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CP violation (CPV) in D0 − D̄0 mixing is described in terms of the dispersive and absorptive “weak
phases” ϕM

f and ϕΓ
f . They parametrize CPVoriginating from the interference ofD0 decays with and without

dispersive mixing, and with and without absorptive mixing, respectively, for CP conjugate hadronic final
states f, f̄. These are distinct and separately measurable effects. For CP eigenstate final states, indirect
CPVonly depends on ϕM

f (dispersive CPV), whereas ϕΓ
f (absorptive CPV) can only be probed with non-CP

eigenstate final states. Measurements of the final state dependent phases ϕM
f , ϕ

Γ
f determine the intrinsic

dispersive and absorptive mixing phases ϕM
2 and ϕΓ

2 . The latter are the arguments of the dispersive and
absorptive mixing amplitudes M12 and Γ12, relative to their dominant (ΔU ¼ 2) U-spin components. The
intrinsic phases are experimentally accessible due to approximate universality: in the SM, and in extensions
with negligible new CPV phases in Cabibbo favored/doubly Cabibbo suppressed (CF/DCS) decays, the

deviation of ϕM;Γ
f from ϕM;Γ

2 is negligible in CF/DCS decays D0 → K�X, and below 10% in CF/DCS

decays D0 → KS;LX (up to precisely known OðϵKÞ corrections). In singly Cabibbo suppressed (SCS)
decays, QCD pollution enters atOðϵÞ inU-spin breaking and can be significant, but isOðϵ2Þ in the average
over f ¼ KþK−, πþπ−. SM estimates yield ϕM

2 ;ϕ
Γ
2 ¼ Oð0.2%Þ. A fit to current data allows Oð10Þ larger

phases at 2σ, from new physics. A fit based on naively extrapolated experimental precision suggests that
sensitivity to ϕM

2 and ϕΓ
2 in the SM may be achieved at the LHCb Phase II upgrade.

DOI: 10.1103/PhysRevD.103.053008

I. INTRODUCTION

In the Standard Model (SM), CP violation (CPV) enters
D0 − D̄0 mixing and D decays at OðVcbVub=VcsVusÞ∼
10−3, due to the weak phase γ. Consequently, all three types
of CPV [1] are realized: (i) direct CPV, (ii) CPV in pure
mixing (CPVMIX), which is due to interference of the
dispersive and absorptive mixing amplitudes, and (iii) CPV
due to the interference of decay amplitudes with and
without mixing (CPVINT). In this work, we are particularly
interested in the latter two, which result from D0 − D̄0

mixing, and which we collectively refer to as “indirect
CPV”. We would like to answer the following questions:
How large are the indirect CPV asymmetries in the SM?
What is the minimal parametrization appropriate for the
LHCb/Belle-II precision era? How large is the current

window for new physics (NP)? Can this window be closed
by LHCb and Belle-II?
In order to address these questions we first develop the

description of indirect CPV in terms of the CP violating
(CP-odd) and final state dependent dispersive and absorp-
tive “weak phases.” These phases, which we denote as ϕM

f

and ϕΓ
f , respectively, for CP conjugate final states f and f̄,

parametrize CPVINT contributions originating from the
interference of D0 decays with and without dispersive
(absorptive) mixing, respectively. These are distinct meas-
urable effects, as we will see below. Their difference equals
the CPVMIX weak phase.
An immediate consequence of our approach is that it

yields simplified expressions for the indirect CP asymme-
tries, which have a transparent physical interpretation
(unlike the more familiar description in terms of the mixing
parameter jq=pj, and the weak phase ϕλf ). In particular, the
requirement that the underlying interfering amplitudes
possess nontrivial CP-even “strong-phase” differences is
manifest, and accounts for the differences between the ϕM

f

and ϕΓ
f dependence of the CP asymmetries. For example,

we will see that the time-dependent CPVINT asymmetries
in decays to CP eigenstate final states are purely dispersive,
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i.e., they only depend on ϕM
f (apart from subleading direct

CPV effects).
In the SM, the dispersive and absorptiveD0 − D̄0 mixing

amplitudes are due to the long distance exchanges of all off-
shell and on-shell intermediate states, respectively (short
distance dispersive mixing is negligible). The CPVINT
asymmetries are due to the CP-odd contributions of the
subleading ΔC ¼ 1 transitions to the mixing amplitudes
(via intermediate states) and the decay amplitudes (via final
states). The combined effects of these two CPV contribu-
tions can be expressed in terms of the underlying final state
dependent phases ϕM;Γ

f , as noted above. Unfortunately, due
to their nonperturbative nature, these phases cannot cur-
rently be calculated from first principles QCD. However,
we will be able to make meaningful statements using
SUð3ÞF flavor symmetry arguments.
In order to estimate the magnitudes and final state

dependence of ϕM;Γ
f in the different classes of decays,

we compare them to a theoretical pair of dispersive and
absorptive phases. The latter are intrinsic to the mixing
amplitudes, and follow from theirU-spin decomposition. In
general, they are defined as the arguments of the total
dispersive and absorptive amplitudes, respectively, relative
to a basis choice for the real axis in the complex mixing
plane, given by the common direction of the dominant
ΔU ¼ 2 mixing amplitudes. Hence, we denote them as ϕM

2

and ϕΓ
2 , respectively. Note that these phases are quark (or

meson) phase convention independent and physical, like
the phases ϕM;Γ

f directly measured in the decays. U-spin
based estimates yield ϕM

2 ;ϕ
Γ
2 ¼ Oð0.2%Þ in the SM. In

principle, they could be measured on the lattice in the
future. Their difference yields the CPVMIX phase, like the
final state dependent phases.
In the SM, and for the Cabibbo favored and doubly

Cabibbo suppressed decays (CF/DCS), the differences
between ϕM

f and ϕM
2 , or ϕ

Γ
f and ϕΓ

2 are essentially known.
This allows for precise experimental determinations of the
theoretical phases, and their comparison with U-spin based
estimates and future lattice measurements. A single pair of
intrinsic dispersive and absorptive mixing phases suffices
to parametrize all indirect CPV effects in CF/DCS decays,
whereas for SCS decays this may cease to be the case as
SM sensitivity is approached. We refer to this fortunate
state of affairs as approximate universality. In particular,
the approximate universality phases are identified with the
intrinsic mixing phases, ϕM

2 and ϕΓ
2 . Once nonuniversality

is hinted at in the SCS phases, the SCS observables could
be dropped from the global fits. Instead, one could compare
the CF/DCS based fit results for ϕM;Γ

2 with measurements
of ϕM;Γ

f and direct CPV in the SCS decays, to learn about
the anatomy of the (subleading) SCS QCD penguin
amplitudes. For example, in the SM one could separately
determine their relative magnitudes, and strong phases.

Approximate universality generalizes beyond the SM
under the following conservative assumptions regarding
subleading decay amplitudes containing new weak phases:
(i) they can be neglected in Cabibbo favored and doubly
Cabibbo suppressed (CF/DCS) decays, given that an exotic
NP flavor structure would otherwise be required in order to
evade the ϵK constraint [2]; (ii) in singly Cabibbo sup-
pressed (SCS) decays, their magnitudes are similar to, or
smaller than the SM QCD penguin amplitudes, as already
hinted at by current bounds on direct CPV in D0 →
KþK−; πþπ− decays. These assumptions can ultimately
be tested by future direct CPV measurements at LHCb and
Belle-II.
The most stringent experimental bounds on indirect CPV

phases have been obtained in the superweak limit [3–5], in
which the SM weak phase γ and potential NP weak phases
in the decay amplitudes are set to zero in the indirect CPV
observables. In this limit, the dispersive and absorptive
mixing phases satisfy ϕM

f ¼ ϕM
2 and ϕΓ

f ¼ ϕΓ
2 ¼ 0. Thus,

indirect CPV is entirely due to short-distance NP. The
superweak fits are highly constrained, given that only
one CPV phase controls all indirect CPV. Comparison of
superweak fit results with our estimate, ϕM

2 ;ϕ
Γ
2 ¼ Oð0.2%Þ

suggests that there is currently an O(10) window for NP in
indirect CPV.
Moving forward, the increased precision at LHCb and

Belle-II will require fits to the indirect CPV data to be
carried out for both ϕM

2 and ϕΓ
2 , in the approximate

universality framework. The addition of ϕΓ
2 yields a less

constrained fit. However, this should ultimately be over-
come by a large increase in statistics.
Throughout this work we develop, in parallel, the

description of indirect CPV for the three relevant classes
of decays: (i) SCS (both CP eigenstate and non-CP
eigenstate final states), (ii) CF/DCS decays to K�X, and
(iii) CF/DCS decays to K0X, K̄0X. The last one requires
special care due to the intervention of CPV in K0 − K̄0

mixing. In Sec. II, the formalism for mixing and indirect
CPV is presented, based on the final state dependent
dispersive and absorptive CPVINT observables. A trans-
lation between the dispersive and absorptive CPV phases,
ϕM
f , ϕ

Γ
f , and more widely used CPV parameters is also

provided. In Sec. III, we apply this formalism to the
derivation of general expressions for the time dependent
decay widths and indirect CP asymmetries in terms of ϕM

f ,
ϕΓ
f . In CF/DCS decays to K0X, K̄0X, the widths depend on

two elapsed time intervals: the time at which the D decays,
and the time at which the K decays, following their
respective production. Approximate universality is dis-
cussed in Sec. IV. We begin with the U-spin decomposition
of the mixing amplitudes in the SM, introduce the intrinsic
mixing phasesϕM

2 ,ϕ
Γ
2 , estimate theirmagnitudes, and derive

their deviations from the final state dependent phases. In
Sec. V we explain how to convert the expressions for the
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time dependent decay widths and indirect CP asymmetries,
collected in Sec. III, to the approximate universality frame-
work. In the case ofCF/DCSdecays toK0X, K̄0X, the effects
of ϵK on the K decay timescales of relevance for LHCb and
Belle-II are compared. Superweak and approximate univer-
sality fits to the current data are presented in Sec. VI,
together with future projections. We conclude with a
summary of our results in Sec. VII. The Appendix contains
expressions for a selection of time-integrated CP asymme-
tries, demonstrating that they can also be used to separately
measure ϕM

2 and ϕΓ
2 .

II. FORMALISM

A. Mixing and time evolution

The time evolution of an arbitrary linear combination of
the neutral D0 and D̄0 mesons,

ajD0i þ bjD̄0i ð1Þ

follows from the time-dependent Schrödinger equation
(see, e.g., [1]),

i
d
dt

�
a

b

�
¼ H

�
a

b

�
≡

�
M −

i
2
Γ
��

a

b

�
: ð2Þ

The 2 × 2 matrices M and Γ are Hermitian. The former is
referred to as the mass matrix, and the latter yields
exponential decays of the neutral mesons. CPT invariance
implies H11 ¼ H22. The transition amplitudes for D0 − D̄0

mixing are given by the off-diagonal entries

hD0jHjD̄0i ¼ M12 −
i
2
Γ12;

hD̄0jHjD0i ¼ M�
12 −

i
2
Γ�
12: ð3Þ

M12 is the dispersive mixing amplitude. In the SM it is
dominated by the long-distance contributions of off-shell
intermediate states. A significant short distance effect
would be due to NP. Γ12 is the absorptive mixing amplitude,
and is due to the long distance contributions of on-shell
intermediate states, i.e., decays.
The D meson mass eigenstates are

jD1;2i ¼ pjD0i � qjD̄0i; ð4Þ

where

�
q
p

�
2

¼ M�
12 − i

2
Γ�
12

M12 − i
2
Γ12

ð5Þ

The differences between the masses and widths of the mass
eigenstates, ΔMD ¼ m2 −m1 and ΔΓD ¼ Γ2 − Γ1, are
expressed in terms of the observables

x ¼ ΔMD

ΓD
; y ¼ ΔΓD

2ΓD
; ð6Þ

where the averagedD0 lifetime and mass are denoted by ΓD
andMD. We can define three “theoretical” physical mixing
parameters: two CP conserving ones,

x12 ≡ 2jM12j=ΓD; y12 ≡ jΓ12j=ΓD; ð7Þ

and a CP violating pure mixing (CPVMIX) phase

ϕ12 ≡ arg

�
M12

Γ12

�
¼ ϕM − ϕΓ: ð8Þ

The CP-odd phases

ϕM ¼ argðM12Þ; ϕΓ ¼ argðΓ12Þ; ð9Þ

are separately meson and quark phase convention depen-
dent and unphysical. The CP conserving parameters in (6)
and (7) are related as

ðx − iyÞ2 ¼ x212 − y212 − 2ix12y12 cosϕ12; ð10Þ

yielding

jxj ¼ x12; jyj ¼ y12; ð11Þ

up to negligible corrections quadratic in sinϕ12. Two other
useful relations are

����� qp
����
2

;

����pq
����
2
�
× ðx2 þ y2Þ ¼ x212 þ y212 � 2x12y12 sinϕ12:

Measurements of the D0 meson mass and lifetime
differences and CPV asymmetries imply that x12; y12∼
0.5%, while sinϕ12 ≲ 0.1, cf. Sec. VI. One is free to
identify D2 or D1 with either the short-lived meson, or the
heavier meson, by redefining q → −q. This is equivalent to
choosing a sign-convention for y, which in turn fixes the
sign of x, or vice-versa, via the imaginary part of (10). In
the HFLAV [6] convention, D2 is identified with the would
be CP-even state in the limit of no CPV. Given that the
short-lived meson is approximately CP-even, this is equiv-
alent to the choice y > 0.
The time-evolved mesons D0ðtÞ and D̄0ðtÞ denote the

mesons which start out as a D0 and D̄0 at t ¼ 0, respec-
tively. Solving (2) for their time-dependent components
yields,
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hD̄0jD0ðtÞi ¼ −e−iðMD−i
ΓD
2
Þt
�
eiπ=2M�

12 þ
1

2
Γ�
12

�
t

×
sin ½1

2
ðΔMD − i 1

2
ΔΓDÞt�

1
2
ðΔMD − i 1

2
ΔΓDÞt

;

hD0jD0ðtÞi ¼ hD̄0jD̄0ðtÞi

¼ e−iðMD−i
ΓD
2
Þt cos

�
1

2

�
ΔMD − i

1

2
ΔΓD

�
t

�
;

ð12Þ

with hD0jD̄0ðtÞi obtained from hD̄0jD0ðtÞi by substituting
M�

12 → M12 and Γ�
12 → Γ12. The phase π=2 in the first

relation of (12) originates from the time derivative in (2),
and is a dispersive CP-even “strong phase.” We will keep
track of its role in the derivation of the indirect CP
asymmetries in Sec. III. For the time intervals relevant
to experiment, i.e., t≲ 1=ΓD, (12) reduces to

hD̄0jD0ðtÞi ¼ e−iðMD−i
ΓD
2
Þt
�
e−iπ=2M�

12 −
1

2
Γ�
12

�
t

hD0jD̄0ðtÞi ¼ e−iðMD−i
ΓD
2
Þt
�
e−iπ=2M12 −

1

2
Γ12

�
t

hD0jD0ðtÞi ¼ hD̄0jD̄0ðtÞi ¼ e−iðMD−i
ΓD
2
Þt

×

�
1−

1

8
½x212 − y212 − 2ix12y12 cosϕ12�Γ2

Dt
2

�
;

ð13Þ

up to negligible corrections entering at Oðt3Þ and beyond,
where use has been made of (10) in the last relation.

B. The decay amplitudes

The amplitudes for D0 and D̄0 decays to CP conjugate
final states f and f̄ are denoted as

Af ¼ hfjHjD0i; Āf ¼ hfjHjD̄0i;
Af̄ ¼ hf̄jHjD0i; Āf̄ ¼ hf̄jHjD̄0i; ð14Þ

where H is the jΔCj ¼ 1 weak interaction effective
Hamiltonian. The tree-level dominated decay amplitudes
can, in general, be written as

Af ¼ A0
fe

þiϕ0
f ½1þ rfeiðδfþϕfÞ�;

Af̄ ¼ A0
f̄
eiðΔ

0
fþϕ0

f̄
Þ½1þ rf̄e

iðδf̄þϕf̄Þ�;
Āf̄ ¼ A0

fe
−iϕ0

f ½1þ rfeiðδf−ϕfÞ�;
Āf ¼ A0

f̄
eiðΔ

0
f−ϕ

0
f̄
Þ½1þ rf̄e

iðδf̄−ϕf̄Þ�; ð15Þ

where A0
f and A0

f̄
are the magnitudes of the dominant SM

contributions, the ratios rf and rf̄ are the relative

magnitudes of the subleading amplitudes (which are
CKM suppressed in the SM, and potentially contain NP
contributions), ϕ0

f, ϕ
0
f̄
, ϕf, and ϕf̄ are CP-odd weak phases

and Δ0
f, δf, and δf̄ are CP-even strong phases. With the

exception of the weak phases, the quantities entering (15)
are understood to be phase space dependent for three-body
and higher multiplicity decays. Note that ϕ0

f and ϕ0
f̄
are

quark and meson phase convention dependent. However,
this dependence cancels in physical observables.
In the case of decays to CP eigenstates, Δ0

f ¼ 0ðπÞ
for CP-even (odd) final states. Equation (15) therefore
reduces to

Af ¼ A0
fe

þiϕ0
f ½1þ rfeiðδfþϕfÞ�;

Āf ¼ ηCPf A0
fe

−iϕ0
f ½1þ rfeiðδf−ϕfÞ�; ð16Þ

where ηCPf ¼ þð−Þ for CP-even (odd) final states.
For SCS decays, the choice of the dominant and

subleading SM amplitudes in (15) and (16) is convention
dependent. For example, using CKM unitarity, the leading
SCS D0 decay amplitudes could be chosen to be propor-
tional to V�

csVus, V�
cdVud, or their difference V�

csVus−
V�
cdVud. The last choice is a particularly convenient one

that is motivated by U-spin flavor symmetry, cf. Sec. IVA.
In all cases, the subleading SM amplitudes are ∝ V�

cbVub,
and are included in the second term on the right-hand side
(rhs) of each relation in (15), (16). However, the physical
observables must be convention independent.
We divide the CF/DCS decays into two categories:

(i) decays to K�X, where indirect CPV requires interfer-
ence between a CF and a DCS decay chain, e.g., D0 →
K−πþ and D0 → D̄0 → K−πþ, respectively; (ii) decays to
K0X, K̄0X, where indirect CPV is dominated by interfer-
ence between two CF decay chains, e.g., D0 → K̄0πþπ−

and D0 → D̄0 → K0πþπ−, with subsequent decays
K0=K̄0 → πþπ−. In the SM, the CF and DCS D0 decay
amplitudes are proportional to V�

csVud and V�
cdVus, respec-

tively. Thus, only the first terms in (15) are present. We
choose the CF and DCS amplitudes to be Af; Āf̄ and
Af̄; Āf, respectively. For the computation of the indirect CP
asymmetries in case (i), all four amplitudes in (15) must be
included, whereas in case (ii) we will see that the
contributions of the two DCS amplitudes can be neglected
to good approximation.

C. The CPVINT observables

The time dependent hadronic decay amplitudes sum over
contributions with and without mixing, e.g., for CP
conjugate decay modes,
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AðD̄0ðtÞ → fÞ ¼ AfhD0jD̄0ðtÞi þ ĀfhD̄0jD̄0ðtÞi;
AðD0ðtÞ → f̄Þ ¼ Āf̄hD̄0jD0ðtÞi þ Af̄hD0jD0ðtÞi: ð17Þ

Factoring out the unmixed contributions, the time depen-
dent CP asymmetries are seen to depend on the ratios
AfhD0jD̄0ðtÞi=ĀfhD̄0jD̄0ðtÞi, and their CP conjugates. In
turn, (13) implies that the CP asymmetries are determined
by the quantitiesM12Af=Āf and Γ12Af=Āf, as well as their
CP conjugates. Keeping this in mind, we are now ready to
define the CPV phases ϕM

f and ϕΓ
f , responsible for

dispersive and absorptive CPVINT, respectively.1

1. SCS decays to CP eigenstates

For SCS decays to CP eigenstate final states, ϕM
f and ϕΓ

f

are the arguments of the CPVINT observables

λMf ≡ M12

jM12j
Af

Āf
¼ ηCPf

����Af

Āf

����eiϕM
f ;

λΓf ≡ Γ12

jΓ12j
Af

Āf
¼ ηCPf

����Af

Āf

����eiϕΓ
f : ð18Þ

They are given by

ϕMðΓÞ
f ¼ ϕMðΓÞ þ 2ϕ0

f þ 2rf cos δf sinϕf; ð19Þ

to first order in rf, cf. (9), (16). We will see that ϕM
f ;ϕ

Γ
f ≈ 0

(rather than π), given the sign of the CP conserving
observable yfCP, f ¼ πþπ−, KþK−, cf. (60), (62).

2. SCS decays to non-CP eigenstates

For SCS decays to non-CP eigenstate final states, e.g.,
D0 → K�þK−, two pairs of observables are introduced,

λMf ≡ M12

jM12j
Af

Āf
¼
����Af

Āf

����eiðϕM
f −ΔfÞ;

λΓf ≡ Γ12

jΓ12j
Af

Āf
¼
����Af

Āf

����eiðϕΓ
f−ΔfÞ; ð20Þ

and

λM
f̄
≡ M12

jM12j
Af̄

Āf̄
¼
����Af̄

Āf̄

����eiðϕM
f þΔfÞ;

λΓ
f̄
≡ Γ12

jΓ12j
Af̄

Āf̄
¼
����Af̄

Āf̄

����eiðϕΓ
fþΔfÞ: ð21Þ

The dispersive and absorptive CPV phases now satisfy,
cf. (9), (15),

ϕMðΓÞ
f ¼ ϕMðΓÞ þ ϕ0

f þ ϕ0
f̄

þ rf cos δf sinϕf þ rf̄ cos δf̄ sinϕf̄ ; ð22Þ

while the overall strong phase difference in the decay
amplitude ratios is given by

Δf ¼ Δ0
f − rf sin δf cosϕf þ rf̄ sin δf̄ cosϕf̄ ; ð23Þ

to first order in rf and rf̄.

3. CF/DCS decays to K�X

For CF/DCS decays to K�X, e.g., D0 → K�π∓, the
definitions in (20), (21) apply (recall that Af is the CF
amplitude), however we introduce overall minus signs in
the equalities, i.e.,

λMf ¼ −
����Af

Āf

����eiðϕM
f −ΔfÞ; λΓf ¼ −

����Af

Āf

����eiðϕΓ
f−ΔfÞ

λM
f̄
¼ −

����Af̄

Āf̄

����eiðϕM
f þΔfÞ; λΓ

f̄
¼ −

����Af̄

Āf̄

����eiðϕΓ
fþΔfÞ: ð24Þ

Thus, the dispersive and absorptive CPV phases satisfy

ϕMðΓÞ
f ¼ ϕMðΓÞ þ ϕ0

f þ ϕ0
f̄
þ π

þ rf cos δf sinϕf þ rf̄ cos δf̄ sinϕf̄ ; ð25Þ

and the expression for the strong phase in (23) is not
modified. The sign convention in (24) yields ϕM

f , ϕ
Γ
f ≈ 0

(rather than π), as in SCS decays. In the SM and, more
generally, in models with negligible new weak phases in
CF/DCS decays, the second line in (25) is absent, and the
dispersive and absorptive phases are separately equal for all
decays in this class. Moreover, the absence of direct CPV
yields the relation jAf̄=Āf̄j ¼ jAf=Āfj−1.

4. CF/DCS decays to K0X; K̄0X

Next, we define the CPVINT observables for D0=D̄0

decays to final states f ¼ ½πþπ−�X, where the square
brackets indicate that the pion pair originates from decays
of a KS or KL, i.e., two step transitions of the form
D0 → ½KS;L → πþπ−� þ X. In order to achieve SM sensi-
tivity to CPVINT, the contributions of CPV in theK system
must be taken into account. The neutral K mass eigenkets
are written as,

jKSi ¼ pKjK0i þ qKjK̄0i;
jKLi ¼ pKjK0i − qKjK̄0i: ð26Þ

1In [7] it was noted that a nonzero value for
arg½M2

12AfĀ�
fAf̄Ā

�̄
f
� or arg½Γ2

12AfĀ�
fAf̄Ā

�̄
f
�, equivalent to 2ϕM

f

and 2ϕΓ
f , respectively, cf. (18), (20), (21), implies CP violation.

However, the phenomenology of these phases was not discussed.
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The corresponding eigenbras are given in the “reciprocal
basis” [7,8],

hK̃Sj ¼
1

2
ðp−1

K hK0j þ q−1K hK̄0jÞ;

hK̃Lj ¼
1

2
ðp−1

K hK0j − q−1K hK̄0jÞ; ð27Þ

where CPT invariance has been assumed. To excellent
approximation (see, e.g., [1]),

����pK

qK

���� ¼ 1þ 2Re½ϵK�: ð28Þ

The experimental values of the real and imaginary parts of
the kaon CPV parameter ϵK are [9],

ϵR ≡ Re½ϵK� ¼ ð1.62� 0.01Þ × 10−3;

ϵI ≡ Im½ϵK� ¼ ð1.53� 0.01Þ × 10−3: ð29Þ

We have obtained them from the quoted measurements of
η00 and ηþ−, ignoring correlations in their errors.
In general, due to the presence of the two intermediate

states KSX and KLX, there are four pairs of CPVINT
observables,

λMKaX
≡ M12

jM12j
AKaX

ĀKaX
; λΓKaX

≡ Γ12

jΓ12j
AKaX

ĀKaX
;

λM
KaX

≡ M12

jM12j
AKaX

ĀKaX

; λΓ
KaX

≡ Γ12

jΓ12j
AKaX

ĀKaX

; a ¼ S; L;

ð30Þ

where the first and second lines correspond to the CP
conjugate final states f ¼ ½πþπ−�X and f̄ ¼ ½πþπ−�X,
respectively. Note that for the important case of
X ¼ πþπ−, f̄ corresponds to interchange of the Dalitz plot
variables ðpK þ pπþÞ2 ↔ ðpK þ pπ−Þ2 in f. We can
express the CPVINT observables (30) in the form

λM;Γ
KS=LX

¼ �
����AKS=LX

ĀKS=LX

����eiðϕM;Γ½KS=LX�−Δ½KS=LX�Þ;

λM;Γ
KS=LX

¼ �
����
ĀKS=LX

AKS=LX

����eiðϕM;Γ½KS=LX�þΔ½KS=LX�Þ; ð31Þ

where the overall plus and minus signs refer to the KS and
KL, respectively. The four CPVINT phases and two strong
phases in (31) are ϕM;Γ½KS=LX� andΔ½KS=LX�, respectively.

The D decay amplitudes in (30) satisfy,

AKS=LX ¼ 1

2
ð�q−1K AK̄0X þ p−1

K AK0XÞ;

ĀKS=LX ¼ 1

2
ðp−1

K ĀK0X � q−1K ĀK̄0XÞ;

AKS=LX
¼ 1

2
ðq−1K A

K0X
� p−1

K A
K̄0X

Þ;

ĀKS=LX
¼ 1

2
ð�p−1

K Ā
K̄0X

þ q−1K Ā
K0X

Þ; ð32Þ

where we have used the reciprocal basis (27), and the
first and second terms on the rhs in each relation
are the dominant CF and subleading DCS contributions,
respectively.
In the SM and, more generally, in models with negligible

new CPV phases in CF/DCS decays, the DCS decay
amplitudes introduce relative corrections of Oðθ2CÞ to
the weak phases, strong phases, and magnitudes of
λM;Γ
KS=LX

, λM;Γ
KS=LX

, making it a good approximation to neglect

them. (We assess the impact of the DCS amplitudes on
approximate universality in Sec. IV C 3.) In this limit, (30)
reduces to

λMf ≡ λMKSX
¼ −λMKLX

¼ M12

jM12j
pK

qK

AK̄0X

ĀK0X
;

λΓf ≡ λΓKSX
¼ −λΓKLX

¼ Γ12

jΓ12j
pK

qK

AK̄0X

ĀK0X
;

λM
f̄
≡ λM

KSX
¼ −λM

KLX
¼ M12

jM12j
pK

qK

A
K0X

Ā
K̄0X

;

λΓ
f̄
≡ λΓ

KSX
¼ −λΓ

KLX
¼ Γ12

jΓ12j
pK

qK

A
K0X

Ā
K̄0X

: ð33Þ

Thus, in the limit of negligible new CPV phases in CF/DCS
decays, it is a good approximation to consider a single pair
of CPVINT observables for final state f ¼ ½πþπ−�X, and a
single pair for f̄ ¼ ½πþπ−�X, which we have denoted in (33)
as λMf , λ

Γ
f and λ

M
f̄
, λΓ

f̄
, respectively. They can be expressed in

terms of dispersive and absorptive CPVINT phases as

λMðΓÞ
f ¼

����pKAK̄0X

qKĀK0X

����eiðϕMðΓÞ
f −ΔfÞ;

λMðΓÞ
f̄

¼
����pKĀK0X

qKAK̄0X

����eiðϕMðΓÞ
f þΔfÞ; ð34Þ

where the amplitude relations,

jĀ
K̄0X

=AK̄0Xj ¼ jA
K0X

=ĀK0Xj ¼ 1; ð35Þ

valid in the limit of vanishing direct CPV, have been
employed in the second relation. Note that the weak phases
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ϕM;Γ½KS=LX� and strong phases Δ½KS=LX�, defined in
general in (31), reduce to ϕM;Γ

f and Δf, respectively.
The strong phase differenceΔf (between ĀK0X and AK̄0X)

is generally nonvanishing and phase space dependent for
multi-body intermediate states, e.g., X ¼ πþπ−. The weak
phases satisfy

ϕMðΓÞ
f ¼ ϕMðΓÞ þ 2ϕ0

K̄0X
þ argðpK=qKÞ; ð36Þ

where ϕ0
K̄0X is the weak phase of the CF amplitudes AK̄0X,

A
K0X

, cf. (15), while argðpK=qKÞ introduces a dependence
on CPV in the K system, cf. Sec. IV C 3. Note that ϕM

f and
ϕΓ
f are separately equal for all final states in this class.
In the case of two-body (and quasi two-body) inter-

mediate states, the CPVINT observables in (34) reduce to

λMðΓÞ
f ¼ ηCPf

����pK

qK

����eiϕMðΓÞ
f ; ð37Þ

where

ηCPf ≡ ð−ÞL × CP½X�; ð38Þ

L is the orbital angular momentum of the intermediate
statesKS=LX, andCP½X� ¼ þð−Þ forCP-even (odd) X. For
example, ηCPf ¼ −1 for f ¼ KSω, KSπ

0, and ηCPf ¼ þ1 for

f ¼ KSf0. (Equivalently, ηfCP ¼ þ1ð−1Þ for CP-even
(odd) intermediate state KSX.)
Finally, we point out that in all three classes ofD0 decays

discussed in this section, the quark (CKM) phase con-
vention dependence cancels in ϕM

f and ϕΓ
f , i.e., between the

first two terms on the rhs of (19), the first three terms on
the rhs of (22), and between all three terms in (36),
cf. Sec. IV C. Moreover, they are always related to the
pure mixing phase ϕ12 as

ϕ12 ¼ ϕM
f − ϕΓ

f; ð39Þ

i.e., the final state dependent effects are common to the
dispersive and absorptive phases.

5. Relation to other parametrizations of CPVINT

It is instructive to relate the parametrization of indirect
CPVeffects in terms of absorptive and dispersive phases to
the more familiar one currently in use. The latter consists of
the CPVMIX parameter,

jq=pj − 1; ð40Þ

and the final state dependent phenomenological CPVINT
phases ϕλf , which appear in the arguments of the

observables λf, see, e.g., [1]. We begin with the definitions
of the λf, corresponding to the absorptive and dispersive
observables λM;Γ

f , in the different classes of decays. For
SCS decays to CP eigenstate final states, they correspond
to the observables in (18), and are given by2

λf ≡ q
p

Āf

Af
¼ −ηCPf jλfjeiϕλf : ð41Þ

For SCS decays to non-CP eigenstate final states, and CF/
DCS decays to K�X, the λf corresponding to the observ-
ables in (20), (21), and (24) are given by,

λf ≡ q
p

Āf

Af
¼ ∓jλfjeiðϕλf

þΔfÞ;

λf̄ ≡ q
p

Āf̄

Af̄
¼ ∓jλf̄jeiðϕλf

−ΔfÞ; ð42Þ

where the ∓ sign conventions in the right-most relations
apply to the SCS and CF/DCS cases, respectively.
Finally, for CF/DCS decays to K0X, K̄0X (given neg-

ligible new CPV phases in the decay amplitudes, and
neglecting the DCS contributions) the λf correspond to the
absorptive and dispersive observables in (33), (34), and are
given by

λf ≡ q
p
qK
pK

ĀK0X

AK̄0X
¼ −jλfjeiðϕλf

þΔfÞ;

λf̄ ≡ q
p
qK
pK

Ā
K̄0X

A
K0X

¼ −jλfjeiðϕλf
−ΔfÞ; ð43Þ

for final states f ¼ ½πþπ−�X and f̄ ¼ ½πþπ−�X. In the case
of two-body or quasi two-body intermediate states, corre-
sponding to the observables in (37), these expressions
reduce to,

λMðΓÞ
f ¼ ηCPf

���� qp
qK
pK

����eiϕλf : ð44Þ

The sign conventions in the right-most relations of (41)–
(44) yield all ϕλf ≈ 0 (HFLAV convention for D2), or all
≈π, for the three classes of decays.
The CPV parameters jq=pj − 1 and ϕλf are expressed in

terms of the absorptive and dispersive CPV phases as

���� qp
���� − 1 ¼ x12y12 sinϕ12

x212 þ y212
½1þOðsinϕ12Þ�; ð45Þ

2In our convention for λMf , λ
Γ
f , the numerators correspond to the

transitions D̄0 → D0 → f, whereas in λf they correspond to
D0 → D̄0 → f.
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where ϕ12 ¼ ϕM
f − ϕΓ

f , cf. (39), and

tan 2ϕλf ¼ −
�
x212 sin 2ϕ

M
f þ y212 sin 2ϕ

Γ
f

x212 cos 2ϕ
M
f þ y212 cos 2ϕ

Γ
f

�
: ð46Þ

Equation (46) is obtained by multiplying both sides of (5)
by ðĀf=AfÞ2 and ðĀfĀf̄=AfAf̄Þ for CP eigenstate and non-
CP eigenstate final states, respectively, and holds for all
classes of decays. To lowest order in the CPV phases, it
equates the phenomenological CPVINT phase ϕλf to
a sum over the dispersive and absorptive CPVINT phases,
ϕM
f and ϕΓ

f , weighted by the ratios x212=ðx212 þ y212Þ and
y212=ðx212 þ y212Þ, respectively. These weights are, respec-
tively, the leading dispersive and absorptive contributions
to the CP averaged mixing probability, jhD̄0jD0ðtÞij2þ
jhD0jD̄0ðtÞij2, cf. (13).
Indirect CPV can be equivalently described in terms of

the parameters emphasized in this work, i.e., ϕM
f , ϕ

Γ
f , x12,

y12, or the more familiar ones jq=pj, ϕλf , x, y, cf. (11), (39),
(45), (46). Indeed, (39) implies that the same number of
independent parameters is employed in each case.
Finally, we remark on the CPVobservables Δxf [10] and

Δyf, which have been measured in tandem by the LHCb
collaboration [11] in D0 → KSπ

þπ− decays. They are
defined in terms of ϕλf and jq=pj as3

2Δxf ¼ x cosϕλf

����� qp
����−
����pq

����
�
þ y sinϕλf

����� qp
����þ

����pq
����
�
;

2Δyf ¼ y cosϕλf

����� qp
����−
����pq

����
�
− x sinϕλf

����� qp
����þ

����pq
����
�
:

The observable −Δyf is equivalent to the familiar CPVINT
asymmetry ΔYf for SCS decays to CP eigenstate final
states, cf. (59). Translating to the dispersive/absorptive
parametrization via (45), (46), we obtain4

Δxf ¼ −y12 sinϕΓ
f; Δyf ¼ x12 sinϕM

f ; ð47Þ

to leading order in sinϕM;Γ
f . Thus, the use of the parameters

Δxf and Δyf is equivalent to the CPVINT parametrization
in terms of ϕM

f and ϕΓ
f , respectively, modulo the corre-

sponding dispersive and absorptive mixing factors. (It is
amusing that interchange of the Δx and Δy labels turns out
to be appropriate). Interestingly, we will see that exper-
imental sensitivity to ϕΓ

f (or Δxf) requires a nontrivial
strong phase difference between decay amplitudes, i.e.,
non-CP eigenstate final states, e.g., f ¼ KSπ

þπ−; Kþπ−.

III. THE INDIRECT CP ASYMMETRIES

We can now derive expressions for the time-dependent
decay widths and CP asymmetries in terms of the absorp-
tive and dispersive CPV phases. (A discussion of CPV in
certain time-integrated decays is deferred to the Appendix.)

A. Semileptonic decays

We begin with the CPVMIX “wrong sign” semileptonic
CP asymmetry,

aSL ≡ ΓðD0ðtÞ → l−XÞ − ΓðD0ðtÞ → lþXÞ
ΓðD0ðtÞ → l−XÞ þ ΓðD0ðtÞ → lþXÞ

;

¼ jhD̄0jD0ðtÞij2 − jhD0jD0ðtÞij2
jhD̄0jD0ðtÞij2 þ jhD0jD0ðtÞij2

: ð48Þ

In the second line the semileptonic decay amplitude factors
have been cancelled, given negligible direct CPV in these
decays, i.e., jĀl−Xj ¼ jAlþXj. In turn, the expressions for
the mixed amplitudes in (12) or (13) yield the semileptonic
asymmetry,

aSL ¼ 2x12y12
x212 þ y212

sinϕ12: ð49Þ

Note that the CP-even phase difference between the
interfering dispersive and absorptive mixing amplitudes,
required to obtain CPVMIX, is provided by the dispersive
mixing phase π=2 in the first line of (12).

B. Hadronic decays

The hadronic decay amplitudes sum over contributions
with and without mixing, cf. (17) (substitute f ↔ f̄ for the
CP conjugate final states). The corresponding time-depen-
dent decay rates are identified with their magnitudes
squared. They are expressed in terms of the CPVINT
observables λM

f;f̄
, λΓ

f;f̄
, cf. (18), (20), (21), as (τ≡ ΓDt),

ΓðD̄0ðtÞ→ fÞ ¼ e−τjĀfj2
�
1− τRe½iλMf x12 þ λΓfy12�

þ τ2

4
ððjλMf j2 − 1Þx212 þ ðjλΓf j2 þ 1Þy212

þ 2x12y12Im½λMf �λΓf �Þ
�
;

ΓðD0ðtÞ→ fÞ ¼ e−τjAfj2
�
1− τRe½ix12=λMf þ y12=λΓf �

þ τ2

4
ðð1=jλMf j2 − 1Þx212 þ ð1=jλΓf j2 þ 1Þy212

þ 2x12y12Im½1=ðλMf �λΓfÞ�Þ
�
; ð50Þ

3To be fully general, we have replaced ϕ with ϕλf , and added a
subscript f to Δx and Δy in the definitions of [10].

4We have used the relations y cosϕλf ¼ y12 cosϕΓ
f , and

x cosϕλf ¼ x12 cosϕM
f , which hold up to negligible relative

corrections quadratic in the CPV phases.
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with the expressions for ΓðD̄0ðtÞ → f̄Þ and ΓðD0ðtÞ → f̄Þ
obtained via the substitutions f → f̄ in (50). Note that
throughout this work appropriate normalization factors are
implicit in all decay width formulas, including (50). The
expressions in (50) are applied to the following cases: SCS
decays to CP eigenstates, SCS decays to non-CP eigen-
states, and CF/DCS decays to K�X. The description of CF/
DCS decays to K0X, K̄0X requires a separate treatment,
cf. Sec. III C.

1. SCS decays to CP eigenstates

This category includes, for example, the decays
D0 → KþK−=πþπ−. (We comment on the decay D0 →
K0K̄0 at the end of Sec. IV C 1). The time-dependent decay
widths D0ðtÞ → f and D̄0ðtÞ → f, expressed in terms of
ϕM
f , ϕ

Γ
f , cf. (19), and the direct CP asymmetry,

adf ≡ 1 − jĀf=Afj ¼ −2rf sin δf sinϕf; ð51Þ
cf. (16), are given by

ΓðD0ðtÞ → fÞ ¼ e−τjAfj2ð1þ cþf τ þ c0þf τ2Þ;
ΓðD̄0ðtÞ → fÞ ¼ e−τjĀfj2ð1þ c−f τ þ c0−f τ

2Þ; ð52Þ

where the coefficients c�f , c
0�
f satisfy

c�f ¼ ηfCP½∓x12 sinϕM
f − y12 cosϕΓ

fð1∓ adfÞ�;

c0�f ¼ 1

2
y212 �

1

4
ðx212 þ y212ÞðaSL − 2adfÞ: ð53Þ

Terms involving adf have been expanded to first order in
CPV quantities, and the semileptonic CP asymmetry,
expressed in terms of ϕ12, is given in (49).
The Oðτ2Þ terms in the SCS widths are usually

neglected, due to an Oðx12; y12Þ suppression relative to
the OðτÞ term. Thus, it has been traditional to express the
SCS widths in the approximate exponential forms,

ΓðD0ðtÞ → fÞ ¼ jAfj2 exp½−Γ̂D0→fτ�;
ΓðD0ðtÞ → fÞ ¼ jĀfj2 exp½−Γ̂D0→f

τ�; ð54Þ

where the decay rate parameters satisfy

Γ̂D0=D̄0→f ¼ 1 − c�; ð55Þ

cf. (53). As the goal of SM sensitivity comes into view, i.e.,
ϕM
f ;ϕ

Γ
f ¼ OðfewÞ × 10−2, this will not necessarily be a

good approximation, as can be seen by comparing the
CP-odd terms in c�f , and the CP-even term in c0�f .
However, the CP-odd terms in c0�f are further suppressed
by CPV parameters, and can be neglected. Thus, to good
approximation,

c0�f ¼ 1

2
y212: ð56Þ

Measurements of the time-dependent decay rates at
linear order in τ yield the known CP conserving observ-
ables,

yfCP ≡ −
ðcþf þ c−f Þ

2
; ð57Þ

and the CPVINT asymmetries,

ΔYf ≡
ðcþf − c−f Þ

2
: ð58Þ

The average of ΔYf over f ¼ KþK−; πþπ− is denoted by
AΓ. In the exponential approximation, the corresponding
definitions are,

yfCP ≡ Γ̂D0→fCP þ Γ̂
D0→fCP

2
− 1;

ΔYf ≡ Γ̂D̄0→f − Γ̂D0→f

2
: ð59Þ

Applying (53), and neglecting contributions quadratic in
CPV, we obtain

yfCP ¼ ηCPf y12 cosϕΓ
f: ð60Þ

The experimental average over f ¼ KþK−; πþπ− [6] yields
yfCP=η

CP
f > 0, or

yfCP ¼ ηCPf y12 ¼ ηCPf jyj; ð61Þ

to excellent approximation. Furthermore, fits to the data
[6,12] yield xy > 0 at 3σ, or ϕ12 ≈ 0 (rather than π),
cf. (10). Thus, we learn that both

ϕM
f ≈ 0; ϕΓ

f ≈ 0: ð62Þ

At first order in CPV, (53) yields the relation (already
noted in (47) for the CPVINT part),

ΔYf ¼ ηfCPð−x12 sinϕM
f þ adfy12Þ: ð63Þ

The direct CPV contribution in (63) is formally subleading,
cf. Sec. IV C 1. In general, it can be disentangled exper-
imentally from the dispersive CPV contribution with the
help of time integrated CPV measurements, in which adf
enters without mixing suppression, cf. the Appendix.
It is noteworthy that ΔYf depends on ϕM

f , but not on ϕ
Γ
f .

This is because CP asymmetries require a nontrivial CP-
even phase difference δ between the interfering amplitudes,
i.e., they are proportional to sin δ. In general, for CP
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eigenstate final states there is a CP-even phase difference
between decays with and without dispersive mixing,
namely the π=2 dispersive phase in (12). However, there
is none between decays with and without absorptive mixing
(the strong phase between Af and Āf is trivial). Therefore,
in general, ϕΓ

f can only be measured in decays to non-CP
eigenstate final states, where the requisite CP-even phase is
provided by the strong phase differenceΔf between Af and
Āf, as we will see explicitly below. Finally, in the case of
CP averaged decay rates, interference terms are in general
proportional to cos δ, rather than sin δ. Therefore, in the CP
averaged time dependent decay rates for CP eigenstate
final states, the interference between decays with and
without dispersive mixing will vanish at leading order in
the mixing, i.e., OðτÞ, only leaving a dependence on y12.
This is borne out by the expression for yfCP in (60).

2. SCS decays to non-CP eigenstates

This category includes, for example, the decays
D0 → ρπ, K�þK−. The time dependent decay widths are
of the form

ΓðD0ðtÞ → fÞ ¼ e−τjAfj2ð1þ
ffiffiffiffiffiffi
Rf

p
cþf τ þ Rfc

0þ
f τ2Þ;

ΓðD̄0ðtÞ → fÞ ¼ e−τjĀfj2
�
1þ 1ffiffiffiffiffiffi

Rf
p c−f τ þ

1

Rf
c0−f τ2

�
;

ð64Þ

for final state f, and

ΓðD0ðtÞ → f̄Þ ¼ e−τjAf̄j2ð1þ
ffiffiffiffiffiffi
Rf̄

q
cþ
f̄
τ þ Rf̄c

0þ
f̄
τ2Þ;

ΓðD̄0ðtÞ → f̄Þ ¼ e−τjĀf̄j2
�
1þ 1ffiffiffiffiffiffi

Rf̄
p c−

f̄
τ þ 1

Rf̄
c0−
f̄
τ2
�
;

ð65Þ

for final state f̄, where

Rf ≡ jĀf=Afj2; Rf̄ ≡ jĀf̄=Af̄j2: ð66Þ

In general, the ratios satisfy Rf; Rf̄ ¼ Oð1Þ for SCS
decays. The coefficients c�f and c�̄

f
in (64), (65), expressed

in terms of ϕM
f , ϕ

Γ
f , and Δf, cf. (20)–(23), are given by

c�f ¼ ∓x12 sinðϕM
f − ΔfÞ − y12 cosðϕΓ

f − ΔfÞ;
c�̄
f
¼ ∓x12 sinðϕM

f þ ΔfÞ − y12 cosðϕΓ
f þ ΔfÞ: ð67Þ

The coefficients in the Oðτ2Þ terms satisfy

c0�f ¼ 1

4
½R∓1

f ðy212 − x212Þ þ ðx212 þ y212Þð1� aSLÞ�;

c0�̄
f

¼ 1

4
½R∓1

f̄
ðy212 − x212Þ þ ðx212 þ y212Þð1� aSLÞ�: ð68Þ

As in the prior case of decays to CP eigenstates, the CP-
even terms in c0�

f;f̄
should be kept, with future sensitivity at

the level of SM indirect CPV in mind. However, the CP-
odd terms (∝ aSL) can be neglected.
The time dependent measurements yield pairs of

CPVINT asymmetries (normalized rate differences for
D0ðtÞ → f vs D̄0ðtÞ → f̄, and D0ðtÞ → f̄ vs D̄0ðtÞ → f)
at linear order in τ,

ΔYf ≡
ffiffiffiffiffiffi
Rf

p
cþf − c−

f̄
=

ffiffiffiffiffiffi
Rf̄

p
2

;

ΔYf̄ ≡
ffiffiffiffiffiffi
Rf̄

p
cþ
f̄
− c−f =

ffiffiffiffiffiffi
Rf

p
2

: ð69Þ

To first order in CPV parameters, (67) yields the expres-
sions,

ΔYf ¼ ffiffiffiffiffiffi
Rf

p �
−x12 sinϕM

f cosΔf − y12 sinϕΓ
f sinΔf

−
1

2
ðadf þ ad

f̄
Þðx12 sinΔf − y12 cosΔfÞ

�
;

ΔYf̄ ¼ 1ffiffiffiffiffiffi
Rf

p
�
−x12 sinϕM

f cosΔf þ y12 sinϕΓ
f sinΔf

þ 1

2
ðadf þ ad

f̄
Þðx12 sinΔf þ y12 cosΔfÞ

�
; ð70Þ

where the direct CP asymmetries,

adf ¼ 1 − jĀf̄=Afj ¼ −2rf sinϕf sin δf;

ad
f̄
¼ 1 − jĀf=Af̄j ¼ −2rf̄ sinϕf̄ sin δf̄ ; ð71Þ

cf. (15), enter via the deviation of
ffiffiffiffiffiffiffiffiffiffiffi
RfRf̄

p
from unity. In

(70), replacing the numerator and denominator in the ratio
Rf, cf. (66), with their CP averaged counterparts would
introduce a negligible higher order correction in the CPV
parameters.
Note that the CP-even phase differences for dispersive

and absorptive CPVINT are given by Δf − π=2 and Δf,
respectively, where π=2 is the “dispersive” phase in the first
line of (12), thus accounting for the factors cosΔf and
sinΔf in the first two terms of ΔYf and ΔYf̄ in (70). In
particular, Eq. (70) confirms that sensitivity to the absorp-
tive phase ϕΓ

f requires a strong phase difference between
decay amplitudes, i.e., non-CP eigenstate final states, as
argued at the end of Sec. III B 1.
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3. CF/DCS decays to K�X

This category consists of the CF/DCS decays
D0 → K�X, with a single K in the final state. As noted
previously, we choose the DCS decay amplitudes in (15),
(20), (21), and (24), to be Af̄ and Āf, e.g., f̄ ¼ Kþπ−. Thus,
we denote the time dependent CF/DCS decays to “wrong-
sign” (WS) final states asD0ðtÞ → f̄ and D̄0ðtÞ → f, while
the “right-sign” (RS) decays areD0ðtÞ → f and D̄0ðtÞ → f̄.
The Oðτ2Þ terms in (50) and its CP conjugate cannot be
neglected, given that the decay amplitude ratios entering
λM;Γ
f;f̄

are now of Oð1=θ2CÞ. The RS and WS decay widths

following from (50) and (62) can be expressed as

ΓðD0ðtÞ → fÞ ¼ e−τjAfj2ð1þ
ffiffiffiffiffiffi
Rf

p
cþRS;fτ þ Rfc

0þ
RS;fτ

2Þ;

ΓðD̄0ðtÞ → f̄Þ ¼ e−τjĀf̄j2
�
1þ 1ffiffiffiffiffiffi

Rf̄
p c−RS;fτ þ

1

Rf̄
c0−RS;fτ

2

�

ð72Þ
and

ΓðD0ðtÞ → f̄Þ ¼ e−τjAfj2ðRþ
f þ

ffiffiffiffiffiffi
Rþ
f

q
cþWS;fτ þ c0þWS;fτ

2Þ;

ΓðD̄0ðtÞ → fÞ ¼ e−τjĀf̄j2ðR−
f þ

ffiffiffiffiffiffi
R−
f

q
c−WS;fτ þ c0−WS;fτ

2Þ
ð73Þ

where R�
f are the DCS to CF ratios

Rþ
f ¼ jAf̄=Afj2; R−

f ¼ jĀf=Āf̄j2; ð74Þ
the ratios Rf, Rf̄ are defined in (66), and the coefficients
c�RSðWSÞ;f, c

0�
RSðWSÞ;f, to first order in CPV parameters, are

given by

c�RS;f ¼ −x12 sinΔf þ y12 cosΔf

� ðx12 sinϕM
f cosΔf þ y12 sinϕΓ

f sinΔfÞ;
c�WS;f ¼ ð1∓ adfÞ½x12 sinΔf þ y12 cosΔf�

� x12 sinϕM
f cosΔf ∓ y12 sinϕΓ

f sinΔf;

c0�RS;f ¼ 1

4
½ðx212 þ y212Þð1� aSLÞ þ ξ�ðy212 − x212Þ�;

c0�WS;f ¼ 1

4
ðx212 þ y212Þ½1� aSL ∓ 2adf� þ

1

4
R�
f ðy212 − x212Þ;

ð75Þ
with ξþ ¼ R−1

f , ξ− ¼ Rf̄. The (CF) direct CP asymmetry,
adf, appearing in (75) is given by

adf ¼ 1 − jĀf̄=Afj ¼ −2rf sinϕf sin δf; ð76Þ

and vanishes in the SM. In the SM, the Oðτ2Þ coefficients
are well approximated as

c0�RSðWSÞ;f ¼
1

4
ðx212 þ y212Þ: ð77Þ

The prefactors in (73) are, to excellent approximation,
equal to the RS time dependent decay widths,

ΓðD0ðtÞ → fÞ ∼ e−τjAfj2;
ΓðD̄0ðtÞ → f̄Þ ∼ e−τjĀf̄j2; ð78Þ

where the subleading DCS contributions in (72) have been
neglected.
A fit to the time-dependence in (73), (78) yields

measurements of R�
f , c

�
WS;f, c

0�
WS;f, and the indirect CP

asymmetries,

δcWS;f ≡ 1

2
ðcþWS;f − c−WS;fÞ ¼ x12 sinϕM

f cosΔf

− y12 sinϕΓ
f sinΔf − adfðx12 sinΔf þ y12 cosΔfÞ;

δc0WS;f ≡
c0þWS;f − c0−WS;f

c0þWS;f þ c0−WS;f
¼ aSL − 2adf: ð79Þ

Note that the last terms in (79) for δcWS;f and δc0WS;f are
absent in the SM and, more generally, in models with
negligible CP violating NP in CF/DCS decays. As in (70),
the cosΔf and sinΔf dependence in the first two terms of
δcWS;f originates from the total CP-even phase differences
Δf − π=2 and Δf, between decays with and without
dispersive mixing and decays with and without absorptive
mixing, respectively. This again confirms that strong phase
differences are required in order to measure the absorptive
CPV phases, ϕΓ

f .

C. CF/DCS decays to K0X; K̄0X

We derive expressions for the time-dependentD0 and D̄0

decay rates for two step CF/DCS decays of the form

D0ðtÞ → ½KS;Lðt0Þ → πþπ−� þ X; ð80Þ

to final states f ¼ ½πþπ−�X. These decays depend on two
elapsed time intervals, t and t0, at which the D and K decay
following their respective production.
The D0ðtÞ and D̄0ðtÞ decay amplitudes now sum over

contributions with and without D0 − D̄0 mixing, and with
and without K0 − K̄0 mixing. The kaon time evolution is
conveniently described in the mass basis,

jKSðtÞi ¼ e−iMSte−ΓSt=2jKSi;
jKLðtÞi ¼ e−iMLte−ΓLt=2jKLi; ð81Þ

where MS;L, ΓS;L, and τS;L are the corresponding masses,
widths, and lifetimes. The time-dependent amplitudes for
the decay of an initial D0 to final state f ¼ ½πþπ−�X, and
for the CP conjugate decay of an initial D̄0 to final state
f̄ ¼ ½πþπ−�X, are given by
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Afðt; t0Þ ¼
X
a¼S;L

AðKa → πþπ−Þ

× e−ðiMaþ1
2
ΓaÞt0 ðAKaXhD0jD0ðtÞi

þ ĀKaXhD̄0jD0ðtÞiÞ;
Āf̄ðt; t0Þ ¼

X
a¼S;L

AðK̄a → πþπ−Þ

× e−ðiMaþ1
2
ΓaÞt0 ðAKaX

hD0jD̄0ðtÞi
þ ĀKaX

hD̄0jD̄0ðtÞiÞ; ð82Þ

where expressions for the D decay amplitudes AKaX, etc.
appear in (32). The KS;L → ππ decay amplitudes satisfy,

AðKS → πþπ−Þ ¼ pKAþ− þ qKĀþ−;

AðKL → πþπ−Þ ¼ pKAþ− − qKĀþ−; ð83Þ

with

Aþ− ≡ hπþπ−jHjK0i; Āþ− ≡ hπþπ−jHjK̄0i: ð84Þ

The amplitudes Āfðt; t0Þ and Af̄ðt; t0Þ are obtained by
substituting jD0ðtÞi → jD̄0ðtÞi and vice versa in the first
and second relations of (82), respectively. Expressing the
amplitudes in terms of the CPVINT observables in (30)
yields the general expressions, valid to linear order in τ:

Afðt;t0Þ¼e−ðiMDþ1
2
ΓDÞt

X
a¼S;L

AðKa→πþπ−ÞAKaXe
−ðiMaþ1

2
ΓaÞt0

�
1−

1

2
τ

�
i
x12
λMKaX

þ y12
λΓKaX

��
;

Āf̄ðt;t0Þ¼e−ðiMDþ1
2
ΓDÞt

X
a¼S;L

AðK̄a→πþπ−ÞĀKaX
e−ðiMaþ1

2
ΓaÞt0

�
1−

1

2
τ

�
ix12λMKaX

þy12λΓKaX

��
; ð85Þ

where Āfðt; t0Þ is obtained by substituting AKaX → ĀKaX and

λMðΓÞ
KaX

→ 1=λMðΓÞ
KaX

in the first relation, and Af̄ðt; t0Þ is ob-

tained by substituting ĀKaX
→ AKaX

and λMðΓÞ
KaX

→ 1=λMðΓÞ
KaX

in

the second relation.
The time-dependent decay rates are obtained by squaring

the magnitudes of the amplitudes in (85), e.g., Γfðt; t0Þ ¼
jAfðt; t0Þj2 etc., and assuming that CP violating NP is
negligible in CF/DCS decays. Therefore, as in the SM, we
assume vanishing direct CPV in the CF decays, neglect the
DCS amplitudes (their impact is discussed in Sec. IV C 3),
and employ the expressions for the CPVINT observables
given in (34). We work to first order in CPV quantities, and
also employ the relations (see, e.g., [1])

jAðKS → πþπ−Þj2 ¼ 4jpKAþ−j2ð1 − 2ϵRÞ
¼ 4jqKĀþ−j2ð1þ 2ϵRÞ;

AðKS → πþπ−ÞAðKL → πþπ−Þ� ¼ 4jpKAþ−j2ϵ�K
¼ 4jqKĀþ−j2ϵ�K;

jAðKL → πþπ−Þj2 ¼ Oðϵ2KÞ: ð86Þ

In particular, the last relation in (86) implies that we can
neglect the purely KL contributions to the widths. The
expressions for the time-dependent decay rates are then of
the form,

Γfðt; t0Þ ¼ e−τjĀþ−j2jAK̄0Xj2fe−ΓSt0 ½cþ þ ffiffiffiffiffiffi
Rf

p
cþf τ þ Rfc

0þ
f τ2� þ e−ΓKt0 ½ðbþ þ ffiffiffiffiffiffi

Rf

p
bþf τÞ cosðΔMKt0Þ

þ ðdþ þ ffiffiffiffiffiffi
Rf

p
dþf τÞ sinðΔMKt0Þ�g;

Γ̄fðt; t0Þ ¼ e−τjĀþ−j2jĀK0Xj2
�
e−ΓSt0

�
c− þ 1ffiffiffiffiffiffi

Rf
p c−f τ þ

1

Rf
c0−f τ2

�
þ e−ΓKt0

��
b− þ 1ffiffiffiffiffiffi

Rf
p b−f τ

�
cosðΔMKt0Þ

þ
�
d− þ 1ffiffiffiffiffiffi

Rf
p d−f τ

�
sinðΔMKt0Þ

��
; ð87Þ

for final state f, and

Γf̄ðt; t0Þ ¼ e−τjĀþ−j2jĀK0Xj2
�
e−ΓSt0

�
cþ þ 1ffiffiffiffiffiffi

Rf
p cþ

f̄
τ þ 1

Rf
c0þ
f̄
τ2
�
þ e−ΓKt0

��
bþ þ 1ffiffiffiffiffiffi

Rf
p bþ

f̄
τ

�
cosðΔMKt0Þ

þ
�
dþ þ 1ffiffiffiffiffiffi

Rf
p dþ

f̄
τ

�
sinðΔMKt0Þ

��
;
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Γ̄f̄ðt; t0Þ ¼ e−τjĀþ−j2jAK̄0Xj2fe−ΓSt0 ½c− þ ffiffiffiffiffiffi
Rf

p
c−
f̄
τ þ Rfc0−f̄ τ2� þ e−ΓKt0 ½ðb− þ ffiffiffiffiffiffi

Rf

p
b−
f̄
τÞ cosðΔMKt0Þ

þ ðd− þ ffiffiffiffiffiffi
Rf

p
d−
f̄
τÞ sinðΔMKt0Þ�g; ð88Þ

for final state f̄, where

Rf ≡ jĀK0X=AK̄0Xj2; ð89Þ

ΔMK ≡ML −MS, and ΓK ≡ ðΓL þ ΓSÞ=2. We have taken
jAþ−j ¼ jĀþ−j, given that the two magnitudes differ by
negligible corrections of Oðϵ2K; ϵ0KÞ. The coefficients in
(87), (88) depend on the quantities ϕM

f , ϕ
Γ
f , Δf, cf. (34)–

(36), and ϵK. For the purely KSX contributions (e−ΓSt0

dependence), they are given by

c� ¼ 1� 2ϵR;

c�f ¼ ð�x12 − y12 sinϕΓ
fÞ sinΔf

− ðy12 � x12 sinϕM
f Þ cosΔf;

c�̄
f
¼ ð∓x12 þ y12 sinϕΓ

fÞ sinΔf

− ðy12 � x12 sinϕM
f Þ cosΔf;

c0�f ¼ 1

4
ðx212 þ y212 þ ½y212 − x212�R∓1

f Þ;

c0�̄
f

¼ 1

4
ðx212 þ y212 þ ½y212 − x212�R�1

f Þ: ð90Þ

CP-odd contributions to the coefficients c0�f , c0�̄
f

are of
O½ðx212; y212Þ × ðϵK;ϕ12Þ� and have been neglected, i.e., they
are Oðx12; y12Þ suppressed relative to the CP-odd terms
arising at OðτÞ. Interference between the amplitudes con-
taining intermediate KSX and KLX (e−ΓKt0 dependence)
yields,

b� ¼ ∓2ϵR; d� ¼ ∓2ϵI;

b�f ¼ 2ð�x12 cosΔf þ y12 sinΔfÞϵI;
b�̄
f
¼ 2ð�x12 cosΔf − y12 sinΔfÞϵI;

d�f ¼ 2ð∓x12 cosΔf − y12 sinΔfÞϵR;
d�̄
f
¼ 2ð∓x12 cosΔf þ y12 sinΔfÞϵR: ð91Þ

We have neglected interference contributions of Oðx212ϵK;
y212ϵKÞ arising at Oðτ2Þ in (87), (88). Again, they are
Oðx12; y12Þ suppressed relative to the CP-odd terms arising
at OðτÞ.
The indirect CP asymmetries are obtained by taking

normalized rate differences between Γf and Γ̄f̄, and
between Γf̄ and Γ̄f. To first order in CPV quantities, the
phases ϕM

f ;ϕ
Γ
f only enter the CP asymmetries of the purely

KS contributions, while the CP asymmetries induced by
KS − KL interference only probe ϵK. The first set of CP

asymmetries, between the coefficients in (90), are given by
(δc0 is negligible),

δc≡ 1

2
ðcþ − c−Þ ¼ 2ϵR;

δcf ≡ 1

2
ðcþf − c−

f̄
Þ

¼ −ðy12 sinϕΓ
f sinΔf þ x12 sinϕM

f cosΔfÞ;

δcf̄ ≡ 1

2
ðcþ

f̄
− c−f Þ

¼ ðy12 sinϕΓ
f sinΔf − x12 sinϕM

f cosΔfÞ: ð92Þ

Again, Δf ≠ 0; π is required in order to measure ϕΓ
f , due

to the lack of a nontrivial CP-even phase in the absorptive
mixing amplitude. The six CP asymmetries in the second
set of coefficients, cf. (91), are

δb≡ 1

2
ðbþ − b−Þ ¼ −2ϵR;

δd≡ 1

2
ðdþ − d−Þ ¼ −2ϵI;

δbf ≡ 1

2
ðbþf − b−

f̄
Þ

¼ 2ðx12 cosΔf þ y12 sinΔfÞϵI;

δbf̄ ≡ 1

2
ðbþ

f̄
− b−f Þ

¼ 2ðx12 cosΔf − y12 sinΔfÞϵI;

δdf ≡ 1

2
ðdþf − d−

f̄
Þ

¼ −2ðx12 cosΔf þ y12 sinΔfÞϵR;

δdf̄ ≡ 1

2
ðdþ

f̄
− d−f Þ

¼ 2ð−x12 cosΔf þ y12 sinΔfÞϵR: ð93Þ

In principle, each of the CP asymmetries in (92), (93) can
be measured by fitting to the dependence of the decay rates
on t and t0.
In Sec. IV B we will see that in the SM, ϕM

f and ϕΓ
f are

expected to be of same order as ϵK , implying that the
CPVINT asymmetries in (92) and (93) are also of same
order. Thus, the impact of ϵK , particularly at linear order in
τ, on the asymmetry measurements needs to be considered.
We will address this point in Sec. V, taking into account the
typical decay times t0 for the intermediate K0’s detected at
LHCb and Belle-II.
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In the case of two body (and quasi two body) intermediate
states, e.g., X ¼ π0;ω; f0, expressions for the time depen-
dent decay rates andCP asymmetries are obtained by setting
Rf ¼ 1 [and jĀK0Xj ¼ jAK̄0Xj in (87)], and sinΔf ¼ 0,
cosΔf ¼ ηCPf in (90)–(93), where ηCPf is defined in (37).
The resulting decay widths are

Γfðt; t0Þ ¼ e−τjĀþ−j2jAK̄0Xj2fe−ΓSt0 ½cþ þ cþf τ þ c0τ2�
þ e−ΓKt0 ½ðbþ þ bþf τÞ cosðΔMKt0Þ
þ ðdþ þ dþf τÞ sinðΔMKt0Þ�g; ð94Þ

Γ̄fðt; t0Þ ¼ e−τjĀþ−j2jAK̄0Xj2fe−ΓSt0 ½c− þ c−f τ þ c0τ2�
þ e−ΓKt0 ½ðb− þ b−f τÞ cosðΔMKt0Þ
þ ðd− þ d−f τÞ sinðΔMKt0Þ�g; ð95Þ

with coefficients,

c� ¼ 1� 2ϵR; c�f ¼ −ηCPf ðy12 � x12 sinϕM
f Þ;

c0 ¼ 1

2
y212; b� ¼ ∓2ϵR; b�f ¼ �2ηCPf x12ϵI;

d� ¼ ∓2ϵI; d�f ¼ ∓2ηCPf x12ϵR: ð96Þ

The correspondingCP asymmetries, as defined in (92), (93),
are given by

δc ¼ 2ϵR; δcf ¼ −ηCPf x12 sinϕM
f ;

δb ¼ −2ϵR; δbf ¼ 2ηCPf x12ϵI;

δd ¼ −2ϵI; δdf ¼ −2ηCPf x12ϵR: ð97Þ

Note that δcf is purely dispersive, similarly to ΔYf for SCS
decays to CP eigenstates, cf. (63) (again, the only CP-even
phase available for charm CPVINT is the dispersive mixing
phase π=2).
Finally, the CP conserving observable, yfCP, for SCS

decays to CP eigenstates, cf. (57), (59), can be carried
over to the case of two body and quasi two body
intermediate states discussed above. It is analogously
defined as

yfCP ≡ −
cþf þ c−f

2
: ð98Þ

However, the KS decay time dependence, e−ΓSt0 , in (94),
(95), must be accounted for in order to avoid additional
systematic errors in its extraction. Employing (96) yields

yfCP ¼ ηCPf y12 ¼ ηCPf jyj; ð99Þ

up to negligible corrections quadratic in CPV parameters.
For example, we expect yfCP ¼ −y12 for X ¼ ω; π0

(opposite in sign to yfCP for KþK−, πþπ−), and yfCP ¼
þy12 for X ¼ f0.

IV. APPROXIMATE UNIVERSALITY

In the previous section, all indirect CPV effects were
parametrized in full generality, in terms of final state
dependent pairs of dispersive and absorptive weak phases
(ϕM

f , ϕ
Γ
f). In order to understand how best to parametrize

indirect CPVeffects in the upcoming precision era, we need
to estimate the final state dependence. We accomplish this
via a U-spin flavor symmetry decomposition of the SM
D0 − D̄0 mixing amplitudes. Crucially, this also yields
estimates of indirect CPV effects in the SM.

A. U-spin decomposition

The SM D0 − D̄0 mixing amplitudes Γ12 and M12 have
flavor transitions ΔC ¼ −ΔU ¼ 2 and ΔS ¼ ΔD ¼ 0. We
can write them as

ΓSM
12 ¼ −

X
i;j¼d;s

λiλjΓij; MSM
12 ¼ −

X
i;j¼d;s;b

λiλjMij; ð100Þ

where λi ≡ VciV�
ui. At the quark level, the transition

amplitudes Γij and Mij are identified with box diagrams
containing, respectively, on-shell and off-shell internal i
and j quarks. Thus, they possess the flavor structures (Dirac
structure is unimportant for our discussion) Γij;Mij∼
ðūcÞ2ðīiÞðj̄jÞ ∼ ðūcÞ2ðījÞðj̄iÞ, or

Γss ∼ ðs̄sÞ2; Γdd ∼ ðd̄dÞ2; Γsd ∼ ðs̄sÞðd̄dÞ; ð101Þ

and similarly for the Mij. Employing CKM unitarity
(λd þ λs þ λb ¼ 0), the U-spin decomposition of ΓSM

12 is
given by

ΓSM
12 ¼ ðλs − λdÞ2

4
Γ2 þ

ðλs − λdÞλb
2

Γ1 þ
λ2b
4
Γ0; ð102Þ

where the U-spin amplitudes Γ2;1;0 are the ΔU3 ¼ 0

elements of the ΔU ¼ 2, 1, 0 multiplets, respectively.
This can be seen from their quark flavor structures,

Γ2 ¼ Γss þ Γdd − 2Γsd ∼ ðs̄s − d̄dÞ2 ¼ Oðϵ2Þ;
Γ1 ¼ Γss − Γdd ∼ ðs̄s − d̄dÞðs̄sþ d̄dÞ ¼ OðϵÞ;
Γ0 ¼ Γss þ Γdd þ 2Γsd ∼ ðs̄sþ d̄dÞ2 ¼ Oð1Þ: ð103Þ

The orders in the U-spin breaking parameter ϵ at which
they enter are also included, corresponding to the power of
the U-spin breaking spurion Mϵ ∼ ϵðs̄s − d̄dÞ required to
construct each Γi. The U-spin decomposition of M12 is
analogous to (102), with the exception of additional
contributions to M1 and M0, given by ðMsb −MdbÞ and
ðMsb þMdb þMbbÞ, respectively, and corresponding to
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box diagrams with internal b quarks at the quark level. The
small value of λb implies that we can neglect theΔU ¼ 1, 0
contributions to the mass and width differences, even
though the ΔU ¼ 2 piece is of higher order in ϵ. Thus,
x12 and y12 are due to Γ2 and M2, respectively, and arise at
Oðϵ2Þ [13–15]. Similarly, CPV in mixing arises atOðϵÞ due
to Γ1 and M1, while the contributions of Γ0 and M0 are
negligible.
The U-spin amplitudes Γi, Mi are of the form,

Mi ¼ ηMi jMije2iξ; Γi ¼ ηΓi jΓije2iξ; ηMi ; η
Γ
i ¼ �:

ð104Þ

The exponential factors originate from the choice of meson
phase convention, and trivially cancel in physical observ-
ables. However, the ηi in (104) are physical, can a priori be
of either sign, and can be determined from experiment. For
example, since ϕ12 ≈ 0, we already know that

arg½M2=Γ2� ¼ 0; ð105Þ

or that ηM2 ¼ ηΓ2 . Moreover, as we shall see shortly,
cf. (125), existing measurements also imply that

ηM2 ¼ ηΓ2 ¼ þ: ð106Þ

The inclusive [16–23] and exclusive [13–15,24,25]
approaches to estimating ΔΓD yield several observations
of relevance to our discussion of CPV below. In the
inclusive OPE based approach, the flavor amplitudes
satisfy Γij ∼ ΓD. This is reflected in the ability of this
approach to accommodate the charm meson lifetimes
[23,26]. The individual Γij contributions to y12 are, there-
fore, about five times larger than the experimental value
[27], suggesting thatU-spin violation is large, e.g.,Oðϵ2Þ ∼
20% for Γ2, cf. (103), (120).5 The exclusive approach
estimates sums over exclusive decay modes. Unfortunately,
the charm quark mass is not sufficiently light for D0 meson
decays to be dominated by a few final states. Moreover, the
strong phase differences entering y12, and the off-shell
decay amplitudes in x12 are not calculable from first
principles. However, there is consensus in the literature
that accounting for y12 near 1% requires significant con-
tributions from high multiplicity final states (n ≥ 4), due to
the large SUð3ÞF breaking near threshold. This observation
is consistent with the large U-spin breaking required
(potentially from duality violations) in the OPE/HQE
approach.

B. CPV phases intrinsic to mixing

We introduce three intrinsic CPV mixing phases, defined
with respect to the direction of the dominant ΔU ¼ 2
dispersive and absorptive mixing amplitudes in the com-
plex plane,

ϕΓ
2 ≡ arg

�
Γ12

1
4
ðλs − λdÞ2Γ2

�
;

ϕM
2 ≡ arg

�
M12

1
4
ðλs − λdÞ2M2

�
;

ϕ2 ≡ arg

�
q
p
ðλs − λdÞ2Γ2

4

�
; ð107Þ

where Γ12, M12, and q=p can contain NP contributions.
These phases can be viewed as the pure mixing analogs of
the final state dependent phases ϕM

f , ϕ
Γ
f , and ϕλf , respec-

tively. Note that they are quark and meson phase con-
vention independent, like the final state dependent ones, as
required for physical phases. For later use we give the
expressions for the (phase convention dependent) argu-
ments of M12 and Γ12 in terms of ϕM

2 and ϕΓ
2 , respectively,

cf. (104),

ϕM ¼ 2 arg½λs − λd� þ 2iξþ πð1 − ηM2 Þ=2þ ϕM
2 ;

ϕΓ ¼ 2 arg½λs − λd� þ 2iξþ πð1 − ηΓ2Þ=2þ ϕΓ
2 : ð108Þ

Employing (105), the theoretical or intrinsic mixing
phases are seen to satisfy the relations

ϕ12 ¼ ϕM
2 − ϕΓ

2 ; ð109Þ

and the analog of (46),

tan 2ϕ2 ¼ −
�
x212 sin 2ϕ

M
2 þ y212 sin 2ϕ

Γ
2

x212 cos 2ϕ
M
2 þ y212 cos 2ϕ

Γ
2

�
: ð110Þ

Combining the two relations, ϕ2 can be related to ϕ12, and
ϕΓ
2 or ϕM

2 , to first order in CPV quantities, as

tan 2ðϕ2 þ ϕΓ
2Þ ≈ −

x212
x212 þ y212

sin 2ϕ12

tan 2ðϕ2 þ ϕM
2 Þ ≈

y212
x212 þ y212

sin 2ϕ12: ð111Þ

Together with (45), the above relations allow translation
between ϕ2 and jq=pj, and any two out of the three phases
ϕM
2 , ϕ

Γ
2 , and ϕ12.

We estimate the magnitudes of the theoretical phases in
the SM (Γ12 ¼ ΓSM

12 , M12 ¼ MSM
12 ), as well as their devia-

tions from the corresponding final state dependent phases
ϕΓ
f , ϕM

f , and ϕλf , using U-spin based arguments and
experimental input. To very good approximation, the
CKM hierarchy jλb=ðλs − λdÞj ≪ 1 yields,

5Inclusive OPE based GIM-cancelations between the Γij yield
y four orders of magnitude below experiment. Evidently, mc andðms −mdÞ=ΛQCD are not sufficiently large and small, respec-
tively, for this approach to properly account for U-spin breaking
in y12.
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ϕΓ
2 ¼ Im

�
2λb

λs − λd

Γ1

Γ2

�
¼
���� λbθC

���� sin γ × Γ1

Γ2

: ð112Þ

Taking into account the U-spin breaking hierarchy
Γ1=Γ2 ¼ Oð1=ϵÞ, cf. (103), yields the rough SM estimates6

ϕΓ
2∼

���� λbθC
���� sin γ × 1

ϵ
; ð113Þ

and similarly for ϕM
2 . In terms of the most recent CKM fits

[28,29], we obtain

ϕ12 ∼ ϕΓ
2 ∼ ϕM

2 ∼ ð2.2 × 10−3Þ ×
�
0.3
ϵ

�
: ð114Þ

The third phase, ϕ2, is seen to be of same order, barring
large cancelations, cf. (110).
An alternative expression for ϕΓ

2 in the SM follows from
(112), via the relation jΓ2j ≅ jyjΓD=λ2s ,

jϕΓ
2 j ¼

���� λbλs sin γy

���� jΓ1j
ΓD

¼ 0.005

�
0.66%
jyj

� jΓ1j
ΓD

∼ 0.005ϵ; ð115Þ

where in the second relation we have incorporated the
current central value of jyj [6], and in the last relation we
have taken Γ1 ∼ ϵΓD (recall that the inclusive approach
yields Γij ∼ ΓD). The estimates for ϕΓ

2 in (114) and (115)
are consistent with each other (for illustrative purposes, if
we identify their respective ϵ factors, the two estimates
would coincide for ϵ ≈ 0.36).
The ϵ dependence in (115) has been shifted to the

numerator, compared to (114) [note that y ¼ Oðϵ2Þ]. This
allows us to obtain an approximate upper bound on ϕΓ

2 ,
which we briefly describe here. A detailed discussion will
be given elsewhere [30]. We rewrite the ratio of widths in
(115) as

jΓ1j
ΓD

¼ jΓsdj
ΓD

ϵ1; ð116Þ

where, cf. (103),

ϵ1 ≡ jΓdd − Γssj
jΓsdj

¼ OðϵÞ: ð117Þ

Moreover, SUð3ÞF flavor symmetry arguments yield the
bound

jΓsdj
ΓD

< 1þOðϵÞ: ð118Þ

The OðϵÞ correction in (118) originates from differences
between the D0 decay matrix elements for U-spin related
DCS and CF final states, modulo the CKM factors. It is
expected to be small since it does not depend on U-spin
breaking from phase space differences.7 (It is interesting to
note that jΓsdj=ΓD ≈ 0.6–0.75 has been obtained in the
OPE based approach [19].) Thus, we obtain the absorptive
CPV upper bound,

jϕΓ
2 j < 0.005

�
0.66%
jyj

�
ϵ1½1þOðϵÞ�; ð119Þ

where, conservatively, ϵ1 < 1.
Combining (118) with the measured value of y also

yields the lower bound, cf. (103),

ðϵ2Þ2 ≡ jΓss þ Γdd − 2Γsdj
jΓsdj

> 0.14

� jyj
0.66%

�
½1þOðϵÞ�:

ð120Þ
Given that ðϵ2Þ2 ¼ Oðϵ2Þ, (120) confirms the existence of
large U-spin breaking in D0 − D̄0 mixing.
In principle, Γ1 can be estimated via the exclusive

approach, as more data on SCS D0 decay branching ratios
and direct CP asymmetries become available. It relies on
the U-spin decomposition of exclusive contributions to Γ1.
Details can be found in [31]. Unfortunately, the potentially
large contributions from high multiplicity final states would
complicate this program, as in the case of ΔΓD.

C. Final state dependence

The misalignments between the final state dependent
phases ϕM

f , ϕ
Γ
f , ϕλf , and their theoretical counterparts are

equal in magnitude, satisfying

δϕf ≡ ϕΓ
f − ϕΓ

2 ¼ ϕM
f − ϕM

2 ¼ ϕ2 − ϕλf : ð121Þ
Below, we discuss the size of δϕf in the SM for (i) SCS
decays, (ii) CF/DCS decays to K�X, and (iii) CF/DCS
decays to K0X, K̄0X.

1. SCS decays

The amplitudes for the SCS decay modes D0 → f and
D̄0 → f in the SM can be written as, see e.g., [32],

Af ¼ 1

2
ðλ�s − λ�dÞAf;1 þ λ�bAf;0;

Āf ¼ 1

2
ðλs − λdÞĀf;1 þ λbĀf;0; ð122Þ

with substitutions f → f̄ for the CP conjugate modes. The
first and second terms in each relation are the ΔU ¼ 1 and

6We thank Yuval Grossman for this estimate. 7Phase space differences enter the rhs of (118) at Oðϵ2Þ [30].
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ΔU ¼ 0 transition amplitudes, respectively, where the
former is due to the current-current operators Q1, Q2,
and the latter is dominated by their QCD penguin con-
tractions. Generically, both amplitudes are Oð1Þ in SUð3ÞF
breaking, and the ΔU ¼ 0 amplitude is parametrically
suppressed by Oðλb=θCÞ. (Two exceptions are men-
tioned below).
The amplitudes for decays to CP eigenstates are gen-

erally of the form given in (16). In the case of SCS decays,
comparison with (122) yields the weak phase,

arg

�
ηCPf

Af

Āf

�
¼ −2 arg½λs − λd� − 2iξþ 2rf cos δf sinϕf;

ð123Þ

where the sum of the first two terms on the rhs is identified
with 2ϕ0

f (the second term originates from the choice of
meson phase convention), and in the SM,

δf ¼ arg½Af;0=Af;1�; ϕf ¼ −γ; rf ¼
���� λbθC

Af;0

Af;1

����:
ð124Þ

Combining (108) and (123) yields the following expres-
sions for the CPVINT phases ϕM

f , ϕ
Γ
f , cf. (18), (19),

ϕM
f ¼ πð1 − ηM2 Þ=2þ ϕM

2 − 2rf cos δf sin γ;

ϕΓ
f ¼ πð1 − ηΓ2Þ=2þ ϕΓ

2 − 2rf cos δf sin γ: ð125Þ

Given that ϕM
f , ϕΓ

f ≈ 0 (rather than π) for f ¼ πþπ−,
KþK−, cf. (62), we learn that the first term on the rhs
of each relation in (125) must vanish, i.e., ηM2 ¼ ηΓ2 ¼ þ, as
claimed in (106). In turn, the misalignment in (121) for a
CP eigenstate final state, is given by

δϕf ¼ −2rf cos δf sin γ ¼ −adf cot δf; ð126Þ

where the direct CP asymmetry, adf, has been defined
in (51).
It is instructive to rewrite the CPVINT asymmetry ΔYf,

cf. (63), in terms of ϕM
2 , and the subleading decay

amplitude parameters rf, ϕf, and δf, cf. (124),

ΔYf

ηfCP
¼ −x12 sinϕM

2 − 2rf sinϕfðx12 cos δf þ y12 sin δfÞ:

ð127Þ

Previously, we saw that the leading amplitude contribution
is purely dispersive for CP eigenstate final states, because
the requisite CP-even phase difference is only present in
the dispersive mixing amplitude (δ ¼ π=2). Similarly, it is
now clear that the strong phase dependence of the

dispersive and absorptive contributions entering at first
order in the subleading amplitudes, cf. (127), can be
attributed to the strong phase differences π=2þ δf and
δf, between their respective interfering decay chains.
In the case of SCS decays to non-CP eigenstates, the

misalignments of the CPVINT phases, cf. (20)–(22),
generalize as

δϕf ¼ −ðrf cos δf þ rf̄ cos δf̄Þ sin γ
¼ −ðadf cot δf þ ad

f̄
cot δf̄Þ=2; ð128Þ

where rf, δf are defined as in (124); rf̄, δf̄ correspond to
the substitutions f → f̄ therein; and ϕf ¼ ϕf̄ ¼ −γ. The
direct CP asymmetries have been defined in (71).
The misalignments (126), (128) for SCS decays are

nonperturbative, and incalculable at present, like the direct
CP asymmetries. However, the strong phases are expected
to satisfy δf;f̄ ¼ Oð1Þ, due to large rescattering at the charm
mass scale, yielding the order of magnitude estimates
δϕf ¼ Oðλb sin γ=θCÞ. In particular, the misalignments,
like the direct CP asymmetries adf are Oð1Þ in SUð3ÞF
breaking. Thus, they are parametrically suppressed relative
to the theoretical phases in the SM, cf. (112),

δϕf

ϕM
2

;
δϕf

ϕΓ
2

¼ OðϵÞ: ð129Þ

For example, the recent LHCb discovery [33] of a
nonvanishing difference between the D0 → KþK− and
D0 → πþπ− direct CP asymmetries yields the world
average [6],

ΔadirCP ≡ adKþK− − adπþπ− ¼ −0.00164� 0.00028: ð130Þ

In the U-spin symmetric limit, adπþπ− ¼ −adKþK− [34],
implying the rough estimate δϕf ∼ 0.08% for these decays.
Dividing by the SM estimates for ϕM

2 and ϕΓ
2 in (114) or

(115) yields significant misalignments, consistent with the
parametric suppression in (129) for sizable ϵ ∼ 0.4.
Fortunately, the KþK− and πþπ− misalignments, like the

direct CP asymmetries [34], are equal and opposite in the
U-spin limit, i.e.,

ðδϕKþK− þ δϕπþπ−Þ ¼ OðϵδϕKþK−;πþπ−Þ;
ðadKþK− þ adπþπ−Þ ¼ OðϵadKþK−;πþπ−Þ: ð131Þ

Thus, the average of ϕM;Γ
f over f ¼ KþK−; πþπ− satisfies,

1

2
ðϕM;Γ

KþK− þ ϕM;Γ
πþπ−Þ ¼ ϕM;Γ

2 ½1þOðϵ2Þ�; ð132Þ

and the average of the time dependent CP asymmetries in
(63) satisfies,
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AΓ ¼ −x12ϕM
2 ½1þOðϵ2Þ�; ð133Þ

where we have used the relations x12 ∼ y12 and δϕf ∼ adf.
As has already been noted, largeU-spin violation is likely

to play an important role in mixing. Moreover, the δϕf for
SCS decays are inherently nonperturbative. Therefore,
while (129) implies that the order of magnitude estimates
(114), (115) for ϕM;Γ

2 apply equally well to the measured
phases ϕM;Γ

f in the SM,Oð1Þ variations cannot be ruled out.
The latter possibility would correspond to the weakest form
of approximate universality. Ultimately, precision measure-
ments of the indirect and directCP asymmetries in a host of
SCS decays will clarify the situation.
We point out that in the presence of NP in SCS decays,

the expressions for the misalignments, δϕf, in the second
relations of (126), (128) remain valid. In particular, the
direct CP asymmetries ad

f;f̄
and the strong phases δf;f̄ now

depend on the total subleading amplitudes, i.e., the sums of
the QCD penguin and NP amplitudes. The δϕf would be of
same order as in the SM, provided that the CP-odd NP
amplitudes are similar in size, or smaller than the SM QCD
penguin amplitudes, as already hinted at by the current
bounds on direct CPV in D0 → KþK−; πþπ− decays.
Finally, we mention two SCS decay modes,D0 → K0K̄0

and D0 → K�0K̄0, which violate the OðϵÞ counting in
(129). ForD0 → K0K̄0, the first term in (122) is suppressed
byOðϵÞ (as reflected in the rate), yieldingOð1=ϵÞ enhance-
ments of δϕf, the direct CP asymmetry [35,36], and the
misalignment, i.e., δϕf=ϕ

M;Γ
2 ¼ Oð1Þ in the SM. ForD0 →

K�0K̄0, the first term in (122) is not formally suppressed by
OðϵÞ. However, a large accidental cancelation between
contributions related by K�0 ↔ K̄0 interchange (again
reflected in the measured decay rate), again enhances
δϕf, and the direct CP asymmetry [37]. Thus, in effect,
the misalignment could be Oð1Þ, as for K0K̄0.

2. CF/DCS decays to K�X

The CPVINT observables in this class are given in (20),
(21), with the modified sign convention of (24). The CKM
factors enter the CF/DCS amplitudes as Af ∝ V�

csVud (CF)
and Āf ∝ VcdV�

us (DCS). Thus, in the SM and, more
generally, in models with negligible new weak phases in
CF/DCS decays, Eqs. (25) and (108) yield the absorptive
and dispersive phases,

ϕMðΓÞ
f ¼ ϕMðΓÞ

2 þ arg

�
−
V�
csVud

VcdV�
us
ðλs − λdÞ2

�
: ð134Þ

Employing CKM unitarity, the misalignments, given by the
second term on the rhs, are seen to satisfy

δϕf ¼ O

�
λ2b
λ2d

�
: ð135Þ

Thus, for CF/DCS decays to K�X, the misalignments
vanish up to a negligible (and precisely known) final-state
independent correction of Oð10−6Þ. This represents the
strongest form of approximate universality, i.e., the uni-

versal limit ϕMðΓÞ
f ¼ ϕMðΓÞ

2 . In particular, CPVINT mea-
surements in these decays directly determine the theoretical
phases.

3. CF/DCS decays to K0X, K̄0X

We begin with a discussion of the misalignments in this
class of decays in the limit that the DCS decays are
neglected. Expressions for the CPVINT observables and
time-dependent decay widths in this approximation are
given in (33)–(36) and Sec. III C, respectively. The mis-
alignments follow from (36). One ingredient is the phase of
qK=pK. To excellent approximation [1], this ratio satisfies
the relation

qK
pK

¼ A0

Ā0

ð1 − 2ϵKÞ; ð136Þ

where A0;2 denote the K0 → ðππÞI¼0;2 amplitudes, respec-
tively, i.e., they are ΔI ¼ 1=2; 3=2 transitions. Keeping
track of the CKM factors, these amplitudes can be
written as

A0ð2Þ ¼ VudV�
usA0ð2Þ þ VtdV�

tsB0ð2Þ

¼ VudV�
usA0ð2Þ½1þ r0ð2Þ�; ð137Þ

yielding

arg

�
qK
pK

�
¼ 2 arg½VudV�

us� − 2ϵI þ 2Im½r0�: ð138Þ

A second ingredient is the CP-odd phase in the ratio of CF
amplitudes, AK̄0X=ĀK0X,

2ϕ0
K̄0X ¼ 2 arg½V�

csVud� − 2iξ

¼ 2 arg½V�
usVud� þ 2 arg½λ�s � − 2iξ: ð139Þ

Finally, combining (108), (138), and (139) yields the final
state independent absorptive and dispersive phases,

ϕMðΓÞ
f ¼ ϕMðΓÞ

2 þ 2ϵIþ
���� λbλs

���� sin γ − 2Im½r0�: ð140Þ

The last term in (140) is nonperturbative in origin.
However, it enters the kaon CPV observable, ϵ0K=ϵK , as

8

8In a phase convention commonly employed for discussions of
ϵ0K=ϵK , Im½r0ð2Þ� ¼ Im½A0ð2Þ�=Re½A0ð2Þ�.
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Re

�
ϵ0K
ϵK

�
¼ ð1.66� 0.23Þ × 10−3 ½10�

¼ −
ωffiffiffi
2

p jϵj ðIm½r0� − Im½r2�Þ; ð141Þ

where ω≡ ðA2=A0Þ ≈ 1=22. Equating the measured value
of Re½ϵ0K=ϵK� with the first term on the rhs of the second
relation in (141), i.e., assuming modest cancelation with A2

[38], yields the estimate

Im½r0� ≈ 1.2 × 10−4: ð142Þ

Similarly, the dominant chirally enhanced penguin operator
(Q6) contribution to A0 yields [38],

Im½r0� ≈ 1.5 × 10−4Bð1=2Þ
6 ; ð143Þ

where the matrix element parameter Bð1=2Þ
6 ¼ 1 in the large

NC limit. (A recent study [39] claiming that the SM
prediction for ϵ0=ϵ could be significantly smaller than
the measured value obtains Im ½r0� < 10−4).
Thus, in the limit that the DCS amplitudes are neglected,

the misalignments satisfy

δϕf ¼ 2ϵIþ
���� λbλs

���� sin γ ¼ 3.7 × 10−3; ð144Þ

up to a small CP-odd ratio of K → ππ amplitudes, given by
−2Im½r0� ¼ Oð10−4Þ. The latter lies an order of magnitude
below our SM estimates for the theoretical phases ϕM

2 , ϕ
Γ
2

in (114), (115) and can be neglected.
Finally, we address the impact of the DCS amplitudes.

Expanding the CPVINTobservables in (30) to first order in
the DCS amplitudes, the weak and strong phases in λM;Γ

KS=LX

are seen to be related to those in λM;Γ
f (cf. (31) and (34),

respectively), as

ϕM½KS=LX� ¼ ϕM
f � ðrf cos δf þ rf̄ cos δf̄Þδϕf;

ϕΓ½KS=LX� ¼ ϕΓ
f � ðrf cos δf þ rf̄ cos δf̄Þδϕf;

Δ½KS=LX� ¼ Δf � ðrf sin δf − rf̄ sin δf̄Þ; ð145Þ

where δϕf is given in (144). We recall that ϕM;Γ
f are the

CPV phases in the absence of the DCS amplitudes, rf and
rf̄ are the magnitudes of DCS to CF amplitude ratios,

rf ¼
����AK0X

AK̄0X

����; rf̄ ¼
���� ĀK̄0X

ĀK0X

����; ð146Þ

and δf, δf̄ are the strong phase differences of the corre-
sponding amplitude ratios. Finally, their magnitudes are
related as

jλMKS=LX
j ¼ jλMf jð1 − ½rf cos δf − rf̄ cos δf̄�Þ;

jλM
KS=LX

j ¼ jλM
f̄
jð1þ ½rf cos δf − rf̄ cos δf̄�Þ; ð147Þ

and similarly for M → Γ.
Expressions for the time dependent decay widths,

including the DCS amplitudes, are obtained via insertion
of the CPVINT observables (31) and the full expressions
for the decay amplitudes (32) into the general formulas
(85) for the time-dependent amplitudes. The result can be
brought into the same general form as (87), (88).
Effectively, the prefactors in Eqs. (87) and (88), the ratiosffiffiffiffiffiffi
Rf

p
, and the expressions (90), (91) for the coefficients are

modified at Oðrf; rf̄Þ, i.e., Oðθ2CÞ. For example, the
coefficients contain new CP-even terms of Oðrf;f̄Þ, and
new CP-odd terms of OðϵKrf;f̄Þ. These corrections pro-
duce relative shifts in the CP averaged decay rates, as well
as the indirect CP asymmetries listed in (92), (93), (97),
of Oðθ2CÞ.
Our primary focus here is on the absorptive and

dispersive CPVINT phases. As previously noted, they
only reside in the pure KS contributions to the time
dependent widths (to first order in CPV). In particular,
ϕM;Γ
f are replaced by ϕM;Γ½KSX� in the coefficients c�f , c

�̄
f
,

cf. (145), (90). Consequently, the misalignments (144) are
modified as

δϕf ≡ ϕMðΓÞ½KSX� − ϕMðΓÞ
2

¼
�
2ϵIþ

���� λbλs
���� sin γ

�
ð1þ rf cos δf þ rf̄ cos δf̄Þ

¼
�
2ϵIþ

���� λbλs
���� sin γ

�
ð1þO½θ2C�Þ: ð148Þ

Thus, while the DCS corrections to the CPVINT phases are
final state dependent, they are of Oð2θ2CϵIÞ, or Oð0.1ϕM;Γ

2 Þ
in the SM. This represents a more generic form of
approximate universality than what we found in the
previous two classes of decays, i.e., an Oð10%Þ variation
among the ϕM

f and ϕΓ
f , corresponding to a similar variation

in the CPVINT asymmetries. The shifts in the asymmetries
remain at this order when taking all of the DCS corrections
to the widths into account. We therefore conclude that their
inclusion in (87), (88) is not warranted for the interpretation
of CPVINT data at SM sensitivity.

V. IMPLEMENTATION OF APPROXIMATE
UNIVERSALITY

In this section, we discuss how to convert the general
expressions for the time dependent decay widths and
indirect CP asymmetries obtained in Sec. III B to the
approximate universality parametrization, in the three
classes of decays. For CF/DCS decays to K0X, K̄0X, we
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pay special attention to ϵK induced effects at LHCb and
Belle-II.

A. SCS decays

For SCS decays, the theoretical absorptive and dispersive
CPV phases replace the final state dependent ones via the
substitutions,

ϕM
f → ϕM

2 ; ϕΓ
f → ϕΓ

2 ; ð149Þ

in the expressions for the time dependent decay widths and
CP asymmetries. For decays to CP eigenstates, they enter
the expressions for the decay widths (52) (via Eq. (53) for
c�f ) and the CP asymmetry ΔYf (63). For decays to non-
CP eigenstates, they enter the expressions for the decay
widths (64), (65) (via Eq. (67) for c�f ) and the indirect CP
asymmetries ΔYf, ΔYf̄ (70). Note that the misalignments
δϕf are dropped on the RHS of (149), as they are not
calculable from first principles QCD. Moreover, while
formally of OðϵÞ in U-spin breaking relative to ϕM;Γ

2 , they
could, in principle, yield Oð1Þ variations in ϕM

f and ϕΓ
f in

the SM. In Sec. VI B we discuss a strategy for fits carried
out once SM sensitivity is achieved, and final state
dependent effects in ϕM

f , ϕΓ
f become accessible to

experiment.
The direct CPV (adf) and misalignment (δϕf) contribu-

tions to the CPVINT asymmetries in (63), (70) are of same
order, cf. (126). Therefore, consistency requires us to drop
the adf; a

d
f̄
terms in the CPVINT asymmetries, if we neglect

δϕf in (149). For example, for CP eigenstate final states,
and in the approximate universality parametrization, (63)
reduces to,

ΔYf ¼ −ηfx12 sinϕM
2 ; ð150Þ

and similarly for the non-CP eigenstates (the first line of
each asymmetry in (70) is kept, with ϕM;Γ

f → ϕM;Γ
2 ).

However, we recall that in the average of ΔYf over
f ¼ KþK−; πþπ−, i.e., AΓ, the error incurred by dropping
δϕf and adf is of Oðϵ2Þ, cf. (132), (133).

B. CF/DCS decays to K�X

For CF/DCS decays to K�X, substitute

ϕM
f → ϕM

2 ; ϕΓ
f → ϕΓ

2 ; ð151Þ

in the expressions for the decay widths (73) (via Eq. (75)
for the coefficients c�), and the indirect CP asymmetries
δcf (79). However, in contrast to the SCS decays, the
misalignments are entirely negligible, cf. (135).

C. CF/DCS decays to K0X, K̄0X

In CF/DCS decays to K0X, K̄0X, the final state depen-
dent phases for f ¼ πþπ−X are replaced by the theoretical
phases via the substitutions,

ϕM;Γ
f → ϕM;Γ

2 þ 2ϵIþ
���� λbλs

���� sin γ; ð152Þ

in the widths (87), (88) (via Eq. (90) for the coefficients c�f ,
c�̄
f
), and in the indirect CP asymmetries δcf, δcf̄ (92). The

sum of the last two terms in (152) equals the misalignment
δϕf (144), up to negligible corrections lying an order of
magnitude below our SM estimates of ϕM;Γ

2 , cf. (142),
(143), (148).
At LHCb, the bulk of observed K0=K̄0 → πþπ− decays

take place within a time interval9 t0 ≲ τS=3, while at Belle-II
they can be detected over far longer time intervals,10 e.g.,
t0 ≲Oð10τSÞ. This has important consequences for the
impact of ϵK on the CP asymmetries, e.g., in D0 →
KSπ

þπ− decays, which we discuss below.
The total time dependent CP asymmetries, following

from (87), (88), (92), (93), can be expressed (up to an
overall normalization factor) as

Γf − Γ̄f̄ ¼ −2e−τjĀþ−j2jAK̄0Xj2f2ϵRF0ðt0Þ
þ ffiffiffiffiffiffi

Rf

p
τ½2ϵIðx12 cosΔf þ y12 sinΔfÞF1ðt0Þ

þ ðx12 cosΔf sin ϕ̃
M
2 þ y12 sinΔf sin ϕ̃

Γ
2Þe−ΓSt0 �g;

ð153Þ

and

Γf̄ − Γ̄f ¼ −2e−τjĀþ−j2jAK̄0Xj2f2ϵRF0ðt0Þ
þ ffiffiffiffiffiffi

Rf

p
τ½2ϵIðx12 cosΔf − y12 sinΔfÞF1ðt0Þ

þ ðx12 cosΔf sin ϕ̃
M
2 − y12 sinΔf sin ϕ̃

Γ
2Þe−ΓSt0 �g;

ð154Þ

where, for convenience, we have introduced the phase

ϕ̃M;Γ
2 ≡ ϕM;Γ

2 þ jλb=λsj sin γ: ð155Þ

The CKM term in (155) is ≈6.6 × 10−4. The functions F0,
F1 satisfy,

F0ðtÞ ¼ −e−ΓSt þ e−ΓKt

�
cosΔmKtþ

ϵI
ϵR

sinΔmKt

�
;

F1ðtÞ ¼ e−ΓSt − e−ΓKt

�
cosΔmKt −

ϵR
ϵI

sinΔmKt

�
: ð156Þ

9We thank Marco Gersabek for correspondence on this point.
10We thank David Cinabro for correspondence on this point.
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Note that the ratio ϵI=ϵR ¼ 1, up to a small ≈5% correction,
cf. (29). Negligible CP asymmetries entering atOðτ2Þ have
not been included in (153), (154). Dividing by the sums
over the CP conjugate decay widths yields the normalized
time dependent CP asymmetries,

Γf − Γ̄f̄

Γf þ Γ̄f̄
¼ −f2ϵReΓSt0F0ðt0Þ

þ ffiffiffiffiffiffi
Rf

p
τ½2ϵIðx12 cosΔf þ y12 sinΔfÞeΓSt0F1ðt0Þ

þ ðx12 cosΔf sin ϕ̃
M
2 þ y12 sinΔf sin ϕ̃

Γ
2Þ�g;

ð157Þ

and

Γf̄ − Γ̄f

Γf̄ þ Γ̄f
¼ −f2ϵReΓSt0F0ðt0Þ

þ ffiffiffiffiffiffi
Rf

p
τ½2ϵIðx12 cosΔf − y12 sinΔfÞeΓSt0F1ðt0Þ

þ ðx12 cosΔf sin ϕ̃
M
2 − y12 sinΔf sin ϕ̃

Γ
2Þ�g:

ð158Þ

The function F0 is associated with direct CPV via
integration over τ, and agrees with the expression obtained
in [40]. The functions F1 and e−ΓSt0 are associated with the
contributions of ϵK and ϕM;Γ

2 to the CPVINT asymmetries,
respectively. In Fig. 1, we plot the three functions over a
short time interval of relevance to LHCb, and a longer time
interval of relevance to Belle-II. Over the entire timescale
for observed K0’s at LHCb, e.g., t0 ≲ 0.5τS, the function F1

undergoes a remarkable cancelation down to the few
percent level, while e−ΓSt0 ¼ Oð1Þ. Thus, at LHCb, the
contributions of ϵK to the CPVINT asymmetries are highly
suppressed compared to those of ϕM;Γ

2 (recall that ϕM;Γ
2 ∼

ϵI;R in the SM).

The cancellation in F1 at short times takes place between
the contributions to CPVINT from KL − KS interference
[δbf;f̄, δdf;f̄ in (93)], and from the ϵI term in ϕM;Γ

f (144) [via
δcf;f̄ in (92)]. Thus, for simplicity, analyses of CPVINT in
D0 → KS;Lπ

þπ− decays at LHCb could omit a fit to the
interference terms [∝ e−ΓKt0τ in (87), (88)], if they substitute

ϕM;Γ
f → ϕM;Γ

2 þ jλb=λsj sin γ; ð159Þ

rather than (152). In contrast, over the longer K0 decay
timescales that can be explored at Belle-II, the cancelation in
F1 subsides, and ϵK ultimately dominates the CPVINT
asymmetries in the SM, cf. Fig. 1 (right). Thus, Belle-II
CPVINT analyses must fit for KL − KS interference and
employ the substitutions in (152), in order to extract ϕM;Γ

2 .
Finally, the functionF0 undergoes some cancelation at small
time intervals, e.g., t0 ≲ τS=3, leading to moderate suppres-
sion of direct CPV at LHCb.

VI. CURRENT STATUS AND PROJECTIONS

We perform two global analyses of the current exper-
imental data, collected in Table I, in order to assess the
current sensitivity to the phases ϕM

2 and ϕΓ
2 . (The xCP, yCP,

Δx, Δy entries in Tables I and III correspond to KSπ
þπ−).

We also report on future projections.

A. Superweak limit

Until recently, fits to measurements of indirect CPV were
sensitive to values of ϕ12 down to the 100 mrad level. This
level of precision probed for large short-distance NP
effects. In particular, the effects of weak phases in the
subleading decay amplitudes could be safely neglected in
the indirect CPVobservables. In this limit, referred to as the
superweak limit, a nonvanishing ϕ12 would be entirely due
to short-distance NP in M12, with the CPVINT phases
satisfying

F1(t)

e S t

F0(t)

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8
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t
S

F1(t)

e S t

F0(t)
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0.8
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t
S

FIG. 1. The functions F0ðtÞ, F1ðtÞ, and exp½−ΓSt�, plotted over a short time interval of relevance to LHCb (left), and a longer time
interval of relevance to Belle-II (right), cf. (153)–(156).
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TABLE I. Experimental data used in the analysis, mostly from ref. [6]. Asymmetric errors have been symmetrized.

Observable Value Correlation Coeff. Reference

yCP ð0.72� 0.11Þ% [41–48]
AΓ ð−0.031� 0.020Þ% [45,47,49–52]
x ð0.53� 0.19� 0.06� 0.07Þ% 1 0.054 −0.074 −0.031 [53]
y ð0.28� 0.15� 0.05� 0.05Þ% 1 0.034 −0.019 [53]
jq=pj ð0.91� 0.16� 0.05� 0.06Þ 1 0.044 [53]
ϕ ð−6� 11� 3� 4Þ° 1 [53]

xCP ð0.27� 0.16� 0.04Þ% 1 −0.17 0.04 −0.02 [6]
yCP ð0.74� 0.36� 0.11Þ% 1 −0.03 0.01 [6]
Δx ð−0.053� 0.07� 0.022Þ% 1 −0.13 [6]
Δy ð0.06� 0.16� 0.03Þ% 1 [6]

x ð0.16� 0.23� 0.12� 0.08Þ% 1 0.0615 [54]
y ð0.57� 0.20� 0.13� 0.07Þ% 0.0615 1 [54]

RM ð0.0130� 0.0269Þ% [55–59]

ðx2 þ y2Þ=4 ð0.0048� 0.0018Þ% [60]

ðx0þÞKππ ð2.48� 0.59� 0.39Þ% 1 −0.69 [61]
ðy0þÞKππ ð−0.07� 0.65� 0.50Þ% −0.69 1 [61]
ðx0−ÞKππ ð3.50� 0.78� 0.65Þ% 1 −0.66 [61]
ðy0−ÞKππ ð−0.82� 0.68� 0.41Þ% −0.66 1 [61]

RD ð0.533� 0.107� 0.045Þ% 1 0 0 −0.42 0.01 [62]

x2 ð0.06� 0.23� 0.11Þ% 0 1 −0.73 0.39 0.02 [62]

y ð4.2� 2� 1Þ% 0. −0.73 1 −0.53 −0.03 [62]
cos δKπ ð0.84� 0.2� 0.06Þ −0.42 0.39 −0.53 1 0.04 [62]
sin δKπ ð−0.01� 0.41� 0.04Þ 0.01 0.02 −0.03 0.04 1 [62]

RD ð0.3030� 0.0189Þ% 1 0.77 −0.87 [63]

ðx0þÞ2Kπ ð−0.024� 0.052Þ% 0.77 1 −0.94 [63]

ðy0þÞKπ ð0.98� 0.78Þ% −0.87 −0.94 1 [63]

AD ð−2.1� 5.4Þ% 1 0.77 −0.87 [63]

ðx0−Þ2Kπ ð−0.020� 0.050Þ% 0.77 1 −0.94 [63]

ðy0−ÞKπ ð0.96� 0.75Þ% −0.87 −0.94 1 [63]

RD ð0.364� 0.018Þ% 1 0.655 −0.834 [64]

ðx0þÞ2Kπ ð0.032� 0.037Þ% 0.655 1 −0.909 [64]

ðy0þÞKπ ð−0.12� 0.58Þ% −0.834 −0.909 1 [64]

AD ð2.3� 4.7Þ% 1 0.655 −0.834 [64]

ðx0−Þ2Kπ ð0.006� 0.034Þ% 0.655 1 −0.909 [64]

ðy0−ÞKπ ð0.20� 0.54Þ% −0.834 −0.909 1 [64]

RD ð0.351� 0.035Þ% 1 −0.967 0.900 [65]
ðy0CPAÞKπ ð0.43� 0.43Þ% −0.967 1 −0.975 [65]

ðx0CPAÞ2Kπ ð0.008� 0.018Þ% 0.900 −0.975 1 [65]

RD ð0.3454� 0.0028� 0.0014Þ% 1 −0.883 0.745 −0.883 0.749 [66]
ðy0þÞKπ ð0.501� 0.048� 0.029Þ% 1 −0.944 0.758 −0.644 [66]

ðx0þÞ2Kπ ð6.1� 2.6� 1.6Þ10−5 1 −0.642 0.545 [66]

ðy0−ÞKπ ð0.554� 0.048� 0.029Þ% 1 −0.946 [66]

ðx0−Þ2Kπ ð1.6� 2.6� 1.6Þ10−5 1 [66]
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ϕM
f ¼ ϕM

2 ¼ ϕ12; ϕΓ
f ¼ 0; ϕλf ¼ ϕ2: ð160Þ

For example, the expression for the SCS time dependent
CP asymmetry in (63) would reduce to11

ΔYf ¼ −ηfCPx12 sinϕM
2 : ð161Þ

Thus, the phase ϕM
2 (or ϕ12) would be the only source of

indirect CPV. Consequently, CPVMIX and CPVINTwould
be related as [3–5],

tan 2ϕ2 ≈ −
x212

x212 þ y212
sin 2ϕM

2 ; ð162Þ

or, equivalently, as

tanϕ2 ≈
�
1−

���� qp
����
�
x
y
; ð163Þ

where (162) is the superweak limit of (46).
Superweak fits to the data are highly constrained, given

that there is only one CPV parameter controlling all of
indirect CPV. The second column in Table II contains the
results of our fit to the mixing parameters with current data
in the superweak framework. We see that sensitivity to ϕM

2

is ≈22 mrad at 1σ, and ≈54 mrad at 95% probability, while
sensitivity to ϕ2 is ≈5 mrad at 1σ, and ≈11 mrad at 95%
probability.12 Some superweak correlation plots are also
shown in the first row of Fig. 2. The Heavy Flavor
Averaging Group (HFLAV) [6] has obtained similar results,

ϕM
2 ¼ −0.004� 0.016ð1σÞ; ϕ2 ¼ 0.001� 0.005ð1σÞ:

ð164Þ

Comparison with the SM ranges (114) implies that an order
of magnitude window for NP remains, at 95% probability,
in the CPVINT phases.

B. Approximate universality fits

It is encouraging that the 1σ error on ϕ2 in the superweak
fit (5 mrad), and the U-spin based SM estimates for ϕM;Γ

2 ,
ϕ12 in (114), (115) are only about a factor of two apart.
However, this means that the approximate universality
parametrization is advisable moving forward. Inspection
of the relations between ϕ2 and ϕM;Γ

2 in (110), (111),
reinforces this conclusion. Approximate universality fits
are less constrained, given that they employ two CPV
parameters rather than a single one to describe indirect
CPV. Hopefully, this will be overcome in the high statistics
LHCb and Belle-II precision era, and SM sensitivity in
ϕM;Γ
2 will be achieved. This possibility is assessed below.
We remark that an approximate universality fit for any

two of the phases ϕM
2 , ϕΓ

2 , and ϕ12 is equivalent to a
(traditional) two-parameter fit for ϕ2 and jq=pj, with
translations provided by (45), (109)–(111). General for-
mulas for the decay widths, given in terms of ϕλf and jq=pj,
can be converted to approximate universality formulas
which depend on ϕ2 and jq=pj, via the substitutions
ϕλf → ϕ2 (SCS), ϕλf → ϕ2 (CF/DCS K�X), ϕλf → ϕ2 −
2ϵI − jλb=λsj sin γ (CF/DCS K0X, general), and ϕλf →

ϕ2 − jλb=λsj sin γ (CF/DCS K0X, LHCb). These are analo-
gous to the substitutions for ϕM;Γ

f in (149), (151), (152), and
(159), respectively.
We begin with a fit to the current data, cf. Table I, for the

phases ϕM
2 and ϕΓ

2 . We implement the substitutions for ϕM;Γ
f

given in (149), (151), (159), and employ the expression
for ΔYf in (150). The KL − KS interference terms in the

TABLE II. Results of fits to the current and future D mixing data within the superweak and approximate universality frameworks,
where the phases are defined in Eq. (107).

Superweak—current Approx. univ.—current Approx. univ.—future

Parameter 68% prob. 95% prob. 68% prob. 95% prob. Estimated 68% prob.

103x12 3.6� 1.1 [1.3, 5.7] 3.7� 1.2 [1.3, 5.9] �0.017
104y12 60.3� 5.7 [49, 73] 59.6� 5.6 [49, 71] �0.19
102ϕM

2 [rad] −0.5� 2.2 ½−6.1; 4.7� −1.0� 2.9 ½−10.0; 5.7� �0.12
102ϕΓ

2 [rad] 0 0 −3.2� 9.9 ½−23; 16� �0.17
102ϕ12 [rad] −0.5� 2.2 ½−6.1; 4.7� 2.6� 9.7 ½−20; 22� �0.21

103x 3.6� 1.1 [1.3, 5.8] 3.7� 1.2 [1.3, 6.0] �0.017
104y 60.3� 5.7 [49, 73] 59.5� 5.6 [48, 71] �0.19
103ðjq=pj − 1Þ −2.3� 9.0 ½−21; 16� 8� 41 ½−73; 99� �0.92
102ϕ2 [rad] 0.12� 0.51 ½−0.96; 1.26� 2.5� 7.2 ½−13; 17� �0.13

11In the superweak limit, the effects of weak phases in the
SCS decay amplitudes are neglected in time dependent
CP asymmetries, but they are kept in time integrated ones,
where they are not suppressed by x12, y12.12Smaller errors for ϕ2 than ϕM

2 in the superweak fit can be
traced to the small central value of the prefactor in (162),
x212=ðx212 þ y212Þ ≈ 0.26.
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D → KS;Lπ
þπ− decay widths (87), (88) are ignored, as

in the experimental analyses. As explained in Sec. V C,
this does not affect the determination of ϕM;Γ

2 at LHCb,
provided that the substitution in (159) is employed. For
the Belle D0 → KS;Lπ

þπ− analysis [53], omission of KL −
KS interference is not an issue, given its experimental
precision.
The results of the approximate universality fit appear in

the third column of Table II, and in the second row of
correlation plots in Fig. 2. It is interesting to notice that the
error on ϕM

2 is about a factor of three smaller than the error
on ϕΓ

2 , and is similar to the corresponding superweak error.
This can be traced, in part, to the observable AΓ ¼ −ΔYf,
for f ¼ πþπ−, KþK−. It has a relatively small experimental
error, and it only depends on the product x12 sinϕM

2 in the
fit [compare (150), (161)]. However, both ϕ2 and jq=pj − 1
are determined with order of magnitude larger uncertainties
in the approximate universality framework, due to their
dependence on both ϕM

2 and ϕΓ
2 .

In the future, as SM sensitivity in CPVINT is
approached, a modified strategy will be appropriate. As

discussed in Sec. IV C 1, significant and nonuniversal
misalignment ratios δϕf=ϕ

M;Γ
2 could manifest themselves

in the SCS measurements, even though they are formally
OðϵÞ in U-spin breaking. In contrast, the misalignments in
CF/DCS decays are either negligible (K�X), or known to
very good approximation (K0X; K̄0X), cf. Secs. IV C 2, IV
C 3. Thus, at that this point one could simply drop the SCS
observables from the global fits to ϕM

2 , ϕ
Γ
2 . Alternatively,

one could only include the SCS final states πþπ− and
KþK− in the global fits, via their averaged time dependent
CP asymmetry AΓ, thus taking advantage of the Oðϵ2Þ
suppression of the averaged QCD penguin pollution,
cf. (133).
It is interesting to point out that simultaneous knowledge

of ϕM;Γ
2 from CF/DCS decays, and of the direct CP

asymmetries in the SCS decays could be used to determine
the relative magnitudes and strong phases of the corre-
sponding subleading SCS decay amplitudes in the SM, i.e.,
rf and δf. This can be seen forCP eigenstate final states via
(51) with ϕf ¼ γ, (63) with ϕM

f ¼ ϕM
2 þ δϕf, and (126),

and similarly for non-CP eigenstate final states. Thus,
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FIG. 2. P.d.f.’s for mixing parameters in the superweak (first row) and approximate universality scenarios, see text. Darker (lighter)
regions correspond to 68% (95%) probability. Notice the order-of-magnitude difference in the scale of the rightmost plots.

TABLE III. Estimated uncertainties on mixing parameters from CF/DCS decays in the LHCb Phase II Upgrade. Correlations from
current results have been used where available.

δðxCPÞ 3.8 × 10−5 δðyCPÞ 8.6 × 10−5 δðΔxÞ 1.7 × 10−5 δðΔyÞ 3.8 × 10−5 [11] scaled by luminosity
δðy0þÞKπ 3.2 × 10−5 δðy0−ÞKπ 3.2 × 10−5 δðx0þÞ2Kπ 1.7 × 10−6 δðx0−Þ2Kπ 1.7 × 10−6 [66] scaled by luminosity
δðxKπππÞ 2 × 10−5 δðyKπππÞ 2 × 10−5 δðjq=pjKπππÞ 2 × 10−3 δðϕKπππÞ 0.1° [67]
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important information on the QCD anatomy of these
decays could be obtained.
To illustrate the potential for probing the SM in the

precision era, we use the (naïvely) estimated experimental
sensitivities reported in Table III for the LHCb Phase II
Upgrade era, for three decay modes: D0 → KS;Lπ

þπ−,
Kþπ−, and Kþπ−πþπ−. We caution that scaling the errors
on the individual measurements purely based on the
expected statistics may be optimistic. The results of the
fit are presented in the rightmost columns in Table II and in
Fig. 3 (including the SCS observable AΓ leads to marginal
improvement in the sensitivity to ϕM

2 in Phase II). They
suggest that SM sensitivity to ϕM;Γ

2 may be achievable,
particularly if these phases lie on the high end of ourU-spin
based estimates. Moreover, additional input from Belle-II
indirect CPV measurements at 50 ab−1 [68], e.g., for the
decays D0 → KS;Lπ

þπ−, Kþπ−, Kþπ−π0, and AΓ, may
improve the sensitivity.

VII. DISCUSSION

In this paper we have developed the description of CP
violation in D0 − D̄0 mixing in terms of the final state
dependent dispersive and absorptive weak phases ϕM

f and
ϕΓ
f . They govern CP violation in the interference between

decays with and without dispersive mixing, and with and
without absorptive mixing, respectively. The expressions
for the time dependent decay widths and CP asymmetries
undergo extensive simplifications compared to the familiar
parametrization in terms of jq=pj and ϕλf (translations are
provided), and become physically transparent. For instance,
their dependence on the strong phases in the decay
amplitudes, and the CP-even dispersive mixing phase
π=2, are easily understood. This understanding extends
to the strong phases of the subleading decay amplitudes,
e.g., those responsible for direct CP violation in
D0 → KþK−; πþπ−. An important consequence is that
the time dependent CP asymmetries for decays to CP
eigenstate final states, e.g., f ¼ KþK−; πþπ−, depend on
ϕM
f (dispersive CP violation), but not on ϕΓ

f (absorptive CP
violation). Conversely, the ϕΓ

f can only be probed in decays

to non-CP eigenstate final states, e.g., the CF/DCS final
states f ¼ Kþπ−; KS;Lπ

þπ−.
We have applied the dispersive/absorptive formalism to

the three classes of decays which contribute to D0 − D̄0

mixing, (i) CF/DCS decays to K�X, (ii) CF/DCS decays to
K0X, K̄0X, and (iii) SCS decays (both CP eigenstate and
non-CP eigenstate final states). Derivations and expressions
have been provided for the time dependent decay widths and
asymmetries in all three cases. The CF/DCS decays to K0X,
K̄0X require special care due to the effects ofCPVinK0 − K̄0

mixing. Moreover, their widths depend on two elapsed time
intervals, theD andK decay times, following their respective
production. The Appendix contains expressions for a selec-
tion of time-integrated CP asymmetries, demonstrating that
they can also be used to separately measure ϕM

f and ϕΓ
f .

Measurements of the final state dependent phases ϕM
f

and ϕΓ
f ultimately determine a pair of intrinsic mixing

phases ϕM
2 and ϕΓ

2 , respectively, cf. (107). The latter are the
arguments, in the complex mixing plane, of the total
dispersive and absorptive mixing amplitudes M12 and
Γ12, relative to their dominant ΔU ¼ 2 (U-spin) compo-
nents. The latter are responsible for the neutral D meson
mass and width differences. The intrinsic mixing analog
(ϕ2) of the final state dependent phenomenological phases
ϕλf , is similarly defined as the argument of q=p relative to
the ΔU ¼ 2 mixing amplitude. The U-spin decomposition
of the dispersive and absorptive mixing amplitudes yields
the SM estimates ϕM

2 ;ϕ
Γ
2 ¼ Oð0.2%Þ, cf. (112)–(115),

(119), with ϕ2 of same order. We also obtain an upper
bound on the absorptive phase in the SM, jϕΓ

2 j < 0.005
[30], when taking ΔΓD equal to its measured central value,
and conservatively assuming that a certain U-spin breaking
parameter satisfies ϵ1 < 1, cf. (117), (119).
The intrinsic mixing phases are experimentally acces-

sible due to approximate universality. In particular, we have
shown that there is minimal uncontrolled final-state de-
pendent pollution from the decay amplitudes in the
measured phases ϕM

f , ϕ
Γ
f :

(i) For the CF/DCS K�X final states, e.g., Kþπ−, in the
SM and in extensions with negligible new weak
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phases in these decays, the difference δϕf between
ϕM;Γ
2 and ϕM;Γ

f is known, final state independent, and
entirely negligible, i.e., it is Oðλ2b=λ2dÞ ∼ 10−6,
cf. (134), (135).

(ii) For the CF/DCS K0X final states, e.g., KS;Lπ
þπ−, in

the SM and under the same NP assumptions, there
are two contributions to the misalignments, δϕf: a
small incalculable final state dependent one of
Oð2θ2CIm½ϵK�Þ ∼ 0.1ϕM;Γ

2 , due to the subleading
DCS amplitudes, and a precisely known one of
Oð2Im½ϵK�Þ ∼ ϕM;Γ

2 which can be subtracted from
the measured values of ϕM;Γ

f , cf. (148).
(iii) For the SCS decays, e.g., f ¼ KþK−, πþπ−, there is

uncontrolled final state dependent QCD penguin
pollution. In the SM, and for extensions with CP-
odd QCD penguins of same order, the misalign-
ments satisfy δϕf=ϕ

M;Γ
2 ¼ OðϵÞ in U-spin breaking.

This could be sizable for certain decays. A U-spin
based estimate, taking into account ΔACP, yields the
representative value ϵ ∼ 0.4, or δϕKþK− ; δϕπþπ− ¼
Oð0.4ÞϕM;Γ

2 , cf. (129)–(132). Fortunately, the aver-
age over ϕM;Γ

KþK− and ϕM;Γ
πþπ− differs from ϕM;Γ

2 by
Oðϵ2Þ.

Expressions for the time dependent decay widths in the
approximate universality parametrization, i.e., in termsofϕM

2 ,
ϕΓ
2 , have been discussed in detail for the three classes of

decays, cf. Sec. V. Our results for the K0X final states are
particularly noteworthy. On the timescale of sequential K0

decays at LHCb (t≲ 0.5τS), the effect of kaon CP violation
on the time dependent CP asymmetries (due to KLX − KSX
interference, and an Im½ϵK� component in ϕM;Γ

f ) undergoes a
cancelation at the few percent level. Thus, to very good
approximation, LHCb analyses of these modes can neglect
the effects of kaon CP violation in measurements of ϕM;Γ

2

from the time dependent CP asymmetries. In contrast, over
the longerK0 decay timescales that can be explored at Belle-
II, the cancelation subsides, and ϵK ultimately dominates the
time dependent CP asymmetries. Thus, Belle-II analyses
must fit for KL − KS interference effects, and account for
Im½ϵK� in the extraction of ϕM;Γ

2 .
In the future, the values of ϕM;Γ

2 obtained from the CF/
DCS decays will allow a determination of the misalign-
ments, δϕf, in the SCS decays. In combination with
measurements of the SCS direct CP asymmetries, adf, it
will be possible to determine the anatomy of the QCD
penguins in the SM, e.g., for f ¼ KþK−, πþπ−. In
particular, taking the SM value γ for the weak phases of
the penguin amplitudes relative to the dominant “tree”
amplitudes, it will be possible to measure their relative
magnitudes and strong phases. This would provide an
important test of QCD dynamics, if lattice measurements of
these quantities become available.

Past fits to the mixing data were sensitive to values of
ϕ12 ¼ arg½M12=Γ12� ¼ ϕM

2 − ϕΓ
2 down to the 100 mrad

level. This level of precision probed for large short-distance
new physics contributions. Thus, the effects of weak phases
in the subleading decay amplitudes could be safely
neglected in the indirect CPV observables. In this limit,
referred to as superweak, the mixing phases satisfy
ϕ12 ¼ ϕM

2 , and ϕΓ
2 ¼ 0. We have carried out a fit to the

current data set in this limit, yielding ϕM
2 ¼ ð−0.5� 2.2Þ%

at 1σ, consistent with the HFLAV fit result, and corre-
sponding to an Oð10Þ window for New Physics at 2σ.
The approximate universality fit is less constrained,

given the description of indirect CP violation in terms
of two phases, ϕM

2 and ϕΓ
2 , rather than just one. Interest-

ingly, in this case, our errors for ϕM
2 (≈29 mrad) are similar

to the superweak fit result, and about a factor of three
smaller than the errors for ϕΓ

2 (≈99 mrad). This is due, in
part, to the observable AΓ ¼ −ΔYf (f ¼ πþπ−, KþK−),
which depends on ϕM

2 but not on ϕΓ
2 , and has a relatively

small experimental error. The phenomenologically moti-
vated phase ϕ2 is a weighted sum over ϕM

2 and ϕΓ
2 , where

the weights are equal to the leading CP averaged dispersive
and absorptive mixing probabilities, respectively, cf. (110).
This explains why the error on ϕ2 (≈72 mrad) is similar to
the error on ϕΓ

2 .
The U-spin based estimates of ϕM

2 and ϕΓ
2 imply that

probing the SM will require a precision of a few mrad or
better for both phases. Given the large theoretical uncer-
tainties, a null result as this sensitivity is approached would
effectively close the window for new physics in charm
indirect CP violation. Alternatively, the most likely origin
for a significantly enhanced signal would be CP violating
short distance new physics, yielding ϕM

2 ≫ ϕΓ
2 , with the

latter given by its SM value. A second possibility, light CP
violating new physics, would enter both the dispersive and
absorptive mixing amplitudes via new D0 decay modes,
likely enhancing both ϕM

2 and ϕΓ
2 . This appears unlikely,

given the upper bounds on exotic D0 decay rates. For
instance, for invisible D0 decays, the upper bound on the
branching ratio, Brinv < 9.4 × 10−5 (90% CL) [9], con-
strains the invisible contribution to ϕΓ

2 as δϕΓ
2 ≲ Brinv=θ2C∼

0.2%, i.e., the upper bound lies at the SM level (before
taking into account additional suppression due to the
relative magnitudes of the interfering invisible decay
amplitudes, and their weak and strong phase differences).
Moreover, the upper bound on contributions from D0 →
K0þ invisibles is about a factor of 30 smaller.13

Finally, based on available LHCb Phase II projections for
the decays D0 → KS;Lπ

þπ−, Kþπ−, Kþπ−πþπ−, and AΓ,

13An upper bound on Dþ → Kþþ invisibles, BrKþþinv < 8 ×
10−6 [69], yields δϕΓ

2 ≲ ðBrKþþinv=θ2CÞðΓDþ=ΓD0Þ ∼ 6.5 × 10−5,
well below the SM estimates, where we have assumed similar
widths for the semi-invisible Dþ and D0 decays.
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we have estimated the precision that could be reached for
ϕM;Γ
2 in the upcoming high statistics charm era, using an

approximate universality fit. Note that our results are
intended to be illustrative, given that the LHCb phase II
projections do not include systematic errors. The resulting
1σ errors for ϕM

2 (≈1.2 mrad) and ϕΓ
2 (≈1.7 mrad) suggest

that sensitivity to ϕM;Γ
2 in the SM may be achievable,

particularly if these phases lie on the high end of the U-
spin based estimates. Measurements of ϕM;Γ

2 could one
day become available on the lattice. Comparison with
their measured values would provide the ultimate
precision test for the SM origin of CP violation in
charm mixing.
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APPENDIX: CPVINT PHASES ϕM
2 , ϕ

Γ
2 FROM

TIME-INTEGRATED CP ASYMMETRIES

We give expressions for a few time integrated CP
asymmetries, illustrating the possibility of determining
the theoretical CPVINT phases purely from time-integrated
decays. We begin with the tagged and untagged CP
asymmetries for the CF/DCS final states f ¼ Kþπ−,
f̄ ¼ K−πþ (Af̄, Āf are the DCS amplitudes):

Atag;DCSðCFÞ
CP ≡

R
dtðΓD0ðtÞ→f̄ðfÞ−ΓD̄0ðtÞ→fðf̄ÞÞR
dtðΓD0ðtÞ→f̄ðfÞþΓD̄0ðtÞ→fðf̄ÞÞ

;

Auntag
CP ≡

R
dtðΓD0ðtÞ→f̄þΓD̄0ðtÞ→f̄−ΓD0ðtÞ→f−ΓD̄0ðtÞ→fÞR
dtðΓD0ðtÞ→f̄þΓD̄0ðtÞ→f̄þΓD0ðtÞ→fþΓD̄0ðtÞ→fÞ

:

To obtain their dependence on the CPVINT phases, we
must keep the subleading DCS amplitudes in (72), in
analogy to the CF contributions in (73). Assuming no new
weak phases in the CF/DCS decays as in the SM, hence no
direct CPV, the amplitude ratios simplify as Rf ¼ 1=Rf̄ ¼
R�
f , cf. (74). Thus, Eqs. (72) and (73) yield

ffiffiffiffiffiffi
Rf

p
Atag;DCS
CP ¼ x12 sinϕM

f cosΔf − y12 sinϕΓ
f sinΔf;

Atag;CF
CPffiffiffiffiffiffi
Rf

p ¼ x12 sinϕM
f cosΔf þ y12 sinϕΓ

f sinΔf:

ðA1Þ

The absorptive and dispersive CPV phases are then readily
separated as

Atag;CF
CPffiffiffiffiffiffi
Rf

p −
ffiffiffiffiffiffi
Rf

p
Atag;DCS
CP ¼ −

ð1þ RfÞAuntag
CPffiffiffiffiffiffi

Rf
p

¼ 2y12 sinϕΓ
2 sinΔf

Atag;CF
CPffiffiffiffiffiffi
Rf

p þ ffiffiffiffiffiffi
Rf

p
Atag;DCS
CP ¼ 2x12 sinϕM

2 cosΔf; ðA2Þ

whereΔf is the Kþπ− strong phase, cf. (24). We have taken
ϕM;Γ
f ¼ ϕM;Γ

2 , cf. (134), (135). Note that the untagged CP
asymmetry is purely absorptive.
We end with the time integrated CP asymmetries for the

SCS final states f ¼ πþπ−; KþK−:

ASCS
CP;f ≡

R
dtðΓD0ðtÞ→f − ΓD̄0ðtÞ→fÞÞR
dtðΓD0ðtÞ→f þ ΓD̄0ðtÞ→fÞ

: ðA3Þ

We obtain the expression

ASCS
CP;f ¼ adf þ

hti
τD

ΔYf ¼ adf þ
hti
τD

ð−x12 sinϕM
f þ y12adfÞ;

ðA4Þ

where hti is the average (acceptance dependent) decay time
of the D0 mesons in the experimental sample. The ratio
hti=τD is very close to 1 at the B factories; at LHCb, it
exceeds 1 by about 5%–10% for the muon-tagged sample
[33], while it is in the 1.7–1.8 range for the D�þ-tagged
sample [70].14 Recall that in the SM, for SCS decays,

ϕM
f ¼ ϕM

2 − adf cot δf ¼ ϕM
2 ½1þOðϵÞ�; ðA5Þ

where δf is the strong phase difference between the leading
and subleading D0 → f decay amplitudes, and adf is the
direct CP asymmetry, cf. (126). However, the average of
ϕM
f over f ¼ KþK−; πþπ− differs from ϕM

2 by Oðϵ2Þ in
U-spin breaking, cf. (126), (129), (132).
The time integrated CP asymmetry difference ΔACP ¼

ACP;KþK− − ACP;πþπ− [33] can be expressed in terms of ϕM
2

and the direct CP asymmetries as

14We thank T. Pajero for pointing this out to us.
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ΔACP ¼ adK − adπ

þ htKi þ htπi
2τD

ðx12½adK cot δK − adπ cot δπ�

þ y12½adK − adπ�Þ

−
htKi − htπi

2τD
ðx12½2 sinϕM

2 − adK cot δK − adπ cot δπ�

− y12½adK þ adπ�Þ; ðA6Þ

where the subscripts K and π refer to the KþK− and πþπ−
final states, respectively. At LHCb the difference of the two
average decay times satisfies htKi − htπi ≈ 0.12τD. The
corrections to the first line in (A6) are negligible, as is well
known. In particular, we find that the contribution propor-
tional to the sum of the average decay times is of
Oðx12adf; y12adfÞ. The contribution proportional to the differ-
ence of decay times is ofOð0.1x12ϕM

2 Þ, given that ðadK þ adπÞ
and ðadK cot δK þ adπ cot δπÞ are formally of Oðϵ2 · ϕM

2 Þ.
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