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Observation of the interference between the atmospheric-scale and solar-scale oscillations is one of the
challenging and tantalizing goals of the ongoing and upcoming neutrino experiments. An inevitable first
step required for such analyses is to establish the way the oscillation S matrix can be decomposed into the
atmospheric and solar waves, the procedure dubbed as the amplitude decomposition. In this paper, with the
use of the perturbative framework proposed by Denton et al. (DMP), we establish the prescription for
amplitude decomposition which covers the whole kinematical region of the terrestrial neutrino experi-
ments. We analyze the limits to the atmospheric- and solar-resonance regions to argue that the dynamical
two modes of the DMP decomposition can be interpreted as the matter-dressed atmospheric and solar
oscillations. The expressions of the oscillation probability, which are decomposed into the noninterference
and interference terms, are derived for all the relevant flavor oscillation channels. Through construction of
the DMP decomposition, we reveal the nature of ψ (θ12 in matter) symmetry as due to the S matrix
rephasing invariance. A new picture of the DMP perturbation theory emerged, a unified perturbative
framework for neutrino oscillation in earth matter.
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I. INTRODUCTION

The three-generation structure of the fundamental fer-
mions with complex mass matrices, the masses and the
flavor mixing [1–3], has important consequences. When
the neutrinos oscillate, the two independent modes of
oscillations are generated, the Δm2

31-driven “atmospheric”
[4] and the Δm2

21-driven “solar” [5] oscillations, whose
latter also takes the form of matter-affected [6,7] adiabatic
flavor transformation [8]. The atmospheric and solar waves
interfere with each other as a consequence of the three-
generation structure, the viewpoint emphasized in our
previous papers [9,10]. A less obvious but another,
probably the most important, consequence is that with
N-generation fermions, the lack of sufficient degrees of
freedom of fields that can absorb the CP violating phase
starts to manifest at N ¼ 3, the Kobayashi-Maskawa (KM)
mechanism [11] for CP violation [12]. In the quark sector
the KM mechanism is beautifully demonstrated experi-
mentally [13,14]. In the lepton sector CP violation is under
an active search [15–17].
It is a tantalizing possibility to experimentally observe

the quantum interference between the atmospheric- and the

solar-scale oscillation waves. In fact, physics of the
interference of these two modes of oscillation has been
discussed in various contexts in neutrino physics [18–24].
Here, we must note that a shortage of the list may reflect
our ignorance. Nonetheless, if we ask the question of
precisely how much is due to the interference effect in
given experimental data, to the best of our knowledge, we
do not have the machinery to answer the question.
In previous papers [9,10], we have started a new

approach to the problem of quantifying the interference
effect between the atmospheric and the solar waves. We
first note that such machinery aiming at detecting the
interference has to have the ability to define the atmos-
pheric and the solar oscillation amplitudes. Only after
establishing these definitions can we talk about what is
the interference between them. Therefore, we need a
prescription of how the oscillation S matrix can be
decomposed into the atmospheric and the solar oscillation
amplitudes. This procedure was named as the amplitude
decomposition in the previous papers, whose establishment
in matter is the ultimate goal of this paper.
It may be worthwhile to pay attention to an interesting

contrast between the above two consequences of the three-
family structure. Let us focus on the lepton sector assuming
the presence of the lepton KM phase δ. A general expect-
ation is that the CP violation effect is small and oscillation-
channel dependent. For example, it is likely that the CP
phase effect is more prominent in the νμ → νe channel than
the νμ → νμ. In an extreme case, both the CP conserving
cos δ and violating sin δ effects are absent in the νe and ν̄e
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disappearance channels in vacuum and in matter [25,26].
On the other hand, the atmospheric and solar wave
interference exists universally, and its magnitude is usually
not small. Roughly speaking, the interference term in
the probability is comparable to the noninterference
term [9,10].

II. THE AMPLITUDE DECOMPOSITION: A BRIEF
OVERVIEW AND THE PAPER PLAN

Let us introduce the problem of amplitude decomposi-
tion. We briefly review its current status and describe a
design plan of this paper. We try to make our discussion
here very pedagogical.

A. The amplitude decomposition in vacuum

What is good in vacuum is that we can clearly define
what are the atmospheric (Δm2

31-driven) and the solar
(Δm2

21-driven) amplitudes [9]. Given the neutrino oscilla-
tion S matrix element

Sαβ ¼ Uα1U�
β1e

−i
m2
1

2Ex þUα2U�
β2e

−i
m2
2

2Ex

þ Uα3U�
β3e

−i
m2
3

2Ex; ð2:1Þ

which describes the neutrino oscillation νβ → να (α ≠ β or
α ¼ β) from x ¼ 0 to x in a vacuum, Sαβ can be rewritten,
after a phase redefinition, as

Sαβ ¼ δαβ þ Uα2U�
β2ðe−iΔ21x − 1Þ

þ Uα3U�
β3ðe−iΔ31x − 1Þ ð2:2Þ

by using unitarity [9,20,27]. In Eqs. (2.1) and (2.2),
U≡ UMNS denotes the lepton flavor mixing matrix [3],

Δji ≡ m2
j−m

2
i

2E and δαβ denotes the Kronecker delta function.
Equation (2.2) naturally defines the atmospheric and the
solar amplitudes

Satmαβ ≡Uα3U�
β3ðe−iΔ31x − 1Þ;

Ssolαβ ≡Uα2U�
β2ðe−iΔ21x − 1Þ: ð2:3Þ

Each one of ðe−iΔ31x − 1Þ and ðe−iΔ21x − 1Þ describes the
single Δm2 wave with desirable properties of vanishing at
x ¼ 0 and having the conventional oscillation phase
dependence. Hence, we call hereafter ðe−iΔ31x − 1Þ and
ðe−iΔ21x − 1Þ and their extension in matter, as the atmos-
pheric and the solar wave factors, respectively. Thus, the
amplitude decomposition in vacuum is nothing but the
wave factor decomposition, which is naturally imple-
mented by unitarity.

B. The amplitude decomposition in matter:
The state of the art

In our trial of extending the amplitude decomposition
into a matter environment in Ref. [10], we have set up the
problem, analyzed it, and tried to solve it by examination of
the several perturbative frameworks. In this attempt, we
have encountered mainly the following two problems:

(i) A simple extension of the vacuum amplitude de-
composition [9] fails even with an infinitesimal
matter potential.1

(ii) Inmatter the similar forms of the Smatrix and thewave
factor decomposition as in Eqs. (2.1) and (2.2), re-
spectively, are known to exist, the Zaglauer-Schwarzer
(ZS) construction [29]; see below. But, we fail in
physical interpretation of the ZS decomposition.

Having been faced with these problems, we took a detour in
Ref. [10]. Namely, we identified a few kinematical regions
in which the nature of the matter-effect modified atmos-
pheric and solar waves is understood by suitable appro-
priate perturbative frameworks that have been developed,
e.g., in Refs. [28,30–35]. We then utilized the perturba-
tively expanded oscillation S matrix to develop the ampli-
tude decomposition in matter under a guidance of the wave
factor decomposition.
The present paper has an overlap in nature with the

previous paper [10], both of which are devoted to the same
subject, the amplitude decomposition in matter. Yet, there is
a sharp contrast between them in approaching the problem.
In this paper, we squarely tackle the problem starting from
the principle of amplitude decomposition in matter.
To be more specific, the present paper has the following

well-defined purposes:
(i) To establish the prescription for amplitude decom-

position that covers the whole kinematical region of
the terrestrial neutrino experiments.

(ii) To derive the oscillation probability formulas that
are decomposed into the noninterference and inter-
ference terms in all the relevant flavor oscillation
channels with a sufficient accuracy amenable for
experimental analyses.

The region referred to in the first item above implies the one
of the energy baseline that covers the atmospheric neutrino
observation of E > 100 MeV by, e.g., Super-Kamiokande,
which, of course, includes all the long-baseline neutrino
experiments. For this purpose we use the perturbative
framework proposed by Denton et al. (DMP) [36]. For
brevity, we call this prescription for amplitude decompo-
sition the “DMP decomposition” [10]. All these will be
explained in due course, and we will make this paper self-
contained as much as possible. We start by addressing the

1There is a case in which the vacuum prescription works in
matter, the first-order helio-matter perturbation theory proposed
in Ref. [28], but it appears to be the unique exception. See
Ref. [10].
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principle, which eventually reveals our path to the DMP
decomposition.
In this paper, we readdress the question of what is the

correct principle by which the amplitude decomposition
can be formulated in a generic matter environment. In
Sec. III, following the discussion of the principle of
decomposition, we present our solution, the DMP decom-
position for the amplitude decomposition in the generic
matter environment. After an introductory description of
the DMP perturbation theory in Sec. IV, it will be fully
developed in Sec. V. The physical interpretation of the
independent two dynamical modes is attempted in Sec. VI
by analyzing the limit toward the atmospheric- and the
solar-resonance perturbation theories. Finally in Sec. VII,
we analyze the near vacuum limit of the DMP decom-
position to understand how the problem with infinitesimal
matter potential is dealt with. Throughout this paper we try
to develop a practical framework of amplitude decompo-
sition that can be used in the data analyses.

III. PRINCIPLE OF AMPLITUDE
DECOMPOSITION IN MATTER

What should be done first to construct the suitable
amplitude decomposition scheme in matter is to identify
the two independent modes of the three-flavor neutrino
oscillation in generic matter environments. Let us call these
two dynamical modes of oscillation the “A” and “S”
modes, the terminologies introduced in Ref. [10]. Let us
ask: How can we identify the two dynamical A and S
modes? The answer to this question is: The Hamiltonian of
the system must know it. Namely, the A and S modes must
show up as the result of diagonalization of the Hamiltonian.

A. ZS decomposition

In fact, the answer to this question has been known for a
long time. If the exact S matrix is known and the
eigenvalues of the Hamiltonian are known, and vice versa,
S ¼ e−iHx in the uniform density matter. But, the treatment
can be generalized into the varying density matter. For the
three-flavor neutrino oscillation in uniform density matter,
the exact S matrix is known as the Zaglauer-Schwarzer
solution [29],

Sαβ ¼Vα1V�
β1e

−iλ1
2ExþVα2V�

β2e
−iλ2

2ExþVα3V�
β3e

−iλ3
2Ex: ð3:1Þ

The exact expressions of the eigenvalues λi [37], which are
the eigenvalues of 2EH, and the evolution matrix Vαi
(i ¼ 1, 2, 3) are presented in Ref. [29]. See Ref. [38] for
the related work which allows us to construct the exact
form of the oscillation probability. Because of the sum rule
λ1 þ λ2 þ λ3 ¼ m2

1 þm2
2 þm2

3 þ a, the two out of three
eigenvalues are independent, reassuring the existence of
(only) two independent oscillation modes.

With use of the rephasing Sαβ → ei
λ1
2ExSαβ, one can define

the amplitudes SAαβ and SSαβ as

SAαβ ≡ Vα3V�
β3½e−i

ðλ3−λ1Þ
2E x − 1�;

SSαβ ≡ Vα2V�
β2½e−i

ðλ2−λ1Þ
2E x − 1�; ð3:2Þ

by which the S matrix can be written, after the phase
redefinition, as

Sαβ ¼ δαβ þ SAαβ þ SSαβ: ð3:3Þ

This procedure, which leads to an amplitude decomposition
in matter, was called the ZS decomposition in Ref. [10].
Thus, we know the general solution of the amplitude
decomposition in matter under the uniform matter density
approximation.

B. DMP decomposition

Then, one may ask: What is missing? The answer is the
lack of physical interpretation of the ZS decomposition. Or,
in other words, it is very hard, if not impossible, to extract a
clear physical picture out of the exact expressions of the
eigenvalues and the V matrix given in Ref. [29]. Since we
want to understand how the dynamical two modes in the
general solution are connected to the physically motivated
two modes, the matter-dressed atmospheric and the matter-
dressed solar oscillations, we need a better way even
though it is only an approximate solution. We argue in
the rest of this paper that the framework proposed by
Denton et al. [36] provides, to our knowledge, the best
solution for this purpose.
Despite a partial overlap between this and the previous

papers [10], there is a clear difference between them about
the setting of the problem and approach to it. In Ref. [10],
we have looked for the prescription for amplitude decom-
position under the condition that the dynamical two modes
allow interpretation of the matter-affected atmospheric and
the solar oscillations. That is why we had to restrict our
usage of the ZS construction to the guideline for the wave
factor structure.
Whereas in this paper, we start from the general principle

of amplitude decomposition and state that the ZS decom-
position provides the exact solution in generic matter
environment with a uniform density. But, because its
physical interpretation is untenable, we replace the ZS
decomposition by the DMP decomposition. As far as the
numerical accuracy is concerned, they are indistinguishable
by eye [39]. More importantly, we illuminate by the explicit
calculation how the above physical two modes are buried
into the DMP amplitude decomposition. While the DMP
solution is introduced by using the V matrix elements [10],
neither the explicit expressions of the decomposed ampli-
tudes nor the decomposed probabilities are presented.
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In this paper we provide them in all the relevant oscillation
channels.

IV. THE DMP PERTURBATION THEORY
IN A NUTSHELL

The DMP perturbation theory [36] is the easiest possible
framework to compute perturbative corrections, though this
feature may not be appreciated so widely. It is not merely at
a conceptual level, but is more true at the technical level,
which is illuminated in this section.

A. The three-flavor neutrino evolution in matter

We define the system of three-flavor neutrino evolution
in matter. Though standard, we do it to define notations.
The evolution of the three-flavor neutrinos in matter can be
described by the Schrödinger equation in the flavor basis,
i d
dx ν ¼ Hν, with Hamiltonian

H ¼ 1

2E

8>><
>>:
U

2
64
0 0 0

0 Δm2
21 0

0 0 Δm2
31

3
75U† þ

2
64
aðxÞ 0 0

0 0 0

0 0 0

3
75
9=
;;

ð4:1Þ

where E is neutrino energy and Δm2
ji ≡m2

j −m2
i . In (4.1),

U≡ UMNS denotes the standard 3 × 3 lepton flavor mixing
matrix [3] which relates the flavor neutrino states to the
vacuummass eigenstates as να ¼ Uαiνi, where α runs over e,
μ, τ, and the mass eigenstate indices i, j run over 1,2, and 3.
We use the lepton flavor mixing matrix in the convention that
e�iδ is attached to the “atmospheric angle” s23, which will be
dubbed hereafter as the “ATM” convention:

UATM ¼

2
64
1 0 0

0 c23 s23eiδ

0 −s23e−iδ c23

3
75
2
64

c13 0 s13
0 1 0

−s13 0 c13

3
75

×

2
64

c12 s12 0

−s12 c12 0

0 0 1

3
75

≡U23ðθ23; δÞU13ðθ13ÞU12ðθ13Þ: ð4:2Þ

The choice (4.2) is most convenient given the fact that it is
used in both Ref. [35] and Ref. [36] and is physically
equivalent with the more familiar PDG convention [40].2

The functions aðxÞ in (4.1) denote the Wolfenstein
matter potential [6] due to charged current reactions

a ¼ 2
ffiffiffi
2

p
GFNeE

≈ 1.52 × 10−4
�

Yeρ

g cm−3

��
E

GeV

�
eV2: ð4:3Þ

Here, GF is the Fermi constant, and Ne is the ele-
ctron number density in matter. ρ and Ye denote, respec-
tively, the matter density and the number of electrons per
nucleon in matter. For simplicity and clarity we will work
with the uniform matter density approximation throughout
this paper. But, it is in principle possible to extend our
treatment to varying matter density cases if adiabaticity
holds.

B. The DMP framework in brief

The DMP perturbation theory is a very natural frame-
work as an approximate treatment of the three-neutrino
flavor transformation in matter. It has been well known that
the matter effect significantly modifies the mixing angles
θ12 and θ13, but not θ23 and the CP phase δ [29,42].
This feature is nicely incorporated into the DMP frame-
work that utilizes the successive 1-3 and 1-2 space rotations
with the mixing angles ϕ (matter-affected θ13) and ψ
(matter-affected θ12) to approximately diagonalize the
Hamiltonian [36].3

In formulating perturbation theory one has to specify the
basis in which one computes S matrix elements perturba-
tively. Starting from the flavor eigenstate basis with the
Hamiltonian H, we transform to the mass eigenstate basis
in matter, which we call the “check basis” with the
Hamiltonian Ȟ,

Ȟ¼U†
12ðψÞU†

13ðϕÞU†
23ðθ23;δÞHU23ðθ23;δÞU13ðϕÞU12ðψÞ:

ð4:4Þ

The mixing angles in matter, ϕ and ψ , are determined by
diagonalizing the Hamiltonians in each step [36], and their
expressions are given in the Appendix A.
The DMP perturbation theory utilizes the expansion

parameter ϵ defined by

ϵ≡ Δm2
21

Δm2
ren

; Δm2
ren ≡ Δm2

31 − s212Δm2
21; ð4:5Þ

where Δm2
ren is the “renormalized” atmospheric Δm2

defined in Ref. [35]. It should be remembered that through-
out this paper Δm2

ren, ϵ, Δm2
31, etc., are the mass-ordering

sign active. That is, Δm2
31 (and Δm2

ren) is positive and
2Among the three typical conventions of theUMNS matrix [41],

the ATM convention is, in fact, the most rational choice from the
theoretical point of view. It is well known that θ23 is irrelevant for
dynamical evolution in matter, as U23 is rotated away from the
evolution equation in the “propagation basis”; see, e.g.,
Refs. [26,42]. Thus, the CP phase δ does not complicate the
neutrino evolution in the ATM convention.

3This method for the approximate diagonalization of the
Hamiltonian has been known as the Jacobi method, and was
first applied to the three-neutrino oscillation by the authors of
Ref. [43] who performed the two rotations in different orders.
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negative for the normal mass ordering (NMO) and the
inverted mass ordering (IMO), respectively. Note that ϵ < 0
for the IMO.
The check basis Hamiltonian can be decomposed into

the unperturbed and perturbed parts [36],

Ȟ ¼ Ȟ0 þ Ȟ1;

Ȟ0 ¼

2
64
h1 0 0

0 h2 0

0 0 h3

3
75;

Ȟ1 ¼ ϵc12s12sðϕ−θ13ÞΔren

2
64

0 0 −sψ
0 0 cψ

−sψ cψ 0

3
75: ð4:6Þ

In Eq. (4.6), hi ≡ λi=2E (i ¼ 1, 2, 3) denote the eigenvalues
of the unperturbed Hamiltonian. Hereafter we use the
abbreviated notations c12≡cosθ12, sψ≡sinψ , cϕ≡cosϕ,
sðϕ−θ13Þ ≡ sinðϕ − θ13Þ, etc., and Δren ≡ Δm2

ren=2E.
The calculation of the Š matrix can be done routinely.

Given the Schrödinger equation i d
dx Š ¼ ȞðxÞŠ, we define

ΩðxÞ ¼ eiȞ0xŠðxÞ; ð4:7Þ

which obeys the evolution equation

i
d
dx

ΩðxÞ ¼ H1ΩðxÞ; ð4:8Þ

where

H1 ≡ eiȞ0xȞ1e−iȞ0x: ð4:9Þ

Then, ΩðxÞ can be computed perturbatively as

ΩðxÞ¼1þð−iÞ
Z

x

0

dx0H1ðx0Þ

þð−iÞ2
Z

x

0

dx0H1ðx0Þ
Z

x0

0

dx00H1ðx00Þþ…; ð4:10Þ

and the Š matrix is given by

ŠðxÞ ¼ e−iȞ0xΩðxÞ: ð4:11Þ

Having obtained the check basis Š matrix it is straight-
forward to calculate the flavor basis S matrix:

S ¼ U23ðθ23; δÞU13ðϕÞU12ðψÞŠU†
12ðψÞU†

13ðϕÞU†
23ðθ23; δÞ:

ð4:12Þ

The explicit expressions of the zeroth- and first-order S
matrix elements are given in Appendix B. Then, the rest of

the work is to compute the oscillation probability,
Pðνβ → ναÞ ¼ jSαβj2.
The descriptions of the framework in this section, if

assisted by Appendix A in which the expressions of the
eigenvalues λi or hi and the mixing angles ϕ and ψ are
given, must be sufficient for the readers to derive the
formulas which will be presented in this paper. To discuss
the antineutrino channels we reverse the signs of the matter
potential a and the CP phase δ. This remark, since it is so
well known, will not be repeated in the discussion of each
channel.

C. Simplified notations

In this paper we use the following simplified notations
ði; j ¼ 1; 2; 3Þ. For quantities in vacuum

Δji ≡ Δm2
ji

2E
; Δren ≡ Δm2

ren

2E
; ð4:13Þ

where Δm2
ren is defined in Eq. (4.5). For the variables in

matter we use

hi≡ λi
2E

ði¼ 1;2;3Þ; h�;0≡λ�;0

2E
; Δa≡ a

2E
; ð4:14Þ

where λ�, λ0, h�, and h0 denote the eigenvalues to be used
in Sec. VI A.

V. DMP AMPLITUDE DECOMPOSITION

In this section we construct from scratch the DMP
amplitude decomposition. We do it here by using the S
matrix method, which is in accord with the method for
amplitude decomposition employed in the main body of
Ref. [10]. We hope that the formulas we derive in this paper
are much easier to reproduce for the readers who are not
familiar with the V matrix method [44]. In anticipation of
the physical interpretation of the decomposed amplitudes in
Sec. VI, we denote them as Satmαβ and Ssolαβ . Our construction
is valid in both the normal and the inverted mass orderings,
which we abbreviate as the NMO and IMO, respectively,
since Sec. IV B. In Sec. V H we discuss a possibility that
they are correlated with the choices of the S matrix
rephasing.
We first present a general structure of amplitude decom-

position, in particular, the dual definitions of it. To focus on
the conceptual questions, and for clear-cut exposition of the
points, we concentrate on the νμ − νe channel in the main
text of this paper. The amplitude decomposition in the other
channels will be discussed in Appendixes D and E.

A. Two different definitions of the amplitude
decomposition

Starting from the generic form of the S matrix in matter,
Sαβ ¼ Vα1V�

β1e
−ih1x þ Vα2V�

β2e
−ih2x þ Vα3V�

β3e
−ih3x [see
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(3.1)], there exist two ways of defining the amplitude
decomposition. With the use of the rephasing Sαβ →
eih1xSαβ, one can define the amplitude decomposition
Sαβ ¼ δαβ þ Satmαβ þ Ssolαβ , where

Satmαβ ≡ Vα3V�
β3½e−iðh3−h1Þx − 1�;

Ssolαβ ≡ Vα2V�
β2½e−iðh2−h1Þx − 1�: ð5:1Þ

If we use the different rephasing, Sαβ → eih2xSαβ, the
decomposed amplitudes read4

Satmαβ ≡ Vα3V�
β3½e−iðh3−h2Þx − 1�;

Ssolαβ ≡ Vα1V�
β1½eiðh2−h1Þx − 1�: ð5:2Þ

By being different only in the overall phase, of course,
these two decomposed amplitudes lead to the same
probability. For a simpler nomenclature for the two

rephasing methods, Sαβ → eih1xSαβ and Sαβ → eih2xSαβ,
we denote them as the “eih1x rephasing” and the “eih2x

rephasing,” respectively. Later in Sec. V H we will present
our physical interpretation of the two different decompo-
sitions in Eqs. (5.1) and (5.2).
By using the decomposed amplitudes Sαβ ¼ δαβ þ

Satmαβ þ Ssolαβ , in either the eih1x or the eih2x rephasing, the
oscillation probability is also decomposed into the non-
interference and interference terms as [9,10]

Pðνβ → ναÞ ¼ Pðνβ → ναÞnon-int-fer þ Pðνβ → ναÞint-fer:
ð5:3Þ

B. DMP S matrix elements in the νμ − νe channel
The zeroth and the first-order flavor basis amplitudes

can be calculated by using the relevant formulas in
Appendix B:

Sð0Þeμ ¼ c23cϕcψsψðe−ih2x − e−ih1xÞ − s23cϕsϕe−iδðc2ψe−ih1x þ s2ψe−ih2x − e−ih3xÞ;
Sð1Þeμ ¼ s23 cos 2ϕe−iδŜ13 þ c23sϕŜ23

¼ ϵc12s12sðϕ−θ13Þ

�
s23 cos 2ϕcψsψe−iδ

�
Δren

h3 − h2
ðe−ih3x − e−ih2xÞ − Δren

h3 − h1
ðe−ih3x − e−ih1xÞ

�

þ c23sϕ

�
c2ψ

Δren

h3 − h2
ðe−ih3x − e−ih2xÞ þ s2ψ

Δren

h3 − h1
ðe−ih3x − e−ih1xÞ

��
: ð5:4Þ

In Eq. (5.4), ϕ and ψ denote, respectively, the matter-
dressed mixing angles θ13 and θ12 [36], as mentioned in
Sec. IV B. We remark here that the superscripts (0) and (1)
on the S matrix elements and the probabilities imply the
order of DMP perturbation throughout this paper.
We discuss the two rephasing methods, the eih1x rephas-

ing and the eih2x rephasing, in parallel. For reasons we

explain later we discuss the eih2x rephasing first, and then,
the case of eih1x rephasing follows.

C. The decomposed amplitudes and probabilities
in the νμ − νe channel: eih2x rephasing

With the eih2x rephasing, the decomposed amplitudes in
the zeroth- and first-order DMP expansion read

ðSatmeμ Þð0Þ ¼ s23cϕsϕe−iδðe−iðh3−h2Þx − 1Þ;
ðSsoleμ Þð0Þ ¼ −cϕðc23cψsψ þ s23sϕc2ψe−iδÞðeiðh2−h1Þx − 1Þ; ð5:5Þ

ðSatmeμ Þð1Þ ¼ ϵc12s12sðϕ−θ13Þðc23sϕc2ψ þ s23 cos 2ϕe−iδcψsψÞ
Δren

h3 − h2
ðe−iðh3−h2Þx − 1Þ

þ ϵc12s12sðϕ−θ13Þðc23sϕs2ψ − s23 cos 2ϕe−iδcψsψ Þ
Δren

h3 − h1
ðe−iðh3−h2Þx − 1Þ;

ðSsoleμ Þð1Þ ¼ −ϵc12s12sðϕ−θ13Þðc23sϕs2ψ − s23 cos 2ϕcψsψe−iδÞ
Δren

h3 − h1
ðeiðh2−h1Þx − 1Þ: ð5:6Þ

4One might feel curious why the wave factor ½eiðh2−h1Þx − 1� appears with the eih2x rephasing, in contrast to the ½e−iðh2−h1Þx − 1� factor
in the case of eih1x rephasing. It will be cleared up in Sec. V E.
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The decomposed oscillation probability and the noninterference and interference terms in Eq. (5.3) are given in the zeroth
and first order as

½Pðνμ → νeÞð0Þ�non-int-fer ¼ jðSatmeμ Þð0Þj2 þ jðSsoleμ Þð0Þj2

¼ 4s223c
2
ϕs

2
ϕsin

2
ðh3 − h2Þx

2
þ 4c2ϕc

2
ψ ðc223s2ψ þ s223s

2
ϕc

2
ψ þ 2c23s23sϕcψsψ cos δÞsin2

ðh2 − h1Þx
2

;

½Pðνμ → νeÞð0Þ�int-fer ¼ 2Re½fðSatmeμ Þð0Þg�ðSsoleμ Þð0Þ�

¼ −4s23c2ϕsϕcψðs23sϕcψ þ c23sψ cos δÞ
�
−sin2

ðh3 − h1Þx
2

þ sin2
ðh3 − h2Þx

2
þ sin2

ðh2 − h1Þx
2

�

− 8c23s23c2ϕsϕcψsψ sin δ sin
ðh3 − h1Þx

2
sin

ðh2 − h1Þx
2

sin
ðh3 − h2Þx

2
; ð5:7Þ

½Pðνμ → νeÞð1Þ�non-int-fer ¼ 2Re½fðSatmeμ Þð0Þg�ðSatmeμ Þð1Þ� þ 2Re½fðSsoleμ Þð0Þg�ðSsoleμ Þð1Þ�

¼ 8ϵc12s12sðϕ−θ13Þcϕsϕðc23s23sϕcψ cosδþ s223 cos2ϕsψÞcψ
Δren

h3 − h2
sin2

ðh3 − h2Þx
2

þ 8ϵc12s12sðϕ−θ13Þcϕsϕðc23s23sϕsψ cos δ− s223 cos2ϕcψÞsψ
Δren

h3 − h1
sin2

ðh3 − h2Þx
2

þ 8ϵc12s12sðϕ−θ13Þcϕcψ ½sϕðc223s2ψ − s223 cos2ϕc
2
ψ Þ þ c23s23cψsψ cos δðs2ϕ − cos2ϕÞ�

× sψ
Δren

h3 − h1
sin2

ðh2 − h1Þx
2

;

½Pðνμ → νeÞð1Þ�int-fer ¼ 2Re½fðSatmeμ Þð0Þg�ðSsoleμ Þð1Þ� þ 2Re½fðSsoleμ Þð0Þg�ðSatmeμ Þð1Þ�
¼ −4ϵc12s12sðϕ−θ13Þcϕcψfsϕcψsψ ðc223 þ s223 cos2ϕÞ þ c23s23 cos δðcos2ϕs2ψ þ s2ϕc

2
ψÞg

× cψ
Δren

h3 − h2

�
−sin2

ðh3 − h1Þx
2

þ sin2
ðh3 − h2Þx

2
þ sin2

ðh2 − h1Þx
2

�

þ 4ϵc12s12sðϕ−θ13Þcϕfsϕcψ ½s223 cos2ϕð1þ c2ψÞ− c223s
2
ψ �− c23s23sψ cos δ½s2ϕð1þ c2ψÞ− cos2ϕc2ψ �g

× sψ
Δren

h3 − h1

�
−sin2

ðh3 − h1Þx
2

þ sin2
ðh3 − h2Þx

2
þ sin2

ðh2 − h1Þx
2

�

þ 8ϵc23s23cϕsðϕ−θ13Þc12s12 sin δ
�
ðs2ϕ − c2ϕs

2
ψ Þc2ψ

Δren

h3 − h2
− ðs2ϕ − c2ϕc

2
ψÞs2ψ

Δren

h3 − h1

�

× sin
ðh3 − h1Þx

2
sin

ðh2 − h1Þx
2

sin
ðh3 − h2Þx

2
: ð5:8Þ

D. Amplitude decomposition in the νμ − νe channel with eih1x rephasing

We discuss next the amplitude decomposition with the eih1x rephasing. The decomposed amplitudes in the zeroth- and
first-order DMP expansion are similarly given by

ðSatmeμ Þð0Þ ¼ s23cϕsϕe−iδðe−iðh3−h1Þx − 1Þ;
ðSsoleμ Þð0Þ ¼ cϕðc23cψsψ − s23sϕs2ψe−iδÞðe−iðh2−h1Þx − 1Þ; ð5:9Þ

ðSatmeμ Þð1Þ ¼ ϵc12s12sðϕ−θ13Þðc23sϕc2ψ þ s23 cos 2ϕcψsψe−iδÞ
Δren

h3 − h2
ðe−iðh3−h1Þx − 1Þ

þ ϵc12s12sðϕ−θ13Þðc23sϕs2ψ − s23 cos 2ϕcψsψe−iδÞ
Δren

h3 − h1
ðe−iðh3−h1Þx − 1Þ;

ðSsoleμ Þð1Þ ¼ −ϵc12s12sðϕ−θ13Þðc23sϕc2ψ þ s23 cos 2ϕcψsψe−iδÞ
Δren

h3 − h2
ðe−iðh2−h1Þx − 1Þ: ð5:10Þ
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A comparison between the amplitudes in Eqs. (5.9) and
(5.10) and the ones in Eqs. (5.5) and (5.6) with the
eih2x rephasing tells us something new, which we need
to discuss first.

E. ψ Symmetry

That is, the decomposed amplitudes obtained with the
eih1x rephasing and the ones with the eih2x rephasing are
connected with each other by the transformations [36],

h1 → h2; h2 → h1; cψ → −sψ ; sψ → þcψ ;

cos2ψ → − cos2ψ ; sin2ψ → − sin2ψ : ð5:11Þ

They may be summarized as5

ψ → ψ þ π

2
: ð5:12Þ

Now, both S matrix elements obtained with the eih2x and
eih1x rephasing must give the same probability. But, they
are connected by the transformation (5.11). It means that
the oscillation probability is invariant under the ψ trans-
formation (5.11). It is nothing but the ψ symmetry
uncovered by Denton et al. [36]. It is easy to confirm that
the symmetry structure prevails in all the other oscillation
channels.
Thus, we have identified the origin of the ψ symmetry: It

is due to the freedom of doing rephasing in the S matrix,
assuming the probabilistic nature of quantum mechanics.
The observable, in this case the oscillation probability, must
be invariant under the phase redefinition of the S matrix.

The ψ symmetry utilizes the special two points in the
continuous phase transformations which leave the oscil-
lation probability invariant. We believe that the new
characterization of the ψ symmetry deepens our under-
standing of the symmetry. One can easily show that the
similar understanding can be extended to the φ → φþ π

2

symmetry in the “solar-resonance perturbation theory” [30]
and to the ϕ → ϕþ π

2
symmetry in the “renormalized helio-

perturbation theory” [35], where φ and ϕ are the matter-
dressed θ12 and θ13, respectively. Both symmetries are
uncovered in Ref. [30].
Previously, we have characterized the symmetry as a

“dynamical” one [30], not a symmetry in the Hamiltonian.
From our new understanding this feature arises because we
do rephasing with the use of the dynamical variables, the
eigenvalues of the Hamiltonian. They are the complicated
functions of the parameters in the Hamiltonian, in particular
in the ZS construction, and no simple interpretation as a
symmetry of the Hamiltonian is possible.

F. The decomposed probabilities
with eih1x rephasing

Then, the amplitude decomposition with the eih1x rephas-
ing should lead to the expression of the noninterference
and interference parts of the probability that is consistent
with the ψ symmetry. This can be verified by an explicit
computation with the decomposed amplitudes Eqs. (5.9)
and (5.10), which produces the following expressions of
Pðνμ → νeÞnon-int-fer and Pðνμ → νeÞint-fer to first order in the
DMP expansion:

½Pðνμ → νeÞð0Þ�non-int-fer ¼ 4s223c
2
ϕs

2
ϕsin

2
ðh3 − h1Þx

2
þ 4c2ϕs

2
ψðc223c2ψ þ s223s

2
ϕs

2
ψ − 2c23s23sϕcψsψ cos δÞsin2

ðh2 − h1Þx
2

;

½Pðνμ → νeÞð0Þ�int-fer ¼ −4s23c2ϕsϕsψðs23sϕsψ − c23cψ cos δÞ
�
−sin2

ðh3 − h2Þx
2

þ sin2
ðh3 − h1Þx

2
þ sin2

ðh2 − h1Þx
2

�

− 8c23s23c2ϕsϕcψsψ sin δ sin
ðh3 − h1Þx

2
sin

ðh2 − h1Þx
2

sin
ðh3 − h2Þx

2
; ð5:13Þ

½Pðνμ → νeÞð1Þ�non-int-fer ¼ 8ϵc12s12sðϕ−θ13Þcϕsϕðc23s23sϕcψ cos δþ s223 cos 2ϕsψ Þcψ
Δren

h3 − h2
sin2

ðh3 − h1Þx
2

þ 8ϵc12s12sðϕ−θ13Þcϕsϕðc23s23sϕsψ cos δ − s223 cos 2ϕcψ Þsψ
Δren

h3 − h1
sin2

ðh3 − h1Þx
2

− 8ϵc12s12sðϕ−θ13Þcϕsψ ½sϕðc223c2ψ − s223 cos 2ϕs
2
ψÞ þ c23s23cψsψ cos δðcos 2ϕ − s2ϕÞ�

× cψ
Δren

h3 − h2
sin2

ðh2 − h1Þx
2

;

5In fact, there is invariance under ψ → ψ � π
2
[36], but we take only the plus sign for definiteness, because this degeneracy does not

appear to be important. The nature of the symmetry that includes the h1 ↔ h2 transformations explains the appearance of the
½eiðh2−h1Þx − 1� wave factor with the eih2x rephasing, in contrast to the ½e−iðh2−h1Þx − 1� with the eih1x rephasing.
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½Pðνμ → νeÞð1Þ�int-fer ¼ 4ϵc12s12sðϕ−θ13Þcϕ½sϕsψfc223c2ψ − s223 cos 2ϕð1þ s2ψ Þg − c23s23cψ cos δfs2ϕð1þ s2ψÞ − cos 2ϕs2ψg�

× cψ
Δren

h3 − h2

�
−sin2

ðh3 − h2Þx
2

þ sin2
ðh3 − h1Þx

2
þ sin2

ðh2 − h1Þx
2

�

þ 4ϵc12s12sðϕ−θ13Þcϕsψ ½sϕcψsψðc223 þ s223 cos 2ϕÞ − c23s23 cos δfs2ϕs2ψ þ cos 2ϕc2ψg�

× sψ
Δren

h3 − h1

�
−sin2

ðh3 − h2Þx
2

þ sin2
ðh3 − h1Þx

2
þ sin2

ðh2 − h1Þx
2

�

þ 8ϵc23s23cϕsðϕ−θ13Þc12s12 sin δ
�
c2ψ ðs2ϕ − c2ϕs

2
ψÞ

Δren

h3 − h2
− s2ψðs2ϕ − c2ϕc

2
ψÞ

Δren

h3 − h1

�

× sin
ðh3 − h1Þx

2
sin

ðh2 − h1Þx
2

sin
ðh3 − h2Þx

2
: ð5:14Þ

It is now easy to see that the decomposed probabilities with
the eih1x rephasing, Eqs. (5.13) and (5.14), and the ones
with the eih2x rephasing, Eqs. (5.7) and (5.8), are connected
with each other by the ψ transformation (5.11). Notice that
the total probability Pðνμ → νeÞ ¼ Pðνμ → νeÞnon-int-fer þ
Pðνμ → νeÞint-fer calculated with both the eih1x and the eih2x

rephasing should be identical with each other. It is verified
by explicitly showing that they both agree with the zeroth-
and first-order probabilities, Eqs. (C1) and (C2) given in
Appendix C, which are computed by using the conven-
tional method of calculation using the S matrix elements
given in Eq. (5.4). By this way, consistency among the
three ways of calculation, the eih1x and eih2x rephasing, and
the S matrix method without the amplitude decomposition,
is verified. The consistency check for the decomposed
probabilities in the other channels, which are computed in
Appendixes D and E, is carried out by the same way as
above.
Before completing our discussion of the DMP decom-

position in this section, we discuss the two remaining
problems, both of which we feel are very relevant. They are
(1) CP phase dependence of the oscillation probability, and
(2) possible physical interpretation of the eih1x and eih2x

rephasing.

G. CP phase dependence

The δ-dependent terms in the oscillation probability have
some universal coefficients, and hence they may be of
interest. In fact, we observe a new regularity in the structure
of Jarlskog factors in matter in the DMP probabilities. Our
following discussion applies to both probabilities calcu-
lated with the eih2x and eih1x rephasing.
In both the decomposed probabilities Pðνμ→νeÞnon-int-fer

and Pðνμ → νeÞint-fer, the δ dependent terms have the
coefficients Jm-1st ≡ c23s23c2ϕsϕcψsψ in the zeroth-order
and Jm-2nd ≡ c23s23cϕsðϕ−θ13Þc12s12 in the first-order terms.
The same feature is shared by the probabilities in the
Pðνμ → ντÞ channel; see Appendix E. We take the NMO
not to worry about the � signs. By using the formulas in

Appendix A, it is straightforward to show that these
Jarlskog factors in matter can be written exactly as

Jm-1st ≡ c23s23c2ϕsϕcψsψ

¼ ϵJr
½1þ r2a − 2ra cos2θ13�

F−ðraÞ
FþðraÞ

×
1h

1− 4ϵ cos2θ12
FþðraÞ þ 4ϵ2

cos22θ12þsin22θ12c2ϕ−θ13
½FþðraÞ�2

i1=2 ;

Jm-2nd ≡ c23s23cϕsðϕ−θ13Þc12s12

¼ Jrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2a − 2ra cos2θ13

p

×

�
1þ 2s213

ðcos2θ13 − raÞ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2a − 2ra cos2θ13

p
�
;

ð5:15Þ

where Jr ≡ c23s23c213s13c12s12 denotes the Jarlskog factor
in vacuum [45], and ra ≡ a

Δm2
ren
. In Eq. (5.15) we have

defined the Fþ and F− functions as

F�ðraÞ≡ ½1� ra ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2a − 2ra cos 2θ13

q
�: ð5:16Þ

That is, the matter Jarlskog factors are proportional to the
vacuum one. This result is what is predicted by the Naumov
identity for the T-odd sin δ term [46], and by the general
property of the T-even cos δ term discussed in Ref. [47].6

A general discussion of T-odd terms in the DMP theory is
also given in Ref. [36].

6The general theorem given in Ref. [47] for the cos δ term
does not prove the c213 factor, which is indeed missing in the
probabilities in the νμ − ντ sector. But, it is known empirically
[38] that the c213 always appears in the νμ → νe channel. For more
examples, see, e.g., Ref. [30] and Sec. IX in Ref. [10].
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H. Physical interpretation of the
eih1x and eih2x rephasing

We present here the two different views and usages of the
freedom of the eih1x and eih2x rephasing. The decomposed
probabilities Pðνμ → νeÞint-fer [Pðνμ → νeÞnon-int-fer as well]
with the eih1x and eih2x rephasing are different from each
other in magnitudes, though they are related by the ψ
transformation. That is, the ψ symmetry, which existed in
the total probability Pðνμ → νeÞnon-int-fer þ Pðνμ → νeÞint-fer,
is broken in each individual term in the decomposed
probability. Then, the test probability defined by introducing
the q parameter [9,10]

Pðνβ → να∶qÞ ¼ Pðνβ → ναÞnon-int-fer þ qPðνβ → ναÞint-fer
ð5:17Þ

to quantify the statistical significance for observing the
interference effect is different between the cases of eih1x

and eih2x rephasing for q ≠ 1.
Using the difference in the test probability (5.17) with

the eih1x and eih2x rephasing at q ≠ 1, the first usage of the
two different rephasings is, in a given mass ordering,
(1) In the analyses of quantifying the effect of the

interference effect one can use the two different
rephasing formulas to estimate the uncertainty due to
the choice of the theoretical frameworks.

It shares the similar spirit as the method we have employed
in our JUNO analysis in Ref. [9], in which we have
examined the two cases of the atmospheric Δm2, Δm2

31,
and Δm2

32, which can be derived by using eiðm2
1
=2EÞx and

eiðm2
2
=2EÞx rephasing, respectively.

Toward the possible second usage, we argue that
(2) The eih2x and eih1x rephasing amplitudes correspond,

respectively, to the IMO and NMO, the viewpoint
we advertised in Ref. [10].

If one looks at the three-neutrino energy level crossing
diagram, e.g., in Fig. 1 in Ref. [36], one recognizes that the
atmospheric resonance is in the 2-3 and 1-3 level crossings in
the NMO and IMO, respectively. We also note that with the
eih2x and eih1x rephasing, the leading term of the probability
in Eq. (5.7) and Eq. (5.13), respectively, takes the form of

sin2 ðh3−h2Þx
2

and sin2 ðh3−h1Þx
2

. They describe the atmospheric
resonance in theNMOand IMO, respectively. Therefore, the
above interpretation is quite natural. Thus, we mean by the
second usage of the two rephasing freedom use of the eih2x

rephasing in the analysis assuming the NMO, and eih1x

rephasing in the analysis assuming the IMO.7

However, before one of the neutrino mass orderings is
established, the analyses of experimental data will be done
by assuming either the NMO or the IMO one by one, or by
marginalizing over the two mass orderings. Therefore,
practically one may take effectively the first attitude above.
But, when themass ordering is established, onemaywant to
decidewhether one chooses the possible secondusage,eih2x-
rephasing-NMO or eih1x-rephasing-IMO correspondence as
an ansatz for the analysis, which we do recommend.8

In either case, we believe that the expressions of the
decomposed oscillation probability Eqs. (5.7) and (5.8),
and/or Eqs. (5.13) and (5.14), are ready for use in data
analyses to quantify the observation of the interference
effect under the approximation of uniform matter density.

VI. PHYSICAL INTERPRETATION OF THE
DYNAMICAL MODES

At the start of our discussion in Sec. V, we foretold that
the two dynamical modes in the decomposed amplitudes,
denoted as the A and S modes, can be interpreted as the
matter-affected atmospheric and the solar oscillation
modes, respectively. Let us try to give some foundation
on this statement. We do this by showing that the DMP
decomposed amplitudes smoothly connect themselves into
the atmospheric and solar waves in each appropriate
kinematical phase spaces. Speaking more precisely, we
take suitable limits of the DMP amplitude decomposition
into the regions in which one of the two modes can be
clearly identified either as the atmospheric or the solar
waves. Each one of these modes is described by the suitable
perturbative framework, as discussed below. The amplitude
decomposition in the related frameworks is discussed
in Ref. [10].

A. Approaching the region of the enhanced
atmospheric-scale oscillation

We discuss first the renormalized helio-perturbation
theory [35] limit of the DMP perturbation theory. For a
simpler terminology we call the former as the MP model. It
is the most suited one for this purpose among the similar
frameworks so far developed which perturbs around the
atmospheric resonance [31–35], because it is a “half-way”
DMP and also due to its favorable properties such as
inclusion of only the correct wave factors.9

To illuminate the point we discuss the case of NMO
and IMO in parallel. The suitable limit to approach the

7But, of course, one should remember that the total proba-
bilities, or the test probabilities at q ¼ 1, with the eih2x and eih1x
rephasing describe exactly the same physics. Therefore, our
second usage of the two rephasing freedom only makes sense
when we talk about the interference analyses with the use of the
test probability (5.17).

8The era of established neutrino mass ordering may not be too
far remote, given the result of the analysis in Ref. [48].

9One of the problems is that the ð−iΔ21xÞ term could be
interpreted approximately as ðe−iΔ21x − 1Þ. But, Δ21x ≈

Δ21

Δ31
≃ ϵ

can also be understood as the expansion parameter, which would
introduce confusion in doing the decomposition. In the first-order
treatment in Ref. [10] we have circumvented this issue, but the
problem becomes more serious when we go to higher orders.
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atmospheric resonance region would be ϵ ≪ 1, keeping θ13
and ϕ finite, and

ra ≡ a
Δm2

ren
≃

Δa

Δ31

�
1þ s212

Δ21

Δ31

�
∼Oð1Þ: ð6:1Þ

We remind the readers for the notations Δa ≡ a
2E and

Δji ≡ Δm2
ji

2E , as defined in Sec. IV C. Some aspects of this
limit are discussed in Appendix A.
One can show, by using the expression in Appendix A,

that the DMP eigenvalues hi ≡ λi
2E (i ¼ 1, 2, 3) can be

written by the MP eigenvalues h�;0 ≡ λ�;0

2E to order ϵ:

NMO∶ h3 − h2 ¼ hþ − h−; h3 − h1 ¼ hþ − h0;

h2 − h1 ¼ h− − h0;

IMO∶ h3 − h2 ¼ hþ − h0; h3 − h1 ¼ hþ − h−;

h2 − h1 ¼ h0 − h−: ð6:2Þ

See Fig. 3 in Ref. [35]. Notice that every helio-perturbation
theory has a drawback of the wrong solar-level crossing as
discussed in Ref. [35], and the complexity of the corre-
spondence of the DMP-MP eigenvalues in Eq. (6.2) reflects
this drawback. But, it does not cause the problem in our
task because our limit is toward the atmospheric resonance
region, and the solar-level crossing is outside the region of
validity of the helio-perturbation theory.
The mixing angle ϕ, the matter-dressed θ13, is given in

Eq. (A3), the universal form which is valid independent of

the NMO or IMO. ψ , the matter-dressed θ12, take the
simple approximate forms cos 2ψ ¼ ∓1þOðϵ2Þ and

sin 2ψ ¼ �ϵ sin 2θ12cϕ−θ13
Δren

h− − h0
:

That is, ψ ≈ π
2
(ψ ≈ 0) at around the atmospheric resonance

in the NMO (IMO). See Fig. 1 in Ref. [36]. This property
guarantees a smooth connection to the MP model from
the DMP.
Interestingly, in the limit to the atmospheric resonance

region, the amplitude decomposition formulas in the zeroth
and first order can be written in the universal form, i.e.,
independent of the NMO or IMO, as

ðSatmeμ Þð0Þ ¼ s23cϕsϕe−iδðe−iðhþ−h−Þx − 1Þ;

ðSsoleμ Þð0Þ ¼ −ϵc23c12s12cϕcϕ−θ13
Δren

h− − h0
ðeiðh−−h0Þx − 1Þ;

ðSatmeμ Þð1Þ ¼ ϵc23c12s12sϕsðϕ−θ13Þ
Δren

hþ − h0
ðe−iðhþ−h−Þx − 1Þ;

ðSsoleμ Þð1Þ ¼ −ϵc23c12s12sϕsðϕ−θ13Þ
Δren

hþ − h0
ðeiðh−−h0Þx − 1Þ:

ð6:3Þ

Then, the noninterference and interference parts of the
probability in both mass orderings can be written as

Pðνμ → νeÞnon-int-fer ¼ 4s223c
2
ϕs

2
ϕsin

2
ðhþ − h−Þx

2
þ 8ϵc23s23cϕs2ϕc12s12sðϕ−θ13Þ cos δ

Δren

hþ − h0
sin2

ðhþ − h−Þx
2

;

Pðνμ → νeÞint-fer ¼ −4ϵc23s23cϕsϕc12s12 cos δ
�
cϕcϕ−θ13

Δren

h− − h0
þ sϕsðϕ−θ13Þ

Δren

hþ − h0

�

×

�
−sin2

ðhþ − h0Þx
2

þ sin2
ðhþ − h−Þx

2
þ sin2

ðh− − h0Þx
2

�

− 8ϵc23s23cϕsϕc12s12 sin δ

�
cϕcϕ−θ13

Δren

h− − h0
þ sϕsðϕ−θ13Þ

Δren

hþ − h0

�

× sin
ðhþ − h0Þx

2
sin

ðh− − h0Þx
2

sin
ðhþ − h−Þx

2
: ð6:4Þ

Notice that the MP first-order terms in (6.4) come
from both the DMP leading and the next to leading order
terms. Using the expressions of V matrix elements given in
Ref. [35], or using the formalism in our previous paper [10],
one can easily work out the amplitude decomposition in the
MP model. An explicit computation that is carried out
confirms our results in Eqs. (6.3) and (6.4). Of course,
one can verify that Pðνμ → νeÞ ¼ Pðνμ → νeÞnon-int-ferþ

Pðνμ → νeÞint-fer reproduces (T-conjugate of) Eq. (B.2) in
Appendix B in Ref. [35].
For simplicity and clarity we have restricted our dis-

cussion in this section to the νμ → νe channel. But, the
generalization to the other channels is straightforward. The
key point is that at around the region of the atmospheric
resonance the matter-dressed θ12 “freezes” into ψ ≈ π

2

(ψ ≈ 0) in the NMO (IMO).
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B. Approaching the region of the enhanced
solar-scale oscillations

We discuss the limit toward the “solar-resonance per-
turbation theory” [30]. It is the perturbative framework
whose region of validity is with enhanced solar-scale
oscillations

rsola ≡ a
Δm2

21

¼ Δa

Δ21

¼ a
ϵΔm2

ren
∼Oð1Þ: ð6:5Þ

The framework has an effective expansion parameter

Aexp ≡ c13s13

				 a
Δm2

31

				
¼ 2.78 × 10−3

�
Δm2

31

2.4 × 10−3 eV2

�−1

×

�
ρ

3.0 g=cm3

��
E

200 MeV

�
; ð6:6Þ

which guarantees the smallness of the perturbative correc-
tions, as confirmed in Ref. [30].
Since we want to keep Aexp ∝ a

Δm2
31

≃ ra small, we take
the limit ra ≪ 1 keeping rsola finite to approach the solar-
resonance region. Noticing that ra ¼ ϵrsola , the limit ra ≪ 1
is in harmony with the smallness of the DMP expansion
parameter ϵ. Therefore, the solar-resonance perturbation
theory limit is feasible in the DMP framework. Our
treatment below applies to both the NMO and the IMO.
We expand the eigenvalues and the mixing angles

keeping rsola finite. The eigenvalues read, to order ra, as

h− ¼ Δren½c213ra þ ϵs212�;
h0 ¼ Δrenϵc212;

hþ ¼ Δren½1þ s213ra þ ϵs212�: ð6:7Þ

For the mixing angle ϕwe refer the reader to Sec. VII B for
the approximate formulas for the small ra approximation.
Namely, the approximation on θ13 in Eq. (7.4) applies to the
present case, but not the ones for ψ which involve rsola .
Using λ0 þ λ− ¼ Δm2

21ð1þ c213r
sol
a Þ and the similar expan-

sion inside the square root, the DMP eigenvalues are
given by

h1 ¼
1

2
Δ21½ð1þ c213r

sol
a Þ

− f1 − 2c213 cos 2θ12r
sol
a þ c413ðrsola Þ2g1=2�;

h2 ¼
1

2
Δ21½ð1þ c213r

sol
a Þ

þ f1 − 2c213 cos 2θ12r
sol
a þ c413ðrsola Þ2g1=2�;

h3 ¼ Δ31 þ s213Δa; ð6:8Þ

which reproduces the eigenvalues in Eqs. (16) and (17) in
Ref. [30]. Notice that the ϵ correction in Δren and the ϵs212
term in hþ cancel with each other. Similarly, the expres-
sions of ψ read

cos 2ψ ¼ −
− cos 2θ12 þ c213r

sol
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcos 2θ12 − c213r
sol
a Þ2 þ sin22θ12

q ;

sin 2ψ ¼ sin 2θ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos 2θ12 − c213r

sol
a Þ2 þ sin22θ12

q ; ð6:9Þ

which again reproduces precisely the expressions in
Eq. (14) in Ref. [30].
Thus, the zeroth-order eigenvalues and the mixing angles

are reproduced, which means that the solar-resonance
perturbation theory at its leading order can be reached as
the appropriate limit of the DMP theory. Since the
prescription for amplitude decomposition we use in this
and the previous papers [10] is the same, it is obvious that
the DMP amplitude decomposition smoothly tends to the
decomposition using the solar-resonance perturbation
theory discussed in Ref. [10]. Notice that our statement
applies to all the oscillation channels, because the whole
structure of the solar-resonance perturbation theory at the
leading order is reproduced. Since the first-order correction
is small with the tiny Aexp, we do not enter into the
discussion of first-order corrections.

C. Matter-dressed atmospheric and solar oscillations
in entire terrestrial region?

Basedupon the results obtained in the previousSecs.VI A
and VI B, we argue that the dynamical twomodes described
by the DMP decomposition can be interpreted as the matter-
dressed atmospheric and the matter-dressed solar neutrino
oscillations in the entire “terrestrial-experiments-covered”
region. By it wemean the energies and baselines of, roughly
speaking, the neutrino energy-baseline covered by the
atmospheric neutrino observation. For short it will be
denoted as the “terrestrial region” hereafter. See the drawing,
e.g., in Fig. 1 of Ref. [49], with keeping in mind some
extension to the higher-energy side.
The validity of characterization of the dynamical two

modes is, of course, true in the two resonance-enhanced
regions that are explicitly treated in Secs. VI A and VI B,
but it is also likely to prevail in the region between. In fact,
the regions of validity of both perturbation theories to
first order, the solar-resonance perturbation theory at the
low-energy side and the one of the renormalized helio-
perturbation theory at the high-energy side, almost occupy
the entire terrestrial region. See Figs. 2 and 3 in Ref. [30]
and Fig. 1 in Ref. [35]. Therefore, there is not so much
room for inserting a new dynamical mode between the
regions of validity of both perturbation theories valid at
low- and high-energy regions. Then, it is very likely that the
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dynamical two modes in the terrestrial region can be
regarded as the matter-dressed solar and the matter-dressed
atmospheric neutrino oscillations.
As an outcome of the exercise we engaged in this

section, we have obtained a new picture of the DMP
perturbation theory as a unified perturbative framework for
neutrino oscillation which covers the whole terrestrial
neutrino oscillations. Certainly it is the unique framework
among the perturbative schemes so far proposed that covers
the two resonances, due to the atmospheric- and the solar-
scale enhancements.10

VII. DMP AMPLITUDE DECOMPOSITION
APPLIED TO THE SYSTEM WITH

INFINITESIMAL MATTER POTENTIAL

We have observed in Ref. [10] that a straightforward
application of the vacuum definition of amplitude decom-
position [9] fails with an infinitesimal matter potential.
It looks like a really contrived case because the three-

neutrino eigenvalues remain the same as in vacuum, and the
strong matter modification of the two vacuum modes
should not exist. Since we set up the framework of
DMP amplitude decomposition, it should be possible to
understand how this issue is treated by the DMP decom-
position. It is the purpose of our discussion in this section to
examine this point.
We first examine the matter perturbation theory limit of

the DMP theory, deferring the discussion of amplitude
decomposition later in this section. Since we are talking
about an infinitesimal matter potential, the limit we take is
both ra ≪ 1 and rsola ≪ 1.

A. The νμ − νe amplitude to first order in matter
perturbation theory

The oscillation S matrix element in the νμ − νe channel
valid to first order in matter perturbation theory which was
derived in Ref. [10], which we recapitulate here:

Seμ ¼ c13s12ðc23c12 − s23s13s12e−iδÞðe−iΔ21x − 1Þ þ s23c13s13e−iδðe−iΔ31x − 1Þ

þ c12s12c313ðcos 2θ12c23 − sin 2θ12s13s23e−iδÞ
Δa

Δ21

ðe−iΔ21x − 1Þ

þ c12c13s13ð−s12s13c23 þ cos 2θ13c12s23e−iδÞ
Δa

Δ31

ðe−iΔ31x − 1Þ

þ s12c13s13ðc12s13c23 þ cos 2θ13s12s23e−iδÞ
Δa

Δ31 − Δ21

ðe−iΔ31x − e−iΔ21xÞ

þ ð−iΔaxÞ½c312c313ð−s12c23 − c12s13s23e−iδÞ
þ s312c

3
13ðc12c23 − s12s13s23e−iδÞe−iΔ21x þ c13s313s23e

−iδe−iΔ31x�: ð7:1Þ

The matter perturbation theory used in Ref. [10] involves
the unique expansion parameter a

Δm2
31

. But, since the DMP

expansion involves the expansion parameter ϵ≡ Δm2
21

Δm2
ren
, we

can reproduce the fourth line of (7.1) only in an expanded
form

c13s13s12ðc23s13c12 þ s23 cos 2θ13s12e−iδÞ

×
Δa

Δ31

�
1þ Δ21

Δ31

�
ðe−iΔ31x − e−iΔ21xÞ: ð7:2Þ

B. The DMP amplitude in the leading order

Let us start with Seμ in the leading order DMP expansion,
the first line in Eq. (5.4). We note that, as we are close to

vacuum, our discussion in this section does not distinguish
between the NMO and IMO. To obtain the approximate
formula valid to first order in ra and rsola , we use the
following formulas:

h1 ¼ c213c
2
12Δa;

h2 ¼ Δ21 þ c213s
2
12raΔren;

h3 ¼ ð1þ ϵs212 þ s213raÞΔren; ð7:3Þ

cϕ¼c13ð1−s213raÞ; sϕ¼s13ð1þc213raÞ;
cosðϕ−θ13Þ¼1; sinðϕ−θ13Þ¼c13s13ra;

cψ ¼c12ð1−s212c
2
13r

sol
a Þ; sψ ¼s12ð1þc212c

2
13r

sol
a Þ: ð7:4Þ

By using these formulas, one can obtain, to leading order in
ra and rsola ,

10A possible missing piece in our discussion might be the
treatment of amplitude decomposition with the use of the
Agarwalla et al. Jacobi-method-based framework [43], another
candidate for “unified” perturbative framework for terrestrial
neutrino oscillations.
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Sð0Þeμ ¼ c13s12ðc23c12 − s23s13s12e−iδÞðe−iΔ21x − 1Þ þ s23c13s13e−iδðe−iΔ31x − 1Þ
þ c313c12s12ðc23 cos 2θ12 − s23s13 sin 2θ12e−iδÞrsola ðe−iΔ21x − 1Þ
− c13s13s12ðc23s13c12 þ s23 cos 2θ13s12e−iδÞraðe−iΔ21x − 1Þ
þ s23c13s13e−iδ cos 2θ13raðe−iΔ31x − 1Þ
þ ½c313c312ð−c23s12 − s23s13c12e−iδÞ þ c313s

3
12ðc23c12 − s23s13s12e−iδÞe−iΔ21x

þ s23c13s313e
−iδe−iΔ31x�ð−iΔaxÞ: ð7:5Þ

Notice that by using the leading order property ra ≃
Δa
Δ31

and rsola ≃ Δa
Δ21

, the ðe−iΔ31x − 1Þ term in Sð0Þeμ in Eq. (7.5) corresponds

to the leading order term in the fourth line in Eq. (7.1), ignoring the higher-order Δa
Δ31

Δ21

Δ31
term in (7.2). Therefore, the leading

order term in Sð0Þeμ in (7.1) obtained by the first-order matter perturbation theory is reproduced by the DMP leading order
amplitude.

C. ra correction and the DMP amplitude in the next to leading order

Derivation of the next to leading order term involving the Δa
Δ31

Δ21

Δ31
term in (7.2) is a little more complicated. It is easy to

show that the first-order DMP correction in Eq. (5.4) produces c212 times the higher-order Δa
Δ31

Δ21

Δ31
term in (7.2). Then, we need

the similar term, s212 times the same term in (7.2) to reproduce, using c212 þ s212 ¼ 1, the desired higher-order term in (7.2).
Though it may seem unlikely to happen, it indeed occurs. This is accomplished by adding the Δ21

Δ31

Δa
Δ31

term that arises from the

DMP’s ra correction, ra ≃
Δa
Δ31

ð1þ s212
Δ21

Δ31
Þ; see Eq. (6.1),11 in the third and fourth terms in Eq. (7.5), and the 1

h3−h1
term in the

DMP first-order correction:

− c13s13s12s212ðc23s13c12 þ s23 cos 2θ13s12e−iδÞ
Δ21

Δ31

Δa

Δ31

ðe−iΔ21x − 1Þ

þ c13s13s12s212ðc23s13c12 þ s23 cos 2θ13s12e−iδÞ
Δ21

Δ31

Δa

Δ31

ðe−iΔ31x − 1Þ

¼ c13s13s12s212ðc23s13c12 þ s23 cos 2θ13s12e−iδÞ
Δ21

Δ31

Δa

Δ31

ðe−iΔ31x − e−iΔ21xÞ: ð7:6Þ

Notice that the first term of (7.6) is from the pure ra
correction and the second term is from combining the first-
order DMP correction and the ra correction.
Thus, the νμ − νe amplitude obtained to first order in the

matter perturbation theory is reproduced by the DMP
framework to order Δ21

Δ31

Δa
Δ31
. The success in the relatively

simple manner above is due to a desirable property of the

DMP framework that the effective expansion parameter
involves sinðϕ − θ13Þ ≃ c13s13ra which makes the near-
vacuum limit transparent, as emphasized in Ref. [36].

D. DMP amplitude decomposition with infinitesimal
matter potential

We briefly discuss the DMP amplitude decomposition
with the eih1x rephasing. Since the near vacuum limit does
not distinguish the mass orderings, we do not treat the eih2x

rephasing. But, they both lead to the same expressions of
the probabilities, as they differ only by the S matrix phase.
The amplitude decomposition formulas at the zeroth and

the first order are given in Eq. (5.10). After taking the
similar near vacuum limit the decomposed amplitudes read

11Notice that there is no similar correction from rsola . It should
also be noticed that the ϵra termwhich existed in λ� cancels against
the similar term that comes from the ra correction. SeeAppendixA
for the definition of λ�. As a consequence the wave factors
have very simple expressions e−ih1x ≃ ½1 − ic213c

2
12Δax�, e−ih2x ≃

e−iΔ21x½1 − ic213s
2
12ðΔaxÞ�, and e−ih3x ≃ e−iΔ31x½1 − is213ðΔaxÞ�.
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ðSatmeμ Þð0Þ ¼ s23c13s13e−iδðe−iΔ31x − 1Þ þ s23c13s13 cos2θ13e−iδraðe−iΔ31x − 1Þ þ s23c13s13e−iδðs213 − c213c
2
12Þð−iΔaxÞe−iΔ31x;

ðSsoleμ Þð0Þ ¼ c13s12ðc23c12 − s23s13s12e−iδÞðe−iΔ21x − 1Þ
þ ½−c13s13s12ðc23s13c12 þ s23 cos2θ13s12e−iδÞra þ c313c12s12ðc23 cos2θ12 − s23s13 sin2θ12e−iδÞrsola �ðe−iΔ21x − 1Þ
− c313s12 cos2θ12ðc23c12 − s23s13s12e−iδÞð−iΔaxÞe−iΔ21x: ð7:7Þ

As we have learned in Sec. VII B, we need to supply the
order Δ21

Δ31

Δa
Δ31

term, but it can be done in exactly the sameway
as in Sec. VII C. Namely the term comes from the ra
correction and the first-order DMP amplitudes. Then, we
recover the order Δ21

Δ31

Δa
Δ31

term as seen in Eq. (7.2), which
can be distributed to the atmospheric and the solar
amplitudes.12

The investigation reported in this section was motivated
by the question of how we can understand a subtle feature
of amplitude decomposition with infinitesimal matter
potential. The problematic term of the genuine mixed
atmospheric and solar waves that exists in the first-order
matter perturbation theory is recovered as a Δ21

Δ31

Δa
Δ31

term in
the DMP perturbation theory. We have learned that in the
near-vacuum limit of the DMP decomposition, the term
[i.e., perturbatively recovered fourth term in Eq. (7.1)] is
distributed to the atmospheric and solar amplitudes accord-
ing to the wave factors ðe−iΔ31x − 1Þ and ðe−iΔ21x − 1Þ.
Therefore, the answer to the question of how to understand
the subtle term from the viewpoint of DMP decomposition
is that the wave factor decomposition defined in Secs. III
and III B transcends the energy denominator confusion.

VIII. SOME REMARKS TOWARD
PHENOMENOLOGY

Though doing phenomenology is beyond the scope of
this paper, it may be appropriate to add a few remarks
toward experimental analyses of the interference effects in
the ongoing and upcoming neutrino experiments. In Sec. I,
we gave a tentative argument to indicate that detection of
the atmospheric-solar interference might be easier than
observing CP violation. It is extremely interesting to see if
this expectation is true, for example, by doing the combined
analysis of the T2K and NOνA data [15,16].
Then, what is next? An interesting topic would be the

diagnostics of the interference effect. The main ingredient
in the interference term appears to be oscillation channel
dependent: While the CP-phase effect is dominant in the
νμ → νe channel, CP-phase independent terms are the

majority in the νμ → ντ and νμ → νμ channels [10].
If one wants to understand possible interplay between
the CP conserving and CP violating terms, an exploration
of the νμ → νe channel may be most feasible. In this case,
given dominance of the CP phase effect in the interference,
precision measurement is required. In this sense we are
faced with an interesting and exciting time, just at stepping
into the precision era of neutrino experiments with the
muon-neutrino superbeams, T2HK and DUNE [50,51]. If
the low-energy extensions of the astrophysical neutrino
experiments [52–54] measure Pðνμ → ντÞ in a reasonable
accuracy, it could offer another interesting opportunity for
diagnosing the atmospheric-solar interference effect.
The disappearance channels play a unique role in the

discussion of the interference effect. In Ref. [9], we have
analyzed the medium-baseline reactor neutrino experiment
JUNO [55] to uncover the sensitivity of detection of the
interference term, which turned out to be excellent, higher
than 4 σ. It utilizes the ν̄e → ν̄e channel, and hence it is a
purely non-CP phase effect even in matter [25,26]. The role
of the other disappearance channel, νμ → νμ, on the
diagnostics of the interference term is not yet investigated,
which may shed new light on this problem. The amplitude
decomposition in the νe → νe and νμ → νμ channels will be
discussed in Appendix D.
The νμ → ντ channel discussed in Appendix E is a very

interesting one with favorable property that the interference
effect is dominated by the CP phase-free part of the
probability, which is in sharp contrast to the feature in
the νμ → νe channel [10].

13 Though it may not be so easy,
the statistical separation of ντ in the atmospheric neutrinos
is already successful at Super-Kamiokande (SK) to show
the ντ appearance at a significance level of 4.6 σ [56]. The
experience would help the IceCube-PINGU and KM3NeT/
ORCA to detect ντ in the atmospheric neutrinos [52,53].
The long-baseline beam experiments may be more

powerful for precision measurement. The ντ detection
requires a relatively high-energy beam, and the DUNE
experiment is likely to be the best candidate for such a
measurement. See Refs. [57–59] and the references cited
therein. But, even assuming perfect knowledge of the

12An apparent minor problem is that a part of the ð−iΔaxÞ
terms is missing. But, it is because the rephasing can produce
such terms when expanded, and hence it will not affect the
oscillation probability.

13We do not discuss the νe → ντ channel because the oscil-
lation probability can be obtained by using the θ23 transformation
Pðνe → ντÞ ¼ Pðνe → νμ∶c23 → −s23; s23 → c23Þ [34], where
Pðνe → νμÞ is given by the T-conjugate of Pðνμ → νeÞ.
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neutrino flux, the observable quantity is the product of
the oscillation probability and the cross sections. There-
fore, only a single measurement cannot determine both.
Certainly we need experimentalists’ help to go forward.
A completely different aspect of application of the DMP

decomposition to JUNO is a possible role played by the
earth matter effect. Though it is small in JUNO [60], at a
level of 1%, it must be taken into account when the
accuracy of measurement becomes a percent level. Since
JUNO observes both the solar- and the atmospheric-scale
oscillations in the same energy region, most of the
frameworks treated in Ref. [10] cannot do the job.
Therefore, the best framework would be the DMP decom-
position or, possibly, the solar-resonance perturbation
theory [30].

IX. CONCLUDING REMARKS

In this paper, we have discussed the amplitude decom-
position in matter started from the first principle. We found
that the DMP perturbation theory [36] provides the ideal
foundation for this purpose. It not only possesses the
appropriate wave factor structure as the ZS construction
[29] dictates but also allows physical interpretation of
the dynamically independent two modes. Speaking more
precisely,

(i) The DMP decomposition is a very good approxi-
mation to the exact ZS decomposition. The numeri-
cal accuracy of the oscillation probability formulas
has been checked and found to be the best among all
the perturbative schemes available to date [39].

(ii) Physical picture of the dynamically independent
two modes can be drawn by explicitly showing
the smooth continuity of the DMP decomposition to
the regions of the atmospheric- and the solar-scale
enhanced oscillations (Sec. VI).

Moreover, the DMP decomposition illuminates how the
subtle case uncovered in Ref. [10] should be treated in the
light of the general principle of amplitude decomposition,
as discussed in Sec. VII. It is the case with the failure of the
vacuum prescription for the system with infinitesimal
matter potential mentioned in Sec. II.
In a process of formulating the DMP decomposition we

have identified the cause of the ψ symmetry [36] in the
oscillation probability (see Sec. V E) as due to the S matrix
rephasing invariance. The same understanding can be
extended to the similar symmetries in the renormalized
helio-perturbation theory and the solar-resonance pertur-
bation theory.
In passing, it may be appropriate to remark on a new

picture for the DMP framework as a unified perturbation
theory for neutrino oscillation in terrestrial matter. It has
the various favorable properties such as having the effective
expansion parameter ϵc12s12sðϕ−θ13Þ ≃ ϵc12s12c13s13ra
which makes the near-vacuum limit particularly transparent
[36]. In Sec. VI we have checked that the DMP perturba-

tion theory reproduces the frameworks known as the
solar-resonance perturbation theory [30], and the atmos-
pheric-resonance perturbation theory [31–35], by explicitly
analyzing the limits to the respective regions of their validity.
This property strongly suggests the picture of DMP pertur-
bation theory as a unified perturbative framework whose
region of validity spans the whole region covered by the
terrestrial experiments. Here, the terrestrial experiments’
region implies the neutrino energy baseline covered
by the atmospheric neutrino observation, e.g., in Super-
Kamiokande [17]. For a pictorial view of such a terrestrial
experiments’ region, see, e.g., Fig. 1 in Ref. [49].
Turning back to the amplitude decomposition in matter,

upon setting up the prescription for the DMP decomposi-
tion we have derived all the expressions of the decomposed
oscillation probabilities in all the relevant oscillation
channels: For the νμ → νe channel, see Sec. V; for the
νe → νe and νμ → νμ channels, see Appendix D; and for the
νμ → ντ channel, see Appendix E. These expressions must
be sufficient to perform the quantitative analyses of the
experimental data to uncover the atmospheric-solar wave
interference.
Some of the readers may be reluctant to see no detailed

phenomenological discussion in this paper. Though this is
true, we must emphasize that we are making progress in a
step by step manner. We are about to complete the first and
second stages of the analysis strategy which consists of the
following three stages: (1) To establish the principle and the
prescriptions for the amplitude decomposition; (2) to derive
all the necessary formulas which are required in the
analyses in all the oscillation channels; and (3) to perform
phenomenological analyses and the data analyses in paral-
lel, if possible. We believe that real progress can be made
only by taking solid steps in each stage.
Yet, there exist many unanswered theoretical questions.

We lack discussions for physical properties in the various
channels, for example, in the disappearance channels
except for the ν̄e − ν̄e channel treated in vacuum [9].
In this paper we did not address the physical picture of
the two dynamical modes outside the terrestrial experi-
ments’ favored kinematical phase space, e.g., superhigh
energy or superdense matter. Since the system is effectively
two flavor we expect that the physics there is likely to be
simple. We also did not enter into the problem of varying
matter density. We hope that we can come back to these
questions in the near future.
Finally, we speculate that observation of neutrino inter-

ference in a more generic sense might add a new page in
quantum mechanics. Since the neutrino wave packet has a
macroscopic size (see the estimate, e.g., in Ref. [61]), it
might contribute to deeper understanding of quantum
mechanics. Even though it may be regarded as “everyday
physics” nowadays, we should bear in mind that quantum
mechanics still offers a cradle of new fundamental and
technological advances [62].
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APPENDIX A: DMP VARIABLES: SUMMARY

We summarize here the formulas for the eigenvalues
and the mixing angles in matter. As a building block we
need the expressions of λ∓ and λ0, the eigenvalues of 2E
times the zeroth-order Hamiltonian, that result from ϕ
rotation which covers both mass orderings, the NMO
(Δm2

ren > 0) and IMO (Δm2
ren < 0):

λ− ¼ 1

2

h
ðΔm2

ren þ aÞ − signðΔm2
renÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔm2

ren − aÞ2 þ 4s213aΔm2
ren

q i
þ ϵΔm2

rens212;

λ0 ¼ c212ϵΔm2
ren;

λþ ¼ 1

2

h
ðΔm2

ren þ aÞ þ signðΔm2
renÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔm2

ren − aÞ2 þ 4s213aΔm2
ren

q i
þ ϵΔm2

rens212: ðA1Þ

This rotation is common in both Ref. [35] and Ref. [36]. With the use of Eq. (A1) and ra ¼ a
Δm2

ren
, the eigenvalue differences

and the angle ϕ has the same form for both mass orderings:

λþ − λ− ¼ Δm2
ren

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2a − 2ra cos 2θ13

q
;

λ− − λ0 ¼
Δm2

ren

2

h
1þ ra −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2a − 2ra cos 2θ13

q i
− ϵΔm2

ren cos 2θ12;

λþ − λ0 ¼
Δm2

ren

2

h
1þ ra þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2a − 2ra cos 2θ13

q i
− ϵΔm2

ren cos 2θ12; ðA2Þ

cos 2ϕ ¼ Δm2
ren cos 2θ13 − a
λþ − λ−

¼ cos 2θ13 − raffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2a − 2ra cos 2θ13

p ;

sin 2ϕ ¼ Δm2
ren sin 2θ13
λþ − λ−

¼ sin 2θ13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2a − 2ra cos 2θ13

p : ðA3Þ

When a is varied from −∞ to þ∞, cos 2ϕ varies from −1 to þ1 in the NMO and þ1 to −1 in the IMO. In both extremes
a ∼�∞ sin 2ϕ ∼ 0. Then, ϕ varies from 0 to π

2
(from π

2
to 0) when a is varied from −∞ toþ∞ in the case of NMO (IMO). It

agrees with Fig. 1 in Ref. [36].
After ψ rotation we obtain the expressions of the DMP eigenvalues

λ1; λ2 ¼
1

2

h
ðλ− þ λ0Þ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ− − λ0Þ2 þ 4A2

q i
;

λ3 ¼ λþ; ðA4Þ

where A≡ ϵc12s12cϕ−θ13Δm
2
ren and the ψ angle

sin 2ψ ¼ 2Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ− − λ0Þ2 þ 4A2

p ≃
�2ϵ sin 2θ12cϕ−θ13

½1þ ra −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2a − 2ra cos 2θ13

p
�
þOðϵ2Þ;

cos 2ψ ¼ −
ðλ− − λ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðλ− − λ0Þ2 þ 4A2
p ≃ ∓ 1þOðϵ2Þ; ðA5Þ
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where the ϵ expanded values are quoted after the ≃ equality and the upper and lower signs are for the case of NMO and
IMO, respectively. Therefore, ψ ≃ π

2
(ψ ≃ 0) around the atmospheric resonance in the NMO (IMO). This is again consistent

with Fig. 1 in [36].

APPENDIX B: ZEROTH- AND FIRST-ORDER S MATRIX ELEMENTS

1. Zeroth-order S matrix elements

With the zeroth-order Š matrix Šð0Þ ¼ e−iȞ0x, the zeroth-order flavor basis S matrix elements read

Sð0Þee ¼ c2ϕðc2ψe−ih1x þ s2ψe−ih2xÞ þ s2ϕe
−ih3x;

Sð0Þeμ ¼ c23cϕcψsψðe−ih2x − e−ih1xÞ − s23cϕsϕe−iδðc2ψe−ih1x þ s2ψe−ih2x − e−ih3xÞ;
Sð0Þeτ ¼ −c23cϕsϕðc2ψe−ih1x þ s2ψe−ih2x − e−ih3xÞ − s23cϕcψsψeiδðe−ih2x − e−ih1xÞ;
Sð0Þμe ¼ c23cϕcψsψðe−ih2x − e−ih1xÞ − s23cϕsϕeiδðc2ψe−ih1x þ s2ψe−ih2x − e−ih3xÞ;
Sð0Þμμ ¼ c223ðs2ψe−ih1x þ c2ψe−ih2xÞ þ s223fs2ϕðc2ψe−ih1x þ s2ψe−ih2xÞ þ c2ϕe

−ih3xg − 2c23s23sϕcψsψ cos δðe−ih2x − e−ih1xÞ;
Sð0Þμτ ¼ −ðc223 − s223e

2iδÞsϕcψsψ ðe−ih2x − e−ih1xÞ
þ c23s23eiδ½s2ϕðc2ψe−ih1x þ s2ψe−ih2xÞ þ c2ϕe

−ih3x − ðs2ψe−ih1x þ c2ψe−ih2xÞ�;
Sð0Þτe ¼ −c23cϕsϕðc2ψe−ih1x þ s2ψe−ih2x − e−ih3xÞ − s23cϕcψsψe−iδðe−ih2x − e−ih1xÞ;
Sð0Þτμ ¼ −ðc223 − s223e

−2iδÞsϕcψsψðe−ih2x − e−ih1xÞ þ c23s23e−iδ½s2ϕðc2ψe−ih1x þ s2ψe−ih2xÞ þ c2ϕe
−ih3x − ðs2ψe−ih1x þ c2ψe−ih2xÞ�;

Sð0Þττ ¼ s223ðs2ψe−ih1x þ c2ψe−ih2xÞ þ c223fs2ϕðc2ψe−ih1x þ s2ψe−ih2xÞ þ c2ϕe
−ih3xg þ 2c23s23 cos δsϕcψsψ ðe−ih2x − e−ih1xÞ: ðB1Þ

2. First-order S matrix elements

What is good in the DMP framework is the extreme simplicity of the perturbed Hamiltonian in Eq. (4.6). Because of it the
computed S matrix elements only contain the two functions Ŝ13 and Ŝ23 of showing the wave property,

Ŝ13 ¼ ϵc12s12sðϕ−θ13Þcψsψ

�
Δren

h3 − h2
ðe−ih3x − e−ih2xÞ − Δren

h3 − h1
ðe−ih3x − e−ih1xÞ

�
;

Ŝ23 ¼ ϵc12s12sðϕ−θ13Þ

�
c2ψ

Δren

h3 − h2
ðe−ih3x − e−ih2xÞ þ s2ψ

Δren

h3 − h1
ðe−ih3x − e−ih1xÞ

�
: ðB2Þ

The first-order flavor-basis S matrix elements have the following simple expressions with Ŝ13 and Ŝ23 as:

Sð1Þee ¼ sin 2ϕŜ13;

Sð1Þeμ ¼ s23 cos 2ϕe−iδŜ13 þ c23sϕŜ23;

Sð1Þeτ ¼ c23 cos 2ϕŜ13 − s23sϕeiδŜ23;

Sð1Þμe ¼ s23 cos 2ϕeiδŜ13 þ c23sϕŜ23;

Sð1Þμμ ¼ −s223 sin 2ϕŜ13 þ sin 2θ23cϕ cos δŜ23;

Sð1Þμτ ¼ −c23s23 sin 2ϕeiδŜ13 þ cϕðc223 − s223e
2iδÞŜ23;

Sð1Þτe ¼ c23 cos 2ϕŜ13 − s23sϕe−iδŜ23;

Sð1Þτμ ¼ −c23s23 sin 2ϕe−iδŜ13 þ cϕðc223 − s223e
−2iδÞŜ23;

Sð1Þττ ¼ −c223 sin 2ϕŜ13 − sin 2θ23cϕ cos δŜ23: ðB3Þ
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APPENDIX C: THE OSCILLATION PROBABILITY Pðνμ → νeÞ BY THE S MATRIX METHOD

Given the formulas for the DMP S matrix elements in the νμ → νe channel in the zeroth and first order in Eq. (5.4), it is
straightforward to drive the zeroth- and first-order oscillation probabilities in the traditional way, i.e., without performing
amplitude decomposition:

Pðνμ → νeÞð0Þ ¼ jSð0Þeμ j2

¼ 4c2ϕc
2
ψs2ψðc223 − s223s

2
ϕÞsin2

ðh2 − h1Þx
2

þ 4s223c
2
ϕs

2
ϕ

�
c2ψ sin2

ðh3 − h1Þx
2

þ s2ψsin2
ðh3 − h2Þx

2

�

− 4c23s23c2ϕsϕcψsψ cos δ

�
sin2

ðh3 − h2Þx
2

− sin2
ðh3 − h1Þx

2
− cos 2ψsin2

ðh2 − h1Þx
2

�

− 8c23s23c2ϕsϕcψsψ sin δ sin
ðh3 − h1Þx

2
sin

ðh2 − h1Þx
2

sin
ðh3 − h2Þx

2
; ðC1Þ

Pðνμ → νeÞð1Þ ¼ 2Re½ðSð0Þeμ Þ�Sð1Þeμ �

¼ −
Δren

h3 − h2
4ϵc23c12s12sðϕ−θ13Þcϕcψsψðc23sϕc2ψ þ s23 cos 2ϕcψsψ cos δÞ

×

�
sin2

ðh3 − h2Þx
2

− sin2
ðh3 − h1Þx

2
þ sin2

ðh2 − h1Þx
2

�

þ Δren

h3 − h1
4ϵc23c12s12sðϕ−θ13Þcϕcψsψðc23sϕs2ψ − s23 cos 2ϕcψsψ cos δÞ

×

�
−sin2

ðh3 − h2Þx
2

þ sin2
ðh3 − h1Þx

2
þ sin2

ðh2 − h1Þx
2

�

þ Δren

h3 − h2
4ϵs23c12s12sðϕ−θ13Þcϕsϕðc23sϕc2ψ cos δþ s23 cos 2ϕcψsψÞ

×

�
ð1þ s2ψÞsin2

ðh3 − h2Þx
2

þ c2ψsin2
ðh3 − h1Þx

2
− c2ψsin2

ðh2 − h1Þx
2

�

þ Δren

h3 − h1
4ϵs23c12s12sðϕ−θ13Þcϕsϕðc23sϕs2ψ cos δ − s23 cos 2ϕcψsψÞ

×

�
s2ψ sin2

ðh3 − h2Þx
2

þ ð1þ c2ψÞsin2
ðh3 − h1Þx

2
− s2ψ sin2

ðh2 − h1Þx
2

�

þ 8ϵc23s23c12s12sðϕ−θ13Þcϕ sin δ
�
c2ψðs2ϕ − c2ϕs

2
ψ Þ

Δren

h3 − h2
− s2ψðs2ϕ − c2ϕc

2
ψÞ

Δren

h3 − h1

�

× sin
ðh3 − h1Þx

2
sin

ðh2 − h1Þx
2

sin
ðh3 − h2Þx

2
: ðC2Þ

We note that the ψ symmetry (see Sec. V E) holds in Eqs. (C1) and (C2).

APPENDIX D: AMPLITUDE DECOMPOSITION
IN THE DISAPPEARANCE CHANNELS

In the main body of the text in this paper we have
concentrated on the νμ → νe channel to focus on the
conceptual issue related to the question, “What is the
correct way of performing the amplitude decomposition in
matter?” In this and the following Appendixes, we discuss
the amplitude decomposition in some of the remaining

channels, the νe → νe and νμ → νμ channels (Appendix D),
and the νμ → ντ channel (Appendix E).
Among them, the νμ → νμ channel may be the most

feasible experimentally, apart from the ν̄e → ν̄e measure-
ment in JUNO. Once a long-baseline neutrino experiment
starts to operate, it will make measurement in both the
νμ → νμ and the νμ → νe channels simultaneously. But,
since the νe − νe channel is the simplest one to discuss, we
start by treating this channel. The ν̄e → ν̄e probability can

NEUTRINO AMPLITUDE DECOMPOSITION IN MATTER PHYS. REV. D 103, 053004 (2021)

053004-19



be obtained from the Pðνe → νeÞ by just flipping the sign
of the matter potential a, as CP phase δ is absent.
Measurement of Pðνe → νeÞ in the sizable matter effect
might be possible by using the atmospheric neutrino
observation [17,50–54], or a neutrino factory [63,64],
assuming electron detection capability in the detector.
Some of these apparatuses, including the others, e.g.,
T2HK and DUNE [50,51], have capabilities to measure
the νμ → νμ, νμ → νe, and its T-conjugate channels.

1. General formula for the disappearance probability
with the use of the decomposed amplitudes

In the disappearance channels the amplitude decomposi-
tion has a “unity” in Sαα ¼ 1þ Satmαα þ Ssolαα . As a conse-
quence the expressions of the oscillation probability with the
use of the decomposed amplitudes are different from those in
the appearance channel exhibited in Sec. V C. Therefore, it
may be useful to present the general formula for the
probability. They read in the zeroth and the first orders as

Pðνα → ναÞð0Þ ¼ 1þ 2Re½ðSatmαα Þð0Þ� þ 2Re½ðSsolααÞð0Þ� þ jðSatmαα Þð0Þj2 þ jðSsolααÞð0Þj2 þ 2Re½fðSatmαα Þð0Þg�ðSsolααÞð0Þ�;
Pðνα → ναÞð1Þ ¼ 2Re½ðSatmαα Þð1Þ� þ 2Re½ðSsolααÞð1Þ� þ 2Re½fðSatmαα Þð0Þg�ðSatmαα Þð1Þ� þ 2Re½fðSsolααÞð0Þg�ðSsolααÞð1Þ�

þ 2Re½fðSatmαα Þð0Þg�ðSsolααÞð1Þ� þ 2Re½fðSsolααÞð0Þg�ðSatmαα Þð1Þ�: ðD1Þ

2. The decomposed amplitudes and probabilities in the νe − νe channel
With the eih2x rephasing, the decomposed amplitudes in the νe − νe channel in the zeroth- and first-order DMP

expansions read

ðSatmee Þð0Þ ¼ s2ϕðe−iðh3−h2Þx − 1Þ;
ðSsolee Þð0Þ ¼ c2ϕc

2
ψðeiðh2−h1Þx − 1Þ; ðD2Þ

ðSatmee Þð1Þ ¼ ϵc12s12sðϕ−θ13Þcψsψ

�
Δren

h3 − h2
−

Δren

h3 − h1

�
ðe−iðh3−h2Þx − 1Þ;

ðSsolee Þð1Þ ¼ ϵc12s12sðϕ−θ13Þcψsψ
Δren

h3 − h1
ðeiðh2−h1Þx − 1Þ: ðD3Þ

Similarly, the decomposed amplitudes with the eih1x rephasing read

ðSatmee Þð0Þ ¼ s2ϕðe−iðh3−h1Þx − 1Þ;
ðSsolee Þð0Þ ¼ c2ϕs

2
ψðe−iðh2−h1Þx − 1Þ; ðD4Þ

ðSatmee Þð1Þ ¼ ϵc12s12sðϕ−θ13Þcψsψ

�
Δren

h3 − h2
−

Δren

h3 − h1

�
ðe−iðh3−h1Þx − 1Þ;

ðSsolee Þð1Þ ¼ −ϵc12s12sðϕ−θ13Þcψsψ
Δren

h3 − h2
ðe−iðh2−h1Þx − 1Þ: ðD5Þ

It is obvious that the amplitudes Satmee and Ssolee with the eih2x and eih1x rephasing are related with each other by the ψ
transformation (see Sec. V E) in both the zeroth and the first orders.
Therefore, we present below the expressions of the decomposed oscillation probabilities with the eih2x rephasing only.

The expressions with the eih1x rephasing can be obtained by the ψ transformation (5.11). They read in the zeroth order

½Pðνe → νeÞð0Þ�non-int-fer ¼ 1 − 4c2ϕs
2
ϕsin

2
ðh3 − h2Þx

2
− 4c2ϕc

2
ψðs2ϕ þ c2ϕs

2
ψÞsin2

ðh2 − h1Þx
2

;

½Pðνe → νeÞð0Þ�int-fer ¼ 4c2ϕs
2
ϕc

2
ψ

�
sin2

ðh3 − h2Þx
2

− sin2
ðh3 − h1Þx

2
þ sin2

ðh2 − h1Þx
2

�
; ðD6Þ

and in the first order
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½Pðνe → νeÞð1Þ�non-int-fer ¼ −4ϵc12s12sðϕ−θ13Þ cos 2ϕ sin 2ϕcψsψ

�
Δren

h3 − h2
−

Δren

h3 − h1

�
sin2

ðh3 − h2Þx
2

− 4ϵc12s12sðϕ−θ13Þ sin 2ϕcψsψðs2ψ − cos 2ϕc2ψÞ
Δren

h3 − h1
sin2

ðh2 − h1Þx
2

;

½Pðνe → νeÞð1Þ�int-fer ¼ 4ϵc12s12sðϕ−θ13Þ sin 2ϕcψsψ

�
c2ϕc

2
ψ

Δren

h3 − h2
þ ðs2ϕ − c2ϕc

2
ψÞ

Δren

h3 − h1

�

×

�
sin2

ðh3 − h2Þx
2

− sin2
ðh3 − h1Þx

2
þ sin2

ðh2 − h1Þx
2

�
: ðD7Þ

It is verified by an explicit computation of the probability in the decomposition with the eih1x rephasing that the expressions
of Pðνe → νeÞnon-int-fer and Pðνe → νeÞint-fer to first order agree with the ones obtained by using the ψ transformation of
Eqs. (D6) and (D7).

3. The decomposed amplitudes and probabilities in the νμ − νμ channel

As in the νe − νe channel we first compare the decomposed amplitudes in the νμ − νμ channel between the eih2x and eih2x

rephasing in the zeroth- and first-order DMP expansions. With the eih2x rephasing they read

ðSatmμμ Þð0Þ ¼ s223c
2
ϕðe−iðh3−h2Þx − 1Þ;

ðSsolμμ Þð0Þ ¼ ðc223s2ψ þ s223s
2
ϕc

2
ψ þ 2c23s23sϕcψsψ cos δÞðeiðh2−h1Þx − 1Þ; ðD8Þ

ðSatmμμ Þð1Þ ¼ ϵc12s12sðϕ−θ13Þð−s223 sin 2ϕcψsψ þ sin 2θ23cϕc2ψ cos δÞ
Δren

h3 − h2
ðe−iðh3−h2Þx − 1Þ

þ ϵc12s12sðϕ−θ13Þðs223 sin 2ϕcψsψ þ sin 2θ23cϕs2ψ cos δÞ
Δren

h3 − h1
ðe−iðh3−h2Þx − 1Þ;

ðSsolμμ Þð1Þ ¼ −ϵc12s12sðϕ−θ13Þðs223 sin 2ϕcψsψ þ sin 2θ23cϕs2ψ cos δÞ
Δren

h3 − h1
ðeiðh2−h1Þx − 1Þ: ðD9Þ

With the eih1x rephasing they have the forms

ðSatmμμ Þð0Þ ¼ s223c
2
ϕðe−iðh3−h1Þx − 1Þ;

ðSsolμμ Þð0Þ ¼ ðc223c2ψ þ s223s
2
ϕs

2
ψ − 2c23s23sϕcψsψ cos δÞðe−iðh2−h1Þx − 1Þ; ðD10Þ

ðSatmμμ Þð1Þ ¼ ϵc12s12sðϕ−θ13Þð−s223 sin 2ϕcψsψ þ sin 2θ23cϕc2ψ cos δÞ
Δren

h3 − h2
ðe−iðh3−h1Þx − 1Þ

þ ϵc12s12sðϕ−θ13Þðs223 sin 2ϕcψsψ þ sin 2θ23cϕs2ψ cos δÞ
Δren

h3 − h1
ðe−iðh3−h1Þx − 1Þ;

ðSsolμμ Þð1Þ ¼ ϵc12s12sðϕ−θ13Þðs223 sin 2ϕcψsψ − sin 2θ23cϕc2ψ cos δÞ
Δren

h3 − h2
ðe−iðh2−h1Þx − 1Þ: ðD11Þ

We notice again that the decomposed amplitudes with the eih1x rephasing can be obtained by the ψ transformation from the
ones with the eih2x rephasing in both the zeroth and the first orders. Therefore, as in the νe − νe channel, we present here
only the expressions of the decomposed probabilities obtained with the eih2x rephasing. They read in the zeroth and first
orders as
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½Pðνμ → νμÞð0Þ�non-int-fer ¼ 1 − 4s223c
2
ϕðc223 þ s223s

2
ϕÞsin2

ðh3 − h2Þx
2

− 4ðc223s2ψ þ s223s
2
ϕc

2
ψ þ 2c23s23sϕcψsψ cos δÞ

× fc223c2ψ þ s223ðc2ϕ þ s2ϕs
2
ψ Þ − 2c23s23sϕcψsψ cos δgsin2

ðh2 − h1Þx
2

;

½Pðνμ → νμÞð0Þ�int-fer ¼ 4s223c
2
ϕðc223s2ψ þ s223s

2
ϕc

2
ψ þ 2c23s23sϕcψsψ cos δÞ

×

�
sin2

ðh3 − h2Þx
2

− sin2
ðh3 − h1Þx

2
þ sin2

ðh2 − h1Þx
2

�
; ðD12Þ

½Pðνμ→νμÞð1Þ�non-int-fer¼4ϵc12s12sðϕ−θ13Þðc223−s223cos2ϕÞðs223 sin2ϕsψ −sin2θ23cϕcψ cosδÞcψ
Δren

h3−h2
sin2

ðh3−h2Þx
2

−4ϵc12s12sðϕ−θ13Þðc223−s223cos2ϕÞðs223 sin2ϕcψ þsin2θ23cϕsψ cosδÞsψ
Δren

h3−h1
sin2

ðh3−h2Þx
2

þ4ϵc12s12sðϕ−θ13Þðs223 sin2ϕcψ þsin2θ23cϕsψ cosδÞ

× ½s223c2ϕþðc223−s223s
2
ϕÞcos2ψ −4c23s23sϕcψsψ cosδ�sψ

Δren

h3−h1
sin2

ðh2−h1Þx
2

;

½Pðνμ→νμÞð1Þ�int-fer¼4ϵc12s12sðϕ−θ13Þð−s223 sin2ϕsψ þsin2θ23cϕcψ cosδÞðc223s2ψ þs223s
2
ϕc

2
ψ þ2c23s23sϕcψsψ cosδÞ

×cψ
Δren

h3−h2

�
−sin2

ðh3−h1Þx
2

þsin2
ðh3−h2Þx

2
þsin2

ðh2−h1Þx
2

�

þ4ϵc12s12sðϕ−θ13Þðs223 sin2ϕcψ þsin2θ23cϕsψ cosδÞfc223s2ψ þs223ðs2ϕc2ψ −c2ϕÞþ2c23s23sϕcψsψ cosδg

×sψ
Δren

h3−h1

�
−sin2

ðh3−h1Þx
2

þsin2
ðh3−h2Þx

2
þsin2

ðh2−h1Þx
2

�
: ðD13Þ

Again it is explicitly checked that the ψ transformation on Eqs. (D12) and (D13) agree with the explicitly computed
decomposed probabilities using the amplitudes with the eih1x rephasing, as they should.

APPENDIX E: AMPLITUDE DECOMPOSITION IN THE νμ → ντ CHANNEL

Finally, we discuss the νμ → ντ channel. Though the measurement of the oscillation probability would be tough, this is a
very interesting channel for the diagnostics of the interference effect, as mentioned in Sec. VIII.

1. The decomposed amplitudes and probabilities in the νμ − ντ channel

We first show that the decomposed amplitudes in the νμ − ντ channel with the eih2x rephasing and the ones with the eih1x

rephasing are related with each other by the ψ transformation. The former reads as follows:

ðSatmτμ Þð0Þ ¼ c23s23c2ϕe
−iδðe−iðh3−h2Þx − 1Þ;

ðSsolτμ Þð0Þ ¼ e−iδfðc223eiδ − s223e
−iδÞsϕcψsψ þ c23s23ðs2ϕc2ψ − s2ψÞgðeiðh2−h1Þx − 1Þ; ðE1Þ

ðSatmτμ Þð1Þ ¼ ϵc12s12sðϕ−θ13Þe
−iδf−c23s23 sin 2ϕcψsψ þ ðc223eiδ − s223e

−iδÞcϕc2ψg
Δren

h3 − h2
ðe−iðh3−h2Þx − 1Þ

þ ϵc12s12sðϕ−θ13Þe
−iδfc23s23 sin 2ϕcψsψ þ ðc223eiδ − s223e

−iδÞcϕs2ψg
Δren

h3 − h1
ðe−iðh3−h2Þx − 1Þ;

ðSsolτμ Þð1Þ ¼ −ϵc12s12sðϕ−θ13Þe
−iδfc23s23 sin 2ϕcψsψ þ ðc223eiδ − s223e

−iδÞcϕs2ψg
Δren

h3 − h1
ðeiðh2−h1Þx − 1Þ; ðE2Þ

while the amplitudes with the eih1x rephasing read

ðSatmτμ Þð0Þ ¼ c23s23c2ϕe
−iδðe−iðh3−h1Þx − 1Þ;

ðSsolτμ Þð0Þ ¼ e−iδf−ðc223eiδ − s223e
−iδÞsϕcψsψ þ c23s23ðs2ϕs2ψ − c2ψ Þgðe−iðh2−h1Þx − 1Þ; ðE3Þ
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ðSatmτμ Þð1Þ ¼ ϵc12s12sðϕ−θ13Þe
−iδf−c23s23 sin 2ϕcψsψ þ ðc223eiδ − s223e

−iδÞcϕc2ψg
Δren

h3 − h2
ðe−iðh3−h1Þx − 1Þ

þ ϵc12s12sðϕ−θ13Þe
−iδfc23s23 sin 2ϕcψsψ þ ðc223eiδ − s223e

−iδÞcϕs2ψg
Δren

h3 − h1
ðe−iðh3−h1Þx − 1Þ;

ðSsolτμ Þð1Þ ¼ ϵc12s12sðϕ−θ13Þe
−iδfc23s23 sin 2ϕcψsψ − ðc223eiδ − s223e

−iδÞcϕc2ψg
Δren

h3 − h2
ðe−iðh2−h1Þx − 1Þ: ðE4Þ

One can easily verify that they are related by the ψ transformation. Then, we just present the expressions of the decomposed
probabilities with the eih2x rephasing:

½Pðνμ → ντÞð0Þ�non-int-fer ¼ 4c223s
2
23c

4
ϕsin

2
ðh3 − h2Þx

2
þ fsin22θ23ðs4ψ þ s4ϕc

4
ψÞ þ 4cos22θ23s2ϕc

2
ψs2ψ

þ 8c23s23sϕcψsψ cos 2θ23ðs2ϕc2ψ − s2ψÞ cos δ − 8c223s
2
23s

2
ϕc

2
ψs2ψ cos 2δgsin2

ðh2 − h1Þx
2

;

½Pðνμ → ντÞð0Þ�int-fer ¼ f4c23s23c2ϕc23s23ðs2ϕc2ψ − s2ψÞ þ 4c23s23c2ϕsϕcψsψ cos 2θ23 cos δg

×

�
sin2

ðh3 − h2Þx
2

− sin2
ðh3 − h1Þx

2
þ sin2

ðh2 − h1Þx
2

�

þ 8c23s23c2ϕsϕcψsψ sin δ sin
ðh3 − h1Þx

2
sin

ðh2 − h1Þx
2

sin
ðh3 − h2Þx

2
; ðE5Þ

½Pðνμ → ντÞð1Þ�non-int-fer ¼ 8ϵc12s12sðϕ−θ13Þc23s23c
2
ϕ

�
f−c23s23 sin 2ϕsψ þ cos 2θ23cϕcψ cos δgcψ

Δren

h3 − h2

þ fc23s23 sin 2ϕcψ þ cos 2θ23cϕsψ cos δgsψ
Δren

h3 − h1

�
sin2

ðh3 − h2Þx
2

− 8ϵc12s12sðϕ−θ13Þ

�
½1 − 2c223s

2
23ð1þ cos 2δÞ�cϕsϕcψs2ψ þ c223s

2
23 sin 2ϕðs2ϕc2ψ − s2ψ Þcψ

þ c23s23 cos 2θ23sψ cos δ½sϕ sin 2ϕc2ψ þ ðs2ϕc2ψ − s2ψÞcϕ�
�
sψ

Δren

h3 − h1
sin2

ðh2 − h1Þx
2

;

½Pðνμ → ντÞð1Þ�int-fer ¼ 4ϵc12s12sðϕ−θ13Þ

�
½1 − 2c223s

2
23ð1þ cos 2δÞ�cϕsϕcψs2ψ − c223s

2
23 sin 2ϕcψ ½cos 2ϕþ ð1þ s2ϕÞs2ψ �

þ c23s23 cos 2θ23sψ cos δ½sϕ sin 2ϕc2ψ − cϕfcos 2ϕþ ð1þ s2ϕÞs2ψg�
�

× sψ
Δren

h3 − h1

�
−sin2

ðh3 − h1Þx
2

þ sin2
ðh3 − h2Þx

2
þ sin2

ðh2 − h1Þx
2

�

þ 4ϵc12s12sðϕ−θ13Þ

�
½1 − 2c223s

2
23ð1þ cos 2δÞ�cϕsϕc2ψsψ − c223s

2
23 sin 2ϕsψ ðs2ϕc2ψ − s2ψÞ

þ c23s23 cos 2θ23cψ cos δ½cϕðs2ϕc2ψ − s2ψÞ − sϕ sin 2ϕs2ψ �
�

× cψ
Δren

h3 − h2

�
−sin2

ðh3 − h1Þx
2

þ sin2
ðh3 − h2Þx

2
þ sin2

ðh2 − h1Þx
2

�

− 8ϵc23s23cϕsðϕ−θ13Þc12s12 sin δ
�
ðs2ϕ − c2ϕs

2
ψÞc2ψ

Δren

h3 − h2
− ðs2ϕ − c2ϕc

2
ψÞs2ψ

Δren

h3 − h1

�

× sin
ðh3 − h1Þx

2
sin

ðh2 − h1Þx
2

sin
ðh3 − h2Þx

2
: ðE6Þ
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The decomposed probabilities Pðνβ → ναÞnon-int-fer and
Pðνβ → ναÞint-fer, if added, must equal the oscillation
probability calculated by the conventional S matrix
method, giving a way of checking the consistency of
the calculations. In the νμ − νe channel, the latter is
given in Appendix C, and the above consistency check

is executed explicitly in both of the eih2x and eih1x

rephasing, as mentioned in Sec. V. The similar consistency
checks for the decomposed probabilities in the νe − νe,
νμ − νμ, and νμ − ντ channels are executed as well with
both eih2x and eih1x rephasing to first order in the DMP
perturbation.
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