in these decays directly determine the theoretical
phases.

3. CF/DCS decays to K°X, K°X

We begin with a discussion of the misalignments in this
class of decays in the limit that the DCS decays are
neglected. Expressions for the CPVINT observables and
time-dependent decay widths in this approximation are
given in (33)—(36) and Sec. III C, respectively. The mis-
alignments follow from (36). One ingredient is the phase of
qx/ pk- To excellent approximation [1], this ratio satisfies
the relation

A
e =201 - 2¢). (136)
Pk 0

where A, denote the K® — (z7),_,, amplitudes, respec-

tively, i.e., they are Al =1/2,3/2 transitions. Keeping
track of the CKM factors, these amplitudes can be
written as
Aoy = VuaVisAo) + ViaVisBog)
= Vudvus-AO [ +r0 ] (137)
yielding
arg |:q_K:| =2 arg[vudVZs] - 2€I + ZIm[rO] (138)
Pk

A second ingredient is the CP-odd phase in the ratio of CF
amplitudes, Agoy/Agoy,

2¢KOX = Zarg[vzsvud] - 216

= 2arg[Vi, V.4 + 2arg[Ai] - 2iE. (139)
Finally, combining (108), (138), and (139) yields the final
state independent absorptive and dispersive phases,

A
¢ = ¢ 4 2+ 2 siny = 2mrg]. (140)

s

The last term in (140) is nonperturbative in origin.
However, it enters the kaon CPV observable, € /e, as®

Ina phase convention commonly employed for discussions of
€x/ €k Im[’o(z)] = Im[A0(2>]/Re[A0(2)].
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/
Re FK] = (1.66 £ 0.23) x 10 [10]
€k

(Im[ro] = Imlr,]), (141)

0]
V2le]

where w = (A,/Ay) ~ 1/22. Equating the measured value
of Relel /ex| with the first term on the rhs of the second
relation in (141), i.e., assuming modest cancelation with A,
[38], yields the estimate

Im[ry] ~ 1.2 x 1074, (142)
Similarly, the dominant chirally enhanced penguin operator
(Qg) contribution to A, yields [38],

Im(re] ~ 1.5 x 104B\"/?), (143)

where the matrix element parameter Bél/ 2 = 1'in the large

Nc limit. (A recent study [39] claiming that the SM
prediction for ¢'/e could be significantly smaller than
the measured value obtains Im [ry] < 1074).

Thus, in the limit that the DCS amplitudes are neglected,
the misalignments satisty

)
5pr = 2e+ /1—” siny = 3.7 x 1073, (144)

s

up to a small CP-odd ratio of K — zz amplitudes, given by
—2Im[ry] = O(107*). The latter lies an order of magnitude
below our SM estimates for the theoretical phases ¢4, ¢}
in (114), (115) and can be neglected.

Finally, we address the impact of the DCS amplitudes.
Expanding the CPVINT observables in (30) to first order in

the DCS amplitudes, the weak and strong phases in /11}(45'2 X

are seen to be related to those in /1’;4 T (cf. (31) and (34),
respectively), as

MKy X] = @} £ (rpcos &y + r7cos 67)5¢y,
P [Ks/X] = ¢y £ (rycos 8, + rjcos 67)6¢y,

A[KS/LX] :Af:I:(rfsméf—rfSlnéf), (145)

where ¢, is given in (144). We recall that ¢l’;” T are the

CPV phases in the absence of the DCS amplitudes, r and
r; are the magnitudes of DCS to CF amplitude ratios,

, (146)

’

i _’ AKOX
Ak"x

’ Agoy

Agox

and &y, 67 are the strong phase differences of the corre-

sponding amplitude ratios. Finally, their magnitudes are
related as

|/11,‘(4S/LX| = |/1’;4\(1 — [rycos &, — rpcos67)),

/1%| = |/Ij£”|(1 + [y cos 6y — rycos 67)), (147)
and similarly for M — T

Expressions for the time dependent decay widths,
including the DCS amplitudes, are obtained via insertion
of the CPVINT observables (31) and the full expressions
for the decay amplitudes (32) into the general formulas
(85) for the time-dependent amplitudes. The result can be
brought into the same general form as (87), (88).
Effectively, the prefactors in Eqgs. (87) and (88), the ratios
\/R_f, and the expressions (90), (91) for the coefficients are
modified at O(r;,r7), ie., O(0¢). For example, the
coefficients contain new CP-even terms of O(r;7), and
new CP-odd terms of O(ekry 7). These corrections pro-
duce relative shifts in the CP averaged decay rates, as well
as the indirect CP asymmetries listed in (92), (93), (97),
of 0(62).

Our primary focus here is on the absorptive and
dispersive CPVINT phases. As previously noted, they
only reside in the pure Ky contributions to the time
dependent widths (to first order in CPV). In particular,
qﬁy T are replaced by ¢ [KX] in the coefficients s cjf[,
cf. (145), (90). Consequently, the misalignments (144) are
modified as

;= MK X] — 3"
A
= <2€]+ Tb
A
= <2€1+ l_b

Thus, while the DCS corrections to the CPVINT phases are
final state dependent, they are of O(26%¢;), or O(0.145"")
in the SM. This represents a more generic form of
approximate universality than what we found in the
previous two classes of decays, i.e., an O(10%) variation
among the ¢}” and ¢§, corresponding to a similar variation

siny) (14 rscosdy + rycosdy)

S

(148)

s

sin y) (1+ O[#%)).

in the CPVINT asymmetries. The shifts in the asymmetries
remain at this order when taking all of the DCS corrections
to the widths into account. We therefore conclude that their
inclusion in (87), (88) is not warranted for the interpretation
of CPVINT data at SM sensitivity.

V. IMPLEMENTATION OF APPROXIMATE
UNIVERSALITY

In this section, we discuss how to convert the general
expressions for the time dependent decay widths and
indirect CP asymmetries obtained in Sec. III B to the
approximate universality parametrization, in the three
classes of decays. For CF/DCS decays to K°X, KX, we
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pay special attention to eg induced effects at LHCb and
Belle-II.

A. SCS decays

For SCS decays, the theoretical absorptive and dispersive
CPV phases replace the final state dependent ones via the
substitutions,

A R RN (149)
in the expressions for the time dependent decay widths and
CP asymmetries. For decays to CP eigenstates, they enter
the expressions for the decay widths (52) (via Eq. (53) for
cjf) and the CP asymmetry AY, (63). For decays to non-
CP eigenstates, they enter the expressions for the decay
widths (64), (65) (via Eq. (67) for cj%) and the indirect CP
asymmetries AY;, AY7 (70). Note that the misalignments
o¢p; are dropped on the RHS of (149), as they are not
calculable from first principles QCD. Moreover, while
formally of O(e) in U-spin breaking relative to ¢, they
could, in principle, yield O(1) variations in ¢} and ¢} in
the SM. In Sec. VIB we discuss a strategy for fits carried
out once SM sensitivity is achieved, and final state
dependent effects in ¢}, ¢} become accessible to
experiment.

The direct CPV (a‘;) and misalignment (5¢,) contribu-
tions to the CPVINT ésymmetries in (63), (70) are of same
order, cf. (126). Therefore, consistency requires us to drop
the a, a;f terms in the CPVINT asymmetries, if we neglect

o¢p; in (149). For example, for CP eigenstate final states,
and in the approximate universality parametrization, (63)
reduces to,

AYf = —17fx12 sin d)gl, (150)

and similarly for the non-CP eigenstates (the first line of
each asymmetry in (70) is kept, with qﬁ}” T 34 .
However, we recall that in the average of AY, over
f=K"K~,ztrn", ie., A, the error incurred by dropping
8¢, and ajf is of O(e?), cf. (132), (133).

B. CF/DCS decays to K*X
For CF/DCS decays to KX, substitute

qﬁj‘f’l—)(]ﬁg’l, ¢§—>¢g, (151)
in the expressions for the decay widths (73) (via Eq. (75)
for the coefficients ¢*), and the indirect CP asymmetries
ocy (79). However, in contrast to the SCS decays, the

misalignments are entirely negligible, cf. (135).

C. CF/DCS decays to K'X, K'X

In CF/DCS decays to K°X, K°X, the final state depen-
dent phases for f = z7z~X are replaced by the theoretical
phases via the substitutions,

Al .
7t — )+ 2e,+’ /1—” siny, (152)

s

in the widths (87), (88) (via Eq. (90) for the coefficients cjf,
C%)’ and in the indirect CP asymmetries oc s, 5¢ 7 (92). The
sum of the last two terms in (152) equals the misalignment
o¢ps (144), up to negligible corrections lying an order of

magnitude below our SM estimates of ¢§4 T of. (142),
(143), (148).

At LHCb, the bulk of observed K°/K? — 7z~ decays
take place within a time interval’ 7/ < 7g /3, while at Belle-II
they can be detected over far longer time intervals, '’ e.g.,
' < O(10zg). This has important consequences for the
impact of ex on the CP asymmetries, e.g., in D —
Kgntn~ decays, which we discuss below.

The total time dependent CP asymmetries, following
from (87), (88), (92), (93), can be expressed (up to an
overall normalization factor) as

Tp—T7=-2eA,_||Agox[*{2erFo ()
+ \/Rt[2e(x5c08 Ay + yiasinAy)Fy(7)
+ (X1 cos Agsin P 4y, sin Ay sin Ph)e 1),
(153)

and

[ =Ty = =2e77|A,_]*|Agox[*{2exFo(7)
+ \/ RfT[2€1 (.X'lz COS Af — Y12 Sin Af)Fl (t/)
+ (x3c08 Assingd — y ,sin Ay singh)e 5"},

(154)

where, for convenience, we have introduced the phase

P = T 4|4,/ 4| siny. (155)
The CKM term in (155) is ~6.6 x 107*. The functions F,,,

F, satisfy,
€

Fy(t) = —e7tst 4 e7Tk? <cos Amgt +—Lsin Amﬂ) ,
€R

Fi(t) = e st — 7Tkt <cos Amgt — R §in AmKt). (156)
€r

*We thank Marco Gersabek for correspondence on this point.
"We thank David Cinabro for correspondence on this point.
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FIG. 1.
interval of relevance to Belle-II (right), cf. (153)—(156).

Note that the ratio €; /e = 1, up to a small =5% correction,
cf. (29). Negligible CP asymmetries entering at O(z?) have
not been included in (153), (154). Dividing by the sums
over the CP conjugate decay widths yields the normalized
time dependent CP asymmetries,

r,—I; )
L L — —{2egels"Fy (1)
—+ \/ Rf'T[2€[(xl2 COS Af + Y12 sin Af)eFS’JF] (t/)
+ (xjpcos Ay sinng’I +yipsinAy sin&ﬁg)]},
(157)
and
-1, )
S —{2eges" Fy(r')
I+ Ty

+ \/ RfT[2€1(X12 CcOoS Af — Y12 sin Af)EFSI/Fl ([l)
+ (x12cos Apsin g3 — yjp sin Ay sin b))}
(158)

The function F is associated with direct CPV via
integration over 7, and agrees with the expression obtained
in [40]. The functions F; and e~ Ts " are associated with the
contributions of ex and ¢§’I T to the CPVINT asymmetries,
respectively. In Fig. 1, we plot the three functions over a
short time interval of relevance to LHCb, and a longer time
interval of relevance to Belle-II. Over the entire timescale
for observed K*’s at LHCb, e.g., ¥ < 0.5z, the function F,
undergoes a remarkable cancelation down to the few
percent level, while e s’ = O(1). Thus, at LHCb, the
contributions of ek to the CPVINT asymmetries are highly
suppressed compared to those of ¢34 T (recall that ¢12v1 T
€; g in the SM).

The functions F(z), F(t), and exp[-Is7], plotted over a short time interval of relevance to LHCb (left), and a longer time

The cancellation in F at short times takes place between
the contributions to CPVINT from K; — K interference
[8b; 7. 8d; 7 in (93)], and from the ; term in b}""" (144) [via
6cy 7 in (92)]. Thus, for simplicity, analyses of CPVINT in
D° - Kg;n"n~ decays at LHCb could omit a fit to the
interference terms [ e™'«” 7 in (87), (88)], if they substitute

i = 3+ |/ siny, (159)
rather than (152). In contrast, over the longer K° decay
timescales that can be explored at Belle-II, the cancelation in
F, subsides, and ¢x ultimately dominates the CPVINT
asymmetries in the SM, cf. Fig. 1 (right). Thus, Belle-II
CPVINT analyses must fit for K; — K interference and
employ the substitutions in (152), in order to extract ¢g’l T
Finally, the function F; undergoes some cancelation at small

time intervals, e.g., ¥ < 74/3, leading to moderate suppres-
sion of direct CPV at LHCb.

VI. CURRENT STATUS AND PROJECTIONS

We perform two global analyses of the current exper-
imental data, collected in Table I, in order to assess the
current sensitivity to the phases ¢3! and ¢. (The xcp, ycp,
Ax, Ay entries in Tables I and III correspond to K¢z z7).
We also report on future projections.

A. Superweak limit

Until recently, fits to measurements of indirect CPV were
sensitive to values of ¢;, down to the 100 mrad level. This
level of precision probed for large short-distance NP
effects. In particular, the effects of weak phases in the
subleading decay amplitudes could be safely neglected in
the indirect CPV observables. In this limit, referred to as the
superweak limit, a nonvanishing ¢, would be entirely due
to short-distance NP in M;,, with the CPVINT phases
satisfying
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TABLE I. Experimental data used in the analysis, mostly from ref. [6]. Asymmetric errors have been symmetrized.
Observable Value Correlation Coeff. Reference
Yep (0.72+0.11)% [41-48]
Ar (—0.031 £ 0.020)% [45,47,49-52]
X (0.53 £0.19 £ 0.06 + 0.07)% 1 0.054 -0.074 —0.031 [53]
y (0.28 £0.15 £ 0.05 £ 0.05)% 1 0.034 —0.019 [53]
lg/p| (0.91 £ 0.16 £+ 0.05 £ 0.06) 1 0.044 [53]
¢ (-6 +11+£3+4) 1 [53]
Xcp (0.27 £0.16 + 0.04)% 1 -0.17 0.04 —0.02 [6]
Yep (0.74+ 036 £ 0.11)% 1 —-0.03 0.01 [6]
Ax (=0.053 +0.07 £+ 0.022)% 1 -0.13 [6]
Ay (0.06 +0.16 + 0.03)% 1 [6]
(0.16 +0.23 + 0.12 + 0.08)% 1 0.0615 [54]
(0.57 +0.20 + 0.13 + 0.07)% 0.0615 1 [54]
Ry (0.0130 + 0.0269)% [55-59]
(x* +y%)/4 (0.0048 + 0.0018)% [60]
() kar (2.48 +0.59 +0.39)% 1 —0.69 [61]
V') kew (=0.07 £ 0.65 £ 0.50)% —0.69 1 [61]
() kew (3.50 £ 0.78 + 0.65)% 1 —0.66 [61]
) ke (—0.82 £ 0.68 £ 0.41)% —0.66 1 [61]
Rp (0.533 +0.107 + 0.045)% 1 0 0 -0.42 0.01 [62]
x? (0.06 £0.23 +£0.11)% 0 1 -0.73 0.39 0.02 [62]
y (42+2+1)% 0. -0.73 1 -0.53 -0.03 [62]
COS Ok p (0.84 + 0.2 4+ 0.06) -0.42 0.39 -0.53 1 0.04 [62]
Sin O, (=0.01 £0.41 £0.04) 0.01 0.02 —-0.03 0.04 1 [62]
Rp (0.3030 + 0.0189)% 1 0.77 —-0.87 [63]
(X' )%, (—0.024 + 0.052)% 0.77 1 —0.94 [63]
') ke (0.98 +0.78)% —-0.87 -0.94 1 [63]
Ap (=2.1+54)% 1 0.77 —0.87 [63]
(x)%, (—0.020 £ 0.050)% 0.77 1 -0.94 [63]
) ke (0.96 £0.75)% —0.87 —0.94 1 [63]
Rp (0.364 £ 0.018)% 1 0.655 —0.834 [64]
(x')%, (0.032 £ 0.037)% 0.655 1 —0.909 [64]
O kr (=0.12 +£0.58)% —0.834 —0.909 1 [64]
Ap (23+47% 1 0.655 —0.834 [64]
(x)%, (0.006 + 0.034)% 0.655 1 —0.909 [64]
O)kn (0.20 £ 0.54)% —0.834 —0.909 1 [64]
Rp (0.351 £0.035)% 1 —0.967 0.900 [65]
(Vepa) kx (0.43+0.43)% —0.967 1 —0.975 [65]
(Xepa) %x (0.008 +0.018)% 0.900 -0.975 1 [65]
Rp (0.3454 4+ 0.0028 + 0.0014)% 1 —0.883 0.745 —0.883 0.749 [66]
O ) kr (0.501 + 0.048 + 0.029)% 1 —0.944 0.758 —0.644 [66]
(X' )%, (6.1 +2.6+1.6)107 1 —0.642 0.545 [66]
) kr (0.554 +0.048 + 0.029)% 1 —0.946 [66]
(x1)% (1.6 £2.6 £ 1.6)107 1 [66]
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TABLE II.
where the phases are defined in Eq. (107).

Results of fits to the current and future D mixing data within the superweak and approximate universality frameworks,

Superweak—current

Approx. univ.—current Approx. univ.—future

Parameter 68% prob. 95% prob. 68% prob. 95% prob. Estimated 68% prob.
103x, 3.6+ 1.1 [1.3, 5.7] 37+£1.2 [1.3, 5.9] +0.017
10%y,, 60.3 £5.7 [49, 73] 59.6+5.6 [49, 71] +0.19
102! [rad] -05+22 [-6.1,4.7] -1.0£29 [-10.0,5.7] +0.12
102¢% [rad] 0 0 -32+99 [-23, 16] +0.17
10%¢,, [rad] -05+£22 [-6.1,4.7] 2.6 £9.7 [-20,22] +0.21
103x 3.6t 1.1 [1.3, 5.8] 37£12 [1.3, 6.0] +0.017
10%y 60.3 £5.7 [49, 73] 59.5+5.6 [48, 71] +0.19
10*(|g/p| = 1) -2349.0 [-21, 16] 8 +41 [-73,99] +0.92
102¢, [rad] 0.12+0.51 [-0.96, 1.26] 25+£72 [-13,17] +0.13
qﬁj‘c” = ¢§4 = ¢12, qb; =0, gblf =¢,. (160) (;5%’1 = -0.004 £ 0.016(10), ¢» = 0.001 £0.005(105).

For example, the expression for the SCS time dependent
CP asymmetry in (63) would reduce to''

AY; = —ilpxyy sin . (161)

Thus, the phase ¢3! (or ¢,) would be the only source of
indirect CPV. Consequently, CPVMIX and CPVINT would
be related as [3-5],

2

X
tan 2¢», & — ——2—sin 2¢¥ (162)
’ x%z + y%z ?
or, equivalently, as
tan ¢, ~ (1—’1>f, (163)
pl)y

where (162) is the superweak limit of (46).

Superweak fits to the data are highly constrained, given
that there is only one CPV parameter controlling all of
indirect CPV. The second column in Table II contains the
results of our fit to the mixing parameters with current data
in the superweak framework. We see that sensitivity to ¢3!
is ~#22 mrad at 1o, and ~54 mrad at 95% probability, while
sensitivity to ¢, is &5 mrad at 1o, and =11 mrad at 95%
probability.12 Some superweak correlation plots are also
shown in the first row of Fig. 2. The Heavy Flavor
Averaging Group (HFLAV) [6] has obtained similar results,

"In the superweak limit, the effects of weak phases in the
SCS decay amplitudes are neglected in time dependent
CP asymmetries, but they are kept in time integrated ones,
where they are not suppressed by xj,, V.

"“Smaller errors for ¢, than @5 in the superweak fit can be
traced to the small central value of the prefactor in (162),
X1/ (x, + y1y) ~ 0.26.

(164)

Comparison with the SM ranges (114) implies that an order
of magnitude window for NP remains, at 95% probability,
in the CPVINT phases.

B. Approximate universality fits

It is encouraging that the 1o error on ¢, in the superweak
fit (5 mrad), and the U-spin based SM estimates for ¢34 .r,
¢1o in (114), (115) are only about a factor of two apart.
However, this means that the approximate universality
parametrization is advisable moving forward. Inspection
of the relations between ¢, and ¢§’I’F in (110), (111),
reinforces this conclusion. Approximate universality fits
are less constrained, given that they employ two CPV
parameters rather than a single one to describe indirect
CPV. Hopefully, this will be overcome in the high statistics
LHCb and Belle-II precision era, and SM sensitivity in

3” T will be achieved. This possibility is assessed below.

We remark that an approximate universality fit for any
two of the phases ¢%, @5, and ¢, is equivalent to a
(traditional) two-parameter fit for ¢, and |g¢/p|, with
translations provided by (45), (109)—(111). General for-
mulas for the decay widths, given in terms of ¢, and |g/ p|,
can be converted to approximate universality formulas
which depend on ¢, and |g¢/p|, via the substitutions
bs, = b2 (SCS), ¢y, — ¢ (CE/DCS K=X), b, — ¢ —
2e; — |4/ siny (CF/DCS K°X, general), and ¢, —
¢> — |4/ 4| siny (CF/DCS K°X, LHCb). These are analo-
gous to the substitutions for ¢j'f[ Tin (149), (151), (152), and
(159), respectively.

We begin with a fit to the current data, cf. Table I, for the
phases ¢3! and ¢),. We implement the substitutions for (,by T
given in (149), (151), (159), and employ the expression
for AY; in (150). The K; — K interference terms in the
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FIG. 2. P.d.f’s for mixing parameters in the superweak (first row) and approximate universality scenarios, see text. Darker (lighter)
regions correspond to 68% (95%) probability. Notice the order-of-magnitude difference in the scale of the rightmost plots.

D — Kg;n"n~ decay widths (87), (88) are ignored, as
in the experimental analyses. As explained in Sec. V C,
this does not affect the determination of ¢’ at LHCb,
provided that the substitution in (159) is employed. For
the Belle D° — K s..7 7~ analysis [53], omission of K; —
K interference is not an issue, given its experimental
precision.

The results of the approximate universality fit appear in
the third column of Table II, and in the second row of
correlation plots in Fig. 2. It is interesting to notice that the
error on ¢p! is about a factor of three smaller than the error
on ¢%, and is similar to the corresponding superweak error.
This can be traced, in part, to the observable Ap = —AY,
for f = ztn~, K*K~. It has a relatively small experimental
error, and it only depends on the product x,, sin ¢4 in the
fit [compare (150), (161)]. However, both ¢, and |¢/p| — 1
are determined with order of magnitude larger uncertainties
in the approximate universality framework, due to their
dependence on both ¢4 and ¢%.

In the future, as SM sensitivity in CPVINT is
approached, a modified strategy will be appropriate. As

TABLE IIIL.
current results have been used where available.

discussed in Sec. IV C1, significant and nonuniversal
misalignment ratios ¢/ (/534 T could manifest themselves
in the SCS measurements, even though they are formally
O(e) in U-spin breaking. In contrast, the misalignments in
CF/DCS decays are either negligible (K*X), or known to
very good approximation (KX, K°X), cf. Secs. IV C 2, IV
C 3. Thus, at that this point one could simply drop the SCS
observables from the global fits to ¢3!, ¢L. Alternatively,
one could only include the SCS final states z*z~ and
K* K~ in the global fits, via their averaged time dependent
CP asymmetry Ar, thus taking advantage of the O(e?)
suppression of the averaged QCD penguin pollution,
cf. (133).

It is interesting to point out that simultaneous knowledge
of ¢g4 T from CFE/DCS decays, and of the direct CP
asymmetries in the SCS decays could be used to determine
the relative magnitudes and strong phases of the corre-
sponding subleading SCS decay amplitudes in the SM, i.e.,
rand 6;. This can be seen for CP eigenstate final states via
(51) with ¢y =y, (63) with ¢} = $5' + ¢, and (126),
and similarly for non-CP eigenstate final states. Thus,

Estimated uncertainties on mixing parameters from CF/DCS decays in the LHCb Phase II Upgrade. Correlations from

5(XCP) 3.8 x 10_5
8(y )y 32 % 1075
(X kper) 2 x 1073

5(ycp) 8.6 x 10_5
5(Y. )y 32X 1075
6(ykll’ll'll’) 2% 10_5

8(Ax) 1.7 x 1075
8(x' )%, 1.7x 1076
5(|q/p|1(mm) 2x 10_3

5(Ay) 3.8 x 1073 [11] scaled by luminosity
S(x)% 1.7x 1076 [66] scaled by luminosity
5(¢Kﬂﬂﬂ) 0.1° [67]
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FIG. 3.
68% (95%) probability.

important information on the QCD anatomy of these
decays could be obtained.

To illustrate the potential for probing the SM in the
precision era, we use the (naively) estimated experimental
sensitivities reported in Table III for the LHCb Phase II
Upgrade era, for three decay modes: D° — Kg n'zn~,
K*z~,and KTz~ n"n~. We caution that scaling the errors
on the individual measurements purely based on the
expected statistics may be optimistic. The results of the
fit are presented in the rightmost columns in Table II and in
Fig. 3 (including the SCS observable Ay leads to marginal
improvement in the sensitivity to ¢% in Phase II). They
suggest that SM sensitivity to ¢g/1,r may be achievable,
particularly if these phases lie on the high end of our U-spin
based estimates. Moreover, additional input from Belle-II
indirect CPV measurements at 50 ab™! [68], e.g., for the
decays D - Ky, ntn~, K*n~, K*2~ 2% and Ap, may
improve the sensitivity.

VII. DISCUSSION

In this paper we have developed the description of CP
violation in D° — D° mixing in terms of the final state
dependent dispersive and absorptive weak phases ¢.’}” and

qﬁ;. They govern CP violation in the interference between

decays with and without dispersive mixing, and with and
without absorptive mixing, respectively. The expressions
for the time dependent decay widths and CP asymmetries
undergo extensive simplifications compared to the familiar
parametrization in terms of |¢/p| and ¢, , (translations are
provided), and become physically transparent. For instance,
their dependence on the strong phases in the decay
amplitudes, and the CP-even dispersive mixing phase
7/2, are easily understood. This understanding extends
to the strong phases of the subleading decay amplitudes,
e.g., those responsible for direct CP violation in
D° - K*K~,z*7~. An important consequence is that
the time dependent CP asymmetries for decays to CP
eigenstate final states, e.g., f = K™K,z z~, depend on
¢ (dispersive CP violation), but not on ¢ (absorptive CP

violation). Conversely, the q’)? can only be probed in decays

s
UTji4 UTit
10k =
aF
s
ok
= !
S of 2 of
Q =)
—
oF
5k
afF
ENS -6
Ll ] P TN T TR T T T A
3.48 3.5 3.52 3.54 3.56 3.58 3.6 3.62 3.64 3.66 -0 -8 6 -4 2 0 2 4 6 8 10

10%,, 10%(a/pl-1)

P.d.f’s for mixing parameters in the approximate universality future scenario, see text. Darker (lighter) regions correspond to

to non-CP eigenstate final states, e.g., the CF/DCS final
states f = Ktn~, Ky ntn™.

We have applied the dispersive/absorptive formalism to
the three classes of decays which contribute to D° — D°
mixing, (i) CF/DCS decays to K*X, (ii) CF/DCS decays to
K°X, K°X, and (iii) SCS decays (both CP eigenstate and
non-CP eigenstate final states). Derivations and expressions
have been provided for the time dependent decay widths and
asymmetries in all three cases. The CF/DCS decays to K°X,
KX require special care due to the effects of CPVin K° — K°
mixing. Moreover, their widths depend on two elapsed time
intervals, the D and K decay times, following their respective
production. The Appendix contains expressions for a selec-
tion of time-integrated CP asymmetries, demonstrating that
they can also be used to separately measure ¢j‘{’ and (;5;.

Measurements of the final state dependent phases 4)}‘-”
and qﬁ; ultimately determine a pair of intrinsic mixing

phases ¢ and ¢, respectively, cf. (107). The latter are the
arguments, in the complex mixing plane, of the total
dispersive and absorptive mixing amplitudes M, and
I'},, relative to their dominant AU = 2 (U-spin) compo-
nents. The latter are responsible for the neutral D meson
mass and width differences. The intrinsic mixing analog
(¢p,) of the final state dependent phenomenological phases
¢,, is similarly defined as the argument of ¢ / p relative to
the AU = 2 mixing amplitude. The U-spin decomposition
of the dispersive and absorptive mixing amplitudes yields
the SM estimates ¢, ¢ = 0(0.2%), cf. (112)—(115),
(119), with ¢, of same order. We also obtain an upper
bound on the absorptive phase in the SM, |¢}| < 0.005
[30], when taking AT, equal to its measured central value,
and conservatively assuming that a certain U-spin breaking
parameter satisfies e; < 1, cf. (117), (119).

The intrinsic mixing phases are experimentally acces-
sible due to approximate universality. In particular, we have
shown that there is minimal uncontrolled final-state de-
pendent pollution from the decay amplitudes in the
measured phases qﬁ’;” , 451;:

(i) For the CF/DCS K*X final states, e.g., K™z, in the

SM and in extensions with negligible new weak
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phases in these decays, the difference 5¢; between

gl T and ¢}’1 " is known, final state independent, and
entirely negligible, ie., it is O(43/43) ~107°,
cf. (134), (135).

(ii) For the CF/DCS KX final states, e.g., K ;77 7~, in
the SM and under the same NP assumptions, there
are two contributions to the misalignments, 5¢;: a
small incalculable final state dependent one of
0(20%Im[eg]) ~0.143"", due to the subleading
DCS amplitudes, and a precisely known one of
O(2Im[ex]) ~ p¥"" which can be subtracted from
the measured values of qﬁj‘f’ Toef. (148).

(iii) For the SCS decays, e.g., f = K*K~, ztn~, there is
uncontrolled final state dependent QCD penguin
pollution. In the SM, and for extensions with CP-
odd QCD penguins of same order, the misalign-
ments satisfy 5¢p/ #'" = O(e) in U-spin breaking.
This could be sizable for certain decays. A U-spin
based estimate, taking into account AAcp, yields the
representative value € ~ 0.4, or Spg+x-, O+, =
0(0.4)p5"", cf. (129)=(132). Fortunately, the aver-
age over (b]}gﬁ(, and ¢f+’£, differs from ¢§” by
O(€?).

Expressions for the time dependent decay widths in the
approximate universality parametrization, i.e., in terms of ¢/,
@5, have been discussed in detail for the three classes of
decays, cf. Sec. V. Our results for the KX final states are
particularly noteworthy. On the timescale of sequential K°
decays at LHCb (¢ < 0.57y), the effect of kaon CP violation
on the time dependent CP asymmetries (due to K; X — KX
interference, and an Im[eg] component in ¢;‘.4 T undergoes a
cancelation at the few percent level. Thus, to very good
approximation, LHCb analyses of these modes can neglect
the effects of kaon CP violation in measurements of d)g” o
from the time dependent CP asymmetries. In contrast, over
the longer K decay timescales that can be explored at Belle-
I1, the cancelation subsides, and e ultimately dominates the
time dependent CP asymmetries. Thus, Belle-II analyses
must fit for K; — K interference effects, and account for
Im[eg] in the extraction of ¢

In the future, the values of ¢} obtained from the CF/
DCS decays will allow a determination of the misalign-
ments, 5¢, in the SCS decays. In combination with
measurements of the SCS direct CP asymmetries, a”f’, it
will be possible to determine the anatomy of the QCD
penguins in the SM, e.g., for f=K"K~, z#tz~. In
particular, taking the SM value y for the weak phases of
the penguin amplitudes relative to the dominant “tree”
amplitudes, it will be possible to measure their relative
magnitudes and strong phases. This would provide an
important test of QCD dynamics, if lattice measurements of
these quantities become available.

Past fits to the mixing data were sensitive to values of
b1p = arg[M /T 5] = ¢ — p5 down to the 100 mrad
level. This level of precision probed for large short-distance
new physics contributions. Thus, the effects of weak phases
in the subleading decay amplitudes could be safely
neglected in the indirect CPV observables. In this limit,
referred to as superweak, the mixing phases satisfy
$12 = PN, and @5 = 0. We have carried out a fit to the
current data set in this limit, yielding ¢3! = (0.5 +2.2)%
at 1o, consistent with the HFLAV fit result, and corre-
sponding to an O(10) window for New Physics at 2¢.

The approximate universality fit is less constrained,
given the description of indirect CP violation in terms
of two phases, ¢3! and ¢}, rather than just one. Interest-
ingly, in this case, our errors for ¢3! (~29 mrad) are similar
to the superweak fit result, and about a factor of three
smaller than the errors for ¢g (~99 mrad). This is due, in
part, to the observable Ar = —AY, (f = 7, KTK"),
which depends on ¢} but not on ¢, and has a relatively
small experimental error. The phenomenologically moti-
vated phase ¢, is a weighted sum over ¢4 and ¢}, where
the weights are equal to the leading CP averaged dispersive
and absorptive mixing probabilities, respectively, cf. (110).
This explains why the error on ¢, (x72 mrad) is similar to
the error on ¢}.

The U-spin based estimates of ¢! and ¢!, imply that
probing the SM will require a precision of a few mrad or
better for both phases. Given the large theoretical uncer-
tainties, a null result as this sensitivity is approached would
effectively close the window for new physics in charm
indirect CP violation. Alternatively, the most likely origin
for a significantly enhanced signal would be CP violating
short distance new physics, yielding ¢3! > ¢}, with the
latter given by its SM value. A second possibility, light CP
violating new physics, would enter both the dispersive and
absorptive mixing amplitudes via new D° decay modes,
likely enhancing both ¢4 and ¢5. This appears unlikely,
given the upper bounds on exotic D decay rates. For
instance, for invisible D° decays, the upper bound on the
branching ratio, Bry,, < 9.4 x 107 (90% CL) [9], con-
strains the invisible contribution to ¢} as 3¢, < Bry,, /0%~
0.2%, i.e., the upper bound lies at the SM level (before
taking into account additional suppression due to the
relative magnitudes of the interfering invisible decay
amplitudes, and their weak and strong phase differences).
Moreover, the upper bound on contributions from D° —
KO+ invisibles is about a factor of 30 smaller."

Finally, based on available LHCb Phase II projections for
the decays D° — Kg,;n"n~, K*'n~, K'n~n"z~, and A,

An upper bound on D — K*+ invisibles, Bry+_ i < 8 X
1076 [69], yields 6} < (Brg+yiny/0%)(Tp+/Tpo) ~ 6.5 x 1075,
well below the SM estimates, where we have assumed similar
widths for the semi-invisible D™ and D° decays.
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we have estimated the precision that could be reached for

zzvz,r in the upcoming high statistics charm era, using an
approximate universality fit. Note that our results are
intended to be illustrative, given that the LHCb phase II
projections do not include systematic errors. The resulting
1o errors for ¢ (~1.2 mrad) and ¢ (~1.7 mrad) suggest

that sensitivity to g{)g” in the SM may be achievable,
particularly if these phases lie on the high end of the U-
spin based estimates. Measurements of qﬁy T could one
day become available on the lattice. Comparison with
their measured values would provide the ultimate
precision test for the SM origin of CP violation in
charm mixing.
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APPENDIX: CPVINT PHASES ¢, ¢} FROM
TIME-INTEGRATED CP ASYMMETRIES

We give expressions for a few time integrated CP
asymmetries, illustrating the possibility of determining
the theoretical CPVINT phases purely from time-integrated
decays. We begin with the tagged and untagged CP
asymmetries for the CF/DCS final states f =K'z,
f=Krnr* (Ap, A; are the DCS amplitudes):

ABEDCS(CF) Jdt(Tpoy 55— b0 ()
J AT o7+ 0000~ f(7))

qonne _ 107+ D07 =Ty =T g)

& JdCpo) -+ o+ o)+ T pop)

To obtain their dependence on the CPVINT phases, we
must keep the subleading DCS amplitudes in (72), in
analogy to the CF contributions in (73). Assuming no new
weak phases in the CF/DCS decays as in the SM, hence no
direct CPV, the amplitude ratios simplify as Ry = 1/R; =

R}E, cf. (74). Thus, Egs. (72) and (73) yield

/RAGEPS = xyysin P} cos Ay — iy sin @l sin Ay,

tag,CF
ACP

VRf

= x1p sin Y cos Ay + yip sin P sin A
(A1)

The absorptive and dispersive CPV phases are then readily
separated as

Atag .CF

VRr

(1 + Rf)Auntdg
vV Ry

= 2yysing} sinA;

\/7Atdg DCS

Atag ,CF
\/7

where A/ is the Kz~ strong phase, cf. (24). We have taken
¢} = 3", cf. (134), (135). Note that the untagged CP
asymmetry is purely absorptive.

We end with the time integrated CP asymmetries for the
SCS final states f = zt7n~, KT K™:

+ /RAALS P — 2x), sin g cos Ay, (A2)

SCS — fdt(rD”(f)*f - FDO(I)—af)) .
P [ dt(Tpogop + Tpogrop)

(A3)
We obtain the expression

(1) (1)
ASSS = ad + AYf_ f+—(—x12sm¢f + yaf),

(A4)

where (1) is the average (acceptance dependent) decay time
of the D mesons in the experimental sample. The ratio
(t)/zp is very close to 1 at the B factories; at LHCD, it
exceeds 1 by about 5%—-10% for the muon-tagged sample
[33], while it is in the 1.7-1.8 range for the D*"-tagged
sample [70].'* Recall that in the SM, for SCS decays,
¢f =Y —afcots; = Y1+ 0(e)].  (AS)

where J; is the strong phase difference between the leading
and subleading D° — f decay amplitudes, and a;‘i is the
direct CP asymmetry, cf. (126). However, the avérage of
¢y over f=K"K~,x'z" differs from ¢} by O(e®) in
U-spin breaking, cf. (126), (129), (132).

The time integrated CP asymmetry difference AAq-p =
Acp k- — Acpato- [33] can be expressed in terms of ¢3!
and the direct CP asymmetries as

"“We thank T. Pajero for pointing this out to us.
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AACP = a}i{ — Cl;i[

MEERG
+ynlat - ad)

tg) — (L
_ <K>2# (xp2[2sin ! — agf cot 5 — ag cot 5]
D

- yiolag + af]),

(x12]a$ cot5g — ad cot 8]

(A6)

where the subscripts K and 7 refer to the K™K~ and z 7z~
final states, respectively. At LHCb the difference of the two
average decay times satisfies (rx) — (7,) % 0.12z. The
corrections to the first line in (A6) are negligible, as is well
known. In particular, we find that the contribution propor-
tional to the sum of the average decay times is of
O(xlza;f, yua}’). The contribution proportional to the differ-

ence of decay times is of O(0.1x,¢%), given that (a? + a?)
and (a$ cotSx + ad cot§,) are formally of O(e? - p¥).
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