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We propose a gravity dual description of the path integral optimization in conformal field theories
[Caputa et al., Phys. Rev. Lett. 119, 071602 (2017)], using Hartle-Hawking wave functions in anti–de Sitter
spacetime. We show that the maximization of the Hartle-Hawking wave function is equivalent to the path
integral optimization procedure. Namely, the variation of the wave function leads to a constraint, equivalent
to the Neumann boundary condition on a bulk slice, whose classical solutions reproduce metrics from the
path integral optimization in conformal field theories. After taking the boundary limit of the semiclassical
Hartle-Hawking wave function, we reproduce the path integral complexity action in two dimensions, as
well as its higher- and lower-dimensional generalizations. We also discuss an emergence of holographic
time from conformal field theory path integrals.
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I. INTRODUCTION

The AdS/CFT correspondence [1] provides us with a
surprising relation between gravity and quantum many-
body systems. Nevertheless, the fundamental mechanism
of how it works sowell is still not understood. This problem
is one of the main obstacles when we try to extend the
holographic duality to more general spacetimes, including
realistic universe. One interesting idea, pioneered in [2],
toward uncovering the basic mechanism behind AdS/CFT
is to relate the emergent anti–de Sitter (AdS) geometries
to tensor networks such as Multi-scale Entanglement
Renormalization Ansatz [3–5] or more general ones [6–8],
realizing emergence of spacetimes from quantum entan-
glement [9]. In particular, this tensor network interpretation
beautifully explains the geometric calculation of entangle-
ment entropy in AdS/CFT [10,11]. Refer to, e.g., [12–19]
for further developments in this direction. However, these
tensor network approaches have been limited to toy models
on discrete lattices and precise relations between them and
genuine AdS/CFT is not clear. See also recent attempts
directly from AdS/CFT [20–23].

On the other hand, the path integral optimization [24,25],
that we will now review, provides a useful framework that
describes tensor networks for conformal field theories
(CFTs) in terms of path integrals. We take the Euclidean
R2 coordinates ðτ; xÞ and denote all fields in the CFT by
Φðτ; xÞ. The ground state wave functional ΨCFT½ΦðxÞ� at
the time slice τ ¼ 0 is defined by the path integral

ΨCFT½ΦðxÞ�

¼
Z Y

−∞<τ≤0;x
½DΦ̃ðτ; xÞ�e−SCFT½Φ̃�δðΦ̃ð0; xÞ −ΦðxÞÞ; ð1Þ

where SCFT is the action of the 2D CFT.
In the path integral optimization, we deform the metric of

our 2D space on which we perform the path integral as
follows:

ds2 ¼ e2ϕðτ;xÞðdτ2 þ dx2Þ: ð2Þ

We take e2ϕðτ;xÞ ¼ 1=ϵ2 for the flat metric of R2 used in the
original path integral that computes ΨCFT½ΦðxÞ�, where ϵ is
a UV regularization scale (i.e., lattice constant) when we
discretize path integrals of quantum fields into those on a
lattice. The curved space metric is interpreted as a choice of
discretization such that there is a single lattice site per a
unit area.
Let us write the wave functional obtained from the path

integral on the curved space (2) as Ψϕ
CFT½ΦðxÞ�. If we

impose the boundary condition
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e2ϕð0;xÞ ¼ 1

ϵ2
≡ e2ϕ0 ; ð3Þ

this wave functional is proportional to the one
ΨCFT½ΦðxÞ�ð¼ Ψϕ0

CFT½ΦðxÞ�Þ for the flat space R2 since
the CFT is invariant up to the Weyl anomaly

Ψϕ
CFT½ΦðxÞ� ¼ eSL½ϕ�−SL½ϕ0� · Ψϕ0

CFT½ΦðxÞ�: ð4Þ

Here SL is the Liouville action [26]

SL½ϕ� ¼
c

24π

Z
∞

−∞
dx

Z
0

−∞
dτ½ð∂xϕÞ2 þ ð∂τϕÞ2 þ μe2ϕ�;

ð5Þ

and c is the central charge of the 2D CFT. The assumption
of the discretization, that one unit area of the metric (2) has
a single lattice site, fixes the values of μ to μ ¼ 1 [24].
Nevertheless, it is useful to keep this cosmological constant
parameter for later purpose.
Relation (4) guarantees that the quantum state is still the

same CFT vacuum j0i for any choice of the metric (2) as
long as the boundary condition (3) is satisfied. Since the
potential term in (5) originates from the UV divergence and
we consider SL as a bare action, it should dominate over the
kinetic term when we take the UV cutoff to infinity. This is
realized when

ð∂iϕÞ2 ≪ e2ϕ ði ¼ x; τÞ: ð6Þ
The idea of path integral optimization is to coarse

grain the discretization as much as possible, which makes
computational costs minimal, while keeping the correct
answer to the final wave functional. This path integral
optimization is performed by minimizing the functional
SL½ϕ� [24]. This is because we want to minimize the overall
factor of the wave functional, which is proportional to eSL½ϕ�
as in (4). Even though the overall factor does not affect
physical quantities in quantum mechanics, this estimates
the number of repetitions of numerical integrals when we
discretize the required path integral into lattice calcula-
tions whose regularization is specified by the metric (2).
Therefore, the Liouville action SL (at μ ¼ 1) was identified
with a measure of computational complexity [27], called
the path integral complexity [24] (refer to [28–31] for
connections to circuit complexity). The minimization
procedure picks up the most efficient discretization of path
integral which leads to the correct vacuum state. This
method was generalized to various CFT setups in [32–34]
and used to compute entanglement of purification in 2D
CFTs [35], which was recently verified numerically in [36].
For the vacuum, the minimization is performed by

solving the Liouville equation ð∂2
x þ ∂2

τÞϕ ¼ μe2ϕ with
the boundary condition (3), leading to the solution

e2ϕðτ;xÞ ¼ 1

ð ffiffiffi
μ

p
τ − ϵÞ2 ; ð−∞< τ ≤ 0Þ: ð7Þ

The solution at μ ¼ 1 is the genuine optimized one, which
means the minimization of the original Liouville action.
The choice μ < 1 may be regarded as partially optimized
solution where the UV cutoff length scale is taken to
be larger, while the choice μ> 1 is not allowed as this
corresponds to fine graining the cutoff scale more than the
current lattice spacing.
The observation that (7) coincides with the time slice

of a three-dimensional AdS geometry (AdS3), leads to the
main implication that the path integral optimization can
explain an emergent AdS geometry purely from CFT [24].
The discretized path integral takes the form of a (nonuni-
tary) tensor network and its relation to AdS geometry can
be regarded as a path integral version of the conjectured
interpretation of AdS/CFT as tensor networks. However, a
direct connection between the path integral optimization
and AdS/CFT has remained an open problem.
Another subtle issue is that, in the solution (7), we find

ð∂iϕÞ2 and e2ϕ are of the same order, which does not satisfy
the criterion (6). This suggests that the path integral
optimization using the Liouville action is qualitative and
can have finite cutoff corrections.
Moreover, it has not been clear how to promote the

classical Liouville theory equivalent to the above path
integral optimization to a quantum Liouville theory. Indeed,
it was found in [24] that to properly reproduce the correct
gravity metric dual to a primary state with 1=c corrections,
we need to replace a classical Liouville theoretic result with
a quantum Liouville theoretic one. This is because the path
integration

R ½Dϕ�eSL½ϕ� in (4) does not make sense as it is
not bounded from below. Instead the quantum Liouville
theory is defined by the path integral

R ½Dϕ�e−SL½ϕ�. In other
words, we cannot get the minimization as a saddle point
approximation of path integrals and a derivation of path
integral optimization from AdS/CFT remained a challenge.
In this paper, we would like to resolve these important

issues by introducing a gravity dual description in terms of
a Hartle-Hawking wave function which evolves from the
AdS boundary. This corresponds to the gravity action in the

FIG. 1. The on-shell action in the colored region M provides a
gravity evaluation of the Hartle-Hawking wave function.
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shaded region in Fig. 1, assuming the Euclidean Poincaré
AdSdþ1 geometry

ds2 ¼ dz2 þ dτ2 þP
d−1
i¼1 dx

2
i

z2
: ð8Þ

II. HARTLE-HAWKING WAVE FUNCTION
WITH BOUNDARY

Consider a Hartle-Hawking wave function [37] in an
AdSdþ1, denoted by ΨHH½gab�, which is a functional of
the metric gab on a surface Q. Respecting the timelike
boundary in AdS, we impose an initial condition on the
AdS boundary Σ given by z ¼ ϵ and τ < 0. Then we
consider a path integral of Euclidean gravity from this
asymptotic boundary to the surface Q which extends from
z ¼ ϵ and τ ¼ 0 toward the bulk as depicted in Fig. 1.
Focusing on translational invariant setups for simplicity, we
assume the diagonal form metric on Q

ds2 ¼ e2ϕ
�
dw2 þ

Xd−1
i¼1

dx2i

�
; ð9Þ

where w is a function of τ. This way, we can write
the Hartle-Hawking wave function as ΨHH½ϕðw; xÞ�,
defined by

ΨHH½ϕ� ¼
Z

½Dgμν�e−IG½g�δðgabjQ − e2ϕδabÞ; ð10Þ

where IG is the dþ 1-dimensional gravity action

IG ¼ −
1

16πGN

Z
M

ffiffiffi
g

p ðR − 2ΛÞ − 1

8πGN

Z
Q∪Σ

ffiffiffi
h

p
K: ð11Þ

We implicitly imposed a boundary condition on Σ. Even
though we choose that of pure AdS dual to the CFT
vacuum, in principle, we can consider ΨHH½ϕðw; xÞ�
corresponding to excited states of a CFT (see below).
Finally, we propose to identify the metric (9) with (2) (in

d ¼ 2 case) and, after setting w ¼ τ, we argue that the
optimization procedure corresponds to the maximization of
ΨHH½ϕ� with respect to ϕ. This maximization can be
understood naturally when we consider an evaluation of
correlation function as

hO1O2…i ¼
Z

½Dϕ�jΨHH½ϕ�j2O1O2…; ð12Þ

by applying the saddle point approximation. In this way,
the maximization of a Hartle-Hawking wave function
works well even in the presence of quantum fluctuations
of ϕ, as opposed to the minimization of eSL½ϕ�. Indeed,
below, we will show that ΨHH½ϕ� is proportional to e−SL½ϕ�
up to finite cutoff corrections.

It will also be useful to add a tension term on the braneQ
as in the AdS–boundary CFT (BCFT) [38] (we assume
T < 0 below)

IT ½h� ¼
T

8πGN

Z
Q

ffiffiffi
h

p
ð13Þ

and define one parameter family of deformed Hartle-
Hawking wave functions as follows:

ΨðTÞ
HH½ϕ� ¼

Z
½Dgμν�e−IG½g�−IT ½e2ϕ�δðgabjQ − e2ϕδabÞ: ð14Þ

The standard Hartle-Hawking wave functions are obtained
by setting T ¼ 0. We can regard T as a chemical potential
or Legendre transformation for the area of Q, acting on
Hartle-Hawking wave functions. As we will see, the
tension term plays the role of the cosmological constant
term in the Liouville action. More importantly, since the

maximum of ΨðTÞ
HH½ϕ� corresponds to a family of surfacesQ

in AdS parametrized by the tension T, we will observe that
T plays the role of an emergent holographic time.

III. EVALUATION OF ΨðTÞ
HH½ϕ�

Let us evaluate ΨðTÞ
HH½ϕ� using semiclassical approxima-

tion, i.e., as an on-shell gravity action

ΨðTÞ
HH½ϕ� ≃ e−IG½g�−IT ½h�jon shell: ð15Þ

For simplicity we assume that the metric (9) has a trans-
lational invariance in the x direction. For a given choice of
such a metric e2ϕ, we find a surface Q specified by the
profile

z ¼ fðτÞ: ð16Þ

Then the semiclassical evaluation of (10) will give the value
of the Hartle-Hawking wave function.
Note that the above construction assumes that a gravity

solution which calculates the Hartle-Hawking wave func-
tion is given by a subregion in a Poincaré AdS geometry.
The metric (9) obtained in this way covers all possible
metrics on Q for d ¼ 2 with the condition (3) because all
solutions to the vacuum Einstein equation are locally
equivalent to the Poincaré AdS3. However, for d > 2, the
above construction covers only a part of the metrics on the
d-dimensional surfaceQ. Nevertheless, this ansatz includes
a class of metric we want, as we will see below. It is also
useful to note that we can extend our targets to general
metrics by directly solving the Einstein equation.
The w coordinate and the metric in (9) is found as

eϕ ¼ f−1;
dτ
dw

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _f2

q
; ð17Þ
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where _f means ∂wf. We set w ¼ 0 at τ ¼ 0 and thus we
have e−ϕ ¼ ϵ at w ¼ 0. Then, the on-shell action on M,
defined by ϵ< z < fðτÞ (see M in Fig. 1) is evaluated in
terms of the coordinate w as follows:

IG þ IT ¼ −
ðd − 1ÞVxLτ

8πGNϵ
d þ ðd − 1ÞVx

8πGN

Z
dwedϕGð _ϕÞ

−
Vx

8πGN
½eðd−1Þϕ arcsinð _ϕe−ϕÞ�0−∞; ð18Þ

where Vx and Lτ are infinite volumes in x and τ directions
and G is the following function bounded from below:

Gð _ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2ϕ _ϕ2

q
þ _ϕe−ϕ arcsinð _ϕe−ϕÞ þ T

d − 1
:

ð19Þ

When we neglect the finite cutoff corrections assuming (6),
we can approximate the on-shell action (18) as a quadratic
action of ϕ. In d ¼ 2, this expansion yields

IG þ IT ≃
c

12π

Z
dxdw

�
1

2
_ϕ2 þ ð1þ TÞe2ϕ − ϵ−2

�

−
c

12π

Z
dx

θ0
ϵ
; ð20Þ

where θ0 is the value of arcsinð _ϕe−ϕÞ at w ¼ 0. We can
cancel θ0 dependence by adding the corner term [39]
localized on Σ ∩ Q. This reproduces the “path integral
complexity” action [24] I½ϕ;ϕ0� ¼ SL½ϕ� − SL½ϕ0� with
the correct coefficient of the kinetic term (remember we
assumed ∂xϕ ¼ 0). Note that the above gravity com-
putation (18) gives the correct finite cutoff corrections to
the Liouville action and thus provides a full answer to the
path integral optimization. The same is true in higher
dimensions. Notice that, unusual from the perspective of
complexity, properties I½g1; g2� ¼ −I½g2; g1� and I½g1; g2� þ
I½g2; g3� ¼ I½g1; g3� become manifest from the gravity
action with boundaries.

IV. SOLUTIONS

Now we would like to maximize the Hartle-Hawking
wave function (15). This is performed by taking a variation
of the on-shell action (18) with respect to ϕ, leading to

e−2ϕðϕ̈þ ðd − 1Þ _ϕ2Þ − dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2ϕ _ϕ2

q ¼ d
d − 1

T: ð21Þ

By imposing the boundary condition

e2ϕjw¼0 ¼
1

ϵ2
; ð22Þ

we obtain the solution to (21) when T < 0 as follows:

e2ϕ ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T2

ðd−1Þ2
q

w − ϵ
�
2
: ð23Þ

This corresponds to the following surface in (8):

z ¼ ϵþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T2

ðd − 1Þ2

s
ðd − 1Þ

T
τ: ð24Þ

For the solution (23), the on-shell action is evaluated as

IG þ IT ¼ −
ðd − 1ÞVxLτ

8πGNϵ
d −

Vxθ0
ϵd−1

; ð25Þ

where sin θ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T2

ðd−1Þ2
q

.

Previously we observed that the maximization of the
Hartle-Hawking wave function is given by minimizing the
integral of (19), i.e., the Liouville action plus finite cutoff
corrections. On the other hand, the original path integral
optimization is proposed to be simply given by the
minimization of Liouville action. However, it is possible
that this apparent deviation arises because the regulariza-
tion scheme is different between the CFT and gravity
formation, though they are actually equivalent. Though we
do not have any definite argument for this, the fact that both
give the same profile of optimized solution may imply this
equivalence. Indeed if we set

μ ¼ 1 −
T2

ðd − 1Þ2 ; ð26Þ

then the solution (23) is equal to that from the path integral
optimization (7). Remember that changing μ from μ ¼ 0 to
μ ¼ 1 means that we gradually increase the amount of
optimization. In the gravity dual, this corresponds to
changing the tension from T ¼ −ðd − 1Þ to T ¼ 0 which
tilts the surface Q from the asymptotic boundary Σ to the
time slice τ ¼ 0.
Note also that the Eq. (21) for ϕ is equivalent to

imposing the Neumann boundary condition on Q

Kab − Khab ¼ −Thab; ð27Þ

which is imposed in the AdS/BCFT construction [38].
Let us finally stress that, in higher dimensions d > 2

there has not been a complete formulation of path integral
optimization known until now as we do not know a
higher-dimensional counterpart of the Liouville action.
Remarkably, our approach using the Hartle-Hawking wave
function gives the full answer to this question for CFTs
with gravity duals.

BORUCH, CAPUTA, and TAKAYANAGI PHYS. REV. D 103, 046017 (2021)

046017-4



V. EXCITED STATES

Furthermore, we consider a family of Euclidean
Bañados-Teitelboim-Zanelli–type metrics in three dimen-
sions

ds2 ¼ ðr2 − r2hÞdτ2 þ
dr2

r2 − r2h
þ r2dx2; ð28Þ

where r2h ¼ M − 1 can be positive or negative depending
on the mass of the excitation. We can repeat our analysis of
ΨT

HH for region 1
fðτÞ ≤ r ≤ 1

ϵ, where r ¼ 1=fðτÞ and r ¼ 1=ϵ

describe the surface Q and the asymptotic boundary Σ,
respectively. Our action has the same form as (18) for d ¼ 2
and

Gð _ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2ϕð _ϕ2 þ r2hÞ

q
þ T

þ _ϕe−ϕ arcsin

0
B@ _ϕe−ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − r2he
−2ϕ

q
1
CA: ð29Þ

Variation with respect to ϕ yields KQ ¼ 2T and is again
equivalent to the Neumann condition (27). For negative
tension, we can solve it by

e2ϕ ¼ r2h
ð1 − T2Þ sin2 ðrhðw − c1ÞÞ

: ð30Þ

This family of solutions precisely matches those in the path
integral optimization [24] via the identification (26). For
rh ¼ ð2πÞ=β and w on the strip, we reproduce our optimal
geometry for the thermofield double state dual to the time
slice of the Einstein-Rosen bridge [40]. For r2h ¼ −ð1 −MÞ
we reproduce excited states from the optimization for
primary operators in 2D CFT, i.e., conical singularity
geometries, including the finite size vacuum. In all these
examples we choose c1 such that (3) is fulfilled at each
boundary. Moreover, we can verify (either by explicit
computation or using the Wheeler-DeWitt equation) that
our solutions (7), (23), and (30) have constant negative
curvature that depends on μ [or T via (26)].
Last but not least, we can test our prescription in the

context of Jackiw-Teitelboim (JT) gravity dual to the
Sachdev-Ye-Kitaev (SYK) model [41–45]. In this case, it
turns out that it is advantageous to introduce the tension on
Q by coupling to the dilaton Φ

IJT þ ITΦ
¼ −

�Z
M

ffiffiffi
g

p
ΦðRþ 2Þ þ 2

Z
∂M

ffiffiffi
h

p
ΦK

�

−Φ0χðMÞ þ 2TΦ

Z
Q

ffiffiffi
h

p
Φ; ð31Þ

with χðMÞ being the Euler characteristic of our region M.
As an example, we can take the analogous 2D solution

ds2 ¼ ðr2 − r2hÞdτ2 þ
dr2

r2 − r2h
; Φ ¼ Φbr: ð32Þ

Defining M bounded by Σ at r ¼ r0 → ∞ and Q by
r ¼ 1=fðτÞ, with induced metric

ds2 ¼ e2ϕdw2; eϕ ¼ f−1; ð33Þ

we can derive a JT analog of (29), show that the saddle
point equation is the Neumann boundary condition and
find that its solution is given by (30) with T → TΦ.
Moreover, in the UV limit of small _ϕ our action reproduces
the effective Schwarzian description of the SYK model
with the symmetry breaking term. This confirms the
validity of our approach in all dimensions. We performed
analogous studies for higher-dimensional black holes as
well as examples of Lorentzian spacetimes and details will
be presented in [46].

VI. CONCLUSIONS AND DISCUSSION

In this paper, we showed that the path integral optimi-
zation corresponds to the maximization of the Hartle-
Hawking wave function, which is a functional of the
metric (9) on a surface Q: Maxϕ½ΨHH½ϕ��. This Hartle-
Hawking wave function with the boundary condition (22),
describes an evolution from an initial condition set by the
AdS boundary, dual to the target CFT state for which we
perform the path integral optimization. An important
requirement is that the surfaceQ ends on the AdS boundary
and this gives the boundary condition (22). Owing to this
requirement, we can calculate CFT quantities such as
correlations functions from an inner product of the
Hartle-Hawking wave functional as in (12), whose saddle
point approximation gives the maximization of ΨHH½ϕ�.
Furthermore, we generalize our correspondence to non-

trivial parameters: μ in Liouville theory and tension T in
gravity, related by (26). In the path integral optimization μ
controls the scale up towhich we perform the coarse graining
and this optimization procedure is maximized at μ ¼ 1. On
the gravity side, this scale is fixed by the tension term (13),
which plays the role of a chemical potential to the area of the
surface Q. Even though the original Hartle-Hawking wave
function does not have any time dependence, “time” emerges

by considering the T-dependent one: ΨðTÞ
HH½ϕ�, where the

tension plays a role of external field. From the CFT side, time
emerges as the scale μ of the optimization, related to T via
(26). Indeed, using the optimized solution (23) or (30),we can
write the full AdSdþ1 space as follows:

ds2 ¼ dμ2

4μ2ð1 − μÞ þ e2ϕðdw2 þ dx2i Þ: ð34Þ

Note that this foliation is a special case of the York time [47]
(refer to [48] for an interesting interpretation of York time
fromAdS/CFT). It will be a very important future direction to
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derive the genuineAdS/CFT itself by starting from the purely
CFT analysis of path integral optimization. We believe that
this emergent time observation provides us with an important
clue in this direction.
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