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The electric charge renormalization constant, as defined in the Thomson limit, is expressed in terms of
self-energies of the photon–Z-boson system in an arbitrary Rξ gauge to all perturbative orders. The
derivation as carried out in the Standard Model holds in all spontaneously broken gauge theories with the
SUð2Þw × Uð1ÞY gauge group in the electroweak sector and is based on the application of charge
universality to a fake fermion with infinitesimal weak hypercharge and vanishing weak isospin, which
effectively decouples from all other particles. Charge universality, for instance, follows from the known
universal form of the charge renormalization constant as derived within the background-field formalism.
Finally, we have generalized the described procedure to gauge theories with gauge group Uð1ÞY × G with
any Lie group G, only assuming that electromagnetic gauge symmetry is unbroken and mixes with Uð1ÞY
transformations in a nontrivial way.
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I. INTRODUCTION

The issue of electric charge renormalization is as old as
quantum electrodynamics (QED) and relativistic quantum
field theory. In order to give the electric unit charge e the
same physical meaning as in classical electrodynamics, in
QED the renormalized value of e is defined by the
condition that the electron-photon vertex for physical
(on-shell) electrons does not receive any corrections in
the limit of zero-momentum transfer for the photon, also
known as Thomson limit. Gauge invariance and this
condition, in particular, imply that the low-energy limit
of Compton scattering goes over into classical Thomson
scattering without receiving radiative corrections—a state-
ment also known as Thirring’s theorem [1]. By virtue of the
famous Ward identity for the electron-photon vertex, the
Thomson condition implies that the product eAμ of e and
the (canonically normalized) photon field Aμ is not renor-
malized, i.e., e0A

μ
0 ¼ eAμ if we denote bare quantities

before renormalization with a subscript zero. Following the
usual approach of multiplicative renormalization, the bare
and renormalized quantities are related by e0 ¼ Zee and
Aμ
0 ¼ Z1=2

AA A
μ, so that the charge renormalization constant

Ze and the photon wave-function renormalization constant
ZAA are related by Ze ¼ Z−1=2

AA . In practice, this means that

Ze can be determined upon calculating the photon self-
energy only, although it is defined via some condition
demanded for an interaction vertex. All this is standard
knowledge and very well described in many textbooks on
quantum field theory, such as Refs. [2–5].
In the Standard Model (SM) of particle physics and its

extensions, the unit charge e is defined by the same
condition in the Thomson limit as in QED, but owing to
the more complicated gauge symmetry as compared to
QED and the mixing between photons and Z bosons, the
determination of Ze from this condition is way more
complicated. In the 1980s and early 1990s the renormal-
ization of the (electroweak part of the) SM was formulated
in different variants [6–13] and worked out in detail at the
one-loop level (see Ref. [14] for a detailed review and
further references). Using again a Ward identity for the
fermion-photon vertex, it was possible to express the one-
loop contribution to Ze in terms of self-energies of the
photon–Z-boson system, but the underlying Ward identity
was first justified by explicit one-loop calculations and
derived from the underlying Lee identities for vertex
functions in Ref. [14] only recently. Whether it is possible
to derive Ze in all perturbative orders from self-energies
only, was (to our knowledge) not clear until the mid 1990s.
The first all-order prescription to express Ze in terms of

self-energies was formulated in Ref. [15] within the back-
ground-field method (BFM) [16–21] (see also Refs. [3–5]),
which provides an alternative to the conventional formal-
ism for quantizing gauge theories. The special feature of the
BFM is the gauge invariance of the effective action which
implies QED-like Ward identities for vertex functions.
Applied to the fermion-photon vertex, these identities
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can be used to show that in analogy to QED the combi-
nation eAμ is not renormalized, so that Ze is determined by
the photon wave-function renormalization constant of the
BFM. Even Thirring’s theorem could be proven to all
orders with arguments based on BFM gauge invariance
[22]. Exploiting the simple connection between the charge
renormalization constant Ze and the photon self-energy, the
constant Ze was explicitly calculated at the two-loop level
in Ref. [23]. In the same paper it was also verified that the
explicit two-loop result for Ze, as obtained in the BFM,
leads to the correct Thomson limit of the renormalized
fermion-photon vertex in the conventional ’t Hooft-
Feynman gauge, thereby confirming the universality (in
the sense of independence of gauge-fixing procedures or
quantization formalisms) of Ze, which follows from the fact
that the Thomson condition is formulated at the basis of a
physical S-matrix element.
Existing electroweak calculations beyond one loop are

still scarce, including for instance the fullOðα2Þ corrections
to muon decay [24,25] and the fermion-loop contributions
of Oðα2Þ [26] and Oðαsα2Þ [27] to the Z-boson decay.
Since those calculations have not been carried out in the
BFM, the charge renormalization constant was calculated
within the conventional quantization formalism. For the
calculation of the required higher-order contributions to Ze
the authors of Refs. [24–27] refer to Ref. [28], where an all-
order result for Ze in terms of gauge-boson self-energy
contributions is given for Rξ gauges. Inspecting, however,
the derivation of Ze of Ref. [28], which is based on the
Slavnov-Taylor (ST) identities for the Green functions of
the photon-fermion vertex and the propagators in the
photon–Z-boson sector, we find severe inconsistencies,
as detailed in the Appendix. At the two-loop level,
however, the claimed form of Ze was confirmed by an
explicit calculation in ’t Hooft-Feynman gauge in
Refs. [29–31], where it was shown that the sum of all
genuine vertex corrections and fermionic wave-function
corrections to the photon-fermion vertex vanishes in the
Thomson limit; this is exactly the part in the calculation of
Ze that is ruled by gauge invariance and that is yet unproven
in conventional Rξ gauge to all orders.
The purpose of this paper is to fill this gap and to derive

an all-order form for Ze in arbitrary Rξ gauge. To anticipate
our result, we confirm the previously claimed all-order
form of Ze, thus, providing an a posteriori justification to
the charge renormalization as carried out in the calculations
of Refs. [24–27]. Our proof is based on charge universality,
which is the statement that any fermion may be taken in the
Thomson renormalization condition for the fermion-photon
vertex without changing the result on the renormalized unit
charge e. Charge universality, in particular, implies that the
ratios between bare charges of particles, which are often
fixed by symmetry relations (like the charge ratio of up and
down quarks), survive the procedure of renormalization. In
Ref. [10] charge universality was proven to all orders by

employing Lee identities to appropriate vertex functions1;
alternatively charge universality follows from the derivation
[15] of Ze in the BFM, which does not distinguish any
fermion.With chargeuniversality proven,we canmakeuse of
this property at will. We are, thus, allowed to demand the
Thomson renormalization condition to fix e even for a “fake
fermion” that does not exist in the SM as long as it does not
change any prediction for observables. This decoupling
property is guaranteed by taking a nonchiral fake fermion
with an infinitesimal weak hypercharge and vanishing weak
isospin. As will be shown, all nontrivial irreducible vertex
corrections and fermionic wave-function contributions
appearing in the Thomson renormalization condition for
the fake fermiondropout in the calculationofZe, andonly the
contributions from the self-energies of the photon–Z-boson
system remain. Finally, we mention that decoupling “fake
particles” were already used in the formulation of on-shell
renormalization conditions for mixing angles in Ref. [32].
This concept appears very promising whenever it is desirable
to reduce unnecessary dependences on specific particles or
model parameters from renormalization procedures.
Since the described procedure only makes use of the

gauge structure of the SM, the SM result for Ze in terms of
renormalization constants for the photon–Z-boson system
holds in all gauge theories with the SUð2Þw × Uð1ÞY gauge
group and the same pattern of spontaneous gauge sym-
metry breaking as the SM in the electroweak sector. The
further generalization of the charge renormalization pro-
cedure to spontaneously broken gauge theories with gauge
group Uð1ÞY × G with any Lie group G and an embedding
of unbroken electromagnetic gauge symmetry analogous to
the SM is fully straightforward and presented after our
treatment of the SM.
The article is organized as follows: In Sec. II we review

the on-shell renormalization of the photon–Z-boson system
as far as relevant for treating external photons in scattering
amplitudes, in order to introduce the renormalization con-
stants that are relevant for charge renormalization and to
keep this paper self-contained as much as possible. In this
context we also consider the implications of electromagnetic
gauge invariance on those renormalization constants and
discuss the masslessness of the photon, both in conventional
Rξ gauge and the BFM. Section IV describes charge
renormalization and the determination of Ze in the BFM
in detail, following the proposal sketched in Ref. [15]; this

1Actually, Ref. [10] offers three derivations of charge univer-
sality. The first version (Sec. 3.4.2 of Ref. [10]) is based on
arguments of S-matrix theory, but leaves some loop holes as
pointed out also there; it is thus more a proof of self-consistency.
The second and third versions of the proof, which are based on
Lee identities (Sec. 3.4.3) and Becchi–Rouet–Stora invariance
(Sec. 3.4.4) of the theory, respectively, make use of the Landau
gauge in some steps. This gauge choice does not restrict the proof
of the property of charge universality, but the derived relations
between Green functions, renormalization constants, etc. do not
all hold in an arbitrary Rξ gauge.
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derivation can also be seen as an independent proof of
charge universality. Section IV presents the all-order der-
ivation of Ze in conventional Rξ gauge based on the idea of
introducing a fake fermion and constitutes the major part of
this work. The generalization of the charge renormalization
procedure to Uð1ÞY ×G gauge theories is described in
Sec. V. Finally, we give some conclusions in Sec. VI.

II. ON-SHELL RENORMALIZATION IN THE
PHOTON–Z-BOSON SECTOR

A. Basic definitions and on-shell
renormalization conditions

We first consider on-shell (OS) renormalization in the
photon–Z-boson sector of the SM to all orders and work it
out to the extent towhich it is important in the formulation of
charge renormalization. The procedure is widely identical in
the conventional formalism and in the BFM, so that we keep
the presentation generic in the first steps. Unless stated
otherwise, we consistently make use of the conventions and
notation of Ref. [14] for all field-theoretical quantities.
We start from the decomposition of the unrenormalized

two-point functions ΓV 0V
μν in momentum space into trans-

versal (T) and longitudinal (L) parts,

ΓV 0V
μν ð−k; kÞ ¼

�
gμν −

kμkν
k2

�
ΓV 0V
T ðk2Þ þ kμkν

k2
ΓV 0V
L ðk2Þ;

V; V 0 ¼ A; Z; ð2:1Þ

where k is the momentum transfer. Unrenormalized means
that no renormalization transformation of parameters and
fields is performed yet and the vertex functions are obtained
from taking functional derivatives of the effective action
with respect to bare fields and expressed in terms of bare
parameters. Bare parameters and fields are marked by a
subscript “0” in the following.
In the renormalization procedure, mainly the transversal

parts ΓV 0V
T will be relevant. The unrenormalized vertex

function ΓV 0V
T receives lowest-order contributions and

higher-order corrections from one-particle-irreducible (1PI)
loop diagrams and tadpole contributions.2 Considering the

definition of potentially nonzero vacuum expectation values
as part of defining the theory in terms of bare quantities, the
tadpole counterterms are also part of ΓV 0V

T . Splitting off the
lowest-order parts from ΓV 0V

T and calling the higher-order
part the unrenormalized self-energy ΣV 0V

T , we have

ΓV 0V
T ðk2Þ¼−δV 0Vðk2−δVZM2

Z;0Þ−ΣV 0V
T ðk2;fci;0gÞ; ð2:2Þ

with δV 0V and δVZ being Kronecker deltas and MZ;0

denoting the bare Z-boson mass and

ΣV 0V
T ðk2; fci;0gÞ ¼ ΣV 0V

T;1PIðk2; fci;0gÞ þ ΣV 0V
T;tadðk2; fci;0gÞ:

ð2:3Þ

Here, ΣV 0V
T;1PI comprises the 1PI loop diagrams and ΣV 0V

T;tad all
contributions containing tadpole corrections. The list fci;0g
of arguments is added in order to make clear that the self-
energies are parametrized by the bare parameters ci;0 of the
theory.
In the OS renormalization scheme, the renormaliza-

tion transformation for the photon and Z-boson fields is
given by

�
Z0

A0

�
¼

�
Z1=2
ZZ Z1=2

ZA

Z1=2
AZ Z1=2

AA

��
Z

A

�
; ð2:4Þ

where the bare fields on the lhs are expressed in terms
of the renormalized fields Z, A on the rhs and ZV 0V are
the field renormalization constants to be determined by
the OS renormalization conditions. Those conditions are
demanded for the renormalized two-point functions ΓV 0V

R;μν,
which are related to the unrenormalized two-point func-
tions according to

ΓV 0V
R;μνð−k; kÞ ¼

X
V1;V2¼A;Z

Z1=2
V1V 0Z

1=2
V2V

ΓV1V2
μν ð−k; kÞ; ð2:5Þ

which directly follows from the field transformation (2.4).
The renormalization transformation of the remaining fields
and of the parameters of the theory does not spoil this
relation, because the other field transformations merely
redistribute terms between vertex and internal propagator
corrections, and the parameter renormalization transforma-
tion merely reparametrizes the vertex functions. Obviously
the form of relation (2.5) carries over to the transversal and
longitudinal parts of ΓV 0V

R;μν and ΓV 0V
μν independently.

Moreover, there is the obvious symmetry

ΓV 0V
R;μνð−k;kÞ¼ΓVV 0

R;μνð−k;kÞ; ΓV 0V
μν ð−k;kÞ¼ΓVV 0

μν ð−k;kÞ:
ð2:6Þ

For charge renormalization we need the constants ZAA
and ZZA, which are derived from the renormalization
conditions for on-shell (k2 ¼ 0) photons,

2Following the conventions of Ref. [14] for one-loop correc-
tions, we define self-energy functions like ΣV 0V to contain all
contributions from tadpole diagrams and tadpole counterterms,
here generically called ΣV 0V

tad . The notation is somewhat at
variance from Ref. [14], where (one-loop) tadpole counterterm
contributions are separated from the explicit tadpole loops and
called ΣV 0V

δt . Collecting all contributions with explicit tadpole
diagrams and/or tadpole counterterms into ΣV0V

tad saves us from
some clutter and an arbitrary classification of diagrams with both
tadpole loops and tadpole counterterms. The tadpole parts ΣV 0V

tad
depend on the tadpole scheme, i.e., on the details of the definition
of vacuum expectation values of Higgs fields (see, e.g., Ref. [14]
and references therein), but those details will not play a role in the
following.
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lim
k2→0

ΓZA
R;μνð−k; kÞενðkÞ ¼ 0; ð2:7Þ

lim
k2→0

1

k2
ΓAA
R;μνð−k; kÞενðkÞ ¼ −εμðkÞ; ð2:8Þ

where εμðkÞ is the polarization vector of a photon with
momentum k. The first of those conditions ensures that on-
shell photons do not fluctuate into Z-boson states, the
second keeps photon states canonically normalized, i.e.,
normalized as in lowest order. Note that there is no extra
condition to fix the pole in the photon propagator to the
location at k2 ¼ 0, because there is no free parameter like a
photon mass that could be renormalized to achieve this.
This condition is implied by gauge invariance automati-
cally. However, this fact is encoded in the conventional
formalism and in the BFM in different ways and will be
discussed in the subsequent sections.
The conditions (2.7) and (2.8) involve only the trans-

versal parts of ΓVA
R;μν, while the longitudinal parts drop out in

these relations. To derive the implications on the transversal
parts and on the desired renormalization constants, we
decompose the renormalized transversal parts of the vertex
functions into loop contributions and remainders that
contain lowest-order and counterterm contributions,

ΓV 0V
R;T ðk2Þ ¼ −δV 0Vðk2 − δVZM2

ZÞ − ΣV 0V
R;T ðk2; fcigÞ

¼ −Z1=2
AV 0Z

1=2
AV k

2 − Z1=2
ZV 0Z

1=2
ZV ðk2 −M2

Z − δM2
ZÞ

− ΣV 0V
SR;Tðk2; fcigÞ; ð2:9Þ

where fcig indicates the parametrization in terms of
renormalized parameters ci. The renormalized self-energies
ΣV 0V
R;T comprise all higher-order corrections (loops, tadpoles,

counterterms, and mixed contributions thereof) and are UV
finite by construction. The terms in the second line
containing the Z factors directly result from the free
Lagrangian after the field transformation (2.4) and from
the Z-boson mass renormalization M2

Z;0 ¼ M2
Z þ δM2

Z,
which will not be important in the following. The sub-
graph-renormalized (SR) self-energies ΣV 0V

SR;T contain all
loop and tadpole contributions and insertions of counter-
terms into loops, but no genuine counterterm contributions
without loop part which are extracted by the terms with the
Z factors. The SR self-energies are, in general, not UV
finite, but the potential UV divergences are of polynomial
structure in k2 with degree one. Using (2.9), we can express
the renormalized self-energies in terms of SR self-energies
and renormalization constants,

ΣV 0V
R;T ðk2; fcigÞ
¼ ΣV 0V

SR;Tðk2; fcigÞ þ ðZ1=2
AV 0Z

1=2
AV þ Z1=2

ZV 0Z
1=2
ZV − δV 0VÞk2

− ðZ1=2
ZV 0Z

1=2
ZV − δV 0ZδVZÞM2

Z − Z1=2
ZV 0Z

1=2
ZV δM

2
Z: ð2:10Þ

Recalling further (2.4) and (2.5), the subgraph-renormal-
ized self-energies are related to unrenormalized self-ener-
gies according to

ΣV 0V
SR;Tðk2; fcigÞ ¼

X
V1;V2¼A;Z

Z1=2
V1V 0Z

1=2
V2V

ΣV1V2

T ðk2; fci;0gÞ:

ð2:11Þ

Parameter renormalization in the self-energies simply
means to replace the bare parameters ci;0 appearing as
arguments on the rhs by the renormalized parameters ci and
corresponding renormalization constants δci according to

ci;0 ¼ ci þ δci: ð2:12Þ

Although not needed in the following, but to further
classify the contributing diagrams, we split the contribu-
tions to the unrenormalized self-energy ΣV 0V

T ðk2; fci;0gÞ
into the part ΣV 0V

T ðk2; fcigÞ with the ci;0 simply renamed
into ci and a remainder part ΣV 0V

T;δcðk2; fcigÞ that absorbs all
effects of the renormalization constants δci,

ΣV 0V
T ðk2; fci;0gÞ ¼ ΣV 0V

T ðk2; fcigÞ þ ΣV 0V
T;δcðk2; fcigÞ

¼ ΣV 0V
T;1PIðk2; fcigÞ þ ΣV 0V

T;tadðk2; fcigÞ
þ ΣV 0V

T;δcðk2; fcigÞ: ð2:13Þ

The last equation states that ΣV 0V
T ðk2; fci;0gÞ is calculated

from the 1PI and tadpole contributions to the self-energy,
ΣV 0V
T;1PIðk2; fcigÞ þ ΣV 0V

T;tadðk2; fcigÞ, which are parametrized

by renormalized parameters ci, and ΣV 0V
T;δcðk2; fcigÞ, result-

ing from all possible insertions of counterterm vertices
containing the parameter renormalization constants δci.
Note that in this procedure the counterterm contribution
ΣV 0V
T;δc does not contain any effects from field renormaliza-

tion. The effects of field renormalization are completely
encoded in the Z factors appearing on the rhs of (2.11).
These factors entirely result from the transformation of the
external fields V 0, V, which are the sources of the effective
action, in accordance with the well-known fact that
renormalization effects of internal fields in Feynman graphs
completely cancel between counterterm insertions in
propagators and interaction vertices. To reduce clutter in
the notation, in the following we suppress the arguments
fci;0g and fcig in the self-energy functions with the
implicit understanding that ΣV 0Vðk2Þ≡ ΣV 0Vðk2; fci;0gÞ,
ΣV 0V
SR ðk2Þ≡ ΣV 0V

SR ðk2; fcigÞ, and ΣV 0V
R ðk2Þ≡ ΣV 0V

R ðk2; fcigÞ.
Inserting the renormalized vertex functions into the

renormalization conditions (2.7) and (2.8) yields

0 ¼ ΓZA
R;Tð0Þ ¼ −ΣZA

R;Tð0Þ
¼ Z1=2

ZZ Z
1=2
ZA ðM2

Z þ δM2
ZÞ − ΣZA

SR;Tð0Þ; ð2:14Þ
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0¼ 1þΓAA0
R;Tð0Þ¼−ΣAA0

R;Tð0Þ¼ 1−ZAA−ZZA−ΣAA0
SR;Tð0Þ;

ð2:15Þ

where prime means the derivative with respect to the
function argument, i.e., f0ðk2Þ ¼ ∂fðk2Þ=∂k2. The first
of those equations is suited for an order-by-order calcu-
lation of Z1=2

ZA , the second provides ZAA,

Z1=2
ZA ¼ ΣZA

SR;Tð0Þ
Z1=2
ZZ ðM2

Z þ δM2
ZÞ

; ð2:16Þ

ZAA ¼ 1 − ZZA − ΣAA0
SR;Tð0Þ: ð2:17Þ

Recalling the leading behavior of the renormalization
constants in terms of the electromagnetic coupling
α ¼ e2=ð4πÞ,

ZAA¼ 1þOðαÞ; ZZZ ¼ 1þOðαÞ;
Z1=2
ZA ¼OðαÞ; Z1=2

AZ ¼OðαÞ; δM2
Z ¼OðαÞ; ð2:18Þ

we see that Eqs. (2.16) and (2.17) can be used to calculate
the n-loop contributions to Z1=2

ZA and ZAA from the evalu-
ation of the subgraph-renormalized ZA and AA self-
energies to n loops and from the (n − 1)-loop contributions
to the renormalization constants ZZZ and δM2

Z from the
Z-boson sector. Note also that the (n − 1)-loop contribu-
tions to all parameter renormalization constants δci in
general enter the evaluation of ΣVA

T;δc to n loops.
The above OS renormalization procedure for photons

works for any condition employed to fix the renormaliza-
tion constants ZZZ, Z

1=2
AZ , and δM2

Z of the Z-boson sector,
which enter one loop level lower than intended for Z1=2

ZA and
ZAA. We leave the renormalization in the Z-boson sector
open, which bears additional issues owing to the instability
of Z bosons (see, e.g., Ref. [14] and references therein).
Finally, we come back to the stability of the massless-

ness of the photon with respect to radiative corrections. To
this end, we determine the location of the particle pole in
the photon propagator GAA

μν . Recall that the propagators
Gb0b for the neutral boson fields b, b0 (comprising the
neutral gauge bosons A, Z, the neutral Goldstone boson χ,
and the Higgs field H in the SM) result from the matrix
inverse of all two-point vertex functions −iΓb0b. The
transverse parts GV 0V

T of the neutral-gauge-boson propa-
gators GV 0V

μν , which are relevant for the renormalization of
the gauge-boson masses and fields, can be obtained from
the matrix inverse of the vertex functions −iΓV 0V

T only. For
the AZ system this inversion is simple and leads to the
following result for the transversal part of the unrenor-
malized photon propagator:

GAA
T ðk2Þ ¼ −i

�
k2 þ ΣAA

T ðk2Þ − ½ΣAZ
T ðk2Þ�2

k2 −M2
Z;0 þ ΣZZ

T ðk2Þ
�−1

:

ð2:19Þ

The photon, thus, stays massless after switching on the
interactions of the theory if the unrenormalized self-
energies obey the relation

0 ¼ ΣAA
T ð0Þ½M2

Z;0 − ΣZZ
T ð0Þ� þ ½ΣAZ

T ð0Þ�2: ð2:20Þ

We will check this relation in arbitrary Rξ gauge and in the
BFM below.
Since the propagators are vacuum expectation values of

time-ordered products of field operators, i.e., GV 0V
μν ðx; yÞ ¼

h0jTV 0
0;μðxÞV0;νðyÞj0i, the transversal parts GV 0V

R;T of the
renormalized propagators are related to their unrenormal-
ized counterparts according to

GV 0V
T ðk2Þ ¼

X
V1;V2¼A;Z

Z1=2
V 0V1

Z1=2
VV2

GV1V2

R;T ðk2Þ: ð2:21Þ

Owing to this linear, invertible relation between renormal-
ized and unrenormalized propagators, no new poles appear
in the set of all GV1V2

R;T . In particular, this and identity (2.20)
imply that the location of the pole of GAA

R;T is at k
2 ¼ 0, like

its unrenormalized counterpart GAA
T . That GAZ

R;T does not
develop a pole at k2 ¼ 0 is achieved by the renormalization
condition (2.7) with solution (2.16). Finally, condition
(2.15) ensures that the residue of GAA

R;T for the pole at
k2 ¼ 0 is equal to 1.

B. Implications from gauge invariance
in arbitrary Rξ gauge

In Rξ gauge, Green functions, defined by vacuum
expectation values of time-ordered products of field oper-
ators, obey ST identities as a consequence of the Becchi-
Rouet-Stora (BRS) symmetry of the Lagrangian after
quantization (see, e.g., Refs. [2–5]). These ST identities
can be transferred to identities of vertex functions, known
as Lee identities. In general all those identities are very
complicated owing to the occurrence of Green or vertex
functions involving Faddeev-Popov fields or BRS varia-
tions of fields. Fortunately, in order to prove (2.20), we just
need a consequence of the Lee identities for gauge-boson
two-point functions of the two-dimensional AZ system,
which can be stated as [4,10]

det ðΓ̃V 0V
L ðk2ÞÞ ¼ 0; ð2:22Þ

where Γ̃V 0V
L is the longitudinal part of the V 0V two-point

function from which the tree-level parts of the gauge-fixing
terms are subtracted. Since the full two-point function Γ̃V 0V

μν ,
which is decomposed as in (2.1), cannot develop a pole for
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k2 → 0, the 1=k2 terms in the decomposition (2.1)
have to cancel for k2 → 0, i.e., Γ̃V 0V

T ð0Þ ¼ Γ̃V 0V
L ð0Þ for all

V 0; V ¼ A, Z. Realizing further that ΓV 0V
T ðk2Þ ¼ Γ̃V 0V

T ðk2Þ,
because the tree-level gauge-fixing terms do not contribute
to the transversal parts, Eq. (2.22) implies

det ðΓV 0V
T ð0ÞÞ ¼ 0: ð2:23Þ

Inserting the decomposition (2.2) of ΓV 0V
T into lowest-order

parts and self-energies, directly leads to the identity (2.20),
which was to show.

C. Implications from gauge invariance and
renormalization constants in the

background-field method

In the BFM, any field Ψ is split into a background part Ψ̂
and a quantum part Ψ, where the quantum fields are the
integration variables in the functional integral used for
quantization and the background fields act as sources in the
resulting effective action Γ̂½Ψ̂�. The great benefit of the
BFM is the invariance of the effective action Γ̂½Ψ̂� under
background gauge transformations of its sources Ψ̂. This
leads to QED-like Ward identities for the vertex functions
that are derived from Γ̂½Ψ̂� upon taking functional deriv-
atives with respect to the fields Ψ̂. These Ward identities
imply relations between renormalization constants similar
to the relations known from QED, including the charge
renormalization constant [15].
In the following, we spell out the procedure of charge

renormalization in the BFM, as suggested in Ref. [15],
based on the Thomson limit for the Af̄f vertex for a
charged fermion f with a photon of momentum k → 0. As a
result, the charge renormalization constant can be derived
from the photon wave function renormalization constant,
i.e., the specific fermion f is not distinguished over any
other charged fermion of the theory. The fact that the
Thomson limit of the photon coupling to any charged
fermion (and actually to any charged particle) can be taken
to define the electric unit charge e in a fully equivalent way
proves charge universality. In the next section we will
exploit charge universality, however, in a different way.
We begin our derivation by recalling the Ward identities

for the relevant unrenormalized two-point vertex functions
for the photon–Z-boson system [15],

kμΓ̂Â V̂
μν ðk;−kÞ ¼ 0; V ¼ A; Z: ð2:24Þ

All definitions and relations for the two-point functions

Γ̂V̂V̂ 0
μν , etc., given in Sec. II A carry over to Γ̂V̂V̂ 0

μν , etc., used in
that section just by putting hats over Γ and the fields
V; V 0 ¼ A, Z. Inserting the decomposition (2.1) of the two-
point functions into Lorentz covariants into the identities

(2.24), we see that the longitudinal parts Γ̂Â V̂
L identically

vanish for any k2,

Γ̂Â V̂
L ðk2Þ ¼ 0; V ¼ A; Z: ð2:25Þ

In this context, it should be mentioned that no gauge-fixing
terms for the background fields are included yet in the
Lagrangian; those terms provide lowest-order contributions

(without any corrections) to Γ̂Â Â
L but not to Γ̂Â Â

T and
are, thus, not entering the renormalization described in

Sec. II A. Taking into account that two-point functions Γ̂V̂ 0V̂
μν

cannot develop poles in k2, this implies that the transversal

parts Γ̂Â V̂
T have to vanish for k2 ¼ 0,

Γ̂Â V̂
T ð0Þ ¼ 0; V ¼ A; Z: ð2:26Þ

For the unrenormalized self-energies at k2 ¼ 0, ΣÂ V̂
T ð0Þ,

defined in analogy to (2.2), the identity (2.26), thus, implies

ΣÂ V̂
T ð0Þ ¼ 0; V ¼ A; Z: ð2:27Þ

Using the analog of (2.11), this relation carries over to the
subgraph-renormalized Â Ẑ self-energy,

ΣÂ Ẑ
SR;Tð0Þ ¼ Z1=2

Ẑ Â
Z1=2
Ẑ Ẑ

ΣẐ Ẑ
T ð0Þ: ð2:28Þ

Equipped with this identity, the renormalization con-
dition for the Â Ẑ vertex function for on-shell photons,
given in (2.14), reads

0¼ΓẐ Â
T ð0Þ¼−ΣẐ Â

R;Tð0Þ¼Z1=2
Ẑ Ẑ

Z1=2
Ẑ Â

½M2
ZþδM2

Z−ΣẐ Ẑ
T ð0Þ�:
ð2:29Þ

Since ZẐ Ẑ ¼ 1þOðαÞ ≠ 0 Eq. (2.29) implies

ZẐ Â ¼ 0: ð2:30Þ

Using this identity, the result (2.17) for ZÂ Â simplifies to

ZÂ Â ¼ 1 − ΣÂ Â 0
SR;Tð0Þ: ð2:31Þ

Finally, we observe that condition (2.20), which implies
that the pole at k2 ¼ 0 in the photon propagator is not
shifted by interactions, is trivially fulfilled owing to (2.26)
in the BFM.

III. CHARGE RENORMALIZATION AND
CHARGE UNIVERSALITY IN THE
BACKGROUND-FIELD METHOD

The electric unit charged e is renormalized in such a way
that the fermion-photon interaction for physical (on-shell)
fermions does not receive any correction in the Thomson
limit, in which the photon momentum vanishes. Denoting
the relative charge and mass of the fermion f byQf andmf,
respectively, this condition reads
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ūðpÞΓ̂Af̄f
R;μ ð0;−p;pÞuðpÞjp2¼m2

f
¼−QfeūðpÞγμuðpÞ; ð3:1Þ

where Γ̂Af̄f
R;μ is the renormalized Âf̄f vertex function in the

BFM and e the renormalized unit charge. Here ūðpÞ and
uðpÞ are Dirac spinors of the fermion f with momentum p
fulfilling p2 ¼ m2

f with the renormalized on-shell massmf.
In the following, we restore a generation index i for the

considered fermion to allow for the possibility of gener-
ation mixing. Since only fermions of the same electric
charge can mix, we can keep the notation Qf for the
common relative charge of the set ffig of mixing fermions.
The BFM Ward identity for the unrenormalized Âf̄ifj
vertex function reads [15] (trivially restoring generation
indices)

kμΓ̂Âf̄ifj
μ ðk; p̄; pÞ ¼ −e0Qf½Γ̂f̄ifjðp̄;−p̄Þ − Γ̂f̄ifjð−p; pÞ�;

ð3:2Þ

where e0 is the bare unit charge and Γ̂f̄ifj are the
unrenormalized two-point vertex functions of the fermions.
To exploit this identity in the charge renormalization
condition (3.1), we have to formulate the relations between
renormalized and unrenormalized quantities. To account
for the chiral character of the fermions, there are indepen-
dent sets of fermionic field renormalization constants Zf;σ

ij

with σ ¼ R;L indicating chirality and i, j being matrix
indices. The bare and renormalized fermion fields fσ0;i and
fσj , respectively, are related by

fσ0;i¼
X
j

ðZf;σ
ij Þ1=2fσj ; f̄σ0;i¼

X
j

ðZf;σ�
ij Þ1=2f̄σj ; σ¼R;L:

ð3:3Þ

Together with the field renormalization transformation
(2.4) of the Â and Ẑ fields, this implies

Γ̂f̄ifj
R;μ ð−p; pÞ ¼

X
l;n

ðZf;σ
li

�Þ1=2ðZf;σ
nj Þ1=2Γ̂f̄lfn

μ ð−p; pÞ; ð3:4Þ

Γ̂Âf̄ifj
R;μ ðk;p̄;pÞ
¼

X
V̂¼Â;Ẑ

X
l;n

Z1=2
V̂ Â

ðZf;σ
li

�Þ1=2ðZf;σ
nj Þ1=2Γ̂V̂f̄lfn

μ ðk;p̄;pÞ: ð3:5Þ

Making use of ZẐ Â ¼ 0 from (2.30) and introducing the
charge renormalization constant Ze as ratio between bare
charge e0 and renormalized charge e,

e0 ¼ Zee ð3:6Þ

delivers the analog of Ward identity (3.2) for renormalized
quantities,

kμΓ̂Âf̄ifj
R;μ ðk; p̄; pÞ
¼ −eQfZeZ

1=2
Â Â

½Γ̂f̄ifj
R ðp̄;−p̄Þ − Γ̂f̄ifj

R ð−p; pÞ�: ð3:7Þ

This identity is valid for arbitrary momenta k, p̄, p obeying
momentum conservation kþ p̄þ p ¼ 0. Expanding it for
k → 0 and keeping p fixed, the terms linear in k obey the
relation

Γ̂Âf̄ifj
R;μ ð0;−p; pÞ ¼ −eQfZeZ

1=2
Â Â

∂Γ̂f̄ifj
R ð−p; pÞ
∂pμ : ð3:8Þ

At this point, we are almost done; we just have to apply

Dirac spinors to Γ̂Âf̄ifj
R;μ ð0;−p; pÞ from the left and right in

(3.8) and to simplify the term containing ∂Γ̂f̄ifj
R =∂pμ

on the rhs. Note also that we only need the case f ¼ fi ¼
fj in this last step. Decomposing the renormalized
fermionic two-point function into Lorentz covariants
according to

Γ̂f̄f
R ð−p; pÞ ¼

X
σ

=pωσΓ̂
f̄f;V;σ
R ðp2Þ þ

X
σ

ωσΓ̂
f̄f;S;σ
R ðp2Þ

ð3:9Þ

with the chirality projectors ω� ¼ ð1� γ5Þ=2, it is

straightforward to evaluate ūðpÞ½∂Γ̂f̄f
R =∂pμ�uðpÞ for an

on-shell fermion f. Using some Dirac algebra [Dirac
equation, Gordon identity, ūðpÞγ5uðpÞ ¼ 0], we obtain

ūðpÞ ∂Γ̂
f̄f
R ð−p; pÞ
∂pμ uðpÞ

¼
X
σ

ūðpÞγμωσuðpÞΓ̂f̄f;V;σ
R ðm2

fÞ

þ
X
σ

2pμūðpÞωσuðpÞ½mfΓ̂
f̄f;V;σ0
R ðm2

fÞ þ Γ̂f̄f;S;σ0
R ðm2

fÞ�

¼ ūðpÞγμuðpÞ
X
σ

�
1

2
Γ̂f̄f;V;σ
R ðm2

fÞ þm2
fΓ̂

f̄f;V;σ0
R ðm2

fÞ

þmfΓ̂
f̄f;S;σ0
R ðm2

fÞ
�
: ð3:10Þ

The factor
P

σ½� � �� in the last expression is easily
recognized as the usual fermionic wave function renorm-
alization factor which is renormalized to unity by the OS
renormalization condition (see, e.g., Ref. [14])

lim
p2→m2

f

=pþmf

p2 −m2
f

½Γ̂f̄f
R ð−p; pÞ�uðpÞ ¼ uðpÞ ð3:11Þ

for the fermion field f. Thus, we finally have
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ūðpÞ ∂Γ̂
f̄f
R ð−p; pÞ
∂pμ uðpÞ ¼ ūðpÞγμuðpÞ: ð3:12Þ

In summary, combining the charge renormalization
condition (3.1) with (3.8) and (3.12) leads to the simple
equation [15]

Ze ¼ Z−1=2
Â Â

ð3:13Þ

in the BFM, which is formally identical to the well-known
relation in QED. The fact that all dependences from the
fermion f, which was used to formulate the charge
renormalization condition in the Thomson limit, have
disappeared in this result for Ze proves charge universal-
ity. Moreover, Eq. (3.13) shows that

e0Â0;μðxÞ ¼ eÂμðxÞ; ð3:14Þ

i.e., that the product of electromagnetic coupling and
background photon field is not renormalized, again in
analogy to a QED relation.

IV. CHARGE RENORMALIZATION IN
ARBITRARY Rξ GAUGE

We extend the considered model, which is the SM or
any gauge theory with the gauge group SUð2Þw × Uð1ÞY
and the same symmetry-breaking pattern as the SM in the
electroweak sector, by a fermion field η with vanishing
weak isopsin, Iaw;η ¼ 0, and weak hypercharge Yw;η, i.e.,
with electric charge Qη ¼ Yw;η=2, which is taken as
free parameter. Taking eventually the limit Qη → 0,
the fermion η decouples from all other particles, and
we recover the original theory. After introducing the
field η, the Lagrangian L of the model is modified to
Lþ Lη with

Lη ¼ η̄

�
i=∂ −

1

2
g1Yw;η=B −mη

�
η

¼ η̄

�
i=∂ −Qηe

�
=Aþ sW

cW
=Z

�
−mη

�
η; ð4:1Þ

with mη denoting the mass of the fermion η. Since the
field η is assumed to be nonchiral, its mass term is gauge
invariant and need not be introduced via the Higgs
mechanism. The nonchirality of η also protects us from
introducing anomalies in the model extension. As in the
SM, g1 is the Uð1ÞY gauge coupling, Bμ the Uð1ÞY gauge
field, and sW ¼ sin θw and cW ¼ cos θw the sine and
cosine of the weak mixing angle θw. The extra phase
symmetry of Lη with respect to η → eiζη (ζ real, but
arbitrary) implies that the fermion η is stable. Note that

for generic values of Qη the Lagrangian Lη is the only
renormalizable SM extension of L containing the field η,
but no other new field.3 The renormalization of the model
starts by considering all parameters and fields in the
Lagrangian Lþ Lη, with Lη as given in (4.1), as bare
(i.e., by adding suffixes 0 everywhere). Owing to charge
universality, as proven in the previous section, we can
now take the Thomson limit of the Aη̄η vertex to define
the renormalized electric unit charge e. To this end, we
demand

ūðpÞΓAη̄η
R;μ ð0;−p; pÞuðpÞjp2¼m2

η
¼ −QηeūðpÞγμuðpÞ ð4:2Þ

for the renormalized Aη̄η vertex function ΓAη̄η
R;μ sandwiched

between Dirac spinors ūðpÞ, uðpÞ of fermions η with
momentum p and zero-momentum transfer of the photon.
Here, mη is the renormalized on-shell mass of η. The

relation between ΓAη̄η
R;μ and its bare counterpart ΓAη̄η

μ

follows from the field renormalization transformation
for η,

η0 ¼ Z1=2
η η; ð4:3Þ

and (2.4) for the photon–Z-boson system and reads

ΓAη̄η
R;μ ðk; p̄; pÞ ¼ ZηZ

1=2
AA Γ

Aη̄η
μ ðk; p̄; pÞ þ ZηZ

1=2
ZA Γ

Zη̄η
μ ðk; p̄; pÞ:

ð4:4Þ

The bare vertex functions ΓVη̄η
μ (V ¼ A, Z) receive

lowest-order contributions and bare vertex corrections
ΛVη̄η
μ , which consist of 1PI loop diagrams and tadpole

corrections,

ΓAη̄η
μ ðk; p̄; pÞ ¼ −Qηe0γμ þ e0Λ

Aη̄η
μ ðk; p̄; pÞ; ð4:5Þ

ΓZη̄η
μ ðk; p̄; pÞ ¼ −Qηe0

sw;0
cw;0

γμ þ e0Λ
Zη̄η
μ ðk; p̄; pÞ; ð4:6Þ

with sw;0 and cw;0 denoting the sine and cosine of the bare
weak mixing angle. The important observation is now
that all diagrammatic contributions to ΛVη̄η

μ involve at
least two couplings of photons or Z bosons to the η line
that passes through the whole diagram. Some sample
diagrams are shown in Fig. 1. For 1PI diagrams it is
obvious that at least two couplings to the η line exist, for
diagrams with tadpole loops or tadpole counterterms the

3If a more general SUð2Þw × Uð1ÞY theory is considered that
contains also singlet scalars Si, the scalars Si may also couple to η
via Yukawa couplings yiSiη̄η. The free parameters yi can be taken
to be infinitesimally small in analogy to Qη → 0, so that
decoupling of η is guaranteed and the arguments below remain
valid with obvious minor modifications, as also detailed in Sec. V.
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same holds true, because the Higgs field H does
not couple to η. Since both the photon and the Z boson
couple to η proportional to Qη, this means that

ΛVη̄η
μ ¼ OðQ2

ηÞ. Similarly, all diagrams contributing to
the η field renormalization constant Zη involve at least
two couplings of photons or Z bosons to the η line, so that
Zη ¼ 1þOðQ2

ηÞ. Inserting, thus, ΓAη̄η
R;μ from (4.4) into

condition (4.2) and keeping only terms linear in Qη for
Qη → 0, we get

−QηeūðpÞγμuðpÞ

¼ ūðpÞZη

�
Z1=2
AA Γ

Aη̄η
μ ð0;−p;pÞ

þZ1=2
ZA Γ

Zη̄η
μ ð0;−p;pÞ

�
uðpÞjp2¼m2

η

¼−Qηe0

�
Z1=2
AA þZ1=2

ZA
sw;0
cw;0

�
ūðpÞγμuðpÞþOðQ2

ηÞ: ð4:7Þ

This relation immediately implies

e ¼ e0

�
Z1=2
AA þ Z1=2

ZA
sw;0
cw;0

�
; ð4:8Þ

which is the desired relation between e and e0. Defining
the renormalization constant Ze as in (3.6) and δc2W
according to

c2w;0 ¼ 1 − s2w;0 ¼ c2W þ δc2W ¼ 1 − s2W þ δc2W; ð4:9Þ

we can determine Ze from (4.8),

Ze ¼

2
64Z1=2

AA þ Z1=2
ZA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2W − δc2W
c2W þ δc2W

s 3
75
−1

: ð4:10Þ

This is fully equivalent to the result quoted and used in
Refs. [24,25,28].

V. GENERALIZATION TO NONSTANDARD
GAUGE GROUPS

The concepts of OS renormalization of the photon field,
of charge universality, and of charge renormalization as
described in the previous sections can be generalized easily
to electroweak gauge groups of the type Uð1ÞY ×G, where
G is any Lie group of rank r (not necessarily simple or
semisimple) and the Uð1ÞY group factor plays the analo-
gous role of weak hypercharge in the SM. More precisely,
we mean by this that the Uð1Þem subgroup of electromag-
netic gauge transformations mixes transformations of
Uð1ÞY and G, so that the photon field Aμ is a nontrivial
linear combination of the Uð1ÞY gauge field Bμ and
the gauge fields Cμ

k (k ¼ 1;…; r) of G corresponding to
the diagonal group generators in the Lie algebra of G. The
mechanism of electroweak symmetry breaking in the
considered gauge theory is widely general, we only assume
that electromagnetic gauge invariance is unbroken. Specific
types of such models are, for instance, described in
Refs. [33,34] with gauge groups Uð1Þ × SUð2Þ × Uð1Þ
and Uð1Þ × SUð3Þ, respectively. If G involves explicit
U(1) group factors, the kinetic Lagrangian for the gauge
fields in general includes mixing terms ∝ BμνC

μν
k with Bμν

and Cμν
k representing the corresponding (gauge-invariant)

U(1) field-strength tensors.
Since the generalization of the previous sections to the

considered class of models is straightforward, we can
restrict our presentation to the salient steps. We first have
to quantify the transformation of the original gauge fields
Bμ and fCμ

kg to (canonically normalized) fields that
correspond to mass eigenstates:

0
BBBBB@

Bμ

Cμ
1

..

.

Cμ
r

1
CCCCCA¼R

0
BBBBB@

Aμ

Zμ
1

..

.

Zμ
r

1
CCCCCA; R¼

0
BBBBB@

RBA RBZ1
� � � RBZr

RC1A RC1Z1
� � � RC1Zr

..

. ..
. . .

. ..
.

RCrA RCrZ1
� � � RCrZr

1
CCCCCA:

ð5:1Þ

(a) (b) (c)

(d) (e) (f)

FIG. 1. Some higher-order diagrams contributing to the unrenormalized vertex functions ΓVη̄η
μ [graphs (a)–(c)] and Γη̄η [graphs (d)–(f)],

which receive contributions from 1PI diagrams [graphs (a), (b), (d), (e)], from explicit tadpole diagrams [graph (c)], and from diagrams
involving tadpole counterterms δt [graph (f)].
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Here, the fields Zμ
k (k ¼ 1;…; r) describe neutral massive

gauge bosons similar to the Z boson of the SM, and the
matrix R is a generalization of the SM rotation matrix
parametrized by the weak mixing angle. Note that R is not
necessarily orthogonal or unitary, in particular in the
presence of kinetic mixing among the original gauge fields.

A. On-shell renormalization in the
photon–Z-boson sector

Marking bare fields and parameters again with suffixes
0, we parametrize the field renormalization transformation
as follows:

0
BBBBB@

Aμ
0

Zμ
0;1

..

.

Zμ
0;r

1
CCCCCA¼

0
BBBBBB@

Z1=2
AA Z1=2

AZ1
� � � Z1=2

AZr

Z1=2
Z1A

Z1=2
Z1Z1

� � � Z1=2
Z1Zr

..

. ..
. . .

. ..
.

Z1=2
ZrA

Z1=2
ZrZ1

� � � Z1=2
ZrZr

1
CCCCCCA

0
BBBBB@

Aμ

Zμ
1

..

.

Zμ
r

1
CCCCCA; ð5:2Þ

similar to (2.4) in the SM. Making use of the same
definitions for vertex functions and self-energies as in
Sec. II A, the renormalized transversal parts of the two-
point functions of neutral gauge bosons are given by

ΓV 0V
R;T ðk2Þ¼−δV 0Vðk2−δVZk

M2
Zk
Þ−ΣV 0V

R;T ðk2Þ
¼−Z1=2

AV0Z
1=2
AV k

2−
X
k

Z1=2
ZkV 0Z

1=2
ZkV

ðk2−M2
Zk
−δM2

Zk
Þ

−ΣV 0V
SR;Tðk2Þ; ð5:3Þ

with V; V 0 ¼ A; Z1;…; Zr. The OS renormalization con-
ditions (2.14) and (2.15) for external photons analogously
hold for the AA and all ZkA vertex functions and imply

0 ¼ ΓZkA
R;T ð0Þ ¼ −ΣZkA

R;T ð0Þ
¼

X
l

Z1=2
ZlZk

Z1=2
ZlA

ðM2
Zl
þ δM2

Zl
Þ − ΣZkA

SR;Tð0Þ; ð5:4Þ

0 ¼ 1þ ΓAA0
R;Tð0Þ ¼ −ΣAA0

R;Tð0Þ
¼ 1 − ZAA −

X
k

ZZkA − ΣAA0
SR;Tð0Þ: ð5:5Þ

Similar to (2.16) and (2.17) in the SM, these conditions can
be used to calculate the renormalization constants ZZkA and
ZAA recursively order by order from the relations

Z1=2
ZkA

¼ΣZkA
SR;Tð0Þ−

P
lðl≠kÞZ

1=2
ZlZk

Z1=2
ZlA

ðM2
Zl
þδM2

Zl
Þ

Z1=2
ZkZk

ðM2
Zk
þδM2

Zk
Þ

; ð5:6Þ

ZAA ¼ 1 −
X
k

ZZkA − ΣAA0
SR;Tð0Þ; ð5:7Þ

since the leading behavior of the occurring renormalization
constants is given by

ZAA¼ 1þOðαÞ; Z1=2
ZkZl

¼ δklþOðαÞ;
Z1=2
ZkA

¼OðαÞ; Z1=2
AZk

¼OðαÞ; δM2
Zk
¼OðαÞ: ð5:8Þ

For calculating ZZkA and ZAA at the n-loop level, the field

renormalization constants Z1=2
ZkZl

and the mass renormaliza-
tion constants δM2

Zk
for the Zk boson are only required to

the (n − 1)-loop level.

B. Photon-field renormalization, charge
renormalization, and charge universality in the BFM

The invariance of the BFM effective action with
respect to electromagnetic (background) gauge transfor-
mation implies the validity of Eqs. (2.24)–(2.27) for all
V̂ ¼ Â; Ẑ1;…; Ẑr. Although (2.28) and (2.29) now involve
sums of all fields Zk, induction in the loop order n can be
applied to show

ZẐkÂ
¼ 0; k ¼ 1;…; r; ð5:9Þ

and, thus, also

ZÂ Â ¼ 1 − ΣÂ Â 0
SR;Tð0Þ: ð5:10Þ

With these results, the whole derivation of Ze described in
Sec. III for the BFM goes through with the only modifi-
cation of extending some sums over V̂ ¼ Â; Ẑ to sums over
V̂ ¼ Â; Ẑ1;…; Ẑr. As a result, the charge renormalization
constant Ze is given by Ze ¼ Z−1=2

Â Â
as in (3.13). This again

proves charge universality in the model, independent of the
use of the BFM in the proof.

C. Charge universality in Rξ gauge

To exploit charge universality in the determination of Ze
in arbitrary Rξ gauge, we again introduce a fake fermion η
with the same properties as described in Sec. IV, i.e., η only
carries infinitesimal hypercharge Yw;η, but no nontrivial
quantum number of G. If the model contains singlet scalars
Si, the scalars Si may couple to η via Yukawa couplings.
The corresponding couplings yi are free parameters of the
model and can be taken to be infinitesimally small in
analogy to Qη → 0, so that decoupling of η is guaranteed.
The Lagrangian Lη, thus, reads

Lη¼ η̄

�
i=∂−1

2
g1Yw;η=B−mη−

X
i

yiSi

�
η

¼ η̄

�
i=∂−Qηe

�
=Aþ

X
k

RBZk

RBA
=Zk

�
−mη−

X
i

yiSi

�
η;

ð5:11Þ
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where we have identified

1

2
Yw;η ¼ Qη; g1RBA ¼ e: ð5:12Þ

Following the same reasoning as in Sec. IV, the renormal-
ized Aη̄η vertex function is given by

ΓAη̄η
R;μ ðk; p̄; pÞ ¼ ZηZ

1=2
AA Γ

Aη̄η
μ ðk; p̄; pÞ

þ
X
k

ZηZ
1=2
ZkA

ΓZkη̄η
μ ðk; p̄; pÞ; ð5:13Þ

with the unrenormalized Vη̄η vertex functions

ΓAη̄η
μ ðk; p̄; pÞ ¼ −Qηe0γμ þ e0Λ

Aη̄η
μ ðk; p̄; pÞ; ð5:14Þ

ΓZkη̄η
μ ðk;p̄;pÞ¼−Qηe0

R0;BZk

R0;BA
γμþe0Λ

Zkη̄η
μ ðk;p̄;pÞ: ð5:15Þ

Again the vertex corrections ΛAη̄η
μ and ΛZkη̄η

μ as well as the
field renormalization constant δZη ¼ Zη − 1 receive only
corrections that are suppressed at least by quadratic factors
in the new couplings, such asQ2

η or Qηyi. Typical diagrams
contributing to those corrections at the order OðQ2

ηÞ (or
higher in Qη) can be obtained from the graphs shown in
Fig. 1 upon interpreting the field Z as any of the Zk and
taking the Higgs field H as any Higgs field of the model.
Equation (4.7) then generalizes to the considered model in
an obvious way, and we obtain the final result for the charge
renormalization constant:

Ze ¼
�
Z1=2
AA þ

X
k
Z1=2
ZkA

RBZk
þ δRBZk

RBA þ δRBA

�
−1
: ð5:16Þ

Here we have formally introduced renormalization con-
stants δRBA and δRBZk

for the matrix elements of R
according to R0 ¼ Rþ δR, but we have to keep in mind
that not all those constants are independent, because not all
elements of R are independent free parameters of the
theory. Finally, we specialize (5.16) to the one-loop level,
which is sufficient for most applications. To this end, we
expand the charge and field renormalization constants
according to

Ze ¼ 1þδZeþOðα2Þ; Z1=2
AA ¼ 1þ1

2
δZAAþOðα2Þ;

Z1=2
ZkA

¼ 1

2
δZZkAþOðα2Þ ð5:17Þ

and find

δZe ¼ −
1

2
δZAA −

1

2

X
k

RBZk

RBA
δZZkA: ð5:18Þ

At one loop, Ze is, thus, independent of the renormalization
conditions chosen for the mixing matrix R and for the
Z-boson masses MZk

.
The case of the SM is trivially recovered from the results

of this section upon identifying G ¼ SUð2Þw, r ¼ 1,
Zμ
1 ¼ Zμ, RBZ1

¼ sW, and RBA ¼ cW.

VI. CONCLUSIONS

In this article we have derived an all-order form for
the renormalization constant Ze of electric charge, as
defined in the Thomson limit, in an arbitrary Rξ gauge
which expresses Ze in terms of self-energies of the photon–
Z-boson system only. We confirm the result that has been
given in the literature before, but the derivations of which
are either tied to specific gauges, restricted to the two-loop
level, or even contain inconsistencies. Our derivation, thus,
provides an a posteriori justification for the few calcu-
lations of two-loop electroweak corrections based on the
assumed form for Ze.
Our derivation exploits charge universality, i.e., the fact

that the electric unit charge can be defined from the
Thomson (low-energy/momentum) limit of the photonic
interaction with any charged fermion. Charge universality,
for instance, follows from the known universal form of the
charge renormalization constant within the background-
field formalism, which we have rederived in this paper as
well. Exploiting charge universality, we formulate the
charge renormalization condition for the photonic inter-
action of a fake fermion with infinitesimal weak hyper-
charge and vanishing weak isospin, which effectively
decouples from all other particles. Without spelling out
the details in this paper, we have repeated the derivation
with a fake boson of spin 0 which produces the same
universal result for Ze as for the fake fermion. Charge
universality, thus, holds for spin-0 bosons too, as expected.
Moreover, we have discussed the derivation of Ze both in

the conventional quantization formalism for gauge theories
and in the background-field method. Since the determi-
nation of Ze in the Thomson limit of the fermion–photon
vertex with on-shell fermions and an on-shell photon is
based on the property of an S-matrix element, the result on
Ze has to be independent of the chosen gauge or quantiza-
tion procedure. Comparing the explicit results for Ze
obtained via different gauges or quantization procedures
order by order, therefore provides useful checks on higher-
order calculations.
The presented derivation of charge renormalization only

makes use of the gauge structure of the model, but does not
depend on the matter particle content, the Higgs sector, or
other properties. Thus, the result for Ze as obtained for the
SM literally holds in all spontaneously broken gauge
theories with the SUð2Þw × Uð1ÞY gauge group and SM-
like gauge symmetry breaking in the electroweak sector.
Finally, we have determined the charge renormalization
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constant to all perturbative orders in the more general class
of spontaneously broken gauge theories with gauge group
Uð1ÞY ×G with any Lie group G, only assuming that
electromagnetic gauge symmetry is unbroken and mixes
with Uð1ÞY transformations in a nontrivial way.
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APPENDIX: PROBLEMS IN PREVIOUS
ALL-ORDER DETERMINATIONS OF Ze

In Ref. [28], the derivation of the charge renormaliza-
tion constant Ze starts from the ST identity obtained from
the vanishing BRS variation of the Green function
h0jTūAðxÞψfðyÞψ̄fðzÞj0i. Translating the corresponding
relations in Secs. 4.2 and 4.3 of Ref. [28] to the conventions
of Ref. [14], this schematically implies

0 ¼ kμGAff̄
μ ðk; p1; p2Þ þ aZkμG

Zff̄
μ ðk; p1; p2Þ

þ aχGχff̄ðk; p1; p2Þ

þ
X
V¼A;Z

aYfV

Z
dDq
ð2πÞD

�
GuVūAf0f̄ðq; k; p1 − q; p2Þ

−GuV
†
ūAff̄0 ðq; k; p1; p2 − qÞ

�

þ
X

V¼Z;W�
awfV

Z
dDq
ð2πÞD

�
ω−GuVūAf0f̄ðq; k; p1 − q; p2Þ

−GuV
†
ūAff̄0 ðq; k; p1; p2 − qÞωþ

�
; ðA1Þ

where the constants aZ, aχ are determined by the gauge-
fixing term of the photon field. The constants aYfV and awfV
express the transformation properties of the fermion f with
respect to Uð1ÞY and SUð2Þw gauge transformations,
respectively. In case V is a charged gauge boson, the field
f0 is the field of its weak isospin partner, otherwise f0 ¼ f.
Figure 2 illustrates some Feynman diagrams and diagram
types contributing to the Green functions GuVūAf0f̄; graphs

contributing to GuV
†
ūAff̄0 look similar, with the ghost and

fermion lines meeting in the field point at z. Identity (A1) is
correct and certainly bears the desired information on the
Thomson limit of the Aff̄ vertex, however, the reasoning
explained in Ref. [28] does not hold:

(i) In order to get rid of the contribution of SUð2Þw
gauge bosons in the last line of (A1), the identity is
formulated for right-handed fields, and the mixing
between right- and left-handed fields is ignored
during the amputation of the external propagators
and the projection to on-shell states. This simplifi-
cation, though, could be dropped by a projection of
(A1) to right-handed chirality from the left and from
the right with a subsequent amputation of the full
fermion propagators. We have carried out this more
laborious procedure at one loop. The oversimplifi-
cation seems to be no show stopper.

(ii) A serious problem, however, concerns the simulta-
neous on-shell limit k → 0, p2

1 → m2
f, and p

2
2 → m2

f
after amputation, which is presented in Ref. [28] in a
sketchy way. The claim that all connected parts of

GuVūAf0f̄ and GuV
†
ūAff̄0 vanish in this limit, unfortu-

nately does not hold, because this multiple limit is
more subtle.

If we first go on shell with the fermion momenta
p1, p2 after amputation, leaving k open, in fact the

unpleasant connected parts of GuVūAf0f̄ and GuV
†
ūAff̄0

vanish due to a missing pole in one of the external
fermion legs. The projection of (A1) to on-shell
fermion states leads to a relation between the axial-
vector and scalar form factors of the Aff̄ vertex and
self-energies for arbitrary k2. At one loop we have
checked this identity by explicit calculation. For
k2 ¼ 0, this identity was, e.g., given as Eq. (3.33) in
Ref. [12], as Eq. (3.30) in Ref. [13], or as the second
relation in Eq. (C.31) of Ref. [14].

However, in order to obtain the required relation
for the vector form factor of the Aff̄ vertex, which
is, e.g., given as Eq. (3.27) in Ref. [12], as Eq. (3.29)
in Ref. [13], or as the first relation in Eq. (C.31) of
Ref. [14] at one loop, the on-shell limit has to be
carried out differently: Only one of the fermion
momenta, called p in the following, can be set on
shell at the beginning, followed by a derivative with

(a) (b) (c)

FIG. 2. Various graphs contributing to the
R
dDqGuVūAf0f̄ðq; k; p1 − q; p2Þ in momentum space, which correspond to the Green

functions GuVūAf0 f̄ðy; x; y; zÞ in position space: (a), (b) two connected graphs, and (c) the generic graph for disconnected parts, with the
gray blob representing 1PI or tadpole contributions.
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respect to the photon momentum k, with sub-
sequently taking k → 0. With the last step, the
second fermion line goes on shell automatically.
Note that taking the derivative with respect to k
while keeping p fixed increases the order of the pole
in the propagator of the off-shell fermion, which has
momentum pþ k. For k → 0, there are, thus, poles
of order 2 at p2 ¼ m2

f which prevents the connected

parts of GuVūAf0f̄ and GuV
†
ūAff̄0 from vanishing in the

on-shell projection of the two external fermion lines
in general.
At one loop, however, the mentioned terms still

vanish if the fermion line is projected to right-
handed chirality on both fermion legs, because then
no one-loop Feynman diagram exists that links the
photonic ghost line to the fermion lines. Beyond one
loop, connected graphs contributing GuVūAf0f̄ and

GuV
†
ūAff̄0 exist [see Fig. 2(b)], and there is no reason

for them to vanish.
(iii) Finally, the evaluation of the ghost propagators and

their renormalization in the disconnected contribu-
tions to GuVūAf0f̄ and GuV

†
ūAff̄0 in Ref. [28] is not

correct. Equations (4.38) and (4.39) of Ref. [28]
express the required residues of the GuAūA and GuZūA

propagators at k2 ¼ 0 in terms of the field renorm-
alization constants ZAA and ZZA, respectively. How-
ever, since ZAA already involves nonvanishing
contributions from closed fermion loops, but GuAūA

does not, Eq. (4.38) of Ref. [28] is obviously invalid.
The correct evaluation of the ghost propagators

can, e.g., be based on the BRS invariance of the

(unrenormalized) Green function hjTūAðxÞBμðyÞj0i.
The resulting ST identity for the ghost propagators
expresses GuBūA in terms of the longitudinal part of
the AZ self-energy.

With the help of the mentioned corrections,we have
successfully derived the known form of Ze at the one-loop
level, starting from the ST identity (A1), which provides an
alternative to the derivation described in Appendix C of
Ref. [14] based on Lee identities. We do, however, not see a
way to carry out a corresponding all-order proof by simple
amendments.
Completely independent of the proof based on (A1), it

was suggested in Ref. [28] and in Appendix A of Ref. [25]
to deduce Ze from the fact that the product g1Bμ need not be
renormalized. This fact is justified in those papers upon
referring to Sec. 3.4.3 of Ref. [10] where it was deduced
from Lee identities in the course of proving charge
universality. Since this derivation in Ref. [10] is carried
out in the Landau gauge, it is actually not clear without
further justification that no modifications are necessary in
general Rξ gauge. At the two-loop level, this missing
justification was provided in Refs. [29–31] where the
nonrenormalizability of g1Bμ was first assumed for charge
renormalization and in a second step checked by explicit
calculation that all Aff̄ vertex corrections vanish in the
Thomson limit. A corresponding all-order proof that the
nonrenormalizability hypothesis of g1Bμ is equivalent to
charge renormalization in the Thomson limit in arbitrary Rξ

gauge to all orders, to our knowledge, does not exist in the
literature.
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