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A new approach to the study of nonrelativistic bosonic string in flat spacetime is introduced, based on a
holistic Hamiltonian analysis of the minimal action for the string. This leads to a structurally new form of
the action which is, however, equivalent to the known results since, under appropriate limits, it interpolates
between the minimal action (Nambu-Goto type) where the string metric is taken to be that induced by the
embedding and the Polyakov type of action where the world sheet metric components are independent
fields. The equivalence among different actions is established by a detailed study of symmetries using
constraint analysis. Various vexing issues in the existing literature are clarified. The interpolating action
mooted here is shown to reveal the geometry of the string and may be useful in analyzing nonrelativistic
string coupled with curved background.
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I. INTRODUCTION

String theory has been developed as an approach towards
quantum gravity [1]. Though many interesting results have
been deduced (including the theory of Einstein’s gravity
itself), there are many difficulties also [2]. It is not our
purpose to go in to the details of the issues. We only
mention that string moving in a nonrelativistic background
is an interesting subject on its own that has many welcome
features and low energy stringy phenomena can be inves-
tigated with more confidence. For instance, such field
theories have been proved to be unitary and ultraviolet free
[3]. Nonrelativistic string theories (NRST) are useful in the
study of nonrelativistic holography, which have found
applications in the strongly correlated systems in con-
densed matter physics [4]. The literature of NRST is quite
rich and expanding [3,5]. However, for obvious reasons,
there are many issues left in the studies of nonrelativistic
strings, some of which will be discussed here.
The feasibility of Galilean invariant closed string was

first demonstrated in [6]. They considered an open string
without a brane in the presence of the NS − NS two-form
field. In the limit when the background field goes critical,
under a very low energy excitation limit, a nonrelativistic
closed string action emerges. Note that in the limiting
procedure the interaction field plays a crucial role. Also
notable is the occurrence of the additional fields which are
very difficult to explain. The action of the interacting string

obtained in [6] involves the metric. However, the metric is
considered to be induced by the embedding. This particular
type of action was originally proposed by Nambu and Goto
for relativistic string. This action is the minimal action
containing just the number of fields equal to the number of
coordinates. Nonrelativistic strings with this type of action
will be called the Nambu-Goto (NG) (type) nonrelativistic
string. However, there is a caveat. The action contains two
extra fields other than the coordinates. This discrepancy is
of fundamental significance. It expands the phase space.
A priori, it is unclear that these extra degrees of freedom do
not hamper the consistency of the string theory. Such a
formulation is therefore not satisfactory [6]. One asks what
relation these new fields have with the string geometry?
Note also that in later works the issue is rarely discussed.
The nonrelativistic string is, perhaps, technically more

difficult than the relativistic string. A string necessarily is
a relativistic structure. So the world sheet metric is
Lorentzian. The bulk transverse to the world sheet has
Galilean geometry. The world sheet is not just any arbitrary
pullback from the spacetime manifold as assumed in the
existing literature. The situation is exactly comparable with
what happens in GR during Hamitonoian formuulation,
albeit in the reverse order. For nonrelativistic string,
Polyakov (type) theory was mooted in [7] where the
two-dimensional nonlinear sigma model in the presence
of a Kalb-Ramond two-form field and a dilaton is extended
by any pullback from the background. This is bound to be
entangled in contradictions. For instance, the number of
degrees of freedom with that of [6] do not match.1*rabin@bose.res.in
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In this paper we have provided a new approach to the
classical nonrelativistic string evolving freely. It consists
in viewing the string action as a generalization of the
covariant particle model. We assume that the NG form of
nonrelativistic action will be obtained as the c → ∞ limit of
the relativistic NG string. Note that the string world sheet is
necessarily relativistic. So the limit must be judiciously
taken. From this nonrelativistic limit the corresponding
string action is obtained. No ad hoc variables are intro-
duced. In a specific gauge the standard action for a
stretched string vibrating transversally is reproduced with
the correct tension and velocity. The next step is a detailed
constraint analysis of the action which leads to the first
order form of the Hamiltonian. Reducing the momenta in
terms of the fields and back substitution gives us an
equivalent action.2 It is called the interpolating action
because it can be cast in the Polyakov form. It may be
recalled that a similar approach for relativistic strings was
proposed earlier [8].
Before ending the introductory section it will be appro-

priate to give an account of the organization of the paper. In
Sec. II we have derived the nonrelativistic action of the
string in Nambu-Goto form from its relativistic counterpart.
Several authors discussed this model [5,6], where inter-
action appears to play a role. We followed the instance of
the nonrelativstic particle [9] and took a simple c → ∞
limit in a way that exploited the structure of the system. In
Sec. III a detailed canonical analysis of the model is
provided. Symmetries in the canonical level are retained
by working in the gauge independent approach. Particularly
remarkable is the identification of the gauge generator with
the diffeomorphisms of the string world sheet. The dynam-
ics in phase space is then analyzed by fixing the gauge. In
Sec. IV, the interpolating action for the free nonrelativistic
string is obtained. We have demonstrated that this action
may be reduced to the previous (Nambu-Goto) form. More
important is the evolution of the Polyakov type action from
the interpolating action including the two extra fields. This
section also provides a canonical analysis of the interpolat-
ing action. The connections between the Hamiltonian
analysis of different actions have been analyzed to show
the equivalence of the new action with the Nambu-Goto
action from the canonical point of view. In the Sec. V the
geometrical connection was pushed further. Finally, we
conclude in Sec. VI.

II. THE NAMBU-GOTO ACTION
FOR THE BOSONIC STRING

In the Introduction, we have indicated that the non-
relativistic string was obtained in [6] by considering a
relativistic Nambu-Gote bosonic string action coupled to a

background NS − NS two-form field B in a certain limit,
where the scale of internal energy of the string is much less
than the energy scale of motion about the direction of B.
This enables an expansion in a power series and we can
derive an action to the first order which is Galilean
invariant. Again, the Polyakov type action used in [7]
depends crucially on the background gauge field. In this
paper we will consider a free string. Just as the relativistic
point particle in the c → ∞ limit goes to the nonrelativistic
particle, the NG action of nonrelativistic string may be
deduced from the relativistic string in the same limit,
although there are certain technicalities.
Unlike the particle which is represented by a point, the

string is an one-dimensional object which is described by a
parameter σ. So during its evolution it traces a two-
dimensional world sheet. This surface is mapped by two
coordinates, τ and σ, where τ is timelike and σ is spacelike.
The world sheet is embedded in a background spacetime. If
the background is Poincare symmetric we obtain a flat
relativistic string. On the other hand, a flat nonrelativisitc
(NR) string is defined if the background symmetry is
Galilean.
The relativistic Nembu-Goto action of the bosonic string

is given by

SNG ¼ −N
Z

dσdτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det hαβ

q
ð1Þ

where N is a dimensionful constant. The metric hαβ is
induced by the target space and given by

hαβ ¼ ημν∂αXμ∂βXν: ð2Þ

Here Xμ ¼ Xμðτ; σÞ corresponds to the coordinates of a
point on the string with τ labeling timelike and σ labeling a
spacelike direction on the world sheet3 while μ represents
the coordinates of the background spacetime in which the
world sheet traced by the string is embedded. So, in this
formalism the metrics are not independent fields. Note that
ημν ¼ diag − 1;þ1;þ1… is the Lorentzian metric in the
target space. Now, expanding the determinant we get

SNG¼−N
Z

dσdτ

×

��∂Xμ

∂τ
∂Xμ

∂σ
�

2

−
�∂Xμ

∂τ
∂Xμ

∂τ
��∂Xμ

∂σ
∂Xμ

∂σ
��1

2

: ð3Þ

If we consider the low energy phenomenology of the
relativistic string, then the effects in the target space are
nonrelativistic. Let the dimension of the embedding space
be (Dþ 2). At a given time the string intersects the
embedding space along a line. We take this line as the
X1 coordinate line. Then X0 and X1 are longitudinal to

2Similar technique has been employed in [6] but in a different
context. 3Collectively, they will be represented by σα, α ¼ 1, 2.
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the string and the rest is transverse. Note that we could take
any of X2;…; XD in place of X1. So no particular gauge
choice is associated with this prescription.
There are different methods of obtaining the NR

approximation of (3) which are variants of the Inonu-
Wigner contraction method. Here, one or more of the
coordinates Xμ are scaled and finally a limit of the scaling
parameter is taken. While this may be algebraically
tenable [5], it is not physically motivated. Indeed the most
natural prescription would be to reintroduce “c” in the
timelike variable as X0 ¼ ct and then take the c → ∞ limit.
This is adopted here.
Simplification of (3) using X0 ¼ ct gives

SNG ¼ −N
Z

dσdτ
�
c2ð_tX01 − _X1t0Þ2 þ

X
k

c2ð_tX0k − _Xkt0Þ2

−
X
k

ð _X1X0k − _XkX01Þ2

þ
X
k;l

ð _XkX0k _XlX0l − _Xk _Xk X0lX0lÞ
�1

2 ð4Þ

where a dot over a symbol denotes derivative with respect
to τ while a prime as a superscript implies differentiation
with respect to σ. Also c is made explicit.
So far our result is relativistic. Now, remember that

the X1 axis is longitudinal to the string and the rest

(k ¼ 2; 3;…; D) are in the transverse section. So _X1 ≪ c
and dXk ≪ dX1 since in the low energy scenario the slope
of the transverse vibration of the string is very small. Thus
the nonrelativistic limit of the action (4) is

SNG ¼−N
Z

dσdτðcð_tX01− _X1t0ÞÞ
�
1þ
P

kc
2ð_tX0k− _Xkt0Þ2

c2ð_tX01− _X1t0Þ2

−
P

kð _X1X0k− _XkX01Þ2
c2ð_tX01− _X1t0Þ2

�1
2

ð5Þ

where we have neglected the last term of (4), as it is of
higher order of smallness. Now ct ¼ X0 and taking the
leading term of the small quantities (also making sum over
k implicit), we get

LNG ¼ −N
�ð _X0X0k − _XkX00Þ2
2ð _X0X01 − _X1X00Þ

−
ð _X1X0k − _XkX01Þ2
2ð _X0X01 − _X1X00Þ

�
: ð6Þ

Note that we have dropped the first term within the
square brackets as it is a total boundary,

ð _X0X01 − _X1X00Þ ¼ ∂
∂τ ðX

0X01Þ − ∂
∂σ ðX

0 _X1Þ: ð7Þ

Equation (6) is the NR Nambu-Goto form of the
Lagrangian for a bosonic string. The derivation is based

on the usual c → ∞ limit along with certain physical
inputs. This result was obtained in [5], using a variant of the
Inonu-Wigner contraction referred to earlier which some-
what obscures the physical origin inherent in our deriva-
tion. Another aspect of the construction is the impact of the
relativistic nature of the string which enforces that the
metric in the 0–1 plane is Lorentzian, even in our example
of nonrelativistic phenomena. We denote this metric by
ημν; μ; ν ¼ 0; 1 ¼ diagð1;−1Þ. We can now rewrite the
Lagrangian (6) in a less clumsy form,

LNG ¼ −Nð2ϵμν _XμX0νÞ−1ð _XμXk0 − _XkXμ0Þ2; ð8Þ

by using the covariant notation.
One can wonder in what sense the action

SNG ¼
Z

dσdτLNG ð9Þ

with LNG given by (8), is Galilean invariant. That the string
is essentially relativistic makes the question nontrivial. Let
us now discuss the issue. We have already mentioned that
we are considering the string to be in motion in a
nonrelativistic background. So one would expect that
physics in the background remains unaltered under the
Galilean transformations. But not all elements of the group
can be included here. The values of τ and σ, which specify a
point on the string world sheet, should not change.4

Consider the Galilean transformations in the usual way,

δX0 ¼ −ϵ;

δX1 ¼ ϵ1 þ ω1
jXj − v1X0;

δXk ¼ ϵk þ ωk
lXl − vkX0: ð10Þ

We now calculate the change of the Lagrangian (8)
under (10). The result is

δLNG ¼ Nω1ið _X0X0i − X00 _XiÞ
× ½ðϵμν _XμX0νÞ−2ð _XμXk0 − _XkXμ0Þ2�: ð11Þ

Now the X1 axis is assumed to be lying along the τ ¼
constant direction. So a nonzero ω1i would mean the
change of the world sheet parameters, which is contrary
to the concept of the global coordinate transformations in
the target space. Hence ω1i ¼ 0. So the Galilean trans-
formations under which the theory (8) is symmetric are
(10), supplemented by this condition. For ready reference
we write the modified symmetry transformations as

4Just as the value of proper time locating a particle on its
world line is insensitive to the Galilean transformations of the
background.
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δX0 ¼ −ϵ;

δX1 ¼ ϵ1 − v1X0;

δXk ¼ ϵk þ ωk
lXl − vkX0; k; l > 1: ð12Þ

Another demand we would like to place on (8) is that it
should reduce to the Lagrangian of the classical vibrating
string in the appropriate limit. Let us take a string stretched
between x ¼ 0 to x ¼ a along the x axis, vibrating
transversely along the y axis. From elementary analysis
we get the Lagrangian as

L ¼
�
1

2
μ0
�∂y
∂t
�

2

−
1

2
T0

�∂y
∂x
�

2
�

ð13Þ

where μ0 is the linear mass density and T0 is the tension of
the string. Now let us see in what way we may reproduce
this result from (8). Putting X0 ¼ cτ ¼ ct and X1 ¼ σ
we get5

LNG ¼
�
1

2

N
c

�∂Xk

∂t
�

2

−
1

2
Nc

�∂Xk

∂X1

�
2
�

ð14Þ

These are k copies of the transversally vibrating classical
string if we identify N

c ¼ μ0 and Nc ¼ T0. Thus the
constant N in (8) is related to the tension of the string.
Expectedly, the velocity is given by c2 ¼ T0

μ0
, as happens

classically.
In the work of [5] the NR limit of the relativistic Nambu-

Goto action is taken in two distinct ways, motivated by
group contraction techniques, so that one either gets a
stringy (vibrating) NR string or a particlelike (nonvibrating)
string. In our case we generalize the limiting prescription of
the relativistic particle to that of the relativistic string with
appropriate technicalities that account for the character-
istics of a string. Thus ours is a unique result which is
similar to the stringy limit of [5]. The fact that it reduces to
the usual classical string (14) is a consequence of a special
choice of coordinates that breaks the reparametrization
symmetry or, equivalently, the gauge symmetry, since the
two here are identifiable, as shown in the next section.

III. CANONICAL ANALYSIS OF THE MODEL

We have now established our Lagrangian. The next step
is a Hamiltonian analysis of the model. Now, being a
reparametrization invariant theory, it is already covariant
[10]. The model is thus an interesting example of a
constrained system, and because of its NR nature, more
involved than its relativistic counterpart. As we have
already mentioned, these studies are entirely new as the

Hamiltonian analysis available in the literature [11] does
not provide a faithful Dirac treatment of the model.
A constrained system with first class constraints neces-

sarily possesses gauge degrees of freedom [12]. General
symmetries of such systems can be derived without fixing
the gauges. In fact we will see that this gauge independent
approach will lead to the derivation of a new action. The
importance of canonical analysis can thus be hardly
overestimated. On the contrary, this aspect has been less
emphasized in the literature. We will therefore try to give a
holistic account of the topic. For clarity of presentation we
divide our results in a number of subsections.

A. Phase space structure

Here the fields are X0ðτ; σÞ, X1ðτ; σÞ, Xkðτ; σÞ
(where k ¼ 2; 3;…; D).
The canonical momenta corresponding to X0 is6

Π0 ¼
∂L
∂ _X0

¼
�
X0kðϵμν _XμX0νÞ−1ð _X0X0k − _XkX00Þ

−
X01

2
ðϵμν _XμX0νÞ−2ð _XμXk0 − _XkXμ0Þ2

�
: ð15Þ

Similarly that for X1 is

Π1 ¼
∂L
∂ _X1

¼
�
−X0kðϵμν _XμX0νÞ−1ð _X1X0k − _XkX01Þ

þ X00

2
ðϵμν _XμX0νÞ−2ð _XμXk0 − _XkXμ0Þ2

�
: ð16Þ

Also for Xk,

Πk ¼ ∂L
∂ _Xk

¼ ð−ϵμν _XμX0νÞ−1½X0μð _XμX0k − _XkX0
μÞ�: ð17Þ

Using these in the definition of the canonical
Hamiltonian we get

HcðτÞ ¼
Z

dσðΠμ _Xμ − LÞ:

A straightforward calculation gives HcðτÞ ¼ 0. This is a
characteristic of the already covariant theories. From an
inspection of the expressions of the momenta, the following
primary constraints emerge:

5That such a choice is possible is justified in Sec. III.4 through
a detailed Hamiltonian analysis. 6We rename the NG Lagrangian as LNG → L and set N ¼ 1.

BANERJEE, MOINUDDIN, and MUKHERJEE PHYS. REV. D 103, 046020 (2021)

046020-4



Ω1 ¼ ΠμX0
μ ≈ 0;

2Ω2 ¼ Π2 þX02 − 2σαβΠαX0β ≈ 0; ð18Þ

where σαβ is a second Pauli matrix. The fundamental
Poisson brackets of the theory are given by

fXμðτ; σÞ;Πνðτ; σ0Þg ¼ ημνδðσ − σ0Þ ð19Þ

while the others vanish. Using these Poisson brackets it is
easy to work out the algebra of the constraints,

fΩ1ðσÞ;Ω2ðσ0Þg ¼ ðΩ2ðσÞ þ Ω2ðσ0ÞÞ∂σδðσ − σ0Þ;
fΩ1ðσÞ;Ω1ðσ0Þg ¼ ðΩ1ðσÞ þ Ω1ðσ0ÞÞ∂σδðσ − σ0Þ;
fΩ2ðσÞ;Ω2ðσ0Þg ¼ ðΩ1ðσÞ þ Ω1ðσ0ÞÞ∂σδðσ − σ0Þ: ð20Þ

Clearly, the Poisson brackets between the constraints
(18) are weakly involutive. So the set (18) is first class.
The total Hamiltonian is

HT ¼
Z

dσðρΩ1 þ λΩ2Þ ð21Þ

where ρ and λ are Lagrange multipliers and Ω1 and Ω2 are
shown in (18).
Conserving the primary constraints, no new secondary

constraints emerge since the constraint algebra simply
closes. The total set of constraints of the NG theory is
then given by the first class system (18).
The Nambu-Goto string is a constrained system. So its

description is redundant. If it is embedded in a Dþ 1
dimensional spacetime, the number of fields in the con-
figuration space is Dþ 1. The corresponding number of
variables in the phase space is 2ðDþ 1Þ. Then the number
of degrees of freedom in the configuration space is given by

n ¼ 1

2
ð2ðDþ 1Þ − 4Þ ¼ D − 1 ð22Þ

This result is consistent with our understanding about the
nonrelativistic excitation taking place in the transverse
direction and we identify the (D − 1) variables Xk as the
physical set. Also, we understand from another angle why
ω1i ¼ 0 should hold [recall the second equation of (12)].

B. Studies of local symmetries

The string world sheet is a two-dimensional manifold
which is charted by the parameters τ and σ. The physical
theory should not depend on any particular parametrization.
In other words we should have invariance under repar-
ametrization (a mapping of the manifold on itself i.e. a
diffeomorphism)

τ0 ¼ τ0ðτ; σÞ;
σ0 ¼ σ0ðτ; σÞ; ð23Þ

which becomes for infinitesimal diffeomorphism

τ0 ¼ τ þ δτ;

σ0 ¼ σ þ δσ: ð24Þ

The increments δσ and δτ both are functions of σ and τ. In
the Lagrangian level the diffieomorphismn invariance is
conceptually clear. The Lagrangian is a world sheet scalar.
Its form variation under (24) is given by δL ¼ δσa

∂L
∂σa

where σ0 ¼ σ and σ1 ¼ τ.
The Jacobian of the transformation is ð1þ ∂aδσaÞ.

Direct substitution in the action gives

δS ¼
Z

dσdτ
∂
∂σa ðLδσaÞ ¼ 0 ð25Þ

since the variations vanish at the boundary. So the theory
(8) is invariant under (24).
Looking from the Hamiltonian point of view such action

level symmetries should correspond to the gauge sym-
metries of the model. The gauge redundancy accounts for
the diffeomorphism invariances and vice versa. So one
should be able to establish an exact mapping between
gauge and reparametrization parameters. We will derive the
explicit form of the mapping now.

C. Mapping between gauge and
reparametrization symmetries

According to the Dirac conjecture all the first class
constraints generate gauge transformations. But the gauge
parameters associated with these transformations are not
independent. It is known that the number of independent
primary first class constraints equals the number of
independent gauge parameters [13,14]. Since in the present
example two primary first class constraints form the set of
constraints, the gauge generator can be written down
immediately,

GðτÞ ¼
Z

dσðω1ðσÞΩ1 þ ω2ðσÞΩ2Þ: ð26Þ

The corresponding gauge variations are

δGX0 ¼ ½X0; G�PB ¼ ω1ðσÞX00 − ω2X10;

δGX1 ¼ ½X1; G�PB ¼ ω1ðσÞX10 − ω2ðσÞX00;

δGXk ¼ ½Xk;G�PB ¼ ω1ðσÞXk0 þ ω2ðσÞΠk0 ð27Þ

with the exact number of independent parameters.
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Now, the variations due to diffeomorphism (24) are

δDXμ ¼ ξ1Xμ0 þ ξ2 _X
μ ð28Þ

where ξ1 ¼ −δσ and ξ2 ¼ −δτ are defined in (24).We see
“velocities” appearing in the expression of variations (28).
To exhibit the one-to-one correspondence we have to
substitute _Xμ in (28) from its equation of motion, _Xμ ¼
½Xμ; HT �, where HT is the total Hamiltonian given by (21).
This calculation gives us for μ ¼ 0

_X0 ¼ ρX00 − λX01: ð29Þ

Substituting this in (28) we get

δDX0 ¼ ðξ1 þ ρξ2ÞX00 − ξ2λX01: ð30Þ

Comparison with δGX0 gives us the desired mapping,

ω1 ¼ ðξ1 þ ξ2ρÞ;
ω2 ¼ ξ2λ: ð31Þ

The same results will be obtained for any component of μ.
Thus the mapping (31) exhibits the complete equivalence
of the gauge symmetries with the diffeomorhism invari-
ances of the model.

D. Gauge fixed analysis

We have seen that the analysis of the symmetries is best
done in the gauge independent approach. However, for the
study of dynamics in the phase space one must eradicate the
gauge redundancy by a gauge choice. A gauge is a condition
in phase space which makes a first class constraint second
class, thereby reducing two degrees of freedom.While this is
a necessary condition, it is not sufficient. In order to specify
the physical set, one has to properly obtain the canonical
variables. These variables can always be obtained (this is the
content of the Maskawa-Nakajima theorem [15]) such that
the Dirac brackets among these variables is the same as the
Poisson brackets. Then one can proceed with the quantiza-
tion by replacing these brackets by suitable commutators.
We assume the standard gauges,

Ω3 ¼ X1 − σ ≈ 0; Ω4 ¼ X0 þ cτ ≈ 0: ð32Þ

Note that if we include the gauge conditions as constraints
with the existing set fΩ1 ≈ 0;Ω1 ≈ 0g, then all of the
constraints become second class. The phase space can now
be reduced by implementing these constraints strongly. The
canonical structure is now optimum, described by the phase
space variables fXk;Πkg, and the symplectic structure is
given by the Dirac brackets [10,12]. The structure of the
Dirac brackets between the coordinates is rich with
physical significance and worthy to be studied carefully.

The Dirac brackets between two phase space variables is
defined by [12]

½AðσÞ;Bðσ0�DB

¼ ½AðσÞ;Bðσ0Þ�PB
−
Z

dσ1dσ2½AðσÞ;Ωiðσ1Þ�PBΔijðσ1;σ2Þ½Ωjðσ2Þ;Bðσ0Þ�PB
ð33Þ

where the matrix Δij is the inverse of the matrix Δij formed
by the constraint algebra,

Δij ¼ ½Ωi;Ωj�PB; i ¼ 1; 2; 3; 4 ð34Þ

which is necessarily nonsingular and admits an inverse.
Using these definitions and the Poisson brackets between
the second class constraints (18) and (32), we get

Δij ¼

2
6664

0 0 −δðσ − σ0Þ 0

0 0 0 δðσ − σ0Þ
δðσ − σ0Þ 0 0 0

0 −δðσ − σ0Þ 0 0

3
7775:

The inverse is easily found,

Δij ¼

2
6664

0 0 δðσ − σ0Þ 0

0 0 0 −δðσ − σ0Þ
−δðσ − σ0Þ 0 0 0

0 δðσ − σ0Þ 0 0

3
7775:

It is then straightforward to calculate the Dirac brackets
between the previous canonically conjugate variables in the
gauge independent analysis,

½X0ðσ; τÞ;Π0ðσ0; τÞ�DB ¼ 0;

½X1ðσ; τÞ;Π1ðσ0; τÞ�DB ¼ 0;

½Xiðσ; τÞ;Πjðσ0; τÞ�DB ¼ δijδðσ − σ0Þ: ð35Þ

We will provide a detailed derivation of the first
equation. Starting from the definition of the Dirac brackets
we get

½X0ðσ;τÞ;Π0ðσ0;τÞ�DB

¼ ½X0ðσ;τÞ;Π0ðσ0;τÞ�PB
−
Z

dσ1dσ2½X0ðσÞ;Ω2ðσ1Þ�Δ24ððσ1;σ2Þ½Ω4ðσ2Þ;Π0�

¼ δðσ− σ0Þ−
Z

dσ1dσ2δðσ− σ1ÞX10δðσ1− σ2Þδðσ2− σ0Þ

¼ 0 ð36Þ
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where we have imposed the constraint Ω3 strongly
7 so that

X10 ¼ 1. Similarly we can derive the other two equations of
the set (35). Incidentally the last relation of (35) is the only
nonzero bracket.
Thus X0, X1 (and their conjugate momenta) are out of the

dynamics and ðXi;ΠiÞ; i ¼ 2; 3;… are the canonical pairs.
Also note that the total Hamiltonian vanishes when the
constraints are strongly implemented. In this situation we
have to identify a Hamiltonian in the reduced phase space
which will generate the equations of motion with respect to
the Dirac brackets.
Remember that canonically the Hamiltonian may be

considered as the conjugate to the time parameter. So we
identify the new Hamiltonian as

H ¼ c
Z

dσ½Π0�g ð37Þ

where the subscript g denotes that gauge fixed value. Using
the gauge conditions (32) which now allow us to put
_X0 ¼ −c and X1 ¼ σ we find by substitution from (15)

H ¼ c
2

Z
dσ

�
ð∂σXkÞÞ2 þ 1

c2
ð∂τXkÞ2

�
: ð38Þ

We see that the proposed Hamiltonian is positive definite.
Remarkably, this Hamiltonian is a sum of harmonic
oscillator terms. Use the definition of Πk and the gauge
fixing conditions to get

Πk ¼ 1

c
∂τXk: ð39Þ

Then from (38)we can write

H ¼ c
2

Z
½ð∂σXkÞ2 þ ðΠkÞ2�: ð40Þ

This is however the transversely vibrating string
Hamiltonian. The corresponding Lagrangian, obtained by
an inverse Legendre transformation, reproduces (14)
with N ¼ 1.
As stated earlier we have shown the passage to the usual

classical string, clearly validating the special choice of the
coordinates as a good choice of gauge. This demonstration
is a nice application of our formalism.

IV. THE INTERPOLATING LAGRANGIAN

In this section the canonical analysis of the previous section
will be used from an inverse approach to develop a new
Lagrangian, which will be shown to have the remarkable
property of interpolating between NG and Polyakov

Lagrangians. In the case of relativistic string one can easily
deduce the NG string from the Polyakov string on shell, by
substituting the metric from its equation of motion in the
original Lagrangian under definite conditions. But for the
nonrelativitic string, the Polyakov action requires to be
supplemented by two world sheet fields, the origin of which
is hard to trace [3]. Thus the equivalence of the two actions
becomes problematic. In the following discussion wewill see
that the Hamiltonian analysis can be used to identify the
source of the additional fields in the interpolating actionwhich
eventually permeates to thePolyakov form.Also, this action is
remarkable due to its connection with the geometry and may
be useful in coupling the string with a curved background.
The Lagrangian corresponding to the Hamiltonian

HT (21) is

LI ¼ Πμ
_Xμ − ρΩ1 − λΩ2 ð41Þ

where the multipliers ρ and λ are given the status of
independent fields. The Lagrange equations corresponding
to Π0, Π1, and Πk are now respectively,

_X0 − ρX00 þ λX01 ¼ 0;

_X1 − ρX01 þ λX00 ¼ 0;

_Xk − ρX0k − λΠk ¼ 0: ð42Þ
Solving ρ and λ from the set (42), we get

ρ ¼
_X1X01 − _X0X00

ðX01Þ2 − X002 ;

λ ¼ − _X0X01 þ _X1X00

ðX01Þ2 − ðX00Þ2 : ð43Þ

It is possible to eliminate all the momenta from (41)
using (42). Now, reinterpret ρ and λ as independent
fields. Also, Eqs. (43) will now be promoted to
Lagrangian constraints. Doing all these steps the following
Lagrangian is obtained:

LI ¼
1

2λ
½ð _XkÞ2 − 2ρ _XkX0k þ ðρ2 − λ2ÞðX0kÞ2�

þ β

�
ρ −

_X1X01 − _X0X00

X012 − X002

�

þ α

�
λþ

_X0X01 − _X1X00

X012 − X002

�
: ð44Þ

This is the appearance of the interpolating Lagrangian
announced earlier. We will presently show that we can
derive both the Nambu-Goto and Polyakov forms of the
nonrelativistic string action from (44). This is the reason for
dubbing (44) as the interpolating Lagrangian.
The above Lagrangian is a new result that emerges on

exploiting the constraint structure of the Nambu-Goto type
7This is permitted as all the Poisson brackets have already been

evaluated.
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action. The equivalence of the two can thus be shown
easily, as done below. But its equivalence with the
Polyakov type form is quite nontrivial, which has also
been demonstrated. This reveals that the interpolating
action is not merely of academic interest since it is crucial
in showing the equivalence of the Nambu-Goto and
Polyakov type forms. Such a clear-cut and conceptually
clean derivation is lacking. We may also recall the
relativistic case where an interpolating action was presented
to show a similar equivalence [8]. However, in that case,
this could also be established directly by simply opening
the square root of the Nambu-Goto action and it was not
essential to go through this intermediate step of interpolat-
ing Lagrangian.

A. Passage to the Nambu-Goto type

The derivation of the Nambu-Goto action (4) from (44) is
trivial. The multipliers simply enforce the solutions (43).
Putting it back in (44) reproduces the expected result.

B. Passage to the Polyakov type form

This sounds really interesting for the Polyakov form
brings in an independent metric on the world sheet but in
the interpolating Lagrangian there is no explicit reference to
such a metric. Also, the world sheet fields that are invoked
in the Lagrangian look like a hurdle. The startling obser-
vation in the following analysis is the solution at one stroke,
where aspects of Riemannian geometry of the world sheet
converge with the canonical structure of the nonrelativistic
string. From this confluence the Polyakov type action
emerges including the extra fields.
Let us first observe that with the help of the fields ρ and λ

we can construct a 2 × 2 matrix

hij ¼ ð−hÞ−1
2

 
1
λ − ρ

λ

− ρ
λ

ρ2−λ2
λ

!
ð45Þ

where h is the determinant of the inverse matrix hij. The
consistency of the construction can be verified by the
computation of det hij, which yields

det hij ¼ 1

h
ð46Þ

showing that the matrix hij is a 2 × 2 real symmetric
matrix. Also the inverse to hij is hij. Note that obeying the
constraints, h may assume any nonzero value. We propose
hij as the metric on the world sheet and write the
interpolating Lagrangian, (44), in terms of the elements
of hij as

LI ¼ 1

2

ffiffiffiffiffiffi
−h

p
hij∂iXk∂jXk þ Le: ð47Þ

The first part is formally the same as the relativistic bosonic
string, though here only transverse degrees of freedom are
dynamical. The second part is due to the constraints (43),
enforced in the Lagrangian, again by multipliers,

Le ¼ β

�
−
h01

h00
−

_X1X01 − _X0X00

ðX01Þ2 − X002

�

þ α

�
1ffiffiffiffiffiffi

−h
p

h00
þ

_X0X01 − _X1X00

X012 − X002

�
ð48Þ

Note that from the identification of the metric we can
show that

λ ¼ 1ffiffiffiffiffiffi
−h

p
h00

; ρ ¼ −
h01

h00
ð49Þ

which has been used in writing (48). The Lagrangian (47),
with Le given by (48), is the string action given in the
Polyakov form. We see that the matrix hij now represents
independent fields. Indeed, hij resembles the metric on the
world sheet. We can compare the action with the corre-
sponding relativistic action. The first term is of the same
form but only transverse degrees of freedom are involved.
This is consistent with the previous analysis given here.
The fields α and β are the two extra fields included in the
Polyakov form. For nonrelativistic string action considered
in previous studies [3] such fields are included. However,
their appearance was not explained. We have seen they
follow from the canonical analysis. The issue will be
considered in more detail in the following section.

C. The interpolating Lagrangian—canonical analysis

The last section has established that the interpolating
action (44) is a versatile tool to study nonrelativistic
strings. We have shown that under appropriate conditions
the model interpolates between the Nambu-Goto and
Polyakov forms of the string action. This equivalence will
further be elucidated by the canonical analysis.
We have already shown the action level reduction of the

interpolating action to the Nambu-Goto string. But that
does not necessarily imply that the two theories have the
same physical content. The canonical structure of the
interpolating theory determines its energy spectrum.
Also, the first class constraints determine the gauge
symmetry of the models. In the following discussion a
canonical analysis of the new action is provided which
further elucidates its equivalence with the NG form.
The interpolating Lagrangian will be the starting point of

the comparison. The momenta corresponding to the basic
fields in (44) lead to one genuine momentum Πk,

Πk ¼
_Xk

λ
−
ρ

λ
X0k ð50Þ
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while the rest are constraints, two of which are first class
defined as

πρ ≈ 0; πλ ≈ 0 ð51Þ

while the remaining are second class,

Σ1 ¼ πα ≈ 0; Σ2 ¼ πβ ≈ 0;

Σ3 ¼ Π0 −
αX01 þ βX00

ðX012 − X002Þ ≈ 0;

Σ4 ¼ Π1 þ
αX00 þ βX01

ðX012 − X002Þ ≈ 0: ð52Þ

The canonical Hamiltonian is

Hc ¼
Z

dσ

�
λ

�
Πk

2 þ X0k2

2
− α

�
þ ρðΠkXk0 − βÞ

�
: ð53Þ

The second class constraints are strongly implemented by
using Dirac brackets instead of the Poisson. The total
Hamiltonian is then defined as

HT ¼ Hc þ
Z

dσðν1πλ þ ν2πρÞ: ð54Þ

From conserving the first class constraints we get two more
constraints. Note that now we have to use, instead of the
Poisson brackets, the relevant Dirac brackets. However
it is easy to see that the Dirac brackets and the Poisson
brackets are identical for the variables that are involved
in the iterative computation of constraints. The new
constraints are

½πρ; HT � ≈ 0 → ΠkX0k − β ¼ Φ1 ≈ 0;

½πλ; HT � ≈ 0 →
1

2
ðΠk2 þ X0k2Þ − α ¼ Φ2 ≈ 0: ð55Þ

The constraints are now all first class. Their algebra is
strongly involutive, except for the pair ðΦ1;Φ2Þ which
satisfies an algebra identical to (20),

fΦ1ðσÞ;Φ2ðσ0Þg ¼ ðΦ2ðσÞ þΦ2ðσ0ÞÞ∂σδðσ − σ0Þ;
fΦ1ðσÞ;Φ1ðσ0Þg ¼ ðΦ1ðσÞ þΦ1ðσ0ÞÞ∂σδðσ − σ0Þ;
fΦ2ðσÞ;Φ2ðσ0Þg ¼ ðΦ1ðσÞ þΦ1ðσ0ÞÞ∂σδðσ − σ0Þ: ð56Þ

Let us next perform a degree of freedom count. The total
number of phase space degrees of freedom is 2ð6þ kÞ.
There are four second class constraints and four first class
constraints. Hence the number of independent phase space
degrees of freedom is

n ¼ 2ð6þ kÞ − 4 − 2 × 4 ¼ 2k: ð57Þ

Hence the independent number of configuration space
degrees of freedom is k, which we take to be the Xk

variables. This precisely matches with our earlier counting
and identification.
Since the constraints in (52) are strongly implemented, it

is possible to solve for α and β. We get

α ¼ Π0X01 þ Π1X00;

β ¼ −Π0X00 − π1X01: ð58Þ

Substituting these in (55) we obtain

Φ1 ¼ Ω1; Φ2 ¼ Ω2 ð59Þ

which are identical to the two first class constraints (18) of
the original Nambu-Goto model.
This shows that the interpolating model is perfectly

viable, allowing for a systematic analysis of constraints
that is needed to show its equivalence with other types
of actions. This Hamltonian analysis complements the
Lagrangian formulation presented previously.

V. CONNECTION WITH GEOMETRY

In the above we have introduced a new action for the
nonrelativistic bosonic string which has the merit of
interpolating between the Nambu-Goto form on one side
and the Polyakov form of the action on the other. Thus both
types of actions can be related in one go. In the non-
relativistic variety this task is not simple, as evidenced in
the literature [3,5]. First of all, metric components in the
transverse directions only appear in the Polyakov type
action and there is a clear compartmentalization of the
directions horizontal to the string and transverse to the
string in the target space. The low energy excitations are
entirely transverse. The horizontal components of the
metric are not dynamical. Probably due to this proviso
two new fields are included in the action which are devoid
of any dynamics [5]. How these fields are related with the
geometry (i.e. their connection with the metric) is not
known. Clearly the action level correspondence between
the different forms of the action, so transparent in the
relativistic formulations, appear to be missing. The equiv-
alence could be established by an arduous path [7]. The
new action found here not only was shown to bridge the
different forms, it also generated the additional fields.
Moreover it has connected the geometric elements with
the multipliers in the Hamiltonian. In the following we will
further investigate the connection and one would appreciate
that this connection is not accidental.
So far, the metric induced on the world sheet was not

discussed because the discussion could proceed without
reference to the metric. A metric on the world sheet was
derived as the metric induced by the embedding [see
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Eq. (1)]. But the Polyakov form gives an independent
metric. So geometry of the world sheet is now interwoven
with the dynamics. In deriving the Polyakov type action
from the Nambu-Goto through the interpolating action, we
have connected the form of the metric (45) composed with
the Hamiltonian constructs ρ and λ, with the world sheet
geometry. This evolution of the metric as dynamical fields
is certainly a new input in the existing literature.
Our construction (45) is reminiscent of the Arnowitt-

Deser-Misner (ADM) decomposition of general relativity
[16]. In the ADM representation the metric of the four-
dimensional Riemannian spacetime ð4Þγμν is split as8

� ð4Þγ00 ð4Þγ0m

ð4Þγ0k ð4Þγkm

�
¼

0
B@− 1

ðNÞ2
ðNmÞ
ðNÞ2

ðNkÞ
ðNÞ2

�
γkm − ðNkÞðNmÞ

ðNÞ2
�
1
CA: ð60Þ

Here, k, m take the values 1, 2, 3. γkm is the metric on a
three-dimensional hypersurface embedded in the four-
dimensional spacetime. N and Nk are the arbitrary lapse
and shift variables which are nothing but the Lagrange
multipliers of the theory. From (60), a similar structure for
d ¼ 2 assumes the following form:

� ð2Þγ00 ð2Þγ01

ð2Þγ01 ð2Þγ11

�
¼

0
B@− 1

ðNÞ2
ðN1Þ
ðNÞ2

ðN1Þ
ðNÞ2

�
γ11 − ðN1Þ2

ðNÞ2
�
1
CA: ð61Þ

Comparing this with (45) we can easily establish

N1 ↦ ρ and ðNÞ2 ↦ −λ
ffiffiffiffiffiffi
−g

p
and γ ↦ g: ð62Þ

Thus the identification (45) is the same as theADMfoliation
of the world sheet. The fields λ and ρ are manifestations of
the arbitrariness along the string (the lapse N) and an
arbitrariness transverse to the string i.e. the relative time
direction (the shift N1), both on the world sheet.
For further insight and comparison with existing

results [3], we rewrite the interpolating Lagrangian in
the light-cone coordinates,

X ¼ X0 þ X1; X̄ ¼ X0 − X1: ð63Þ

The extra piece can now be written as

Le ¼ α

�
1ffiffiffiffiffiffi

−h
p

h00
þ ϵαβ∂αX∂βX̄

2X̄0X0

�

þ β

�
−
h01

h00
−
σαβ∂αX∂βX̄

2X0X̄0

�
ð64Þ

where

ϵαβ ¼
�

0 1

−1 0

�
ð65Þ

and σαβ is

σαβ ¼
�
0 1

1 0

�
: ð66Þ

Combining (47) and (64) we get the interpolating action in
light cone coordinates

LI ¼ 1

2

ffiffiffiffiffiffi
−h

p
hαβ∂αXk∂βXk þ α

�
1ffiffiffiffiffiffi

−h
p

h00
þ ϵαβ∂αX∂βX̄

2X̄0X0

�

þ β

�
−
h01

h00
−
σαβ∂αX∂βX̄

2X0X̄0

�
: ð67Þ

Now note that the coordinates Xa are defined in a
Lorentz plane with metric ηab ¼ ð1;−1Þ. The string world
sheet in its ground state is parallel with the Lorentz plane.
When the world sheet metric is an independent field, one
has to introduce the tangent space at every point on the
world sheet. The tangent space is locally Lorentzian. The
coordinates X0 and X1 are referred to these coordinates. Let
eα and ea be the bases at a point on the world sheet and the
tangent space at that point, respectively. The vierbein Λα

a
and its inverse connect the two bases,

eα ¼ Λα
aea: ð68Þ

The inverse of Λα
a will be denoted by Λα

a.
The vierbeins may be used to factorize the metric,

hαβ ¼ Λα
aΛβ

bδ
ab: ð69Þ

We now give special attention to the part of the
Lagrangian where the vierbeins explicitly appear in the
theory. It is that part of the Lagrangian which is special to
the nonrelativistic theory having no relativistic analog.
Now, both X and X̄ are world sheet scalars. So we can
easily derive the following relations:

∂αX ¼ Λα
a∂aX ¼ Λα

aðδa0 þ δ1aÞ ¼ eα;

∂αX̄ ¼ Λα
a∂aX̄ ¼ Λα

aðδa0 − δ1aÞ ¼ ēα; ð70Þ

where

eα ¼ Λ0
α þ Λ1

α;

ēα ¼ Λ0
α − Λ1

α: ð71Þ

Nowwe have all the intermediate quantities. We can then
write the expression in terms of the basis vectors,

8For the metric of the total spacetime the dimension is
mentioned as a (pre)superscript.
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LI ¼ 1

2

ffiffiffiffiffiffi
−h

p
hαβ∂αXk∂βXk þ α

�
1ffiffiffiffiffiffi

−h
p

h00
þ ϵαβeαēβ

2X̄0X0

�

þ β

�
−
h01

h00
−
σαβeαēβ
2X0X̄0

�
: ð72Þ

The string action in the form (72) clearly reveals the
connection with the world sheet geometry. The deduction
of this from the canonical analysis of the model (8) is
indeed remarkable.

VI. CONCLUSION

Nonrelativistic string theories have recently come to
prominence in the literature [3,5–7]. Just as recent studies
of nonrelativistic field theories have emphasized the role of
geometry to tackle the issue of coupling nonrelativistic field
theories with gravity, studies in string theories have raised
new questions about geometry. But nay, the NRSTs are
interesting even in flat space. Similar to their relativistic
counterpart, different actions have been proposed. Broadly
we can divide these in two classes—minimal action which
contains the world sheet area swept by the string as the
Lagrangian [5] and more redundant form of action where
the metric elements on the world sheet [3] are considered as
independent fields. The former is comparable with the
Nambu-Goto type and the latter with the Polyakov type in
relativistic strings. But there is one significant difference. In
NRSTs in the second type there are two extra fields on the
world sheet. In relativistic field theories of Polyakov type
one can easily substitute the metric components from their
equations of motion to get the Nambu-Goto string. This
action level correspondence is not apparent in case of the
NRST primarily due to the presence of the extra fields.
We have developed an approach where the starting point

was the Nambu-Goto type of action. This was obtained by
taking a nonrelativistic ðc → ∞Þ limit of the relativistic
Nambu-Goto action. A unique form for the action was
found. By eliminating its gauge freedom it was shown to
reduce to the expected form for the nonrelativistic stretched
string vibrating transversally. The choice of gauge was
justified by a Hamiltonian analysis.
This Hamiltonian analysis was pushed in a big way by

constructing from the Nambu-Goto type action an inter-
mediate action that interpolated between the Nambu-Goto
and Polyakov type forms. While the connection with the
Nambu-Goto form was easily shown, that with the
Polyakov type was much more involved. It was possible
to identify a metric structure using the fields introduced in
the Hamiltonian formulation. This enabled us to connect
the string world sheet geometry with the geometry of the

embedding which can be identified with that appearing in
the Polyakov type action. Thereby, we regain the action
level correspondence in NRSTs. This shows the utility of
our Hamiltonian approach and explains the problems of
showing the equivalence by strictly confining to the
Lagrangian approach, as done for the relativistic example.
Another remarkable aspect is the role of Hamiltonian

analysis in the formulation of the interpolating action. We
have started from the minimal action. To facilitate the
introduction of geometry on the world sheet of the string,
we have carried out a comprehensive canonical analysis of
the model. The action is then enriched by the introduction
of the constraints in the Lagrangian by the Lagrange
multiplier technique and lifting the status of the multipliers
to independent fields. Eliminating the phase space variables
by the inverse Legendre procedure, the desired action is
obtained. A surprising connection of the new fields with the
Arnowit-Deser-Misner construction in general relativity
emerged, whereby geometry was introduced in the theory.
It was then an easy journey towards the Polyakov type
action. Remarkably, the two extra fields appeared sponta-
neously in the process. We have provided a detailed
canonical analysis of the new action. Its phase space
structure has been studied. Throughout the paper sym-
metries of the different actions have been investigated from
the canonical point of view and the interpolating
Lagrangian is no exception. This analysis has been used
to deduce further geometrical connections.
The interplay of canonical analysis and geometry, as

evidenced here, brings out a clear picture of the connection
of canonical analysis with the metric of the world sheet.
Thus the possible use of the action obtained here in case of
coupling with gravity appears to be feasible. One has to
find ways to relate the background curvature. Our approach
is amenable to generalization and can be extended to
membranes and higher branes. This is because the analysis
has a close parallel with the relativistic case where the
equivalence of higher brane actions was demonstrated [17]
by generalizing the results for the string case done in [8].
This could be useful since the equivalence of actions for
nonrelativistic theories is obviously much more compli-
cated than its relativistic counterpart. These and other
issues may yield fresh insights and open up further
research.
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