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We consider a multiscalar field theory either with short-range or long-range free action and with quartic
interactions that are invariant under OðN1Þ ×OðN2Þ ×OðN3Þ transformations, of which the scalar fields
form a trifundamental representation. We study the renormalization group fixed points at two loops at finite
N and in various large-N scaling limits for small ϵ, the latter being the deviation either from the critical
dimension or from the critical scaling of the free propagator. In particular, for the homogeneous case
Ni ¼ N for i ¼ 1, 2, 3, we study the subleading corrections to previously known fixed points. In the short-
range model, for ϵN2 ≫ 1, we find complex fixed points with nonzero tetrahedral coupling that at leading
order reproduce the results of Giombi et al. [Phys. Rev. D 96, 106014 (2017).]; the main novelty at next-to-
leading order is that the critical exponents acquire a real part, thus allowing a correct identification of some
fixed points as IR stable. In the long-range model, for ϵN ≪ 1, we find again complex fixed points with
nonzero tetrahedral coupling that at leading order reproduce the line of stable fixed points of Benedetti et al.
[J. High Energy Phys. 06 (2019) 053]; at next-to-leading order, this is reduced to a discrete set of stable
fixed points. One difference between the short-range and the long-range cases is that in the former the
critical exponents are purely imaginary at leading order and gain a real part at next-to-leading order, while
for the latter the situation is reversed.
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I. INTRODUCTION

Multiscalar models with quartic interactions are a broad
class of field theories including some extensively studied
models, such as theOðN Þmodel. The latter describes some
of the most important universality classes, such as the Ising
and Heisenberg models, but other multiscalar models, with
smaller symmetry groups, are also of general interest (see,
for example, Refs. [1,2] and references therein). In fact,
being able to classify or better understand all the possible
universality classes appearing in such models would be of
great theoretical appeal. Efforts in this direction have been
made, for example, in [3–14], but clearly a full classifica-
tion becomes daunting as the numberN of fields increases.
It is then natural to try to broaden our understanding by
gradually breaking the maximal symmetry group, i.e., the

OðN Þ group, into smaller ones, which, of course, can be
done in many ways. One much studied case is the model
with symmetry OðN1Þ ×OðN2Þ, with N1N2 ¼ N , which
was named the bifundamental model recently in [10], but
which has a long history (e.g., Refs. [15–21]).
In this paper we go one step further in the same direction

and consider a trifundamental model, with symmetry group
OðN1Þ ×OðN2Þ ×OðN3Þ, and N1N2N3 ¼ N . Whereas
the OðN Þ model has a single coupling and the bifunda-
mental model has two, the trifundamental model has five
independent couplings (with the corresponding interactions
being known as tetrahedron, double trace, and pillows, the
latter being of three different types), making its system of
beta functions more involved. For this reason, we study its
fixed points either numerically for specific values of the
Ni’s or in some large-N scaling limits, with one, two, or all
three of the Ni’s being taken to infinity. In the homo-
geneous case Ni ¼ N, for i ¼ 1, 2, 3, the model reduces to
the OðNÞ3 tensor model, which has already been studied in
the strict large-N limit [22,23].
Tensor models are particularly interesting because at

large N they are dominated by melonic diagrams [24–26].
The melonic limit is different from both the vector and the
matrix large N limits [27]: it is richer than the large N limit
of vectors but is more manageable than the planar limit of
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matrices. Consequently, at large N, renormalization group
fixed points of tensor models in d dimensions give rise to a
new family of conformal field theories (CFTs) which are
analytically accessible [22,28–35] (see also [36–39] for
reviews and more references). We call this new family of
CFTs melonic. The OðNÞ3 bosonic tensor model with
quartic interactions is one of the simplest tensor models we
can study. This model is also known as the CTKT model as
it was introduced in zero dimension by Carozza and Tanasa
in [26] and generalized to d dimensions by Klebanov and
Tarnopolsky in [28]. It was studied further in [22], where in
d ¼ 4 − ϵ dimensions and in the melonic limit it was found
to have nontrivial fixed points, which, however, correspond
to complex CFTs. Moreover, the critical exponents deter-
mining the approach to the fixed points are purely imagi-
nary, and the trajectories around the fixed points form
concentric cycles, never really reaching them; in the
language of dynamical systems, the fixed point is a center
equilibrium. A similar model was then studied in [23], with
the same symmetry and interactions, but with a long-range
kinetic term. A line of infrared stable fixed points was
found, parametrized by a purely imaginary and exactly
marginal tetrahedron coupling. Surprisingly, the resulting
large-N CFT, which was studied in [40,41], appears to be
unitary, despite the fact that the tetrahedral coupling is
imaginary.
These results are valid in the large N limit, thus they

leave open several questions. How do the subleading
corrections in 1=N change them? In particular, generalizing
to aOðN1Þ ×OðN2Þ ×OðN3Þ symmetry in the short-range
case, can we find at small Ni or in some scaling limit real
stable fixed points with nonzero tetrahedral coupling? For
the long-range case, what becomes of the line of fixed
points at next-to-leading order? Do we have a breaking of
unitarity at subleading orders, for example, signaled by the
critical exponents having complex 1=N corrections?
The study of the 1=N corrections to the melonic limit

turns out to be surprisingly involved. This is due to the fact
that the tetrahedron coupling receives no radiative correc-
tions at large N, and therefore its beta function is either
trivial (long-range case) or determined solely by the wave-
function renormalization (short-range case), the latter only
starting with a (two-loop) cubic term. At order 1=N, the
beta function of the tetrahedral coupling acquires a (one-
loop) quadratic term, destroying its exact marginality in the
long-range model, and creating in the short-range model a
delicate competition with the cubic term, the latter being
leading in 1=N but subleading in the coupling. In order to
disentangle the effects of this quadratic term one needs to
analyze scaling regimes defining a hierarchy between 1=N
and ϵ, where ϵ is defined either as the deviation from the
critical dimension in the short-range case, i.e., ϵ ¼ 4 − d, or
as the deviation from the critical scaling of the propagator
in the long-range case, i.e., CðpÞ ¼ 1=pðdþϵÞ=2. We carry
out this analysis below.

Plan of the paper and summary of results. In this paper
we study the trifundamental model OðN1Þ ×OðN2Þ ×
OðN3Þ with quartic interactions, in both the short-range
and the long-range versions. Their finite-N beta functions
can be obtained as particular cases of general multiscalar
models, for which we use standard results such as [42] for
the short-range case and the three-loop results recently
obtained in [43] for the long-range case. We are interested
in fixed points with no enhanced symmetry such as
OðN1N2N3Þ or OðN1Þ ×OðN2N3Þ, and therefore we
are, in particular, interested in fixed points with non-
vanishing tetrahedral coupling. In fact, the latter is the
single coupling which is most characteristic of the full
symmetry group, being capable alone to generate all the
others by renormalization group (RG) flow. Moreover, it is
the coupling that in the OðNÞ3 model leads to a melonic
dominance at large N.
In Sec. II, after a quick review of the short-range multi-

scalar model, we compute the beta functions and fixed
points of the short-range OðN1Þ ×OðN2Þ ×OðN3Þ model
at two loops. First, in Sec. II C, we look for numerical
solutions of the fixed point equations at finite Ni, and we
find that there is no real fixed point with nonvanishing
tetrahedral coupling that is stable in all five directions in the
range 2 ≤ Ni ≤ 50. Then, in Secs. II D and II E, we
compute the fixed points, respectively, in the vectorlike
(N1 → ∞; N2 and N3 fixed) and in the matrixlike (N2 ¼
cN1 ¼ N → ∞; c and N3 fixed) limits. As at finite Ni, in
both cases we conclude that there is no real stable fixed
point with nonvanishing tetrahedral coupling; however, in
the matrixlike case we find a complex stable fixed point.
Finally, in Sec. II F, we study the large N limit and its first
subleading corrections in the case N1 ¼ N2 ¼ N3 ¼ N,
and with a single coupling for the three pillow interactions,
corresponding to the OðNÞ3 tensor model. At leading order
our results agree with those of [22]. It turns out that, due to
the quadratic term at order 1=N in the beta function of the
tetrahedral coupling, to which we alluded before, in order
to study the 1=N corrections to the leading-order fixed
point we must consider ϵN2 ≫ 1. In this regime we find a
fixed point for which all three critical exponents have
positive real parts. The real part is Oð1Þ for the tetrahedral
coupling and Oð1=NÞ for the other two.
Next, in Sec. III, we study the long-range case. After a

quick review of the long-range multiscalar model, in
Sec. III B we directly set N1 ¼ N2 ¼ N3 ¼ N to study
the bosonicOðNÞ3 tensor model, with a single coupling for
the three pillow interactions. We study the fixed points and
critical exponents at two loops, up to and including order
1=N. At leading order, we reproduce the results of [23];
that is, at ϵ ¼ 0, for a propagator such that the quartic
interactions have dimension d, we find a line of stable real
fixed points for the pillow and double-trace couplings
parametrized by an exactly marginal tetrahedral coupling;
we stress that the latter needs to be taken purely imaginary
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for the other fixed points and their critical exponents to be
real. At order 1=N, due to the occurrence of nonvanishing
quadratic terms in its beta function, the tetrahedral coupling
is no longer exactly marginal, and in order to find nontrivial
but perturbatively accessible fixed points, it turns out that
we must turn on ϵ and we must consider the regime
ϵN ≪ 1.1 In this regime, we find a purely imaginary fixed
point for the tetrahedral coupling; its value being imagi-
nary, the reality of the leading critical exponents is not
spoiled. However, at order 1=N we find purely imaginary
corrections for the pillow and double-trace critical expo-
nents; at the same order, the tetrahedron critical exponent is
real, but it also acquires an imaginary part at order 1=N3=2.
We thus see two similar situations. In the short-range

model, the leading-order fixed point is real for the tetra-
hedral coupling and purely imaginary for the pillow and
double-trace couplings. The critical exponent of the tetra-
hedral coupling is real while the others are purely imagi-
nary. The 1=N corrections bring real parts to the pillow and
double-trace critical exponents (and a small imaginary part
to the tetrahedral critical exponent). These real parts lead to
a stable fixed point.
In the long-range model, we have the reverse: at leading

order the stable line of fixed points corresponds to purely
imaginary tetrahedral coupling and real pillow and double-
trace couplings. The critical exponents of the pillow and
double trace are real (the one of the tetrahedral coupling is,
of course, zero). At higher orders in 1=N the fixed line
collapses to isolated fixed points. The pillow and double-
trace critical exponents acquire small imaginary parts, and
the tetrahedron critical exponent is real at the first nontrivial
order and complex beyond that. The fixed point is stable in
all three directions, but the critical exponents have nonzero
imaginary parts. The unitarity of the large-N melonic CFT
is broken by the 1=N corrections.

II. THE SHORT-RANGE TRIFUNDAMENTAL
MODEL

A. The short-range multiscalar model

The short-range multiscalar model with quartic inter-
actions in dimension d is defined by the action

S½ϕ� ¼
Z

ddx

�
1

2
∂μϕaðxÞ∂μϕaðxÞ

þ 1

4!
λabcdϕaðxÞϕbðxÞϕcðxÞϕdðxÞ

�
; ð1Þ

where the indices take values from 1 toN and a summation
over repeated indices is implicit. For the Euclidean theory
in the d ¼ 4 − ϵ dimension the beta function up to two
loops in the minimal subtraction scheme [42] is

βabcd ¼ −ϵg̃abcd þ ðg̃abefg̃efcd þ 2 termsÞ
− ðg̃abefg̃eghcg̃fghd þ 5 termsÞ

þ 1

12
ðg̃abceg̃efghg̃fghd þ 3 termsÞ þOðg̃4Þ; ð2Þ

where we rescaled the renormalized coupling to g̃abcd ¼
gabcdð4πÞ−d=2=Γðd=2Þ.
By imposing various symmetry restrictions on the

interaction one obtains different models that have been
extensively studied (see, for example, Refs. [1,2,8–10] and
references therein). We study here the case with OðN1Þ ×
OðN2Þ ×OðN3Þ invariance, which is relatively new.

B. The short-range trifundamental model

The fields in the trifundamental model are rank-3 tensor
fields transforming in the trifundamental representation of
OðN1Þ ×OðN2Þ ×OðN3Þ. This is made manifest by writ-
ing the index a as a triplet a ¼ ða1; a2; a3Þ, where the first,
second, and third indexes correspond to theOðN1Þ,OðN2Þ,
and OðN3Þ group, respectively,

ϕa1a2a3 →
X1���N
b1b2b3

Rð1Þ
a1b1

Rð2Þ
a2b2

Rð3Þ
a3b3

ϕb1b2b3 ; ð3Þ

with RðiÞ ∈ OðNiÞ. Notice that since each orthogonal group
contains a Z2 subgroup, in order to have a faithful action of
the symmetry group, we should quotient OðN1Þ ×
OðN2Þ ×OðN3Þ by a Z2

2, which acts trivially. As this is
irrelevant to our study, we will stick to the unquotiented
version of the symmetry group.
Under such symmetry transformation, the most general

invariant tensor structure for the coupling is2

g̃abcd ¼ g̃ðδtabcd þ 5 termsÞ
þ

X
i¼1;2;3

g̃p;iðδp;iab;cd þ 5 termsÞ

þ 2g̃dðδdabcd þ 2 termsÞ; ð4Þ

1This is somewhat similar to what has been observed by
Fleming et al. in [44] for the OðNÞ model with the ðϕ2Þ3
interaction in d ¼ 3 − ϵ dimensions. At ϵ ¼ 0, the coupling of
ðϕ2Þ3 has a vanishing beta function at large-N, thus leading to a
line of fixed points; Fleming et al. pointed out that in order to find
a precursor of such a line of fixed points at subleading orders in
1=N, one needs to turn on ϵ and look in the ðd; NÞ plane for lines
of fixed points parametrized by α ¼ ϵN. Of course, at fixed α we
do not have a line anymore, but isolated fixed points. We
moreover take ϵN ≪ 1 as we wish to rely on perturbation theory,
rather than on functional renormalization group methods, as done
instead in [44].

2The normalization has be chosen so that the couplings are
normalized by 1=4 and not 1=4!, as is usually done in tensor
models.
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where

δab ¼
Y3
i¼1

δaibi ;

δtabcd ¼ δa1b1δc1d1δa2c2δb2d2δa3d3δb3c3 ;

δp;iab;cd ¼ δaiciδbidi
Y
j≠i

δajbjδcjdj ; δdab;cd ¼ δabδcd: ð5Þ

The labels t, p, and d stand for tetrahedron, pillow, and
double trace, respectively. The first two names describe the
graphical representation of the corresponding invariants
[26] (see Fig. 1), while the third one, which is the square of
the unique quadratic invariant, is named in analogy to
matrix models [22].
Substituting (4) in Eq. (2) and truncating at one loop, we

obtain the beta functions:

βt ¼ −ϵg̃þ 4½6g̃g̃d þ 2ðg̃p;1g̃p;2 þ g̃p;1g̃p;3 þ g̃p;2g̃p;3Þ
þ g̃ðð1þN1Þg̃p;1 þ ð1þN2Þg̃p;2 þ ð1þN3Þg̃p;3Þ�;

βp;i ¼ −ϵg̃p;i þ 2½12g̃dg̃p;i þ 4g̃ðg̃p;iþ1 þ g̃p;iþ2Þ
þ 4g̃p;iþ1g̃p;iþ2 þ ð2þNiÞg̃2
þ 2g̃p;iðð1þNiþ1Þg̃p;iþ1 þ ð1þNiþ2Þg̃p;iþ2

þ ðNiþ1 þNiþ2Þg̃Þ þ g̃2p;ið4þNi þNiþ1Niþ2Þ�;
βd ¼ −ϵg̃d þ 2½g̃2dð8þN1N2N3Þ þ 3ðg̃2p;1 þ g̃2p;2 þ g̃2p;3Þ

þ 2g̃ðg̃p;1 þ g̃p;2 þ g̃p;3Þ þ 2g̃dg̃ðN1 þN2 þN3Þ
þ 2ðN1g̃p;2g̃p;3 þN2g̃p;1g̃p;3 þN3g̃p;1g̃p;2Þ
þ 2g̃dðð1þN1 þN2N3Þg̃p;1 þ ð1þN2 þN1N3Þg̃p;2
þ ð1þN3 þN1N2Þg̃p;3Þ�; ð6Þ

where i ∈ f1; 2; 3g mod 3, i.e., gp;4 ¼ gp;1 and gp;5 ¼ gp;2.
The two-loop terms can be obtained by computer algebra
but they are too long to write here and we will only use
them in Sec. II F. In Appendix we write the system (6) as a
gradient flow.
Notice that the model with only a double-trace inter-

action has an enhanced symmetry, being invariant under
field transformations in the fundamental representation of
OðN1N2N3Þ; that is, it is the usual OðN Þ model in

disguise. Similarly, if all the couplings except the double
trace and one pillow, e.g., g̃p;1, are zero, then the model has
the symmetry group OðN1Þ ×OðN2N3Þ, and it is a
bifundamental model in disguise. Such symmetry enhance-
ments are reflected in the fact that the couplings set to zero
are not turned on by the renormalization group flow.
Keeping instead at least two pillows, or just the tetrahedron,
will break the symmetry back toOðN1Þ ×OðN2Þ ×OðN3Þ,
and the flow will generate the remaining couplings. The
tetrahedron is, in fact, the single coupling which is most
characteristic of the full symmetry group, being capable
alone to generate all the others by the RG flow. Moreover, it
is the coupling that in the OðNÞ3 model leads to a melonic
dominance at large N. Therefore, in most of the following
wewill only be interested in fixed points with nonvanishing
tetrahedron coupling, g̃ ≠ 0.
a. Remark. Let us consider the case of real coupling

constants. The tetrahedron interaction is not positive
definite; thus the most general potential can be unstable.
However, for particular choices of (real) couplings, the
pillow and double trace can dominate over the negative
direction of the tetrahedron, thus making the whole
interaction positive. In particular, as shown in [4] (see also
[45]), based on the gradient flow representation [46], at
order ϵ any nontrivial fixed point corresponds to a positive
interaction. Moreover, we also know that an unstable
interaction cannot flow to a stable one [10]. As a conse-
quence, any nontrivial fixed point with g̃ ≠ 0 must also
have at least some of the other couplings nonzero, and so
must also any initial condition that flows to such a
fixed point.

C. Numerical solutions for small Ni

Even at the one-loop level it is hard to solve the beta
functions (6) for generic values of Ni. In this subsection we
solve numerically for fixed points at low Ni. In the
following, we only search for fixed points at one loop
with g̃ ≠ 0 and real critical couplings.
We define the critical coupling vector by

g⃗⋆ ≡ ðg̃⋆; g̃⋆p;1; g̃⋆p;2; g̃⋆p;3; g̃⋆dÞ: ð7Þ
The stability matrix of the fixed point is given by

Mab ¼
∂βaðg⃗Þ
∂gb

����
g⃗⋆
; ð8Þ

where a; b ¼ ft; p1; p2; p3; dg. We arrange the eigenval-
ues of this matrix in a vector denoted by ω⃗. If the eigenvalue
ωa is positive, then the fixed point is stable in the
corresponding eigendirection.
We have numerically checked that there is no real fixed

point with g̃ ≠ 0 that is stable in all five directions in the
range 2 ≤ Ni ≤ 50. We explicitly show some exam-
ples below.

FIG. 1. Graphical representation of the quartic OðN1Þ ×
OðN2Þ ×OðN3Þ invariants: each vertex represents a tensor field,
and each edge represents a Kronecker delta contracting two
indices, appropriately color coded to distinguish the three indices
of a tensor. From left to right: the tetrahedron, the pillow, and the
double trace (there are three pillow contractions, distinguished by
the color of the vertical edge).
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1. N1 = 2, N2 = 2

By fixing N1 ¼ N2 ¼ 2, there is no fixed point in the
range of 2 ≤ N3 ≤ 21. At N3 ¼ 22, we find four fixed
points:

g⃗⋆ ¼
�

ϵ

1200
;−

ϵ

600
;−

ϵ

600
;
ϵ

400
;
ϵ

800

�
;

ω⃗ ¼ ð−6.72ϵ; 6ϵ;−4.8ϵ; 0.48ϵ;−0.48ϵÞ;

g⃗⋆ ¼
�

7ϵ

8304
;−

7ϵ

4152
;−

7ϵ

4152
;
7ϵ

2768
;
59ϵ

49824

�
;

ω⃗ ¼ ð−6.79ϵ; 6ϵ;−4.85ϵ; 0.485ϵ;−0.485ϵÞ;

g⃗⋆ ¼
�

7ϵ

6912
;−

35ϵ

20736
;−

35ϵ

20736
;
49ϵ

20736
;
157ϵ

124416

�
;

ω⃗ ¼ ð−6.70ϵ; 6ϵ;−4.76ϵ; 0.486ϵ;−0.486ϵÞ;

g⃗⋆ ¼
�

ϵ

976
;−

5ϵ

2928
;−

5ϵ

2928
;
7ϵ

2928
;
7ϵ

5856

�
;

ω⃗ ¼ ð−6.78ϵ; 6ϵ;−4.82ϵ;−0.491ϵ;−0.491ϵÞ: ð9Þ

There is no fixed point that is stable in all five directions. In
the range of 23 ≤ N3 ≤ 33, we find similar four types of
fixed points. At N3 ¼ 34, we find six fixed points:

g⃗⋆ ¼
�

ϵ

1008
;−

ϵ

1008
; 0;

ϵ

756
;

ϵ

6048

�
;

ω⃗ ¼ ð6ϵ; 5.58ϵ;−4ϵ;−3.86ϵ; 0Þ;

g⃗⋆ ¼
�
11ð3445 ∓ 203

ffiffiffiffiffi
97

p Þϵ
62966016

;−
11ð−6479� ffiffiffiffiffi

97
p Þϵ

62966016
;

−
11ð−6479� ffiffiffiffiffi

97
p Þϵ

62966016
;
11ð3171� 67

ffiffiffiffiffi
97

p Þϵ
20988672

;

ð314123 ∓ 6325
ffiffiffiffiffi
97

p Þϵ
377796096

�
;

ω⃗ ¼ ð−6.69ϵ; 6ϵ;−5.39ϵ; 3.21ϵ;−3.21ϵÞ ðupperÞ;
ω⃗ ¼ ð−6.30ϵ; 6ϵ;−5.00ϵ; 3.21ϵ;−3.21ϵÞ ðlowerÞ;

g⃗⋆ ¼
�ð161 − 10

ffiffiffiffiffi
97

p Þϵ
259536

;
ð−589þ 3

ffiffiffiffiffi
97

p Þϵ
519072

;

×
ð−589þ 3

ffiffiffiffiffi
97

p Þϵ
519072

;
ð428þ 7

ffiffiffiffiffi
97

p Þϵ
259536

;

ð428þ 7
ffiffiffiffiffi
97

p Þϵ
519072

�
;

ω⃗ ¼ ð−6.37ϵ; 6ϵ;−5.13ϵ; 3.06ϵ;−3.06ϵÞ ðupperÞ;
ω⃗ ¼ ð−6.63ϵ; 6ϵ;−5.25ϵ; 3.38ϵ;−3.38ϵÞ ðlowerÞ: ð10Þ

The other solution is given by the first solution with
exchanging ḡ⋆p;1 and ḡ⋆p;2 with the same eigenvalue vector.
There is no fixed point that is stable in all five directions.

2. N1 = 2, N2 = 3

By fixing N1 ¼ 2 and N2 ¼ 3, there is no fixed point in
the range of 2 ≤ N3 ≤ 45. At N3 ¼ 46, we find two fixed
points:

g⃗⋆ ¼
�
17ð126955� 3

ffiffiffiffiffiffiffiffiffiffi
1345

p Þϵ
2844275280

; 0;

−
17ð126955� 3

ffiffiffiffiffiffiffiffiffiffi
1345

p Þϵ
2844275280

;
ð126955� 3

ffiffiffiffiffiffiffiffiffiffi
1345

p Þϵ
129285240

;

ð243160 ∓ 461
ffiffiffiffiffiffiffiffiffiffi
1345

p Þϵ
2844275280

�
;

ω⃗ ¼ ð6ϵ; 5.67ϵ;−4.27ϵ;−4.17ϵ;−0.24ϵÞ ðupperÞ;
ω⃗ ¼ ð6ϵ; 5.66ϵ;−4.26ϵ;−4.16ϵ; 0.24ϵÞ ðlowerÞ: ð11Þ

There is no fixed point that is stable in all five directions. At
least up to N3 ¼ 1000, we find the same type of two fixed
points, and they are unstable in some of the directions.

D. Vectorlike limit

We now consider the limit N1 → ∞ while keeping N2

and N3 fixed. We define the new couplings,

g̃S ¼ g̃þ g̃p;1;

g̃D ¼ g̃ − g̃p;1;

g̃2 ¼ g̃d þ
g̃p;2
N2

þ g̃p;3
N3

; ð12Þ

which correspond to orthogonal operators at large N1, and
thus their beta functions will decouple. We furthermore
rescale the couplings in order to obtain a large-N1 expan-
sion:

g̃S ¼
ḡS
N1

; g̃D ¼ ḡD
N1

; g̃p;i ¼
ḡp;i
N1

; g̃2 ¼
ḡ2
N1

:

ð13Þ

The three-loop terms are suppressed in 1=N1, and at
leading order we obtain the following beta functions:

βS ¼ −ϵḡS þ 2ḡ2S;

βD ¼ −ϵḡD − 2ḡ2D;

βp;2 ¼ −ϵḡp;2 þ 4ḡSḡp;2 þ 2N3ḡ2p;2;

βp;3 ¼ −ϵḡp;3 þ 4ḡSḡp;3 þ 2N2ḡ2p;3;

β2 ¼ −ϵḡ2 þ 4ḡSḡ2 þ 2N2N3ḡ22: ð14Þ

We can then solve for fixed points. We obtain the
following 32 fixed points,

TRIFUNDAMENTAL QUARTIC MODEL PHYS. REV. D 103, 046018 (2021)

046018-5



ḡ⋆S ¼
�
0;
ϵ

2

	
; ḡ⋆D ¼

�
0;−

ϵ

2

	
; ḡp;2 ¼

�
0;� ϵ

2N3

	
;

ḡp;3 ¼
�
0;� ϵ

2N2

	
; ḡ2 ¼

�
0;� ϵ

2N2N3

	
; ð15Þ

where the sign in ðḡ⋆p;2; ḡ⋆p;3; ḡ⋆2Þ is the upper one when
ḡ⋆S ¼ 0 and the lower one when ḡ⋆S ¼ ϵ=2.
The stability matrix is triangular at large N1 and the

critical exponents are given by the diagonal elements,

∂βS;Dðḡ⋆Þ ¼
�−ϵ if ḡ⋆S;D ¼ 0

ϵ else
;

∂βp;i ¼
�−ϵ if ðḡ⋆S; ḡ⋆p;iÞ ¼ ð0; 0Þ or ðϵ

2
; −ϵ
2Nj

Þ
ϵ else

;

∂β2 ¼
�−ϵ if ðḡ⋆S; ḡ⋆2Þ ¼ ð0; 0Þ or ðϵ

2
; −ϵ
2N2N3

Þ
ϵ else

;

ð16Þ

with ði; jÞ ¼ fð2; 3Þ; ð3; 2Þg.
The only stable fixed point in all five directions is

ðḡ⋆S; ḡ⋆D; ḡ⋆p;2; ḡ⋆p;3; ḡ⋆2Þ ¼ ðϵ
2
;− ϵ

2
; 0; 0; 0Þ. This corresponds

to ḡp;1 ¼ ϵ
2
and ḡ⋆ ¼ ḡ⋆p;2 ¼ ḡ⋆p;3 ¼ ḡ⋆2 ¼ 0. It is a chiral

fixed point with symmetry OðN1Þ ×OðN2N3Þ, similar to
those found in bifundamental models OðNÞ ×OðMÞ.
In summary, we find no real stable fixed point with

nonzero tetrahedral coupling in the vectorlike limit.

E. Matrixlike limit

We now consider the matrixlike double-scaling large-N
limit,

N1 ¼ cN; N2 ¼ N; N → ∞; ð17Þ

withN3 fixed and c ≥ 1 fixed and of order one. We redefine
the double-trace coupling, combining it with the third
pillow coupling,

g̃dp ¼ g̃d þ
g̃p;3
N3

; ð18Þ

and we scale all the couplings with N as

g̃ ¼ ḡ
N
; g̃p;1 ¼

ḡp;1
N

; g̃p;2 ¼
ḡp;2
N

;

g̃p;3 ¼
ḡp;3
N2

; g̃dp ¼ ḡdp
N2

: ð19Þ

The barred couplings are ’t Hooft couplings, fixed in the
large-N limit, and we recognize the standard scaling of

quartic matrix invariants with a single trace (the tetrahedron
and first two pillows) or a double trace (the third pillow and
the double trace). The third pillow behaves effectively as a
double trace because the vertical line in Fig. 1 corresponds
in this case to the index whose range remains finite
(i.e., N3).
The one-loop beta functions at leading order in 1=N are

βt ¼ −ϵḡþ 4ḡðcḡp;1 þ ḡp;2Þ;
βp;1 ¼ −ϵḡp;1 þ 2cðḡ2p;1 þ ḡ2Þ

þ 4ḡp;1ðḡþ ḡp;2Þ þ 2N3ḡ2p;1;

βp;2 ¼ −ϵḡp;2 þ 2ðḡ2p;2 þ ḡ2Þ
þ 4cḡp;2ðḡþ ḡp;1Þ þ 2cN3ḡ2p;2;

βp;3 ¼ −ϵḡp;3 þ 8ḡp;1ḡp;2 þ 4ḡp;3ðcḡp;1 þ ḡp;2 þ ð1þ cÞḡÞ
þ 2cḡ2p;3 þ 8ḡðḡp;1 þ ḡp;2Þ þ 2ðN3 þ 2Þḡ2;

βdp ¼ −ϵḡdp þ 4ḡdpð1þ cÞḡþ 2cN3ḡ2dp þ
2ðN3 þ 2Þ

N3

ḡ2

þ 6ðḡ2p;1 þ ḡ2p;2Þ þ
4ð2þ N2

3Þ
N3

ḡp;1ḡp;2

þ 4ḡdpððcþ N3Þḡp;1 þ ð1þ N3cÞḡp;2Þ

þ 4ð2þ N3Þ
N3

ḡðḡp;1 þ ḡp;2Þ: ð20Þ

We find 32 fixed points. For ḡ⋆; ḡ⋆p;1; ḡ⋆p;2, we find

ḡ⋆ ¼ 0;

ðḡ⋆p;1; ḡ⋆p;2Þ ¼
�
ð0; 0Þ;

�
0;

ϵ

2ð1þ cN3Þ
�
;
�

ϵ

2ðcþ N3Þ
; 0
�
;

×

�
−ϵð1 − cN3Þ

2ðc2N3 þ cðN2
3 − 3Þ þ N3Þ

;

×
−ϵðc − N3Þ

2ðc2N3 þ cðN2
3 − 3Þ þ N3Þ

�	
; ð21Þ

or

ḡ⋆ ¼ ϵðcð1 − N3Þ � ð1 − cÞN3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 1 − cN3

p
Þ

4ð1þ cÞðcþ N3ðc − 1Þ2Þ ;

ḡ⋆p;1 ¼
ϵðcN3ðc − 1Þ þ 1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ 1 − cN3

p
Þ

4ð1þ cÞðcþ N3ðc − 1Þ2Þ ;

ḡ⋆p;2 ¼
ϵðN3ð1 − cÞ þ c2 � c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 1 − cN3

p
Þ

4ð1þ cÞðcþ N3ðc − 1Þ2Þ ; ð22Þ

or
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ḡ⋆ ¼ ϵðcð1þ cÞð1 − N3Þ � ðN3ðc2 þ 1Þ − 2cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 1 − cN3

p
Þ

4N3ðc2 þ 1Þ2 − 4cð3c2 − 2cþ 3Þ ;

ḡ⋆p;1 ¼
ϵðc3N3 − 2c2 þ cðN3 þ 1Þ − 1� ðc − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 1 − cN3

p
Þ

4N3ðc2 þ 1Þ2 − 4cð3c2 − 2cþ 3Þ ;

ḡ⋆p;2 ¼
ϵðN3 − 2cþ c2ðN3 þ 1Þ − c3 ∓ cðc − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 1 − cN3

p
Þ

4N3ðc2 þ 1Þ2 − 4cð3c2 − 2cþ 3Þ ; ð23Þ

where the signs are taken to be simultaneously either the
upper or the lower ones.
For the last two couplings, we find the following fixed

points in terms of ḡ⋆; ḡ⋆p;1; ḡ⋆p;2:

ḡ⋆p;3 ¼
1

4c
½ϵ − 4cḡ⋆p;1 − 4ḡ⋆p;2 − 4ð1þ cÞḡ⋆

� ðð4cðḡ⋆p;1 þ ḡ⋆Þ þ 4ðḡ⋆p;2 þ ḡ⋆Þ − ϵÞ2
− 16cð4ðḡ⋆ þ ḡ⋆p;1Þðḡ⋆ þ ḡ⋆p;2Þ þ ḡ⋆2ðN3 − 2ÞÞÞ1=2�;

ḡ⋆dp ¼ 1

4cN3

½ϵ − 4cðḡ⋆p;1 þ ḡ⋆ þ N3ḡ⋆p;2Þ − 4ðḡ⋆p;2 þ ḡ⋆

þ N3ḡ⋆p;1Þ � ð16c2ðḡ⋆p;1 þ ḡ⋆ þ N3ḡ⋆p;2Þ2
þ ð4ðḡ⋆p;2 þ ḡ⋆ þ N3ḡ⋆p;1Þ − ϵÞ2
− 32cðḡ⋆p;1ḡ⋆p;2 þ ḡ⋆ðḡ⋆p;1 þ ḡ⋆p;2ÞÞ
− 16cN3ðḡ⋆p;12 þ ḡ⋆p;22 þ ḡ⋆2Þ
− 8ϵcðḡ⋆p;1 þ ḡ⋆ þ N3ḡ⋆p;2ÞÞ1=2�; ð24Þ

where the signs are chosen independently. Notice that since
ḡ⋆; ḡ⋆p;1; ḡ⋆p;2 are of order ϵ, so are also ḡ⋆p;3; ḡ⋆dp.
We can now compute the critical exponents. The stability

matrix is a block triangular matrix with a first block
corresponding to the couplings ḡ⋆; ḡ⋆p;1; ḡ⋆p;2 and a second
diagonal block for the couplings ḡ⋆p;3; ḡ⋆dp.
We first compute the critical exponents for the couplings

ḡ⋆; ḡ⋆p;1; ḡ⋆p;2. For the fixed points of Eq. (21), we find the
following critical exponents:

ðωt;ω1;ω2Þ¼
�
ð−ϵ;−ϵ;−ϵÞ;

�
ϵ;
ð1−cN3Þϵ
1þcN3

;
ð1−cN3Þϵ
1þcN3

�
;

×

�
ϵ;
ðc−N3Þϵ
cþN3

;
ðc−N3Þϵ
cþN3

�
;

×

�
ϵ;−

ð1−cN3Þðc−N3Þϵ
c2N3þN3þcðN2

3−3Þ ;−ω1

�	
:

ð25Þ

For the fixed points of Eq. (22) we find

ωt ¼ ϵ;

ω1 ¼ −ω2 ¼
ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 1 − cN3

p
ð1þ cÞðcþ ðc − 1Þ2N3Þ

× ðc2ð1 − 2N3Þ − cðc − 1Þ2N3
3 þ N2

3ðc2 − cþ 1Þ2

� 2N3ðN3 − 1Þcðc − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 1 − cN3

q
Þ1=2: ð26Þ

For the fixed points of Eq. (23), we find

ωt ¼ ϵ

ω1 ¼ ω2 ¼
ϵ

ðc2 þ 1Þ2N3 − cð3c2 − 2cþ 3Þ
× ðcðN2

3 þ 2Þðc2 þ 1Þ − N3ðc4 þ 4c2 þ 1Þ

� cðN3 − 1Þð1þ cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 1 − cN3

q
Þ: ð27Þ

We are interested in finding stable fixed points with
nonzero tetrahedron coupling. The fixed points in (21) have
zero tetrahedral coupling, and the ones in Eq. (22) have
ω1 ¼ −ω2 and hence cannot be stable in all five directions.
We are left with the fixed points of Eq. (23). Because of

the square root, for these fixed points ω1;2 are real only for
N3 ≤ c2þ1

c . For these values of N3, the branch with a minus
sign always has negative or zero critical exponents. The
solutions with a plus sign are positive for c ≤ N3 ≤ c2þ1

c . If

N3 >
c2þ1
c , both solutions are complex with a positive

real part.
We thus have to look at the critical exponents for the last

two couplings in order to conclude. As the second block of
the stability matrix is diagonal, the critical exponents for
the last two couplings are just the diagonal elements,

∂βp;3ðḡ⋆Þ ¼ �
ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1 � R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 1 − cN3

pq
jðc2 þ 1Þ2N3 − cð3c2 − 2cþ 3Þj ;

∂βdpðḡ⋆Þ ¼ � ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3 � R4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 1 − cN3

pq
jðc2 þ 1Þ2N3 − cð3c2 − 2cþ 3Þj ; ð28Þ

with
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R1 ¼ c2ðc2 þ 1Þ2N4
3 − cð2c6 þ 11c4 þ 2c3 þ 11c2 þ 2ÞN3

3

þ ðc8 þ 9c6 þ 20c5 þ 24c4 þ 20c3 þ 9c2 þ 1ÞN2
3

þ cð4c6 − 22c5 − 5c4 − 54c3 − 5c2 − 22cþ 4ÞN3

− c2ð3c4 − 30c3 þ 14c2 − 30cþ 3Þ;
R2 ¼ 2cðcþ 1Þðcðc2 þ 1ÞN3

3

− ð3c4 þ c3 þ 8c2 þ cþ 3ÞN2
3

þ ð5c4 þ 16c2 þ 5ÞN3 − 6cðc2 þ 1ÞÞ;
R3 ¼ 3c2ðc2 þ 1Þ2N4

3

− 3cð2c6 þ 11c4 þ 2c3 þ 11c2 þ 2ÞN3
3

þ ðc8 þ 31c6 þ 12c5 þ 84c4 þ 12c3 þ 31c2 þ 1ÞN2
3

− c2ð14c4 þ 39c3 þ 34c2 þ 39cþ 14ÞN3

− c2ð3c4 − 30c3 þ 14c2 − 30cþ 3Þ;
R4 ¼ 6c2ðc2 þ 1Þðcþ 1ÞðN3 − 1Þ

×

�
N3 −

2c
c2 þ 1

��
N3 −

c2 þ 1

c

�
; ð29Þ

and the signs in front of ∂βp;3ðḡ⋆Þ and ∂βdpðḡ⋆Þ are the
same as in ḡ⋆p;3 and ḡ⋆dp while the signs inside the square
roots are taken to be simultaneously the same as in (23).
For c ≤ N3 ≤ c2þ1

c , ∂βp;3ðḡ⋆Þ can be real and positive,
but in this case ∂βdpðḡ⋆Þ is purely imaginary.

However, for N3 > c2þ1
c , ∂βp;3ðḡ⋆Þ and ∂βdpðḡ⋆Þ are

both complex, and we can choose the sign in front so that
the real part is positive.
Summarizing the findings of this subsection: we find no

real stable fixed point in the matrixlike large-N limit;
however, for N3 >

c2þ1
c we do find a complex infrared fixed

point stable in all five directions.

F. Tensorlike limit

We finally consider the large-N limit with

N1 ¼ N2 ¼ N3 ¼ N and N → ∞: ð30Þ

While we could, as in the previous sections, consider an
inhomogeneous scaling with ratios different from one (e.g.,
N1=N2 ¼ c), this leads to very bulky formulas, with not
much qualitative gain. We will thus stick to the homo-
geneous case.
The resulting OðNÞ3 model has been studied at leading

order in 1=N [22]. Here we analyze the fate of its fixed
points at subleading orders in 1=N. We combine the three
pillow couplings into one coupling g̃p=3 ¼ g̃p;1 ¼ g̃p;2 ¼
g̃p;1, thus endowing the model with a discrete color
permutation symmetry. After scaling the couplings as

g̃ ¼ ḡ

N3=2 ; g̃p ¼ ḡp
N2

; g̃d ¼
ḡd
N3

; ð31Þ

the two-loop beta functions up to order OðN−3=2Þ are

β̄t ¼ −ϵḡþ 2ḡ3 þ 2ḡḡp
3N

½6 − ḡp� þOðN−3
2Þ;

β̄p ¼ −ϵḡp þ 6ḡ2 þ 2ḡ2p
3

− 2ḡ2ḡp þ
8ḡ

N1=2 ½ḡp − 3ḡ2�

þ 2

9N
½5ḡ2pð3 − ḡpÞ þ 54ḡ2ð1 − 2ḡpÞ� þOðN−3

2Þ;

β̄d ¼ −ϵḡd þ
2

3
ð3ḡ2d þ 6ḡpḡd þ 2ḡ2pÞ − 2ḡ2ð5ḡd þ 4ḡpÞ

þ 4ḡ

N1=2 ½ḡp þ 3ḡd − 3ḡ2� þ 2ḡp
9N

½18ḡd þ 9ḡp − 15ḡdḡp

− 14ḡ2p − 36ḡ2� þOðN−3
2Þ: ð32Þ

At leading order we reproduce the results obtained in [22].
We remark that, while at leading order the tetrahedral

beta function has no quadratic term, such a term appears at
the first nonzero subleading order, N−1. In order to better
understand the implications of this, consider the fictitious
single-coupling beta function −ϵgþ g3 þ 2a

N g2, with a
some real constant; its fixed points are

g⋆;� ¼ −
a
N
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ a2

N2

s
: ð33Þ

If we expand at large N, we find

g⋆;� ¼ � ffiffiffi
ϵ

p
−

a
N
� a2

2
ffiffiffi
ϵ

p
N2

þOðN−3Þ; ð34Þ

and naively we seem to have a problem: the subleading
orders are nonperturbative and even blow up for ϵ → 0. We
would thus conclude that the

ffiffiffi
ϵ

p
fixed point is spurious.

However, a more careful look reveals that the behavior of
the fixed points (33) is actually governed by the combi-
nation ϵN2. For ϵN2 ≪ 1 (toward the finite N range), the
usual one-loop-driven Wilson-Fisher fixed point is
obtained, g⋆;þ ∼ Nϵ=2a. For ϵN2 ≫ 1, one gets instead
the two-loop-driven fixed points typical of the OðNÞ3
model in the melonic limit [22], ḡ⋆;� ∼� ffiffiffi

ϵ
p

. As we wish
to study the 1=N corrections to the melonic leading order,
we need to assume ϵN2 ≫ 1. To this end, we set

N ¼ Ñ=
ffiffiffi
ϵ

p
; ð35Þ

and we expand beta functions, fixed points, and critical
exponents in 1=Ñ first, and only afterwards in ϵ. The beta
functions become
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β̄t ¼ −ϵḡþ 2ḡ3 þ 2
ffiffiffi
ϵ

p
ḡḡp

3Ñ
½6 − ḡp� þOðÑ−3

2Þ;

β̄p ¼ −ϵḡp þ 6ḡ2 þ 2ḡ2p
3

− 2ḡ2ḡp þ
8ϵ1=4ḡ

Ñ1=2 ½ḡp − 3ḡ2�

þ 2
ffiffiffi
ϵ

p
9Ñ

½5ḡ2pð3 − ḡpÞ þ 54ḡ2ð1 − 2ḡpÞ� þOðÑ−3
2Þ;

β̄d ¼ −ϵḡd þ
2

3
ð3ḡ2d þ 6ḡpḡd þ 2ḡ2pÞ − 2ḡ2ð5ḡd þ 4ḡpÞ

þ 4ϵ1=4ḡ

Ñ1=2 ½ḡp þ 3ḡd − 3ḡ2� þ 2
ffiffiffi
ϵ

p
ḡp

9Ñ
½18ḡd þ 9ḡp

− 15ḡdḡp − 14ḡ2p þ 36ḡ2� þOðÑ−3
2Þ: ð36Þ

We parametrize the critical couplings as

ḡ⋆ ¼ ḡ⋆ð0Þ þ Ñ−1
2ḡ⋆ð1Þ þ Ñ−1ḡ⋆ð2Þ þOðÑ−3

2Þ;
ḡ⋆p ¼ ḡ⋆p;ð0Þ þ Ñ−1

2ḡ⋆p;ð1Þ þ Ñ−1ḡ⋆p;ð2Þ þOðÑ−3
2Þ;

ḡ⋆d ¼ ḡ⋆d;ð0Þ þ Ñ−1
2ḡ⋆d;ð1Þ þ Ñ−1ḡ⋆d;ð2Þ þOðÑ−3

2Þ: ð37Þ

Solving for the zeros of the beta functions at leading order
we find the following complex solutions3:

ḡ⋆ð0Þ ¼ �
ffiffiffi
ϵ

2

r
; ḡ⋆p;ð0Þ ¼ �3i

ffiffiffi
ϵ

2

r
þ 3ϵ

2
þOðϵ3=2Þ;

ḡ⋆d;ð0Þ ¼∓ i

ffiffiffi
ϵ

2

r
ð3�

ffiffiffi
3

p
Þ þOðϵ3=2Þ: ð38Þ

There are eight solutions by the combination of the signs in
ḡ⋆ð0Þ, ḡ⋆p;ð0Þ and the relative sign of 3 and

ffiffiffi
3

p
in ḡ⋆d;ð0Þ. The

overall sign of ḡ⋆d;ð0Þ is associated with the sign of ḡ⋆p;ð0Þ.
Next we compute the subleading OðÑ−1=2Þ corrections

to the fixed points by substituting (37), with the leading
order given by (38), into the beta functions and solving for
the OðÑ−1=2Þ order. Since β̄t does not have a OðÑ−1=2Þ
contribution, the equation for ḡ⋆ð1Þ comes only from the

leading order part, evaluated at linear order in the coupling
correction, leading to

ḡ⋆ð1Þ ¼ 0 ðfor ϵ ≠ 0Þ: ð39Þ

For the pillow and double trace we find instead nontrivial
corrections,

ḡ⋆p;ð1Þ ¼∓ 3
ffiffiffi
2

p
ϵ3=4; ḡ⋆d;ð1Þ ¼ �3

ϵ3=4ffiffiffi
2

p : ð40Þ

The choice of upper or lower sign for ḡ⋆p;ð1Þ and ḡ⋆d;ð1Þ is
synchronized with that for ḡ⋆ð0Þ. At next order, Ñ−1, we find4

ḡ⋆ð2Þ ¼ �3i
ffiffiffi
ϵ

p ∓ 9ϵ

2
ffiffiffi
2

p þOðϵ3=2Þ;

ḡ⋆p;ð2Þ ¼ 9
ffiffiffi
ϵ

p ∓ 33iϵffiffiffi
2

p þOðϵ3=2Þ;

ḡ⋆d;ð2Þ ¼ −3
ffiffiffiffiffi
3ϵ

p
ð

ffiffiffi
3

p
� 1Þ

� 3
ffiffiffi
2

p
iϵ

2
ð5� 2

ffiffiffi
3

p
Þ þOðϵ3=2Þ; ð41Þ

where the first sign in ḡ⋆ð2Þ is the upper one when the choice
of sign was the same for ḡ⋆ð0Þ and ḡ⋆p;ð0Þ, the second sign in

ḡ⋆ð2Þ is synchronized with the sign of ḡ⋆ð0Þ, the signs in ḡ⋆p;ð2Þ
and in front of the ϵ term in ḡ⋆d;ð2Þ are synchronized with the
sign of ḡ⋆p;ð0Þ, and the signs in the parentheses in ḡ⋆d;ð2Þ are
synchronized with the sign in ḡ⋆d;ð0Þ.
We then compute the critical exponents up to order Ñ−1

to find

ωt ¼ 2ϵ ∓ 6i
ffiffiffi
2

p
ϵ

Ñ
þOðϵ3=2; Ñ−3=2Þ;

ωp ¼ �2i
ffiffiffiffiffi
2ϵ

p
þ 12

ffiffiffi
ϵ

p ∓ i
ffiffiffi
2

p
ϵ

Ñ
þOðϵ3=2; Ñ−3=2Þ;

ωd ¼ �2i
ffiffiffiffiffi
6ϵ

p ∓ 12
ffiffiffi
3

p ffiffiffi
ϵ

p ∓ i
ffiffiffi
2

p
ϵ

Ñ
þOðϵ3=2; Ñ−3=2Þ:

ð42Þ

The sign of the leading order in ωp is the same one as in
ḡ⋆p;ð0Þ. The sign of the leading order in ωd is the upper one if

the choices of signs in ḡ⋆p;ð0Þ and ḡ⋆d;ð0Þ are different and the

lower one if they are the same. The sign in front of the Ñ−1

term of ωd is synchronized with ḡ⋆d;ð0Þ. The other signs for
the orders Ñ−1 are synchronized with ḡ⋆p;ð0Þ. In particular,

for the fixed points with the lower choice of sign in ḡ⋆d;ð0Þ,
the real parts of all three critical exponents are positive.
In conclusion, the complex fixed point of the short-range

OðNÞ3 model found in [22] persists at subleading orders in
1=N. Importantly, the order Ñ−1=2 corrections to the critical
exponents are zero, but the order Ñ−1 endows them with a
real part, meaning that the fixed point is infrared stable.

3There are also an additional four solutions with zero tetra-
hedral coupling:

ðḡ⋆p;ð0Þ; ḡd;ð0ÞÞ ¼
�
ð0; 0Þ;

�
0;
ϵ

2

�
;

�
3ϵ

2
;−

3ϵ

2

�
;

�
3ϵ

2
;−ϵ

�	
:

We do not study them further as we are interested in fixed points
with nonzero tetrahedral coupling.

4We checked the next two orders, and we have found that the
order Ñ−3=2 starts again at order ϵ3=4 and order Ñ−2 at order

ffiffiffi
ϵ

p
.

We do not know whether this pattern repeats to all orders.
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III. THE LONG-RANGE TRIFUNDAMENTAL
MODEL

A. The long-range multiscalar model

The long-range multiscalar model with quartic inter-
actions in dimension d is defined by the action

S½ϕ� ¼
Z

ddx

�
1

2
ϕaðxÞð−∂2ÞζϕaðxÞ þ

1

2
κabϕaðxÞϕbðxÞ

þ 1

4!
λabcdϕaðxÞϕbðxÞϕcðxÞϕdðxÞ

�
; ð43Þ

where the coupling λabcd and the mass parameter κab are
symmetric tensors. The indices take values from 1 to N .
The model is “long range” due to the nontrivial power of
the Laplacian 0 < ζ < 1. We will use the renormalization
scheme and notations of [43].
We treat the mass parameter κ as a perturbation; hence

the covariance (propagator) of the free theory is
Cabðx; yÞ ¼ δabCðx − yÞ, with

Cðx − yÞ ¼
Z

ddp
ð2πÞd e

−ipðx−yÞCðpÞ

¼ Γðd−2ζ
2
Þ

22ζπd=2ΓðζÞ
1

jx − yjd−2ζ ;

CðpÞ ¼ 1

p2ζ ¼
1

ΓðζÞ
Z

∞

0

dααζ−1e−αp
2

: ð44Þ

The canonical dimension of the field is

Δϕ ¼ d − 2ζ

2
; ð45Þ

therefore, the quartic interaction is irrelevant for ζ < d=4
leading to mean-field behavior (as rigorously proved in
[47]), while for ζ > d=4 it is relevant and a nontrivial IR
behavior is expected. The marginal case is ζ ¼ d=4. We
will be interested in the weakly relevant case

ζ ¼ dþ ϵ

4
; ð46Þ

with small ϵ. The ultraviolet dimension of the field is thus
fixed to Δϕ ¼ d−ϵ

4
.

In order to renormalize the UV divergences we use the
zero momentum Bogoliubov-Parasiuk-Hepp-Zimmermann
(BPHZ) subtraction scheme. However, since we are work-
ing with a massless propagator, an infrared regulator is
required. We introduce that by modifying the propagator as

CμðpÞ ¼
1

ðp2 þ μ2Þζ ¼
1

ΓðζÞ
Z

∞

0

dααζ−1e−αp
2−αμ2 ; ð47Þ

for some mass parameter μ > 0. Using the results of [43],
we have up to two-loop order

βabcd ¼ −ϵg̃abcd þ αDðg̃abefg̃efcd þ 2 termsÞ
þ αSðg̃abefg̃eghcg̃fghd þ 5 termsÞ; ð48Þ

βð2Þcd ¼ −ðd − 2ΔϕÞr̃cd þ αDðr̃efg̃efcdÞ
þ αSðr̃efg̃eghcg̃fghdÞ: ð49Þ

The running couplings have been rescaled as gabcd ¼
ð4πÞd=2Γðd=2Þg̃abcd and rab ¼ ð4πÞd=2Γðd=2Þr̃ab, and
the alphas are defined by

αD ¼ 1þ ϵ

2

�
ψð1Þ − ψ

�
d
2

��

þ ϵ2

8

��
ψð1Þ − ψ

�
d
2

��
2

þ ψ1ð1Þ − ψ1

�
d
2

��
;

αS ¼ 2ψ

�
d
4

�
− ψ

�
d
2

�
− ψð1Þ

þ ϵ

4

��
2ψ

�
d
4

�
− ψ

�
d
2

�
− ψð1Þ

�

×

�
3ψð1Þ − 5ψ

�
d
2

�
þ 2ψ

�
d
4

��

þ 3ψ1ð1Þ þ 4ψ1

�
d
4

�
− 7ψ1

�
d
2

�
− 4J0

�
d
4

��
; ð50Þ

with ψ i the polygamma functions of order i and J0 the sum

J0

�
d
4

�
¼ 1

Γðd
4
Þ2
X
n≥1

Γðnþ d
2
ÞΓðnþ d

4
Þ2

nðn!ÞΓðd
2
þ 2nÞ

�
2ψðnþ 1Þ − ψðnÞ

− 2ψ

�
nþ d

4

�
− ψ

�
nþ d

2

�
þ 2ψ

�
d
2
þ 2n

��
:

ð51Þ

B. Large-N expansion of the long-range
OðNÞ3 tensor model

We now set N1 ¼ N2 ¼ N3 ¼ N and study the fixed
points of the long-range OðNÞ3 model at next-to-leading
order in 1=N. We use

g̃abcd ¼ g̃ðδtabcd þ 5 termsÞ þ g̃pðδpab;cd þ 5 termsÞ
þ 2g̃dðδdabcd þ 2 termsÞ; ð52Þ

where as before each a is a triplet of indices a ¼ ða1;
a2; a3Þ. δtabcd and δdabcd are defined as in (5), and

δpab;cd ¼ 1

3

X3
i¼1

δp;iab;cd: ð53Þ
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The beta functions up to two loops are then

βt ¼ −ϵg̃þ 4αD
3

½2g̃2p þ 18g̃g̃d þ 3ðN þ 1Þg̃g̃p�

þ 4αS
9

½27ð3N þ 2Þg̃3 þ 54ðN3 þ 14Þg̃2dg̃
þ 3ðN3 þ 9N2 þ 51N þ 53Þg̃2pg̃
þ 2ð2N2 þ 13N þ 24Þg̃3p
þ 18ð2N2 þ 5N þ 14Þg̃pg̃2
þ 36g̃dð4g̃2p þ 9Ng̃2 þ 3ðN2 þ 3N þ 3Þg̃g̃pÞ�;

βp ¼ −ϵg̃p þ
2αD
3

½36g̃pg̃d þ 3ðN þ 2Þð3g̃þ 4g̃pÞg̃
þ ðN2 þ 5N þ 12Þg̃2p�

þ 4αS
9

½54ðN2 þ N þ 4Þg̃3 þ 54ðN3 þ 14Þg̃2dg̃p
þ 18ð5N2 þ 19N þ 30Þg̃2pg̃
þ ð4N3 þ 27N2 þ 135N þ 179Þg̃3p
þ 9ðN3 þ 6N2 þ 51N þ 50Þg̃pg̃2
þ 36g̃dðð4N2 þ 8N þ 15Þg̃2p
þ3ð7N þ 8Þg̃pg̃þ 9ðN þ 2Þg̃2Þ�;

βd ¼ −ϵg̃d þ
2αD
3

½3ðN3 þ 8Þg̃2d þ 6ðN2 þ N þ 1Þg̃dg̃p
þ 18Ng̃dg̃þ ð2N þ 3Þg̃2p þ 6g̃g̃p�

þ 4αS
9

½27Ng̃3 þ 216g̃2dððN2 þ N þ 1Þg̃p þ 3Ng̃Þ
þ 18ð5N3 þ 22Þg̃3d
þ 9g̃dððN3 þ 3N2 þ 17N þ 17Þg̃2p
þ12ðN2 þ N þ 3Þg̃pg̃þ 3ðN3 þ 3N þ 2Þg̃2Þ
þ 72ðN þ 1Þg̃2pg̃þ 7ðN2 þ 3N þ 5Þg̃3p
þ 18ðN2 þ N þ 4Þg̃pg̃2�;

βð2Þ ¼ −ðd − 2ΔϕÞr̃þ 2αDr̃½3Ng̃þ ðN2 þ N þ 1Þg̃p
þ ðN3 þ 2Þg̃d�
þ 2αSr̃½36Ng̃g̃d þ 12ðN2 þ N þ 1Þg̃pðg̃d þ g̃Þ
þ 6ðN3 þ 2Þg̃2d þ 3ðN3 þ 3N þ 2Þg̃2
þ ðN3 þ 3N2 þ 9N þ 5Þg̃2p�: ð54Þ

1. Fixed points

We rescale the couplings as

g̃ ¼ ḡ

N3=2 ; g̃p ¼ ḡp
N2

; g̃d ¼
ḡ
N3

; ð55Þ

and first consider the large N limit.

In [23] it was found that at ϵ ¼ 0 the tetrahedron
coupling ḡ is exactly marginal in the large-N limit, and
it parametrizes a line of fixed points for the remaining two
couplings. The exact marginality is due to the fact that at
large N the tetrahedron receives no radiative corrections,
and moreover in the long-range case there is no wave-
function renormalization. The latter is responsible for the
2ḡ3 term in (32), which is absent in the long-range case.
However, at order N−1 the tetrahedron beta function is
nonzero also in the long-range model, and excluding
uncontrolled nonperturbative fixed points, the line of fixed
points collapses to the trivial fixed point at vanishing
couplings. Turning on ϵ does not help, as it contributes a
term −ϵḡ that, being the only term of order N0, leads to
ḡ⋆ ¼ 0 already at leading order. As we did before, it is
instructive to consider again a fictitious single-coupling
beta function to guide our understanding; the situation we
have in the long-range model, at ϵ ≠ 0 and at next-to-
leading order in 1=N, is captured by a beta function of the
form −ϵgþ g2=N. Its fixed points are the trivial one and
g⋆ ¼ Nϵ, which goes to infinity if we take N → ∞ at
fixed ϵ. Similar to what we have seen in the short-range
case, the problem is resolved by specifying how small ϵ
should be in comparison to 1=N. In particular, it is clear
that we now need Nϵ ≪ 1. In other words, we should
move the −ϵḡ term to the first nontrivial order in 1=N, by
setting

ϵ ¼ ϵ̃

N
ð56Þ

and expanding as before in 1=N first and then in ϵ̃. Notice
that the condition Nϵ ≪ 1 is compatible with the N

ffiffiffi
ϵ

p
≫

1 condition that we had in the short-range case. Of course,
the meaning of ϵ is different in the two cases, but in
practice their role is similar. We also note that a similar
tuning of ϵ and N was considered in [44] in order to find a
finite-N precursor of the large-N line of fixed points in the
OðNÞ model with the ðϕ2Þ3 interaction.
To simplify the computations we define two new

independent couplings as in [23]:

ḡ1 ¼
ḡp
3
; ḡ2 ¼ ḡd þ ḡp: ð57Þ

Parametrizing the coefficients of the ϵ expansion of the
one- and two-loop constants α as

αD ¼ 1þ αD;1ϵþ αD;2ϵ
2 þOðϵ3Þ;

αS ¼ αS;0 þ αS;1ϵþOðϵ2Þ; ð58Þ

the beta functions at two loops up to order N−1 are
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βt ¼
ḡ
N
½12ḡ1ð1þ αS;0ḡ1Þ − ϵ̃� þOðN−3

2Þ;

β1 ¼ 2ðḡ21 þ ḡ2Þ þ 4αS;0ḡ1ḡ2 þ
8ḡ

N1=2 ½ḡ1 þ αS;0ḡ2�

þ 1

N
½10ḡ21 þ 4ḡ2 þ 8αS;0ḡ1ð2ḡ21 þ 3ḡ2Þ

þ ϵ̃ð2αD;1ðḡ21 þ ḡ2Þ
þ ḡ1ð4αS;1ḡ2 − 1ÞÞ� þOðN−3

2Þ;

β2 ¼ 2ðḡ22 þ 3ḡ2Þ þ 12αS;0ḡ2ḡ2 þ
12ḡ

N1=2 ½ḡ2 þ 3αS;0ḡ2�

þ 1

N
½12ðḡ12 þ ḡ2 þ ḡ1 ḡ2Þ

þ 12αS;0ḡ1ð2ḡ12 þ 3ḡ2 ḡ1 þ8ḡ2Þ
þ ϵ̃ð2αD;1ðḡ22 þ 3ḡ2Þ
þ ḡ2ð12αS;1ḡ2 − 1ÞÞ� þOðN−3

2Þ;

βð2Þ ¼ −
d
2
r̃þ 2ð2ḡ2 þ 3αS;0ḡ2Þr̃þ

6ḡ r̃

N1=2

þ r̃
N
½6ḡ1ð1þ 3αS;0ḡ1Þ

þ ϵ̃

2
ð4αD;1ḡ2 þ 12αS;1ḡ2 − 1Þ� þOðN−3

2Þ: ð59Þ

We then parametrize the critical couplings as

ḡ⋆ ¼ ḡ⋆ð0Þ þ ḡ⋆ð1ÞN−1=2 þOðN−1Þ;
ḡ⋆1 ¼ ḡ⋆

1;ð0Þ þ ḡ⋆
1;ð1ÞN

−1=2 þOðN−1Þ;
ḡ⋆2 ¼ ḡ⋆

2;ð0Þ þ ḡ⋆
2;ð1ÞN

−1=2 þOðN−1Þ: ð60Þ

Leading order.—As we already discussed, at leading order
(i.e., N0), the tetrahedron beta function is identically zero,
and hence ḡ⋆ð0Þ is a free parameter. For the other two

couplings, the leading order fixed points, expanded to
second order in ḡ⋆ð0Þ, are

ḡ⋆
1;ð0Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡ⋆ð0Þ2

q
− ḡ⋆ð0Þ2αS;0 þOðḡ⋆ð0Þ3Þ;

ḡ⋆
2;ð0Þ ¼ �

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡ⋆ð0Þ2

q
− 3ḡ⋆ð0Þ2αS;0 þOðḡ⋆ð0Þ3Þ: ð61Þ

They correspond to the lines of fixed points found at large
N in [23]. For small coupling jḡ⋆ð0Þj, ḡ⋆1;ð0Þ and ḡ⋆

2;ð0Þ are

complex for real ḡ⋆ð0Þ and real for purely imaginary ḡ⋆ð0Þ.

Next-to-leading order.—Substituting (60) and (61) into the
beta functions (59) and solving for fixed points at order
N−1=2, we find ḡ⋆

1;ð1Þ and ḡ⋆
2;ð1Þ in terms of ḡ⋆ð0Þ and ḡ⋆ð1Þ:

ḡ⋆
1;ð1Þ ¼ −2ḡ⋆ð0Þ − 2ḡ⋆ð0Þḡ⋆ð1ÞαS;0

∓ ḡ⋆ð0Þḡ⋆ð1Þffiffiffiffiffiffiffiffiffiffiffiffi
−ḡ⋆ð0Þ2

q þOðḡ⋆ð0Þ3Þ;

ḡ⋆
2;ð1Þ ¼ −3ḡ⋆ð0Þ − 6ḡ⋆ð0Þḡ⋆ð1ÞαS;0

∓
ffiffiffi
3

p
ḡ⋆ð0Þḡ⋆ð1Þffiffiffiffiffiffiffiffiffiffiffiffi
−ḡ⋆ð0Þ2

q þOðḡ⋆ð0Þ3Þ: ð62Þ

The signs in the two sets fḡ⋆
1;ð0Þ; ḡ

⋆
1;ð1Þg and fḡ⋆

2;ð0Þ; ḡ
⋆
2;ð1Þg

are taken to be simultaneously either the upper or the lower
ones so that we still have four choices of sign.

Fixing the tetrahedron coupling.—Since the beta function
of the tetrahedron is still zero at order N−1=2, it would seem
that our lines of fixed points have become surfaces (that is,
parametrized by two free parameters ḡ⋆ð0Þ; ḡ⋆ð1Þ). On the other
hand, if we homogeneously truncate all the beta functions
at this order, there is no real justification for the expansion
of ḡ⋆ in (60); this is only justified at higher orders, as all the
ordersN−n=2 with n ≥ 2 in the tetrahedron beta function are
nontrivial. In the spirit of a 1=N expansion, as opposed to a
strict N → ∞ limit, it is more consistent to keep the same
number of nontrivial orders for each beta function regard-
less of their different scaling in N. By doing so, we will be
able to fix ḡ⋆ð0Þ and ḡ⋆ð1Þ.
Substituting (61) into the order N−1 of the tetrahedron

beta function, we fix ḡ⋆ð0Þ. Besides the trivial solution, we

find

ḡ⋆ð0Þ ¼ � 1

2αS;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 6þ ϵ̃αS;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð3þ ϵ̃αS;0Þ
p

s
: ð63Þ

The choice of signs is independent of the choices for the
previous solutions.
We are interested in purely imaginary solutions, as at

leading order this gives real critical exponents [23], and a
real spectrum of bilinear operators, with real operator
product expansion (OPE) coefficients [40]. The solutions
with a plus sign inside the square root have a nonzero real
part for all values of ϵ̃, in particular remain finite for ϵ̃ → 0,
and thus they are not to be trusted in our perturbative
expansion. The solutions with a minus sign instead are
purely imaginary for ϵ̃ < −3=αS;0 (notice this bound is
positive as αS;0 is negative), and they vanish for ϵ̃ → 0.
In this case, we can expand ḡ⋆ð0Þ for small ϵ̃, finding

ḡ⋆ð0Þ ¼ � i
12

�
ϵ̃ −

αS;0
6

ϵ̃2
�
þOðϵ̃3Þ: ð64Þ

We can also expand ḡ1;ð0Þ and ḡ2;ð0Þ in ϵ̃:
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ḡ1;ð0Þ ¼ � 1

12

�
ϵ̃ −

αS;0
12

ð2 ∓ 1Þϵ̃2
�
þOðϵ̃3Þ;

ḡ2;ð0Þ ¼ � 1

4
ffiffiffi
3

p
�
ϵ̃ −

αS;0
12

ð2 ∓ ffiffiffi
3

p
Þϵ̃2

�
þOðϵ̃3Þ; ð65Þ

where the global sign and the one inside the brackets are
taken to be simultaneously either the upper or the
lower ones.
The N−1=2 correction ḡ⋆ð1Þ is still a free parameter at this

order. In order to fix it we need to consider the N−3=2

contribution to βt, which we have not displayed in (59).
This is easily obtained from the general multiscalar results
of [43], from which we find

βt ¼
ḡ
N
½12ḡ1ð1þ αS;0ḡ1Þ − ϵ̃�

þ 48

N3=2 αS;0ḡ1ḡ
2 þOðN−2Þ: ð66Þ

Substituting the coupling 1=N expansions from (60), the
order N−3=2 of βt is

− 6ϵ̃ḡð1Þ þ 72ḡ1;ð1Þðḡð0Þ þ 2ḡ1;ð0Þḡð0ÞαS;0Þ
þ 72ḡ1;ð0Þðḡð1Þ þ 4ḡ2ð0ÞαS;0 þ ḡð1Þḡ1;ð1ÞαS;0Þ; ð67Þ

and substituting the values of ḡ⋆
1;ð0Þ and ḡ⋆

1;ð1Þ, solving for

ḡ⋆ð1Þ in terms of ḡ⋆ð0Þ we obtain

ḡ⋆ð1Þ ¼ −
24ḡ⋆ð0Þ2

ϵ̃� 24ḡ⋆ð0Þ
2ffiffiffiffiffiffiffiffiffi

−ḡ⋆ð0Þ
2

p þ 72ḡ⋆ð0Þ2αS;0
; ð68Þ

where the choice of sign is the same as in ḡ⋆
1;ð0Þ. This

expression is real for purely imaginary ḡ⋆ð0Þ.
The expression (68) comes from a two-loop truncation,

and thus it should be trusted only up to order ϵ̃2. Therefore,
we first substitute (64) in (68) and then expand at order two
in ϵ̃:

ḡ⋆ð1Þ ¼
� 1

6
ð−ϵ̃þ αS;0

2
ϵ̃2Þ þOðϵ̃3Þ for the upper sign;

1
18
ðϵ̃ − αS;0

18
ϵ̃2Þ þOðϵ̃3Þ for the lower sign:

ð69Þ

We can now also give the ϵ̃ expansion of ḡ⋆
1;ð1Þ and ḡ⋆

2;ð1Þ:

ḡ⋆
1;ð1Þ ¼

8>>>>><
>>>>>:

∓ iαS;0
36

ϵ̃2 þOðϵ̃3Þ
for the upper sign in ḡ⋆

1;ð0Þ

∓ i
9



ϵ̃ − 5αS;0

36
ϵ̃2
�
þOðϵ̃3Þ

for the lower sign in ḡ⋆
1;ð0Þ

;

ḡ⋆
2;ð1Þ ¼

8>>>>><
>>>>>:

� i
12



ð−3� 2

ffiffiffi
3

p Þϵ̃þ αS;0
2
ð3 ∓ 2

ffiffiffi
3

p Þϵ̃2
�

þOðϵ̃3Þ for the upper sign in ḡ⋆
1;ð0Þ

� i
36

�

−9 ∓ 2

ffiffiffi
3

p Þϵ̃þ αS;0
18

ð9� 2
ffiffiffi
3

p Þϵ̃2
�

þOðϵ̃3Þ for the lower sign in ḡ⋆
1;ð0Þ

;

where the choice of sign in front is the same as for ḡ⋆ð0Þ and
the choice of sign in the parentheses for ḡ⋆

2;ð1Þ is the same as

for ḡ⋆
2;ð0Þ.

2. Critical exponents

We will now compute the critical exponents. For the
quadratic coupling we obtain

∂βð2Þðḡ⋆Þ ¼ −ν−1 ¼ −
d
2
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3ḡ⋆ð0Þ2

q

∓ 1

N1=2

6ḡ⋆ð0Þḡ⋆ð1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3ḡ⋆ð0Þ2

q þOðN−1; ḡ⋆ð0Þ3Þ; ð70Þ

where the signs are taken to be simultaneously either the
upper or the lower ones and are the same as for ḡ2;ð0Þ.
The critical exponents for the quartic couplings are

given by5

∂β1ðḡ⋆Þ ¼ �
�
4

ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡ⋆ð0Þ2

q
−

1

N1=2

4ḡ⋆ð0Þḡ⋆ð1Þffiffiffiffiffiffiffiffiffiffiffiffi
−ḡ⋆ð0Þ2

q �

þOðN−1; ḡ⋆ð0Þ3Þ;

∂β2ðḡ⋆Þ ¼ �
�
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3ḡ⋆ð0Þ2

q
−

1

N1=2

12ḡ⋆ð0Þḡ⋆ð1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3ḡ⋆ð0Þ2

q �

þOðN−1; ḡ⋆ð0Þ3Þ; ð71Þ

where the signs are taken to be simultaneously either the
upper or the lower ones in the two sets fḡ1;ð0Þ; ∂β1g and
fḡ2;ð0Þ; ∂β2g. At leading order, the stable fixed points are
those with the choice of the upper sign in ḡ1;ð0Þ and ḡ2;ð0Þ.
There are two such fixed points depending on the choice of
sign in ḡ⋆ð0Þ:

5They correspond to the diagonal elements as the stability
matrix is triangular at order OðN−1=2Þ.
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ḡ⋆ ¼ � i
12

�
ϵ̃ −

αS;0
6

ϵ̃2
�

þ 1

6N1=2

�
ϵ̃ −

αS;0
3

ϵ̃2
�
þOðϵ̃3; N−1Þ;

ḡ⋆1 ¼ 1

12

�
ϵ̃ −

αS;0
12

ϵ̃2
�

∓ iαS;0
36N1=2 ϵ̃

2 þOðϵ̃3; N−1Þ;

ḡ⋆2 ¼ 1

4
ffiffiffi
3

p
�
ϵ̃ −

αS;0
12

ð2 −
ffiffiffi
3

p
Þϵ̃2

�

� ið−3þ 2
ffiffiffi
3

p Þ
12N1=2

�
ϵ̃ −

αS;0
2

ϵ̃2
�
þOðϵ̃3; N−1Þ; ð72Þ

where the signs in all three couplings are taken to be simulta-
neously either the upper or the lower ones. For these two fixed
points, the ϵ̃ expansions of the critical couplings are then

∂βð2Þðḡ⋆Þ ¼ −ν−1

¼ −
d
2
þ 1

2
ffiffiffi
3

p
�
ϵ̃ −

αS;0
6

ϵ̃2
�

� iffiffiffi
3

p
N1=2

�
ϵ̃ −

αS;0
2

ϵ̃2
�
þOðϵ̃3; N−1Þ;

∂β1ðḡ⋆Þ ¼ 1

3

�
ϵ̃ −

αS;0
6

ϵ̃2
�

� 2i

3N1=2

�
ϵ̃ −

αS;0
2

ϵ̃2
�
þOðϵ̃3; N−1Þ;

∂β2ðḡ⋆Þ ¼ 1ffiffiffi
3

p
�
ϵ̃ −

αS;0
6

ϵ̃2
�

� 2iffiffiffi
3

p
N1=2

�
ϵ̃ −

αS;0
2

ϵ̃2
�
þOðϵ̃3; N−1Þ; ð73Þ

where the choice of sign is the same as in ḡ⋆ð0Þ.
In order to compute the critical exponent of the tetrahe-

dron coupling, we need to compute the eigenvalues of the
stability matrix as it is not triangular beyond order N−1=2.
However, up to orderN−3=2, it depends only on the values of
the critical couplings at leading and next-to-leading order.
For the fixed point in (72), we have at second order in ϵ̃

ωt ¼
ϵ̃

N

�
1þ αS;0

6
ϵ̃

�
þ 2iαS;0ϵ̃2

3N3=2 þOðϵ̃3; N−2Þ: ð74Þ

In summary, while at leading order an imaginary
tetrahedron coupling leads to four stable fixed lines of
real pillow and double-trace couplings, going up to next-to-
leading nontrivial order for all the beta functions fixes all
the couplings to eight isolated fixed points, having the same
reality properties as before at leading order, but the opposite
one at subleading order (i.e., real tetrahedron and purely
imaginary pillow and double-trace corrections). As with the
fixed point values, we have for the critical exponents that
what was real at leading order gets an imaginary part at
subleading order.

IV. CONCLUSIONS

We have studied a trifundamental model, that is, a
multiscalar model invariant under OðN1Þ ×OðN2Þ ×
OðN3Þ transformations, of which the scalar fields form a
trifundamental representation. We have considered ver-
sions of the model with either a short- or a long-range
Gaussian part, and we have studied the renormalization
group beta functions at finite or large Ni, in various scaling
limits. Our main conclusion is that in general we find no
stable real fixed points with nonzero tetrahedral coupling.
In order to find genuine infrared-stable fixed points with

nonzero tetrahedral coupling we have to consider complex
fixed points. This immediately raises the prospect that the
fixed point theories are not unitary; however, complex
CFTs have been considered in statistical physics and in the
description of walking behavior in high-energy physics
(see, for example, [48,49] and references therein).
Complex, stable (in all directions) infrared fixed points
are obtained in the homogeneous (i.e., Ni ¼ N for i ¼ 1, 2,
3) large-N limit of the long-range model. In this case the
tetrahedral coupling is exactly marginal, and when taken to
be purely imaginary all the CFT data available to us
indicates that the leading large-N CFT is real and within
unitarity bounds [23,40,41]. In this paper we have shown
that this does not survive at subleading order in 1=N: the
line of a fixed point reduces to an isolated point, and
unitarity is broken by the 1=N corrections that bring
imaginary parts to the critical exponents. A similar complex
CFT, providing subleading corrections to that of [22], is
found also for the short-range model, but in that case it is
the real part of the critical exponents that is suppressed in
1=N, rather than the imaginary part; therefore, while the
two models have probably qualitatively similar behavior at
finite N, it is only in the long-range case that a real and
unitary CFT arises in the strict large-N limit.
A subtle aspect of our analysis of subleading corrections

in 1=N to the fixed points of the OðNÞ3 model is the
identification of an appropriate hierarchy between the two
small parameters at play, i.e., 1=N and ϵ, the latter being
defined as the deviation from the critical dimension in the
short-range case, i.e., ϵ ¼ 4 − d, or as the deviation from
the critical scaling of the propagator in the long-range case,
i.e., CðpÞ ¼ 1=pðdþϵÞ=2. In the former case it turns out that
we need ϵN2 ≫ 1, while in the latter we need ϵN ≪ 1. The
reason for that is the form of the tetrahedron beta functions,
which we can roughly understand in the following way.
Slightly simplifying things (in reality we have a coupled
system of equations), at two-loop order the tetrahedron beta
function has the form βSRðgÞ ¼ −ϵgþ bg3 þ a

N g
2 þ

OðN−3=2Þ in the short-range case, and βLRðgÞ ¼ −ϵgþ
a
N g

2 þOðN−3=2Þ in the long-range case, for some constants
a and b of order one. The conditions on ϵ and N then arise
from demanding that the fixed point from the leading order
in 1=N remains dominant in the beta function. As a
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perturbative solution of βSRðg⋆Þ ¼ 0 at leading order
implies g⋆ ∼

ffiffiffi
ϵ

p
, we see that the first two terms in

βSRðgÞ are of order ϵ3=2, while the third is of order ϵ=N;
hence we must have

ffiffiffi
ϵ

p
≫ 1=N. For the long-range case, a

nontrivial perturbative solution of βLRðg⋆Þ ¼ 0 at leading
order is instead not possible for ϵ > 0, and we must require
ϵ ≪ 1=N, so that the first two terms in βLRðgÞ lead to a
Wilson-Fisher type solution, with ϵN being the effective
small parameter. A similar tuning of ϵ and N as in our long-
range model was also considered in [44] in order to find a
finite-N precursor of the line of fixed points that appear in
the short-range OðNÞ model with the ðϕ2Þ3 interaction at
large-N, for ϵ ¼ 0.
It would be interesting to understand if the nonexistence

of stable real fixed points with nonvanishing tetrahedral
coupling could be proved in general terms, for example, by
using group-theoretical arguments, as in [5,6], or by
exploiting the gradient flow representation of the renorm-
alization group equations, along the lines of other proofs,
for example, as in [4,10,45]. We have tried the second
route, but failed so far in this task; nonetheless, we report in
Appendix some relevant formulas for the gradient flow of
the trifundamental model, hoping that they could serve as
reference or inspiration for a future proof.
More generally, it would also be interesting to under-

stand whether any stable real fixed points exist with rank-p
tensor symmetry, such as OðNÞp, for higher p. We notice
also that real fixed points have been found in short-range
models with p ¼ 3, but with sextic interaction, for small
ϵ ¼ 3 − d [32,35]; it would be interesting to understand
whether they also become complex at subleading orders, or
whether sextic interactions have some fundamental differ-
ence with respect to quartic ones.
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APPENDIX: GRADIENT FLOW

Wewish to write the beta functions (6) as a gradient flow,

βa ¼ Tab
∂U
∂gb ðA1Þ

with U a potential and Tab a nontrivial symmetric matrix,
where the indices a, b run over the five couplings t, pi, d.
For the general system (2), the one-loop potential is

UMS ¼ −
ϵ

2
g̃ijklg̃ijkl þ g̃ijklg̃klmng̃mnij; ðA2Þ

and we recall that the metric in the general case is trivial at
this order (in fact, it is trivial up to two loops [46]).
Substituting (4) we find the one-loop potential for the short-
range trifundamental model:

U ¼ −3ϵN1N2N3½ðN1N2N3 þ N1 þ N2 þ N3 þ 2Þg̃2 þ 2ð2þ N1N2N3Þg̃2d þ 4ðN1 þ N2 þ N3Þg̃g̃d

þ
X3
i¼1

ððð1þ NiÞNiþ1Niþ2 þ Ni þ 3Þg̃2p;i þ 2g̃ð2þ ð1þ NiÞðNiþ1 þ Niþ2ÞÞg̃p;i þ 2ðð1þ NiÞð1þ Niþ1Þ

þ 2Niþ2Þg̃p;ig̃p;iþ1 þ 4g̃dð1þ Ni þ Niþ1Niþ2Þg̃p;iÞ� þ 4N1N2N3

�
2ðN1N2N3 þ 8ÞðN1N2N3 þ 2Þg̃3d þ 12g̃3

þ
X3
i¼1

ð6Ni þ 6NiNiþ1 þ N2
i ðNiþ1 þ Niþ2ÞÞg̃3 þ 6

�
3N1N2N3 þ

X3
i¼1

ðN2
i þ 2NiNiþ1 þ 3NiÞ þ 6

�

× ðg̃2g̃d þ 2g̃p;1g̃p;2g̃p;3Þ þ 6ðN1 þ N2 þ N3ÞðN1N2N3 þ 8Þg̃2dg̃þ
X3
i¼1

3g̃p;i

�
ðN2

iþ1N
2
iþ2ð1þ NiÞ

þ Niþ1Niþ2ðN2
i þ 6Ni þ 13Þ þ N2

i þ 13Ni þ 18Þ g̃
2
p;i

3
þ ððN2

iþ1 þ N2
iþ2Þð1þ NiÞ þ Niþ1Niþ2ðN2

i þ 3Ni þ 6Þ
þ ðNiþ1 þ Niþ2Þð3Ni þ 7Þ þ N2

i þ 9Ni þ 10Þg̃2 þ 2ð8þ N1N2N3Þð1þ Ni þ Niþ1Niþ2Þg̃2d
þ ððNi þ 1ÞðNiþ1Niþ2ðNiþ1 þ Niþ2Þ þ 8Þ þ ðNiþ1 þ Niþ2ÞðNiðNi þ 5Þ þ 10Þ þ 2Niþ1Niþ2Þg̃g̃p;i
þ 2ðN2

i þ 5Nið1þ Niþ1Niþ2Þ þ Niþ1Niþ2ð5þ Niþ1Niþ2Þ þ 10Þg̃dg̃p;i
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þ
X3

j;k¼1;j≠k≠i
ð2NjN2

k þ ð1þ NjÞðN2
i þ 5Ni þ 10Þ þ Nkð1þ NiÞðN2

j þ Nj þ 8ÞÞg̃p;jg̃p;i

þ 2ð2N2
iþ2 þ 2Niþ2ð2NiNiþ1 þ 3ðNi þ Niþ1Þ þ 2Þ þ N2

i þ N2
iþ1 þ ðNi þ Niþ1ÞðNiNiþ1 þ 7Þ

þ 2NiNiþ1 þ 12Þg̃g̃p;iþ1 þ 4ðNiþ2ðN2
i þ N2

iþ1 þ Ni þ Niþ1 þ 6Þ:þ 4ð1þ NiÞð1þ Niþ1Þ

þ N2
iþ2NiNiþ1Þg̃dg̃p;iþ1 þ 4ðN2

i þ NiðNiþ1Niþ2 þ 4ðNiþ1 þ Niþ2Þ þ 1Þ þ ðNiþ1 þ Niþ2ÞðNiþ1Niþ2 þ 4Þ þ 6Þg̃g̃d
��

;

ðA3Þ

where i ∈ f1; 2; 3g and N4 ¼ N1, N5 ¼ N2.
The matrix T can now be found following [46], by using

the following expression for its inverse:

ðT−1Þab ¼
∂g̃abcd
∂ga

∂g̃abcd
∂gb : ðA4Þ

Defining ð6N1N2N3Þηab ¼ ðT−1Þab, we have

ηtt ¼ 2þ N1 þ N2 þ N3 þ N1N2N3;

ηpipi
¼ 2þ ð1þ NiÞð1þ Niþ1Niþ2Þ;

ηdd ¼ 4þ 2N1N2N3;

ηtpi
¼ ηpit ¼ 2þ ð1þ NiÞðNiþ1 þ Niþ2Þ;

ηtd ¼ ηdt ¼ 2ðN1 þ N2 þ N3Þ;
ηpipj

¼ 1þ Ni þ Nj þ NiNj þ 2Nk;

with i ≠ j ≠ k ∈ f1; 2; 3g;
ηpid ¼ ηdpi

¼ 2ð1þ Ni þ Niþ1Niþ2Þ: ðA5Þ

The long-range beta functions (48) or (59) differ from the
short-range ones only by the presence of the αD and αS
coefficients and the absence of the terms coming from the
wave-function renormalization. In particular, they are equal
at one loop.

In the homogeneous large-N limit N1 ¼ N2 ¼ N3 ¼ N
we switch to rescaled variables, as in (31). Accordingly, the
system becomes

6N3η̄abβ̄b ¼
∂U
∂ḡa ; η̄ab ¼

∂gc
∂ḡa ηcd

∂gd
∂ḡb : ðA6Þ

In order to obtain a finite limit, it turns out one needs to
first multiply both sides of (A6) by the diagonal matrix
ρ ¼ diagðN−3; N−2; N−2; N−2; 1Þ to obtain

lim
N→∞

N3ρη̄ ¼

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 2 2 2 2

1
CCCCCCA
: ðA7Þ

The mixing elements between pillows and double trace are
explained by the diagonalization of the system at large N
in Eq. (57).
Notice that U by itself does not have a finite limit for

N → ∞ even when written in terms of ḡa couplings; it is
only ρab∂U=∂ḡb that does. However, there is no need to
rescale by ρ if we write the system as in (A1).
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