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We study a two-site Sachdev-Ye-Kitaev (SYK) model with complex couplings, and identify a low
temperature transition to a gapped phase characterized by a constant in temperature free energy. This
transition is observed without introducing a coupling between the two sites, and only appears after
ensemble average over the complex couplings. We propose a gravity interpretation of these results by
constructing an explicit solution of Jackiw-Teitelboim gravity with matter: a two-dimensional Euclidean
wormhole whose geometry is the double trumpet. This solution is sustained by imaginary sources for a
marginal operator, without the need of a coupling between the two boundaries. As the temperature is
decreased, there is a transition from a disconnected phase with two black holes to the connected wormhole
phase, in qualitative agreement with the SYKobservation. The expectation value of the marginal operator is
an order parameter for this transition. This illustrates in a concrete setup how a Euclidean wormhole can
arise from an average over field theory couplings.
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I. INTRODUCTION

Wormholes are geometric shortcuts that connect distant
points in spacetime. Their role in the Euclidean path
integral has been hotly debated in the literature [1–10].
In the context of holography, an important puzzle is that
geometries connecting two boundaries indicate that the
partition function of the dual field theory does not factorize
[7]. To address this problem, one could simply decide not to
include these configurations. However, it has been recently
realized that it is only after including Euclidean wormholes
that one gets results consistent with the interpretation of
black holes as ordinary quantum systems. This has been
shown explicitly in Jackiw-Teitelboim gravity [11,12], a
two-dimensional theory of gravity capturing the low-
energy dynamics of near-extreme black holes [13–15],
for the spectral form factor [16,17], for correlations
functions [18], and for the fine-grained entropy of evapo-
rating black holes [19–23]. The factorization puzzle sug-
gests that the gravitational path integral requires some form
of ensemble averaging, whose origin remains mysterious.
We refer to [24–38] for recent discussions on this issue.

This problem does not arise in Lorentzian signature
because nontraversable wormholes have horizons, which
make them consistent with the factorization of the field
theory dual. In this case, wormholes are interpreted as
coming from quantum entanglement [39,40]. It has also
been recently shown that these wormholes can be rendered
traversable by introducing a double trace coupling between
the boundaries [41,42]. In particular, Maldacena and Qi
[43], see also [44,45], have described an eternal traversable
wormhole solution in Jackiw-Teitelboim (JT) gravity with a
double trace deformation, and argued that a dual picture
consists in two copies of a Sachdev-Ye-Kitaev (SYK)
model [13,46–55] weakly coupled by a one-body operator.
The system undergoes a first order transition at finite
temperature from the wormhole to a two black holes phase
which can also be characterized by spectral statistics [56].
In this paper, we propose a Euclidean version of this

story which does not involve an explicit coupling between
the boundaries. In Sec. II, we show that the free energy of a
two-site SYK model with complex couplings, obtained by
exact diagonalization of the Hamiltonian, undergoes a low
temperature transition to a gapped phase similar to that of
the wormhole of [43], and which arises only after an
ensemble average over couplings. In Sec. III, we describe a
Euclidean wormhole solution of JT gravity plus matter,
which does not require a coupling between the two
boundaries, but is instead sustained by imaginary sources.
We compute the free energy and show that this system
undergoes a similar phase transition from a high temper-
ature phase with two black holes to a low temperature
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wormhole phase, in qualitative agreement with the SYK
behavior. We end with a discussion and conclusions
in Sec. IV.

II. SACHDEV-YE-KITAEV WITH COMPLEX
COUPLINGS

We study two uncoupled non-Hermitian SYK models
with complex couplings composed by N Majorana fer-
mions in (0þ 1) dimensions with infinite range interactions
in Fock space. One of the copies is called left (L) with
Majoranas denoted ψL. The other copy is called right (R)
with Majoranas denoted ψR. Majoranas in each copy are
governed by an SYK Hamiltonian with complex couplings
with the left Hamiltonian being the complex conjugate of
the right one:

HL ¼ 1

4!

XN=2

i;j;k;l¼1

ðJijkl þ iκMijklÞψL;iψL;jψL;kψL;l

HR ¼ 1

4!

XN=2

i;j;k;l¼1

ðJijkl − iκMijklÞψR;iψR;jψR;kψR;l; ð1Þ

where κ is a real positive number, fψA;i;ψB;jg ¼ δABδij
ðA;B ¼ L;RÞ and Jijkl;Mijkl are Gaussian distributed
random variables with zero average and standard deviationffiffiffiffiffiffiffiffiffiffiffiffi
hJ2ijkli

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM2

ijkli
q

¼ 4
ffiffiffi
6

p
=N3=2, see [49,50]. We note

that both Hamiltonians are non-Hermitian and there is no
explicit coupling between them.
The combined system Hamiltonian,

H ¼ HL þHR; ð2Þ

has a complex spectrum with complex conjugation sym-
metry: if En is an eigenvalue, its complex conjugate E�

n is
also an eigenvalue. We shall see that despite the fact that the
two copies are decoupled, the combined system after
ensemble average shares many of the properties expected
from a Euclidean wormhole.
We compute the spectrum by exact diagonalization

techniques with N ≤ 34. The spectrum for a single disorder
realization is depicted in Fig. 1 for different values of κ
which is the only free parameter of the model. For κ ¼ 1,
the eigenvalues are distributed in the complex plane with an
ellipsoid shape with axis of similar sizes. Not surprisingly,

FIG. 1. Top: complex spectrum of the combined Hamiltonian (2) for N ¼ 30 and, κ ¼ 1 (left) and κ ¼ 0.1 (right). Note the different
scale of each figure. Bottom: spectral density of the real (left) and imaginary (right) part of the eigenvalues for κ ¼ 1, N ¼ 34 after
average over 45 disorder realizations. The real part looks qualitatively similar to that of a single SYK model with real couplings. Indeed,
it agrees well (solid line) with the analytical prediction, see (24) of [53], valid everywhere except in the tail of the spectrum. The best
fitting is close to the analytical prediction for 2N Majoranas. Regarding the imaginary part, it is characterized by a peak at zero energy
followed by a suppression for small energies whose origin at present we do not understand well.
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for small κ ¼ 0.1, although the spectrum still has an
ellipsoid shape, it is mostly concentrated close to the real
axis. More information is revealed, see lower plots in
Fig. 1, in the spectral density of the real and imaginary parts
of the eigenvalues after 1000 disorder realizations. The
spectral density of the real part seems to be qualitatively
similar to that of the SYK model with real couplings. The
imaginary part shows by contrast a sharp peak at zero and a
relatively small depression around zero energy. A similar
peak is observed for other values of κ, though its strength,
as expected, diminishes as κ increases. We do not have a
clear understanding of why some eigenvalues have zero
imaginary part even in the bulk of the spectrum while there
is some level repulsion around zero. The latter is likely
related to conjugation symmetry of the spectrum that
effectively acts as a chiral symmetry inducing level
repulsion around states with zero (imaginary) energy.
Real eigenvalues are not beneficial for the establishment
of the wormhole phase because the absence of an imaginary
part prevents the cancellations necessary for its existence.
Likely, this is not important as the mentioned cancellations
only occur in the infrared limit of the spectrum where the
number of real eigenvalues, other than the ground state, is
small. An important feature of the spectrum is that the
ground state E0 is always real for any κ or strength of
disorder.
We can now proceed to the calculation of the thermo-

dynamic properties. Interestingly, because complex con-
jugation is a symmetry of the spectrum, the partition
function of the combined system ZðβÞ ¼ Tre−βH is real.
In order to reduce statistical fluctuations, we carry out an
ensemble average and compute the resulting quenched free
energy:

hFðTÞi ¼ −ThlogZðβÞi; ð3Þ

where β ¼ 1=T. Results depicted in Fig. 2 for different
values of κ show a surprising result. The free energy is
constant for sufficiently low T and there is a rather abrupt

change at a certain critical temperature that suggests the
existence of a first order transition. We note that a sharp
transition only occurs in the N → ∞ limit. Although
numerically it is hard to reach beyond a comparatively
small value of N ∼ 34, it is still important to assess the
magnitude of finite N effects in the range of available sizes.
Results depicted in the right plot of Fig. 2 show that these
effects are relatively small, consistent already with 1=N
corrections. As is expected, these perturbative finite N
effects tend to increase the free energy.
Roughly speaking, the location of the kink, which

corresponds to the critical temperature, seems to scale
approximately as κ2. A precise determination is difficult
because for small κ ≪ 1 it becomes harder to clearly see the
low temperature phase. This could be a finite N effect or
might signal the existence of a minimum value of κ, even in
the large N limit, for a gap to be formed. For large κ ≫ 1,
the free energy is initially constant but display modulations
(not shown) at intermediate temperatures. At present, we do
not have an explanation for this intermediate phase. We can
only say that it does not seem to be a statistical fluctuation
that will go away in the large N limit or if more disorder
realizations are considered.
This free energy is very similar to both the free energy of

the eternal traversable wormhole studied in [43] and to that
of the Euclidean wormhole described in the next section. A
constant free energy signals the existence of a gap in the
spectrum that separates the ground state from higher
excitations of the system. The existence of the gap can
be explained by the combined effect of a complex spec-
trum, the mentioned complex conjugation symmetry, and
ensemble average as follows.
Writing the spectrum of H as En ¼ an þ ibn where a, b

are real numbers, using the fact that if En is an eigenvalue
then E�

n is also an eigenvalue and that the ground state E0 is
real, we write the partition function for a given disorder
realization as ZðβÞ ¼ e−βE0 þ 2

P
n cosðβbnÞe−βan , assum-

ing no degeneracies. After ensemble average, the free
energy becomes

FIG. 2. Left: free energy after ensemble average of 300 disorder realizations for N ¼ 30 Majoranas and different strengths of the
imaginary part κ. Right: free energy for κ ¼ 1 and different N’s.
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hβFi ¼ −
�
log

�
e−βE0 þ 2

X
n

cosðβbnÞe−βan
��

: ð4Þ

In the high temperature limit β → 0, the argument of the
cosine function is always small and cos∼1. As a conse-
quence, the imaginary part of the spectrum becomes
effectively irrelevant and the spectrum corresponds to that
of two identical, uncoupled, systems, in this case two SYK
models with real couplings. Assuming that a gravity dual
picture still applies, this region corresponds to a phase with
two black holes.
In the opposite limit β → ∞, corresponding to low

temperatures, the cosine becomes a highly oscillating
function whose features depend on the form of the
imaginary part of the spectrum. From the results depicted
in Fig. 1, the imaginary part of the spectrum seems to vary
greatly, especially for intermediate κ, even for eigenvalues
close to the ground state. In any case, the variations of the
imaginary part are much faster than those of the real part.
The effect of the ensemble average is to effectively

suppress the contribution of eigenvalues in the lower part of
the spectrum, allowing the opening of a gap above the
ground state E0. This leads to a free energy very similar to
the one recently reported for the eternal traversable worm-
hole [43]. The main differences is that in our setup, there is
no explicit coupling between the two copies.
We now address in more detail the importance of

ensemble average in our results. In Fig. 3, we depict results
for the free energy after ensemble average with an increas-
ing number of disorder realizations. For a small number of
disorder realizations, the free energy in the low temperature
limit is far from being flat. Peaks and oscillations of
different frequencies are observed. Only after performing
the average with a comparatively large number of realiza-
tions, the free energy becomes completely flat in this limit
which is a signature of a gapped spectrum and a wormhole.

It could be argued that, for a much larger number of
Majoranas, which for N ≥ 36 is numerically expensive,
spectral average on a single realization of disorder is
enough to flatten the free energy but at present we do
not have evidence of this. Moreover, even if we could reach
a much larger value of N, we believe that if no ensemble
average is carried out, it would be necessary to perform a
spectral average in a small window to smooth out
fluctuations.
In the next section, we will see that the free energy of our

SYK setup is strikingly similar to that of a solution of JT
gravity plus matter, a Euclidean wormhole with the
geometry of the double trumpet. This led us to propose
that the low-temperature phase that we observe in our SYK
setup should be interpreted as a Euclidean wormhole.
Therefore, with the present evidence, ensemble average
in the field theory dual is a crucial ingredient to reproduce
the expected features of a Euclidean wormhole, as expected
from factorization arguments. Finally, let us comment on
the advantage of exact diagonalization techniques with
respect to the solution of Schwinger-Dyson equations in the
large N limit. There, the ensemble average is carried out
earlier in the derivation of the equations and therefore it is
not possible to determine its exact role in observing the gap
at low temperature. In contrast, exact diagonalization
displays without ambiguity the central role played by the
ensemble average.

III. THE DOUBLE TRUMPET SOLUTION

We have observed that the SYK model with complex
couplings has a low temperature phase which behaves like a
wormhole. In this section, we propose a gravitational
interpretation of this phase, as a novel Euclidean wormhole
solution of JT gravity plus matter, where the crucial
ingredient is the introduction of imaginary sources for a
marginal operator.
The theory we consider is JT gravity with a massless

scalar field, described by the action

S ¼ SJT þ Smatter; ð5Þ

where we have

SJT ¼ −
S0
2π

�
1

2

Z
d2x

ffiffiffi
g

p
Rþ

Z
dτ

ffiffiffi
h

p
K

�

−
1

2

Z
d2x

ffiffiffi
g

p
ΦðRþ 2Þ −

Z
dτ

ffiffiffi
h

p
ΦðK − 1Þ; ð6Þ

Smatter ¼
1

2

Z
d2x

ffiffiffi
g

p ð∂χÞ2: ð7Þ

JT gravity is a two-dimensional theory that captures the
low-energy dynamics of higher-dimensional near-extreme
black holes [14,57–60]. The parameter S0 is interpreted as

FIG. 3. Dependence of free energy of the Hamiltonian (2) on
the number of disorder realizations Ndis for N ¼ 30 and κ ¼ 1. A
flat free energy in the low temperature limit that signals a gapped
spectrum and a wormhole phase is only observed after ensemble
average with a large number of disorder realizations.
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the extremal entropy and is taken to be large. In the
Euclidean path integral [17], the first term in (6) gives
the topological contribution e−S0ð2gþn−2Þ to a geometry of
genus gwith n boundaries, so a large value of S0 suppresses
higher genus contributions.
The solution we will describe has the geometry of the

double trumpet: a Euclidean geometry with R ¼ −2 and
with two asymptotic boundaries. It can be described by the
metric

ds2¼ 1

cos2ρ
ðdτ2þdρ2Þ; −

π

2
≤ ρ≤

π

2
; τ∼ τþb; ð8Þ

which is just global AdS2 with periodically identified
Euclidean time. The proper length of the geodesic at
ρ ¼ 0 is called b and is the only parameter of the geometry.
In JT gravity, we also have left and right inverse temper-
atures βL and βR, defined as the periods of the respective
boundary times, see Fig. 4.
The double trumpet geometry is not an ordinary solution

of JT gravity plus matter. The crucial additional ingredient
that we use here is to turn on imaginary sources for a
massless scalar field. The motivation for this comes from
the SYK story described in the previous section. There, a
wormhole-like phase appears after adding an imaginary
part to the couplings. We can interpret that as a deformation
of the left and right Hamiltonian by an operator,

δHL ¼ −iκML; δHR ¼ iκMR;

M ≡ 1

4!

XN=2

i;j;k;l¼1

Mijklψ iψ jψkψ l: ð9Þ

We aim to investigate the effect of a qualitatively similar
deformation on the gravity side. For that purpose, we deform
the JT gravity action by a scalar operator O on each side,

δS ¼ −ik
Z
S1L

dτORðτÞ þ ik
Z
S1R

dτOLðτÞ; ð10Þ

where the source is ik on the left boundary and −ik on the
right boundary. Using the standardAdS=CFTdictionary, this

should correspond to fixing the asymptotic value of some
bulk scalar field χ.
To obtain a wormhole solution in JTwith matter, it turns

out that we should take O to have conformal dimension
Δ ¼ 1 so that χ is a massless scalar field in the bulk. This is
explained in Appendix B. The condition we impose is then

lim
ρ→π=2

χ ¼ ik; lim
ρ→−π=2

χ ¼ −ik; ð11Þ

and we will see that this makes the wormhole solution
possible. To be clear, we are not claiming that this follows
from a precise holographic duality. It must be understood as
a setup in Euclidean JT gravity plus matter, which is
inspired by the previous SYK results, and turns out to
provide a qualitatively similar picture in gravity. The
parameter k in gravity is analogous to κ in SYK but we
do not aim to establish a precise quantitative correspon-
dence between the two.

A. Equations of motion

Let us now solve the equations of motion. The scalar
field χ satisfies the massless wave equation:

□χ ¼ 0: ð12Þ

Together with condition (11) coming from the imaginary
sources, this fixes the classical solution to be

χ ¼ 2ik
π

ρ: ð13Þ

We are finding here an imaginary solution for a real scalar
field χ because of the complex sources. In Lorentzian
signature, imaginary sources are unphysical as they lead to
violations of the averaged null energy condition. Indeed,
they can be used to construct traversable wormholes in AdS
without a nonlocal coupling between the boundaries, in
contradiction with the “no-transmission principle” [61] (see
[62] for a related discussion). In Euclidean signature, these
imaginary sources do make sense. They can be defined by
analytic continuation from real sources in the thermal
partition function and can be used to study the statistical

FIG. 4. Left: double trumpet geometry corresponding to the wormhole phase. Right: hyperbolic disks corresponding to the
disconnected phase with two black holes. We observe a low temperature transition between these two phases.

EUCLIDEAN WORMHOLE IN THE SACHDEV-YE-KITAEV MODEL PHYS. REV. D 103, 046014 (2021)

046014-5



mechanics of a physical system. For example, imaginary
chemical potentials have been useful in studying the phase
diagram of gauge theories [63,64].
We now impose the equation of motion for the JT dilaton

which is

∇μ∇νΦ − gμν□Φþ gμνΦþ hTχ
μνi ¼ 0: ð14Þ

The stress tensor of χ decomposes into a classical and a
quantum piece:

hTχ
μνi ¼ Tclass

μν þ Tquantum
μν : ð15Þ

The classical piece is obtained by evaluating Tμν on the
solution (13), which leads to

Tclass
μν ¼ ∂μχ∂νχ −

1

2
gμνð∂χÞ2 ¼ 2k2

π2

�
1 0

0 −1

�
: ð16Þ

This generates negative energy in the bulk because the
solution for χ is pure imaginary. What would normally be
positive energy for real sources becomes negative energy
for imaginary sources.
In addition to this classical piece, there is also a quantum

stress tensor due to the Casimir energy of χ. Although this
piece is negligible in the regime where we will compare
with the previous field theory results, it becomes important
at higher temperature, where it destabilizes the wormhole.
The quantum stress tensor can be computed explicitly,
using the Green function method and point splitting, as
detailed in Appendix A. The result is

Tquantum
μν ¼ −

1

24π
gμν −

EðbÞ
π

�
1 0

0 −1

�
; ð17Þ

where we have introduced the quantity

EðbÞ≡X
n≥1

1

4 sinh2ðnb
2
Þ > 0; ð18Þ

whose properties are given in Appendix A.
We can now solve for the JT dilaton using (14). The

general solution is given by

Φ ¼
�
2k2

π
− EðbÞ

�
ð1þ ρ tan ρÞ þ η

2
tan ρþ 1

24π
; ð19Þ

where η is an arbitrary constant. The existence of the
wormhole requires that Φ → þ∞ at both boundaries.
Expanding this solution at the two boundaries gives

Φ ∼
ρ→þπ

2

�
k2

π
−
EðbÞ
2

þ η

2

�
1

π
2
− ρ

þ � � � ; ð20Þ

Φ ∼
ρ→þπ

2

�
k2

π
−
EðbÞ
2

−
η

2

�
1

π
2
þ ρ

þ � � � : ð21Þ

The positions of the left and right boundaries are deter-
mined by imposing the boundary condition Φ ¼ ϕ̄r=ϵ. We
should also impose the boundary conditions for the metric

ds2 ∼
ρ→π

2

du2R
ϵ2

; ds2 ∼
ρ→−π

2

du2L
ϵ2

; ð22Þ

which tell us how uL and uR are related to τ. The left
and right temperatures are defined as their periods
uL ∼ uL þ ϕ̄rβL, uR ∼ uR þ ϕ̄rβR rescaled by ϕ̄r for con-
venience. This gives

βL ¼ 2b
2k2
π − EðbÞ − η

; βR ¼ 2b
2k2
π − EðbÞ þ η

: ð23Þ

We see that b and η are determined by the boundary
conditions: they are fixed by the choice of temperatures on
each side. The condition for the existence of the wormhole
is that βL, βR ≥ 0. In the following, we will set the
asymmetry parameter η to zero so that we consider a
situation where βL ¼ βR.

1

The temperature T ¼ TL ¼ TR is then

T ¼ k2

πb
−
EðbÞ
2b

: ð24Þ

At large b, this is positive since we have EðbÞ ∼ e−b which
becomes negligible. Hence, this gives a consistent worm-
hole solution. From the expression of the temperature, we
see that the existence of the solution depends crucially on
the pure imaginary sources. Real sources would change the
sign of k2 and prevent the solution to exist. Moreover, we
see that the Casimir energy contributes negatively [since
EðbÞ > 0] indicating that it has a destabilizing effect which
is described in more detailed below.
It is interesting to note that the operator O acquires an

imaginary expectation value,

hOLi ¼
2ik
π

; hORi ¼ −
2ik
π

; ð25Þ

which can be read off from the solution for χ using the
AdS=CFT dictionary. This is a consequence of the imagi-
nary gradient in the solution for χ. We will see below that
this expectation value is an order parameter for the phase
transition.
It is interesting to note that the marginality of the

operator O is important for the wormhole solution to be
possible. Indeed, an operatorO with Δ ≠ 1 does not lead to

1The formulas for independent TL and TR can be obtained by
replacing T → ðTL þ TRÞ=2.
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a consistent solution because it makes the dilaton grow too
fast or too slow, see Appendix B.

B. Thermodynamics

We now compute the free energy of the wormhole
solution. The partition function is

logZ ¼ −b2T þ 2bk2

π
þ log Tre−bL0 : ð26Þ

The first term comes from the classical contribution of the
Schwarzian action that describes the two trumpet geom-
etries [17] in conventions where 8πGN ¼ 1. The corre-
sponding one-loop term proportional to logT is always
negligible in our discussion and will be ignored. The
second term is the on-shell action of the classical matter
solution (13). The third term is the one-loop contribution
from the matter, which can be derived as follows. The path
integral of the scalar field χ on a cylinder of width π and
circumference b gives the thermal partition function,

Zχ
cylinder ¼ Tre−bðL0− 1

24
Þ ¼ 1

ηðe−bÞ ; ð27Þ

where ηðqÞ is the Dedekind eta function. We can perform a
Weyl transformation to the double trumpet. It follows from
the discussion in [43] that the effect of the Weyl anomaly is
to shift the ground state energy by removing the − 1

24
, so we

end up with

Zχ ¼ Tre−bL0 ¼ e−b=24

ηðe−bÞ : ð28Þ

This formula is also a consequence of the computation of
the quantum stress tensor in Appendix A.
The saddle point of (26) with respect to b leads to the

relation

T ¼ k2

πb
−
EðbÞ
2b

; ð29Þ

where we used that EðbÞ ¼ 1
24
þ ∂b log ηðe−bÞ from the

identities given in Appendix A. Note that EðbÞ ¼ hL0ib is
the thermal expectation value of L0 at the inverse temper-
ature b.2 It is a nice consistency check that this expression
of T matches with (24) obtained from the explicit solution.
Large wormhole regime.—Let us first consider a regime

where b is large. In this regime, we have EðbÞ ∼ e−b so the
second term of (29) becomes negligible as soon as b

becomes relatively large. We then have the saddle point
b� ¼ k2

πT which leads to the free energy,

FWH ¼ −T logZ ¼ −
k4

π2
; when Eðb�Þ ≪ k2: ð30Þ

This formula is valid when Eðk2πTÞ ≪ k2 which holds
at sufficiently low temperature since we have
Eðk2πTÞ ∼T→0 e−k

2=ðπTÞ. We see that the wormhole has con-
stant negative free energy at low temperature, as is expected
from a gapped system. This is the regime where we expect
that JT gravity and the SYK model share similar features.
Our gravitational boundary conditions consist of two

circles of length β ¼ 1=T and Dirichlet boundary condi-
tions for the scalar field χ given in (11). Besides the double
trumpet solution, we can also have two disconnected black
holes (i.e., two hyperbolic disks). In a black hole, the source
for the scalar field does not contribute to the on-shell action,
because the classical solution is just χ ¼ const. The one-
loop contribution gives a contribution that depends on ϵ and
gets renormalized away. As a result, the free energy of the
two black holes is the same as in pure JT gravity:

FBH ¼ −T logZ ¼ −2S0T − 4π2T2: ð31Þ

The physical free energy is then the minimum

F ¼ min ðFWH; FBHÞ; ð32Þ

and there is a phase transition at the critical temperature

Tc ∼
k2≪S0

k4

2π2S0
: ð33Þ

The classical solution χ ¼ const in the black hole phase
implies that the expectation value of the marginal operator
vanishes:

hOLi ¼ 0; hORi ¼ 0: ð34Þ

This shows that the expectation value of O is an order
parameter for the transition from the two black holes to the
wormhole. It is zero in the black hole phase, and becomes
nonzero in the wormhole phase, where we have (25). The
nonzero expectation value at one boundary is a direct
consequence of the source at the other boundary so this can
be seen as a field theory incarnation of the geometric
connection in the bulk.
Comparison with SYK.—The above computation gives

the annealed free energy −T loghZi where the ensemble
average h·i is defined by the Euclidean path integral. To
compare with the SYK setup, we should instead compute
the quenched free energy −ThlogZi. It was recently
explained [65] that the quenched free energy can be
computed in gravity by including corrections from replica

2Without imaginary sources and for a general matter CFT, the
expression (29) becomes T ¼ −hL0ib=ð2bÞ which is negative
because L0 is a positive operator. This shows that for any matter
CFT, Casimir energy alone can never support the double trumpet
geometry.
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wormholes. These corrections are computed below in
Sec. III C and shown to give a negligible correction in
the low temperature regime. This allows us to compare
the gravitational free energy plotted in Fig. 5 to the SYK
free energy shown in Fig. 2. The qualitative agreement of
the free energies supports our proposal that the low-
temperature phase observed in our SYK setup should be
interpreted as a Euclidean wormhole.
General analysis.—Let us now analyze the solution

more generally, beyond the regimes where JT gravity is
well approximated by SYK. First, the wormhole solution
only exists if T ≥ 0. Since EðbÞ is a decreasing function of

b, we see that this implies that there is a minimal value of b
defined implicitly by

EðbminÞ ¼
2k2

π
: ð35Þ

The formula (29) also implies that there is a maximal value
Tmax of the temperature beyond which the wormhole
solution disappears. This value is attained when ∂bT ¼ 0
and the solution only exists when 0 ≤ T ≤ Tmax. In this
range, there are actually two values of b that give the same
T: the large wormhole that was discussed previously but

0.0000 0.00002 0.00004 0.00006 0.00008 0.0001

−0.20

−0.15

−0.10

−0.05

0.00

FIG. 5. Plot of the free energy of the wormhole and the black holes at low temperature. The solid black line represents the free energy
of the system. It corresponds with that of the wormhole, characterized by a constant negative free energy, at sufficiently low (high)
temperatures. As temperature increases, we observe a first order transition separating the wormhole from the two black hole phase. This
qualitatively matches the behavior seen in the SYK with complex couplings. Notice that there is also another solution at smaller bwhose
free energy is always larger. We use k ¼ 1 and S0 ¼ 103.
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−109
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−10−3

−10−6
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FIG. 6. Log-log plot of the free energy of the different solutions. We plot the disconnected contribution of the two black holes (in
blue). It dominates at high temperature until the phase transition at T ¼ Tc (dashed vertical blue line) after which the large wormhole
solution (in orange) becomes favorable. There is also a small wormhole solution (in green) which has higher free energy. Both wormhole
solutions only exist below a maximal temperature Tmax (dashed vertical red line) and we have Tmax > Tc. The dashed orange line
corresponds to the classical approximation where we do not include the Casimir energy of the matter, thus obtaining a wormhole at all
temperatures. This shows that the Casimir energy has a destabilizing effect which is responsible for the existence of both the maximal
temperature and the small wormhole solution.
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also a small wormhole at a much smaller value of b. This is
the result of a competition between the classical negative
energy coming from the imaginary sources, and the positive
quantum Casimir energy of the matter. It is here a classical
effect that sustains the wormhole while a quantum effect
destabilizes it. It can be checked that the smaller wormhole
has always higher free energy than the large one, so that it
never dominates in the canonical ensemble. The main
thermodynamic features of the system are summarized in
Fig. 6 which describes the free energy of the different
branches as a function of temperature and Fig. 7 that
depicts the dependence of the wormhole size b with
temperature.

C. Quenched versus annealed in gravity

As pointed out in [65], the gravitational free energy must
be computed with a replica trick because we are interested
in the quenched, rather than annealed, free energy. This
means that the naive answer for the free energy (i.e., the

annealed one) might be incorrect in situations where
quantum gravity effects are important. For a system with
boundary B, we should compute the gravitational path
integral PðBmÞ whose boundary is m copies of B, analyti-
cally continue in m and use the formula

hlogZðBÞi ¼ lim
m→0

1

m
ðPðBmÞ − 1Þ: ð36Þ

We take B to be the system with two circle boundaries: one
is labeled þ and has a sourceþikwhile the other is labeled
− and has the source −ik. The wormhole solution can only
connect a þ circle to a − circle. We take the temperature to
be not too small so that taking S0 to be large allows us to
ignore the higher genus topologies. A typical contribution
to PðBmÞ is drawn in Fig. 8.
Denoting by Z1 the black hole contribution and by Z2 the

wormhole contribution, we find

10−5 10−4 0.001 0.010 0.100

10

100

1000

104

FIG. 7. Log-log plot of the size b of the wormhole as a function of the temperature. We use k ¼ 1 and S0 ¼ 103.

FIG. 8. Computation of PðBmÞ in the replica trick for the free energy.
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PðBmÞ ¼
Xm
k¼0

k!

�
m

k

�
Zk
2ðjZ1j2Þm−k

¼ Zm
2 exp

�jZ1j2
Z2

�Z þ∞

jZ1j2=Z2

dttme−t: ð37Þ

The effect of the replica trick is to introduce a permutation
factor k!, which takes into account wormholes connecting
boundaries belonging to different copies of B. Indeed,
removing this factor leads to PðBmÞ ¼ ðjZ1j2 þ Z2Þm and
gives the annealed result. The expression

1

m
ðPðBmÞ − 1Þ ¼ exp

�jZ1j2
Z2

�

×
Z þ∞

jZ1j2=Z2

dt

�
1

m
ðZm

2 t
m − 1Þ

�
e−t ð38Þ

makes it possible to take the m → 0 limit:

hlogZðBÞi ¼ logZ2 þ ejZ1j2=Z2

Z þ∞

jZ1j2=Z2

dt log te−t: ð39Þ

At large temperature T > Tc, there are only disconnected
contributions and we obtain the free energy of two black
holes. At small temperature T < Tc, we have Z2 ≫ jZ1j2
and (39) gives

hlogZi ¼ logZ2 − γ; ðT < TcÞ; ð40Þ

where we used
R∞
0 dt log te−t ¼ −γ with γ ≈ 0.577 is the

Euler gamma constant. This shows that the effect of the
replica wormholes is to lower the entropy of the wormhole
by γ. It gives the low temperature free energy

hFi ¼ FWH þ γT; ðT < TcÞ; ð41Þ

where FWH ¼ −k4=π2 is the free energy (30) of the
wormhole solution. The second term represents the cor-
rection from the replica wormholes and can be neglected
because T < Tc ≪ k4. Hence, in our gravity setup, the
difference between the quenched and annealed free ener-
gies becomes negligible at low temperatures. We can then
compare the gravitational free energy plotted in Fig. 5 to the
SYK free energy of Fig. 2. The qualitative agreement
supports our proposal that the low-temperature phase
observed in our SYK setup, which only arises after average
over the complex SYK couplings, should be interpreted as
a Euclidean wormhole.

IV. DISCUSSION

One of the main motivations of this paper was to shed
light on the holographic interpretation of Euclidean worm-
holes. We have shown how thermodynamic properties
consistent with a wormhole can arise from averaging over

complex couplings in the SYKmodel, andwe have proposed
a gravity interpretation as a Euclidean wormhole solution of
JT gravity plus matter sharing similar properties.
We have studied the free energy of two copies of a

system with complex conjugated Hamiltonians. This is also
equal to the real part of the free energy of a single copy:

2RehFi ¼ −ThlogZZ̄i: ð42Þ

From the point of view of a single system, our wormhole can
thus be seen as “real part wormhole” which connects the
system to its complex conjugate in the gravitational compu-
tationofReF. Thegravitational computationof the quenched
free energy also involves replica wormholes which were
computed in Sec. III C and shown to be negligible in
our setup.
The mechanism that makes the Euclidean wormhole

possible is the introduction of imaginary sources for a
marginal operator, which provides the negative energy
necessary to sustain the wormhole. We emphasize that
adding imaginary sources is perfectly consistent in
Euclidean signature; it is akin to probing a system at
imaginary chemical potential which, for example, has been
useful to study QCD [63,64]. We have identified a low
temperature phase, where the wormhole dominates, and in
which themarginal operator condenses. The nonzero expect-
ation value of this operator is linked to the existence of the
wormhole, since it vanishes in the black hole phase and
becomes nonzero in the wormhole because of the source on
the other boundary. This can be seen as a field theory
diagnosis of the geometric connection in the bulk.
Our wormhole is different from the eternal traversable

wormhole of [43], which makes sense as a Lorentzian
geometry, and requires an explicit coupling between the
boundaries. It is also possible to introduce such an explicit
coupling in our setup, in addition to the imaginary sources,
and it would be interesting to study the resulting solutions.
In this paper, we have seen that imaginary sources can be

used to support Euclidean wormhole solutions. As the
comparison with SYK suggests, these sources might be
related to some averaging procedure. It would be interest-
ing to see whether other Euclidean wormholes can be
constructed using this idea. Our solution extends to JT
gravity with an additional gauge symmetry [66,67] or
including the gravitational U(1) symmetry described in
[68]. It should be possible to study multiboundary solutions
for which a dual SYK setup might exist. Euclidean
wormholes have also found recent applications in AdS3
holography [69–73] and it would be interesting to explore
solutions in higher dimensions [38].
Euclidean wormholes have played an important role in

the study of eigenvalue statistics in pure JT gravity and in
its field theory realization as a random matrix model [16–
18,74]. The conclusion of these works is that JT gravity is
quantum chaotic. Level statistics of quantum chaotic
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systems are described by random matrix theory. For the
spectral form factor, a useful observable in spectral analy-
sis, a signature of quantum chaos is the presence of a ramp
for sufficiently long times that saturates at the Heisenberg
time. In pure JT gravity, the spectral form factor is related to
a double trumpet geometry which is not a solution of the
equations of motion. An explicit evaluation of the path
integral gives the contribution

hZðβLÞZðβRÞiJTconn ¼
1

2π

ffiffiffiffiffiffiffiffiffiffi
βLβR

p
βL þ βR

þ higher genus; ð43Þ

which is actually the universal answer for a double-scaled
random matrix integral. Replacing βL ¼ β þ it and βR ¼
β − it leads to a contribution that grows linearly with t for
t ≫ β and accounts for the ramp in the spectral form factor.
The same computation does not work for JT gravity plus
matter as the integral over b has a divergence at small b,
seen here from the fact that EðbÞ ∼b→0

π2

6b2. If we add
imaginary sources, we can get around this issue by using
our wormhole solution as a saddle point in this path
integral. This suggests that Euclidean wormhole solutions,
of the type constructed here, might be useful in studying the
eigenvalue statistics of gravitational theories for which we
cannot perform the full path integral. We leave this
interesting question and the comparison with SYK level
statistics to a future work.
Euclidean wormholes have also been important in

understanding better the fine-grained entropy of evaporat-
ing black holes, where replica wormholes were crucial in
obtaining an answer consistent with unitarity [21,22]. It has
also been argued that a gravitational replica trick is already
needed for the computation of the free energy [65]. We
have implemented this replica trick in Sec. III C to compute
the free energy of our gravity setup and shown that the
additional wormholes only give a negligible correction. It
would be interesting to see whether wormhole solutions
similar to the one described in this paper could be used as
saddle points in the replica computation of the free energy
in situations where they give large corrections, for example
at very low temperatures.
On the field theory side, a non-Hermitian Hamiltonian is

superficially related to a loss of probability conservation
and a nonunitary evolution as most eigenvalues are com-
plex and therefore have a finite lifetime. From the point of
view of one of the two systems, this could be interpreted as
the observation of particles coming in and coming out
which is typical of an open quantum system. Although this
is an appealing picture, it cannot really explain why a gap is
observed. Ensemble average is a key ingredient for the
formation of the gap at low temperatures so just a spectrum
with imaginary eigenvalues is not enough to reproduce the
observed phenomenology. As we mentioned earlier,
another outstanding feature is that for sufficiently high
temperature the non-Hermitian effects related to a complex

spectrum becomes irrelevant. This suggests that the addi-
tion of an imaginary part in the SYK couplings, and the
subsequent ensemble average, is just an effective way to
describe quantum tunneling between two Hermitian
SYK’s, and produces a gap between the ground state
and the first excited state as in a double well potential.
Typically, this is qualitatively modeled by an explicit
coupling between the two SYK’s, as in the case of the
eternal traversable wormhole. However, we are interested
in understanding better the issue of factorization, so we
want to study configurations with an explicit coupling
between the two systems.
Assuming that complex couplings and ensemble average

are necessary ingredients to model tunneling without an
explicit coupling, it would be interesting to determine the
conditions on the field theory Hamiltonian that lead to this
type of wormhole behavior. It seems that some form of
randomness is required as wormhole-like features are only
seen after an ensemble average. However, it is unclear
whether infinite range and strong interactions, as in the
SYK model studied here, are also a necessary requirement.
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APPENDIX A: QUANTUM STRESS TENSOR IN
THE DOUBLE TRUMPET

In this section, we compute the quantum stress tensor of
a massless scalar in the double trumpet geometry. We
consider a free boson described by the action

S ¼ 1

2

Z
d2x

ffiffiffi
g

p ð∂χÞ2; ðA1Þ

and whose stress tensor is given by

Tμν ¼ ∂μχ∂νχ −
1

2
gμνð∂χÞ2: ðA2Þ

To compute its expectation value, we use the point-splitting
method so that
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hTμνðxÞi ¼ lim
x0→x

�
∂μ∂ 0

νGðx; x0Þ −
1

2
gμν∂μ∂ 0

νGðx; x0Þ
�
; ðA3Þ

where Gðx; x0Þ is the Green function. See [62,75] for
examples of application of this method in related contexts.
We will first perform the computation on a cylinder
described by the coordinates

ds2cyl¼dρ2þdθ2; −
π

2
≤ρ≤

π

2
; θ∼θþb: ðA4Þ

We will then use a Weyl transformation to the double
trumpet. The Green function can be defined as the solution
of the equation

□xGðx; x0Þ ¼ −δðx − x0Þ: ðA5Þ

Using the following mode decomposition,

Gðρ; θ; ρ0; θ0Þ ¼
X

m;m0∈Z

Gðρ; m; ρ0; m0Þe2iπðmθþm0θ0Þ=b; ðA6Þ

Eq. (A5) becomes

�
∂2
ρ−

4π2m2

b2

�
Gðρ;m;ρ0;m0Þ¼−

1

b
δðρ−ρ0Þδmþm0 ; ðA7Þ

with the boundary conditions

Gðρ; m; ρ0; m0Þjρ¼�π
2
¼ Gðρ; m; ρ0; m0Þjρ0¼�π

2
¼ 0: ðA8Þ

This can be solved using the discontinuity method, as
explained in [75] for the standard Casimir effect between
two plates. At the end, we find

Gðρ;θ;ρ0;θ0Þ ¼ −
X
m∈Z

sinhð2πmb ðρþ − π
2
ÞÞ sinhð2πmb ðρ− þ π

2
ÞÞ

2πm sinhð2π2mb Þ
× e2iπmðθ−θ0Þ=b; ðA9Þ

which allows us to obtain

hTρρi¼−
X
m∈Z

πm

b2 tanhð2π2mb Þ; hTθθi¼
X
m∈Z

πm

b2 tanhð2π2mb Þ:

ðA10Þ

The sum over m can be regularized using the Poisson
resummation formula, which allows us to write

SðxÞ≡ X
m∈Z

m
tanhðmxÞ ¼ −

π2

2x2
X
n∈Z

1

sinh2ðπ2nx Þ
: ðA11Þ

We regulate the divergence at n ¼ 0 by imposing that in the
limit b → þ∞, we recover the known result for the strip.
The final formula is

hTθθi ¼ −hTρρi ¼
c

24π
−
c
π
EðbÞ; ðA12Þ

where we have multiplied by an overall c and defined

EðbÞ≡X
n≥1

1

4 sinh2ðnb
2
Þ : ðA13Þ

We can now compute the stress tensor in the double trumpet
using the formula

hTμνi ¼ hTμνicyl þ hTμνianomaly; ðA14Þ
where the formula for the anomalous stress tensor is given
in [76]. This finally gives in the ðτ; ρÞ coordinates

hTμνi ¼ −
1

24π
gμν −

EðbÞ
π

�
1 0

0 −1

�
: ðA15Þ

Some properties of the function EðbÞ.—We give some
properties of the function EðbÞwhich appeared in the above
computation. First, we have EðbÞ > 0 and EðbÞ decreases
with the following asymptotics:

EðbÞ ∼
b→0

π2

6b2
; EðbÞ ∼

b→þ∞
e−b þOðe−2bÞ: ðA16Þ

After defining q ¼ e−b, we can write EðbÞ as

EðbÞ ¼
X
n≥1

qn

ð1 − qnÞ2 ¼
X
n≥1

X
m≥1

mqnm

¼
X
m≥1

mqm

1 − qm
¼ 1

24
ð1 − PðqÞÞ; ðA17Þ

in terms of the function P studied by Ramanujan [77],
which is related to the Dedekind eta function

PðqÞ¼24q
d
dq

logηðqÞ; ηðqÞ≡q1=24
Y
n≥1

ð1−qnÞ: ðA18Þ

There is no simple analytic expression for EðbÞ, but it can
be expressed in a complicated way in terms of elliptic
integrals [78].

APPENDIX B: MASSIVE BULK FIELDS

We have constructed a wormhole solution using a
massless scalar field in the bulk, corresponding to an
operator O with conformal dimension Δ ¼ 1. In this
Appendix, we consider massive fields and explain why
Δ ¼ 1 is the only value that gives a consistent solution.
The main point is that we need to satisfy the two

boundary conditions of JT gravity:

Φ ¼ ϕ̄r

ϵ
; ds2 ¼ du2

ϵ2
: ðB1Þ
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Satisfying both in the double trumpet (8) requires that at
leading order

Φ ∼
ρ→þπ

2

C
π
2
− ρ

; ðB2Þ

where C is some constant. Now, take χ to be a general
massive scalar field satisfying the equation

ð□ −m2Þχ ¼ 0; m2 ¼ ΔðΔ − 1Þ: ðB3Þ

The pure imaginary sources give the condition

χ ∼
ρ→π

2

ik

�
π

2
− ρ

�
1−Δ

; χ ∼
ρ→−π

2

− ik

�
π

2
þ ρ

�
1−Δ

: ðB4Þ

This fixes the classical solution for χ which can be written
explicitly in terms of hypergeometric functions.
We will focus on the low-temperature regime where the

Casimir energy of χ can be ignored, which is the relevant

regime for comparison with SYK. There, the equation of
motion for the JT dilaton is

∇μ∇νΦ − gμν□Φþ gμνΦþ Tχ
μν ¼ 0;

Tχ
μν ¼ ∂μχ∂νχ −

1

2
gμνðð∂χÞ2 þm2χ2Þ: ðB5Þ

Taking the trace of this equation gives

ð□ − 2ÞΦ ¼ −ΔðΔ − 1Þχ2: ðB6Þ
From (B2), we can verify

lim
ρ→π

2

ð□ − 2ÞΦ ¼ finite constant; ðB7Þ

where the constant depends on subleading terms in Φ.
This is only compatible with Δ ¼ 1 because otherwise
χ2 ∼ ðπ

2
− ρÞ−2ðΔ−1Þ diverges for ρ → π

2
. This shows that a

wormhole solution can be obtained in this way only
for Δ ¼ 1.
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