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Some recently proposed definitions of Jackiw-Teitelboim (JT) gravity and supergravities in terms of
combinationsofminimal stringmodels are explored,with a focus onphysics beyond the perturbative expansion
in spacetime topology. While this formally involves solving infinite-order nonlinear differential equations,
it is shown that the physics can be extracted to arbitrarily high accuracy in a simple controlled truncation
scheme, using a combination of analytical and numerical methods. The nonperturbative spectral densities
are explicitly computed and exhibited. The full spectral form factors, involving crucial nonperturbative
contributions from wormhole geometries, are also computed and displayed, showing the nonperturbative
details of the characteristic “slope,” “dip,” “ramp,” and “plateau” features. It is emphasized that results of this
kind can most likely be readily extracted for other types of JT gravity using the same methods.
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I. INTRODUCTION

There are many reasons to study Jackiw-Teitelboim (JT)
gravity [1,2]. One of them is the fact that it is a theory of a
two-dimensional quantum gravity, where the spacetime is
allowed to split and join, changing its topology (charac-
terized by Euler characteristic χ ¼ 2 − 2g − b − c, where g
counts handles, b boundaries, and c crosscaps). In the full
theory, the partition function ZðβÞ is a sum over the
contributions from all topologies, as well as a nonpertur-
bative part that is not captured by the perturbative expan-
sion in topology:

ZðβÞ ¼
X
χ

ZχðβÞ þ nonperturb: ð1Þ

Here, ZχðβÞ stands for the contribution to the partition
function from surfaces of Euler characteristic χ. It comes
with a factor eχS0, as S0 is a coupling that multiplies the
Einstein-Hilbert action in the model. [Although χ ¼ 1 for
the (leading) disc-order quantities, the subscript 0 will be
widely used at leading order henceforth. So the disc level
partition function is Z0, spectral density is ρ0, etc.]
The focus of this paper will be on characterizing the

full partition function of the theory, including the full

nonperturbative physics, by making explicit aspects of
the double-scaled matrix model definitions suggested in
Refs. [3,4], which should be considered companion papers
to this one. The beautiful work of Refs. [5,6] in defining
double-scaled matrix models of (various kinds of) JT
gravity is intrinsically perturbative in spirit, since it uses
recursion relations connecting different topologies, and
the work in Refs. [3,4] is intended as a complementary
construction (using minimal strings) that allows more direct
access to nonperturbative quantities. The output of this
paper will be the first explicit computation of the full
spectral densities (and hence the partition functions, by
Laplace transform) and explorations of several important
phenomena that depend crucially on being able to compute
nonperturbative physics.
An example of the latter is the two-point “spectral form

factor” shown in Fig. 1, a quantity that helps in diagnosing
universal aspects of quantum chaotic behavior [7,8]. It was
computed using the methods of this paper. This is the first
time this quantity (and others like it to be presented later)
has been computed fully in JT gravity or supergravity
for generic values of β and S0, and so some time will be
spent unpacking the techniques and results.1 The late-time
“plateau” feature of the curve, and the transition to it from
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1An interesting recent paper [9] presented an expression for the
spectral form factor of JT gravity, but in a very special ultralow-
temperature scaling limit that allowed a closed form to be written.
Also, key aspects of parts of the spectral form factor in special
limits were discussed using matrix model techniques in Ref. [10].
In this paper, no special limits on the parameters are taken, and
while no closed forms are presented, answers can be systemati-
cally extracted for a range of β and S0.
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the “ramp” behavior, are intrinsically nonperturbative
features of wide interest. There are important nonpertur-
bative effects that show up in the slope part too, in some
cases, as will be demonstrated. They can sometimes be
dramatic, as will be seen in the supergravity examples
presented.
Another example of this paper’s results is given in Fig. 2.

It is the full spectral density (the thicker line, actually made
out of data dots) of the model ρSJTðEÞ with the classical
result [see Eq. (5)] plotted as a dashed line for comparison.
By Laplace transform, this function defines the full non-
perturbative partition function for the supergravity theory,
and is computed here explicitly for the first time. This JT
supergravity model is in fact the ðα; βÞ ¼ ð2; 2Þ matrix

model in the Altland-Zirnbauer [11] classification scheme,
or the case Γ ¼ 1

2
in the notation of Ref. [4]. The result for

the companion (0,2) case (Γ ¼ − 1
2
) will be displayed later

(see Fig. 8). As can be seen in Fig. 2, for the (2,2) case,
nonperturbative effects entirely erase the characteristic
classical peak in the spectrum at low energy, which
dramatically alters the “slope” part of the spectral form
factor as compared to the analogous result for the (0,2)
case, where a peak persists in the full spectrum.
While ordinary JT gravity is important and interesting

(and results will be presented for it), a good deal of attention
will be given to these two particular models of JT super-
gravity. They are of particular interest because the non-
perturbative physics is more dramatic, in a sense. It was
observed in Ref. [6] (and confirmed to be manifest in the
minimal model construction of Ref. [4]) that beyond the
first one or two leading orders of perturbation theory
(depending upon the quantity being computed), the entire
topological perturbative series vanishes. Therefore, the
nonperturbative effects uncovered in these models (as will
be done here) are placed more in stark relief than in other
JT gravity systems.
Having shown examples of the key results, the job of the

rest of the paper is to explain how to get them, and then
to interpret them. The results follow from the nonpertur-
bative construction, proposed in Refs. [3,4], of JT gravity
and supergravity in terms of minimal string models (of a
special type). The basic idea, building on suggestions in
Refs. [5,12], is to reinterpret the JT system as an infinite set
of minimal models (nonlinearly) coupled together in a
particular way, or equivalently (as explained in Ref. [4]) by
turning on an infinite set of operators in the minimal string
model obtained by taking the k → ∞ limit.2 Since the full
information about the kth minimal string model in question
(see Sec. III for a quick review of the essentials) involves
solving an order-2kþ 1 highly nonlinear ordinary differ-
ential equation (ODE), this way of defining JT gravity or
supergravity involves solving an infinite-order differential
equation. This might seem rather daunting, or even formal,
but from a pragmatic point of view it is rather straightfor-
ward to implement an approximation scheme that allows
the computation of an answer to a specific concrete
question, to whatever accuracy is desired. The point is
that the contribution to the model of successively higher
orders of derivatives in the ODE grows smaller with
increasing k, and so there is a point at which truncating
the ODE and solving a finite-order equation will give
access to the full spectrum all the way up to a given desired
energy, to some required accuracy. In other words, this is
hardly any different from computing Feynman diagrams up
to some sufficiently high order for some field theory
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FIG. 1. The full spectral form factor, showing the classic
(saxophone) shape made up of a slope, dip, ramp, and plateau.
This is computed using the methods of this paper for the (2,2)
model of JT supergravity. Here, β ¼ 35, ℏ ¼ 1=5. (See text.)
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FIG. 2. The full spectral density, computed using the methods
of this paper, for the (2,2) model of JT supergravity. The dashed
blue line is the disc level result of Eq. (5). Here ℏ ¼ 1.

2Other recent work exploring connections between the for-
malism of Liouville theory and minimal strings on the one hand,
and JT gravity on the other, includes Refs. [9,13,14].
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problem (except that here the formalism is computing
nonperturbative physics, and moreover the series is con-
vergent, not asymptotic).
An outline of the paper is as follows: Section II is a

brief summary of some of the (now standard) key ideas
in the study of JT gravity that will be used in this paper.
It is entirely optional for those who know the subject
well, but serves to set context, notation, and (perhaps)
some motivation. The deconstruction in terms of
minimal models will be lightly explained in Sec. III.
References [3,4] should be consulted for further details,
and the nonperturbative explorations of key toy models
presented there. The main task of this paper is to show
how to extract nonperturbative results for the full JT
(super)gravities. In particular, this section will explain
how (using the supergravity examples) the truncation
scheme of the previous paragraph works. Section IV will
solve the full quantum-mechanical system to yield the
nonperturbative spectral density (and hence the partition
function) for the supergravity cases. Then, Sec. V turns to
the nonperturbative spectral form factor for the super-
gravities, explaining how it is computed and then dis-
playing several results.
Section VI then discusses the analogous construction

and results for a nonperturbative definition of ordinary JT
gravity obtained (as first presented in Ref. [3]) by embed-
ding it into a larger framework that it matches perturba-
tively (at high energy), but which supplies it with
nonperturbatively well-behaved low-energy physics.
Since most of the results of this paper come from

numerically unpacking the highly nonlinear system of
equations (and also using computer algebra to help unpack
them), some appendixes are included with some (it is
hoped) helpful technical notes and suggestions about the
methods employed, for the reader interested in computing
these or other results using this formalism. Appendix A
presents a numerical study of the spectral form factor of the
Airy model (the double-scaled Gaussian Hermitian matrix
model) and compares the results to the known exact
expressions, showing how the effects of the truncation
to a numerical system are extremely well controlled. This
serves as a demonstration of the trustworthiness of the
numerical results obtained for the JT gravity and super-
gravity models in the main body of the paper. Section I of
Appendix B describes aspects of solving high-order differ-
ential equations numerically, and Sec. II of that appendix
describes how to solve for the energies and eigenfunctions
needed to build the spectrum and spectral form factor.
Appendix C lists some important quantities needed in the
body of the paper (the Gel’fand-Dikii differential poly-
nomials) and a recursion relation for getting the higher-
order expressions.
There are some brief closing remarks in the final section,

Sec. VII, with thoughts about the potential application of
these methods to other systems.

II. JT GRAVITY LIGHTNING TOUR

Although it is a 2D theory of quantum gravity, by virtue
of a coupling to a scalar, the dynamics of JT gravity is all on
the 1D spacetime boundary. (A good review of much of this
is Ref. [15].) The boundary can change its shape while
keeping its total length fixed to be the inverse temperature
β ¼ 1=T, the period of Euclidean time. Meanwhile, the
bulk spacetime has constant negative curvature (the Ricci
scalar R ¼ −2). So the theory is locally AdS2, and the
leading spacetime (disc topology—i.e., no handles or
crosscaps, one boundary) is often called “nearly AdS2”
[16–19], in the sense that, e.g., in Poincaré coordinates, the
boundary is not a fixed circle an infinite distance away, but
instead a finite loop of length β that is allowed to change its
shape. See Fig. 3.
At this order, the dynamics of the loop is controlled by a

Schwarzian action [17], and the result is

ZJT
0 ðβÞ ¼ eS0e

π2

β

4π1=2β3=2
¼

Z
∞

0

ρJT0 ðEÞe−βEdE; ð2Þ

related to the disc-order spectral density ρJT0 ðEÞ by a
Laplace transform. There is a JT supergravity generaliza-
tion of this result [6,20],

ZSJT
0 ðβÞ ¼

ffiffiffi
2

p eS0e
π2

β

π1=2β1=2
¼

Z
∞

0

ρSJT0 ðEÞe−βEdE; ð3Þ

defining a disc-order spectral density ρSJT0 ðEÞ. In each case,
the densities are given by

ρJT0 ðEÞ ¼ eS0
sinhð2π ffiffiffiffi

E
p Þ

4π2
; and ð4Þ

ρSJT0 ðEÞ ¼
ffiffiffi
2

p
eS0

coshð2π ffiffiffiffi
E

p Þ
π

ffiffiffiffi
E

p : ð5Þ

(Henceforth, the redefinition
ffiffiffi
2

p
ρSJT0 → ρSJT0 will be

made to adapt JT conventions of Ref. [6] to the matrix
model normalization to be used here.) The coupling e−S0
will be denoted as ℏ in what follows, and indeed it will
be the ℏ of a key quantum-mechanical system to appear
shortly. One interpretation of S0 is that it is simply the

FIG. 3. The “nearly AdS2” geometry, presented in two equiv-
alent ways.
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leading (T ¼ 0, disc topology) contribution to the entropy.
For the ordinary JT case,

S ¼
�
1 − β

∂
∂β

�
lnZ0ðβÞ ¼ S0 þ

2π2

β
−
3

2
ln β þ � � � : ð6Þ

This leads to a second reason (beyond the one mentioned
in the Introduction) to study JT gravity. It is a model of
the low-temperature (near-extremal) dynamics of certain
higher-dimensional black holes and branes (see, e.g.,
Refs. [21–25]). For example, the metric of a charged black
hole in d ¼ 4 is well known to become AdS2 × S2 at
T ¼ 0, and the area A of the two-sphere S2 sets the T ¼ 0
entropy: A ¼ 4S0. Turning on a small temperature replaces
AdS2 with “nearly AdS2,” and the horizon area, and hence
the entropy, gets corrections. The JT gravity model captures
the dynamics of these corrections. (The dynamical scalar
represents the deviation of the area away from extremality.)
The 2D dynamics can be thought of as containing black
holes in its own right as well, worth studying in their own
terms. These are, at leading order, the disc geometries
already described.
A third reason for studying JT gravity is that it is a low-

energy holographic dual, in a certain sense [16,18,19,26],
of a class of 1D quantum systems that exhibit quantum
chaos, such as the Sachdev-Ye-Kitaev (SYK) model
[17,27,28]. A key diagnostic of the quantum chaotic
behavior of the system is the two-point “spectral form
factor” hZðβ − itÞZðβ þ itÞi, which exhibits certain key
universal features [7,8,29,30]. Starting out at hZðβÞ2i, it
decays down a “slope” to a “dip” at during the first epoch of
time t, and rises along a “ramp” at intermediate times,
before leveling off to a “plateau” at late times at a value
given by hZð2βÞi. (See all these features in Fig. 1, but recall
that it is not an SYK spectral form factor, but a gravity one;
see below.)
The timescales over which these features manifest are

important, especially the time to when the plateau sets in, as
it gives a measure of how long correlations take to wash
away. No single SYK dual cleanly exhibits the universal
behavior individually. There are wild oscillations in the
spectral form factor at intermediate and late times.3 Instead,
these features emerge as the time-averaged behavior, as can
be seen by averaging over an ensemble of models [31]. An
important idea in quantum chaos is the notion that random
matrix ensembles should capture the universal features seen
in the averaged behavior of a chaotic system (for a review,
see Ref. [7]). This led to the suggestion of Refs. [31,32] that
a random matrix description of averaged SYK could be
available. On the other hand, random matrix models are
known to describe, in a “double-scaling” limit [33–36], the
sum over surfaces of a 2D quantum gravity, so this is

another way of seeing that there ought to be a dual
gravitational description of SYK-like models. This was
shown to be more than a coincidence of ideas in Ref. [5],
where JT gravity was demonstrated to be explicitly
consistent with—order by order in the topological
expansion—the properties of a double-scaled matrix
model. Reference [6] furnished several more examples
and a classification of the possibilities in terms of the ten
standard random matrix ensembles.
So, the JT gravity dual (or supergravity dual, for the

appropriate generalization of SYK [6,20,37–42]) performs
the ensemble average directly. The early-time behavior
is controlled by the disconnected diagram constructed of
two discs (a pair of AdS2 black holes) plus corrections,
while the later ramp and plateau features come from the
cylinder diagram (an AdS2 wormhole) [43] plus correc-
tions. See Fig. 4. These amplitudes do not fluctuate
chaotically in time, but have smooth behavior to be
expected from geometric objects in a theory of gravity.
This can be seen already in the leading computation for the
cylinder diagram [5,44], which yields a simple t depend-
ence: hZðβ − itÞZðβ þ itÞi ∼ β−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ t2

p
gives a rise for

the initial part of the ramp behavior in a regime that would
already be beset by fluctuations in any given SYK model.
For t ≫ β, assuming the transition to the plateau has not yet
occurred, this yields a linear rise. In this paper, it will be
observed that nonperturbative effects can, depending upon
the value of ℏ, take over rapidly to generate the ramp, and
so the linear part is hardly visible at moderate β.
As already mentioned, the plateau in the spectral form

factor (and the transition to it from the ramp) is a result of
perturbative and, especially, nonperturbative corrections
to the leading cylinder contribution. The purpose of this
paper is to focus on unpacking the nonperturbative
definitions of Refs. [3,4] in order to explicitly uncover
such effects. Figure 1, already shown above, is a sample
of the work reported on in this paper. It is the full spectral
form factor for a particular model of JT supergravity.
It will be discussed more fully in Sec. V. Now, on to the
computations.

III. CONSTRUCTING JT (SUPER)GRAVITY
FROM MINIMAL STRINGS

The key ingredients are certain double-scaled matrix
models that have been used in the past to study certain
kinds of “minimal” string theories. (See, e.g., Refs. [44,45]
for reviews.) The details of the string theory constructions

FIG. 4. Black holes vs wormholes.

3In the phraseology of the moment, these later eras are
“difficult times” for an SYK model.
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do not matter here. The most important fact to know is that
some of the models (a subset of the “one-cut” matrix
models) can be described in terms of an associated 1D
quantum mechanics problem [46,47], with the Hamiltonian

H ¼ −ℏ2
∂2

∂x2 þ uðxÞ; ð7Þ

where the potential uðxÞ satisfies a nonlinear ordinary
differential equation (ODE) called a “string equation.” The
key task is to build the correct uðxÞ for the problem at hand.
Once it is known, the full spectral density can be extracted
by simply solving the spectrum of H and evaluating the
fully nonperturbative ρðEÞ, using an expression given in the
next section. It is useful to note that in the limit where just
the disc-level physics is kept, the spectral density at this
order can be written as a simple integral involving the
leading part of the potential, u0ðxÞ ¼ limℏ→0 uðxÞ:

ρ0ðEÞ ¼
1

πℏ

Z
E

0

fðu0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0

p du0; ð8Þ

where fðu0Þ ¼ −∂x=∂u0ðxÞ. (This is in a slightly different
normalization from that used in Ref. [4].)
Turning back to the ingredients, the minimal models will

be labeled by an integer index, k. As mentioned before, the
models will be combined together to yield the JT (super)
gravity. There is a parameter, tk, that will be used to turn on
the kth model in the mix. The model is turned on if tk is
nonzero. The minimal models in question can be obtained4

[49–53] by taking the double-scaling limit of models of a
complex N × N matrix M, with a potential VðM†MÞ
(see also footnote 5). The string equation that needs to
be solved is

uR2 −
ℏ2

2
RR00 þ ℏ2

4
ðR0Þ2 ¼ ℏ2Γ2; ð9Þ

where the constant Γ will be discussed shortly and

R≡X∞
k¼1

tkR̃k½u� þ x: ð10Þ

Here, R̃k½u� is proportional to the kth-order polynomial in
uðxÞ and its x derivatives defined by Gel’fand and Dikii
[54]. They have a purely polynomial in uðxÞ piece, which is
uðxÞk, a purely derivative linear piece, uðxÞ x-differentiated
2k − 2 times, and then nonlinear mixed terms involving
uðxÞ and its x derivatives. Here, they are normalized so that
the coefficient of uk is unity. The first three are

R̃1½u� ¼ u; R̃2½u� ¼ u2 −
1

3
u00; and

R̃3½u� ¼ u3 −
1

2
ðu0Þ2 − uu00 þ 1

10
u0000; ð11Þ

where a prime denotes an x derivative times a factor of ℏ.
It will transpire that R̃4, R̃5, R̃6, and R̃7 will be used in this
paper too, but since they are rather lengthy, some are listed
in Appendix C, along with methods for generating others if
needed.
The boundary condition that ensures good nonperturba-

tive behavior is, for each model,

uðxÞ → 0 as x → þ∞;

uðxÞ → ð−xÞ1k as x → −∞: ð12Þ

Note the presence of ℏ ¼ e−S0 in the string equation (and
the various quantities that make it up). It is very useful for
separating the classical parts from the rest, by sending
ℏ → 0, or equivalently, dropping derivatives. For the study
of nonperturbative physics, solutions uðxÞ of the equation
will be extracted for ℏ ¼ 1. Several results presented in
figures to come will be for this value, because it allows the
nonperturbative effects to be writ large in the results (for
spectra, etc.), and therefore seen easily. When it is instruc-
tive to do so, comparison to results with ℏ dialed down will
be discussed. It is interesting that it is in fact more difficult
to solve the string equations for smaller ℏ. This is because
when derivatives have smaller coefficients, they are
allowed to fluctuate more, contributing to the sensitivity
when solving these highly nonlinear equations, as will be
discussed later. (This increased difficulty to get smaller ℏ
results has the character of a sort of strong/weak coupling
duality, in fact.)
Turn now to the constant Γ in the string equation (9).

With it present, the matrix model is in the ð2Γþ 1; 2Þ class
in the ðα; βÞ Altland-Zirnbauer classification of matrix
ensembles.5 The two choices Γ ¼ � 1

2
will mostly be

4These minimal models were later identified by Ref. [48] as the
ð4k; 2Þ superconformal minimal models coupled to gravity with a
type-0A projection.

5Double scaling means that in the matrix model [49–53] of the
complex matrixM, the size N is taken to infinity while couplings
in the potential VðM†MÞ are tuned to certain critical [55] values.
Diagonalizing M turns this into a problem involving its eigen-
values λi (i ¼ 1…N) at a cost of introducing a van der Monde
determinant J ¼ Q

i<jðλ2i − λ2jÞ2 for the Jacobian. The effective
Dyson gas problem for the λ2i can be thought of as existing on the
positive real line, with a wall at zero. The constant Γ in Eq. (9) can
be thought of as arising from the coefficient of a logarithmic term
in the potential of the model (see, e.g., Ref. [56]), and as such,
results in an extra factor λ2Γi in the effective integration measure
over the ith eigenvalue, giving

Q
i λ

2Γþ1
i dλi. With the factor J

included, the model is seen to be in the ð2Γþ 1; 2Þ class in the
ðα; βÞ Altland-Zirnbauer classification of matrix ensembles,
defined for α ¼ 0, 1, 2. Actually, Γ can be more general integers
or half-integers than just these values.
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considered in this paper, and the two JT supergravity
models discussed here will be labeled (2,2) and (0,2).
A particular (say, themth) minimal model can be studied

by setting all the tk’s to zero except for k ¼ m. As discussed
in the previous two papers [3,4], the m ¼ 1 case in
particular is important, as it models the low-energy tail
of the eigenvalue distribution very well. To get the full
behavior, all of the tk’s must be turned on in a particular
combination. For example, in the case of JT supergravity,
the combination (derived in Ref. [4]) is

tk ¼
π2k

ðk!Þ2 : ð13Þ

So, all the infinite models are turned on, and the string
equation becomes a highly complicated object. But the
purpose of this paper is to show that physics can be readily
extracted nonetheless.
Here is the reason why. First, look at the disc level. The

string equation is expression (9) with the three parts with ℏ2

in front of them removed, and the solution for u0ðxÞ comes
in two branches. Either u0ðxÞ ¼ 0, or

R ¼
X∞
k¼1

tkuk0 þ x ¼ 0; ð14Þ

corresponding to the asymptotics given in Eq. (12). This
equation has u0ðxÞ ¼ 0 at x ¼ 0, and so the two branches
join at x ¼ 0. For the second branch, the x < 0 regime,
the combination [Eq. (13)] of tk ’s amounts to fðu0Þ ¼
πI1ð2π ffiffiffiffiffi

u0
p Þ= ffiffiffiffiffi

u0
p

in Eq. (8), yielding the part of the
spectral density expanded in positive powers of E. The
simple E−1

2 part comes from the u0 ¼ 0 behavior.
Integrating fðu0Þ with respect to u0, or simply by looking
at Eq. (14), the explicit potential that gives JT supergravity
on the disc is given by the equation

x ¼ 1 − I0ð2π
ffiffiffiffiffi
u0

p Þ; ð15Þ
where I0ðsÞ is the zeroth modified Bessel function of s.
This is a remarkably simple form.
The issue of tractability becomes the simple issue of how

well this potential can be approximated by truncating to a
finite number of tk ’s. The answer boils down to what
maximum energy scale E one wants to know the spectrum
up to, and to what accuracy. As an example, the full
classical potential [Eq. (15)] is plotted in Fig. 5 alongside
two truncations.
The first truncation contains just t1 and t2:

x ¼ −π2u0 −
1

4
π4u20; ð16Þ

and it is clear that it is a good approximation for energies up
to approximately E ∼ 0.1, after which it begins to deviate
considerably. The next example truncation adds t3 and t4:

x ¼ −π2u0 −
1

4
π4u20 −

1

36
π6u30 −

1

576
π8u40; ð17Þ

and for energies up to order E ∼ 0.5 it serves rather well.
Further improvements come by adding higher orders.
The next issue to appreciate is how much the solution

changes when all the nonperturbative corrections are
included. For all k, a shallow well can develop in the central
region (slightly to the right of x ¼ 0). Crucially, moving
away from that region, the deviation of the solution from the
disc-level behavior rapidly dwindles, as it matches on to the
asymptotic behavior. The same is true for the coupled
solution. Moreover, as can be seen from Eq. (13), the form
of the tk as k grows is such that good approximations at the
disc level can be found by adding only a small number of
minimal models, for a given needed accuracy. For larger E’s,
the solution becomes hard to distinguish from the classical
result, and in that case the exact classical potential can be
used, to a good approximation.
The highest truncation levels chosen for the purposes of

this paper were to keep all the minimal models up to k ¼ 6
(this section) and k ¼ 7 (for Sec. VI), although very good
results were obtained for lower-order truncations too.
Since R7½k� has the 12th-order derivative of uðxÞ in it,
the string equation (9) is a 14th-order differential equation.
(It is 12th-order for the k ¼ 6 truncation.) In general, it is
easier to take a derivative of the string equation, whereupon
an overall factor ofR can be divided out, reducing some of
the nonlinearity somewhat, at the expense of an increase
in the order. For the boundary conditions in question, a
15th- (or 13th-) order differential equation is not too hard to
solve numerically, with care. Some suggestions and notes
are given in Sec. I of Appendix B, for those who wish to
carry out their own computations using this framework.

0

FIG. 5. The complete classical potential for JT supergravity
(solid line). The uppermost dotted line is a truncation up to t2,
while the lower dotted line is a truncation up to t4.
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Part of the full nonperturbative potential uðxÞ for the
truncation to k ¼ 6 is displayed in Fig. 6.
This is for the case Γ ¼ þ 1

2
—i.e., the (2,2) JT super-

gravity. (It was solved between x ¼ −200 and x ¼ þ200.)
Notice that it approaches the classical solution and agrees
with it rather well up to (and beyond, it turns out) E ∼ 1.3,
and so the full solution, out to beyond the x ≃ −100 shown,
can be used to capture the spectrum of (2,2) JT supergravity

with good accuracy (see more in Sec. II of Appendix B on
how to do this). It is (relatively) easy to do better, if desired,
but little visible change was noticed in going to higher
orders, in exchange for accessing only a slightly larger
maximum energy.
Figure 7 shows the solution for Γ ¼ − 1

2
, which will be

used to study the properties of the (0,2) JT supergravity.
This solution has a well in the interior (as is quite typical

of these solutions), and so slightly more rapid changes take
place there. Rather than use numerical methods to solve
for this directly (which are inevitably more sensitive to
error in this case), a handy solution-generating technique
derived in Ref. [57] was used,6 that allowed it to be
generated from the Γ ¼ þ 1

2
solution already found. See

Sec. I of Appendix B for more on this.

IV. THE SPECTRAL DENSITY

A. General remarks

The next step is to solve the full spectral problem for
the Hamiltonian H, given the potential uðxÞ found in the
previous section by solving the (truncated) string equation.
The relation between the spectrum ofH and the JT partition
function is as follows: From the minimal string perspective,
the JT (super)gravity partition function is simply [5,12] the
expectation value of a “macroscopic loop” of length β. The
technology for working this out was derived long ago in
Ref. [46]. (Reference [44] unpacks the formalism in a
useful review.) It is the trace of the exponentiatedH, with a
projection P inserted:

ZðβÞ ¼ Trðe−βHPÞ; ð18Þ

where the operator P ≡ R
μ
−∞ dxjxihxj, and the upper limit μ

will be discussed shortly. Inserting a complete set of states

Z
dψ jψihψ j ¼ 1 ð19Þ

yields

ZðβÞ ¼
Z

μ

−∞
dxhxje−βHjxi

¼
Z

μ

−∞
dx

Z
dψhxje−βHjψihψ jxi

¼
Z

μ

−∞
dx

Z
dψEhxjψEihψEjxie−βE

¼
Z

dEe−βEρðEÞ; ð20Þ

FIG. 6. The Γ ¼ þ 1
2
solution (solid line) of the string equation

for truncation up to t6. The inset shows a closeup of the smooth
transitional region in the interior. For comparison, the full
classical solution line is shown too (dotted line).

FIG. 7. The Γ ¼ − 1
2
solution (solid line) of the string equation

for truncation up to t6. The inset shows the smooth well that
developed in the interior. For comparison, the full classical
solution is shown too (dotted line).

6It is inherited from the rather rich underlying Korteweg–
de Vries (KdV) hierarchy integrable structure that underpins this
entire formalism.
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where

ρðEÞ ¼
Z

μ

−∞
ψðx; EÞψ�ðx; EÞdx ð21Þ

is the spectral density.
To understand the upper limit μ, return to the leading-

order expression for the density given in Eq. (8), and
change variables to x. The solid black line in Fig. 5 is a
reminder of the behavior of u0ðxÞ. The part of the integral
where u0ðxÞ ¼ 0 begins at x ¼ 0 and extends to positive x
to some value denoted μ, while (at a given E) the lowest
value for x is set by the turning point where E ¼ uðxÞ, at a
position denoted −jx0j, and so

ρ0ðEÞ ¼
1

πℏ

Z
μ

−jx0j

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0ðxÞ

p : ð22Þ

In the full quantum expression [Eq. (21)], there are
contributions to the spectral density from the whole
integration range down to x ¼ −∞. Intuitively, this is
because wave functions penetrate to the left beyond the
classical turning point E ¼ uðxÞ. [Often, in the classical
expression (22), the lower limit is also written as x ¼ −∞
with the understanding that only the real part of the
integral contributes to ρ0.]

7 The role of μ becomes clear
from focusing on just the contribution from the u0ðxÞ ¼ 0

part in Eq. (22). It adds μ=ðπℏ ffiffiffiffi
E

p Þ to the classical spectral
density. Physically, μ controls how much the classical
spectral density is “piled up” against the natural wall at
E ¼ 0 that stops the energies in the complex matrix
models from going negative (see footnote 5). Vanishing
μ corresponds to just touching the wall. In the normali-
zation of Eq. (5) (without the

ffiffiffi
2

p
), the value of μ is 1, and

this will be used for much of the rest of this paper.
(Reference [4] uses the value μ ¼ 2.) However, it is useful
for later to write a more general classical spectral density
with a different μ:

ρSJT0 ðE; μÞ ¼ 1

πℏ

�
coshð2π ffiffiffiffi

E
p Þffiffiffiffi

E
p þ μ − 1ffiffiffiffi

E
p

�
: ð23Þ

B. Computation

Now to the matter of computing the full spectral density
[Eq. (21)]. Just as in Refs. [3,4], a matrix Numerov method
[58] was used to solve for the spectrum ofH. Conceptually,
it is a simple problem of finding eigenvalues and eigen-
functions for a Schrödinger operator in 1D. The wave
functions are free and oscillatory to the far right (x > 0);
begin to feel the presence of the potential as they move
further into the interior (it starts as a 1=x2 dependence); and
then once they hit the potential, there is an exponential
decay to the left (x < 0). As a guide to extracting them with
good accuracy, some extra suggestions and notes for
interested readers are given in Sec. II of Appendix B.
The same normalization method as the one used in Ref. [3]
was used for the resulting eigenfunctions. The key point
explained there is that in the far x > 0 region, wave
functions are known to asymptote to a simple form
involving the Bessel function of order Γ, where the
normalization can be analytically chosen to yield the
correct contribution to the disc-level spectral density.
The outcome of the numerical spectrum solving was

approximately 1000 accurate normalized wave functions
and their energies, for use in constructing the density in this
section, and the spectral form factor in the next. Using
them, the spectral density can be constructed using a simple
trapezoidal integration to implement Eq. (21), and the result
(for μ ¼ 1) is shown in Fig. 2 for Γ ¼ 1

2
and in Fig. 8 for

Γ ¼ − 1
2
. Plotted alongside the (dense) line of dots (the

computed spectral data) is a dashed line showing the disc-
level spectral density. Strikingly, the 1=

ffiffiffiffi
E

p
divergence

present at disc level is erased entirely by nonperturbative
effects in the Γ ¼ 1

2
(2,2) case, but not in the Γ ¼ − 1

2
(0,2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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FIG. 8. The full spectral density (made out of red dots),
computed using the methods of this paper, for the (0,2) model
of JT supergravity. The dashed blue line is the disc-level result
of Eq. (5). Here, ℏ ¼ 1. The companion result for the (2,2) model
is in Fig. 2.

7Of course, the integrand of Eq. (21) is not written in terms of
E and the full uðxÞ, but in terms of the wave functions. The
precise connection between the two expressions is via the
diagonal of the resolvent, ðH − EÞ−1, ofH, denoted R̂ðxÞ. It can
be built out of ψðx; EÞψ�ðx; EÞ, using standard Green function
methods. Gel’fand and Dikii [54] derived an equation for R̂ðxÞ
which is 4ðuðxÞ − EÞR̂2 − 2R̂R̂00 þ ðR̂0Þ2 ¼ 1. The leading-order
solution comes again from dropping derivatives, and is
R̂ðxÞ ¼ �ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uðxÞ − E
p Þ−1. In the normalization of this paper,

ρ0 ¼ ð2=πℏÞIm R
R̂ðxÞdx, yielding the form in Eq. (22).
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case. As discussed in Refs. [4,6], for Γ ¼ � 1
2
, there are no

perturbative corrections to the spectral density beyond the
disc, so all the differences here are due to nonperturbative
physics, which makes these JT supergravity cases particu-
larly interesting to study when investigating the results
of nonperturbative physics. This stark difference will be
reflected in comparisons of the spectral form factor, to be
studied in the next section.
Satisfyingly, what have appeared here for the full (2,2)

and (0,2) cases are actually grown-up versions of what was
discussed for two baby (Bessel) models in Ref. [6], and so
this constitutes a nice consistency check of the methods
of this paper. The Bessel special cases are models of the
very low-energy tip of the spectral density—the part that
(classically) pushes up against the E ¼ 0 wall, as men-
tioned earlier. Generalizing to include arbitrary positive μ
(see also Refs. [3,4]), the full nonperturbative Bessel
spectral density is (after a change of conventions from
those papers)

ρðEÞ ¼ μ

πℏ
ffiffiffiffi
E

p þ sin ð− π
2
αþ 2μ

ffiffiffi
E

p
ℏ Þ

2πE
; ð24Þ

where (as a reminder) α ¼ 2Γþ 1 takes the values 0
and 2. The leading part is the disc contribution, and all
other perturbative contributions vanish. The oscillating
term is the full nonperturbative contribution. At E ¼ 0

for α ¼ 2 (Γ ¼ 1
2
), there is the aforementioned cancel-

lation between the divergent disc contribution and the
E → 0 piece of the oscillating nonperturbative part.
This is what is now seen to be present (as it ought to
be) in the full JT supergravity spectral density com-
puted explicitly above.

C. A special formula, and a tale of instantons

Actually, it is possible to go considerably further than the
Bessel tail comparison. The structure of the Bessel models
above (along with various other technical features of the
matrix model recursion relations) led Stanford and Witten
to suggest (see Appendix E of Ref. [6]) that more generally,
the JT supergravity spectral density for the (0,2) and (2,2)
cases should closely approximate the form8

ρðEÞ ≈ ρ0ðEÞ þ
sin ð− π

2
αþ π

R
E
0 ρ0ðE0ÞdE0Þ

2πE
: ð25Þ

(Note that their conventions were adapted to match those
of the current paper.) Again, the perturbative terms beyond
the disc vanish. The argument of the sinusoidal non-
perturbative piece is determined in terms of the disc

contribution.9 Crucially, they note that this does not include
possible instanton corrections, nonperturbative physics of a
form not accounted for by the sinusoidal modulation (hence
the use of the ≈ sign in the above).
While the expression above was written for the specific

value μ ¼ 1 (μ is not a variable parameter in Ref. [6]), other
values of μ [see below Eq. (21) for its explanation] are quite
readily incorporated by this form. This is already obvious
for the simple Bessel prototype [Eq. (24)], but further
evidence comes from inserting into it the expression (23)
for ρ0ðE; μÞ written earlier for the disc-level JT super-
gravity density for other μ values. Plotting this analytical
result against the numerical results for the spectral density
obtained using this paper’s methods yields a remarkable
agreement, as shown in Figs. 9 and 10 for Γ ¼ 1

2
and

Γ ¼ − 1
2
, for the values μ ¼ 1, 5, and 10. As a reminder, the

red lines are each made of ∼1800 points individually
computed using the truncation and numerical methods
outlined, while the blue dots are samples of the analytical
formula [Eq. (25)]. It is very striking how well they agree.
The areas of disagreement suggest interesting physics,

in fact. For smaller μ (e.g., see the case of μ ¼ 1 in each
figure), it is easy to see disagreement. It is especially quite
visible at smaller energies (although at E ¼ 0 they agree, as
they must, since this is covered by the Bessel cases above).
The clear pattern in the discrepancy is suggestive of physics
and not numerical inaccuracies.
For example, the fact that the disagreement rapidly

disappears as μ increases is striking. Nothing about the
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FIG. 9. Comparison of the full spectral density for the (2,2)
model of JT supergravity with Eq. (25) for the leading form (dark
blue dots). The dashed line is the disc-level result [Eq. (23)]. The
cases μ ¼ 1, 5, and 10 are shown (lower to upper). Here, ℏ ¼ 1.

8The author thanks Douglas Stanford for asking a helpful
question about this issue after the first version of this manuscript
appeared.

9In fact, it is easy to guess generalizations of this formula for
other half-integer Γ’s, which seem to give sensible physics using
the present methods. It would be interesting to test them.
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numerical methods should show this sort of systematic
dependence. As a further example, the form of the disagree-
ment suggests that there is a change in the amplitude of
the sinusoidal modulation, again a pattern that is hard to
reproduce with mere numerical systematics. A natural
guess is that there are further multiplicative factors in
the nonperturbative parts that are not present in the analytic
formula. They must be small, and of an instanton form (as
already anticipated in remarks in Ref. [6]).
In the kth minimal model, the height of the effective

potential barrier for one eigenvalue in the background of
all the others yields the action of the instanton effects [59]
(they are “ZZ-branes” in the modern parlance [60]).
Alternatively, it can be computed using a WKB analysis
of the string equation itself. This was all worked out long
ago for the complex matrix models in Ref. [52] (see
Ref. [61] for a review and more contemporary presenta-
tion), and the dependence of the action on μ and ℏ
is ð 4k

2kþ1
Þμ1þ 1

2k=ℏ. Therefore, a dependence expð−2μ=ℏÞ
should be expected for instanton corrections to JT super-
gravity constructed out of minimal models in the manner of
this paper.
To test this, a rough estimate of the dependence was

made by measuring the size of the deviations of the type
seen in Figs. 9 and 10 for some sample cases, as μ is varied
from 0 to 5. The deviations fall rapidly in that range (as is
evident from the figures), and a logarithmic plot of them
against μ yields a straight line of negative unit slope to good
(better than 1%) accuracy. While this can be made more
precise, it is already a strong indication that the instanton
effects of the expected form are present and accounted for.
It will be interesting to explore this further, but this will be
left for later work.

D. Going to weak coupling

Before moving on, it is worth showing the effect of going
to weak coupling by reducing ℏ. The spectra shown so far
are for ℏ ¼ 1, and working in this regime has the advantage
of making much of the nonperturbative physics readily
visible. Nevertheless, it is useful to be able to gain access to
weaker coupling, not the least because certain dual systems
of interest [such as SYK-type models, or large black holes
(where S0 is large)] may be in that regime.
It is possible to reduce the value of ℏ, but it is at the

expense of not being able to access as high energies in the
spectrum for a given truncation, unless there is a compen-
sation in terms of increased computational effort (working
on a finer grid and producing more wave functions).
Additionally, solving the string equation takes more care,
as already mentioned, because the derivatives are more
in play. Nevertheless, progress is possible. For example,
dialing down to, e.g., ℏ ¼ 1

5
, the string equations can be

coaxed to produce the solutions shown (just as close-ups,
for brevity) in Fig. 11. These should be compared to what
was shown in the insets of Figs. 6 and 7. For the (2,2) case,
the curve turns the corner more sharply (showing the
increased role of the derivatives), while for the (0,2) case,
the well is far deeper and narrower (these two features come
together to continue to ensure there are no bound states).
It is easy to imagine how these developments continue in

order to get to the classical limit ℏ → 0 (the red dotted line
in the figures). The (2,2) curve turns the corner ever more
sharply, and for the (0,2) curve, the well deepens and
narrows and eventually is entirely squeezed away.
The techniques already described in the previous two

sections can be carried out to study the spectral density, and
the result in Fig. 12 displays the results (red dots) for the
Γ ¼ 1

2
or (2,2) case, for the cases μ ¼ 1 and 5. (The μ ¼ 10

case, which rises to 508 vertically, was omitted for clarity.)
Again, the blue dots are samples of the analytic formula (25)
with Eq. (23) input for ρ0ðE; μÞ (now ℏ ¼ 1

5
is inserted),

showing again how well this procedure works. Notice that,
in accordance with the fact that the coupling is weaker, the

FIG. 11. The solid lines show close-ups of the Γ ¼ 1
2
or (2,2)

solution (left) and the Γ ¼ − 1
2
or (0,2) solution (right) of the

string equation for truncation up to t6, for ℏ ¼ 1
5
. For comparison,

the full classical solution is shown too (dotted lines).

0 0.1 0.2 0.3 0.4 0.5 0.6

E

0

5

10

15

20

25

30
(E

)

FIG. 10. Comparison of the full spectral density for the (0,2)
model of JT supergravity with Eq. (25) for the leading form (dark
blue dots). The dashed line is the disc-level result [Eq. (23)]. The
cases μ ¼ 1, 5, and 10 are shown (lower to upper). Here, ℏ ¼ 1.
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expð−μ=ℏÞ instanton effects described in the previous
section, which would appear as deviations of the red curves
from the blue dots, are too small to seen here.
Comparing to the ℏ ¼ 1 curves in Fig. 9, the quantum

undulations are smaller, for generic E, and the curves
stray less from the classical curve, beginning marked
deviations only at lower energies compared to the ℏ ¼ 1
situation, until the curve falls quickly to zero. This is as it
should be.

V. THE SPECTRAL FORM FACTOR

A. General remarks

As mentioned in the brief review of Sec. II, the spectral
form factor is derived from the two-point function of ZðβÞ.
This has two parts, a disconnected piece hZðβÞihZðβ0Þi and
a connected piece hZðβÞZðβ0Þi. In the old matrix model
language, the connected piece is the connected correlator
of two “macroscopic loops,” and this is readily written
down as [44,46]

hZðβÞZðβ0Þi ¼ Trðe−βHð1−PÞe−β0HPÞ
¼ Trðe−ðβþβ0ÞHÞ−Trðe−βHPe−β0HPÞ

¼ Zðβþ β0Þ−
Z

dE
Z

dE0ρðE;E0Þρ�ðE0;EÞ;

ð26Þ

where P is discussed below Eq. (18) and

ρðE;E0Þ ¼
Z

μ

−∞
dx ψ�ðx; EÞψðx; E0Þ: ð27Þ

The quantity μ, discussed in the previous section, will be set
to unity henceforth, corresponding to having the disc-level
spectral density given in Eq. (5) (without the overall

ffiffiffi
2

p
).

B. A phase transition

Set β ¼ β0 for a while. Generically, the disconnected part
(corresponding to two black holes) and the connected part
(a wormhole) are worth studying in their own right as
distinct sectors of the quantum gravity that compete for
dominance [62] as a function of β. The disconnected part,
being the square of the partition function, rapidly decreases
with increasing β, while the connected part increases. At
some point βcr, there is a transition, and the connected
diagram becomes more dominant. This is also true in the
complete (not just perturbative) theory discussed here. This
is all nicely under control in the current definitions of JT
supergravity. The spectrum has been computed in the
previous section, and so all the elements in Eq. (26) are
readily computable to the desired accuracy. Figure 13
shows a plot of the (log10 of the) connected and discon-
nected pieces—with all perturbative and nonperturbative
contributions included—as a function of β, for the (2,2) JT
supergravity case, showing the transition at βcr ¼ 13.56. A
similar computation (yielding a similar graph, omitted)
shows that βcr ¼ 28.30 for the (0,2) JT supergravity case.
Notably, for the (0,2) case, the amplitudes are over an

order of magnitude larger. This is a striking effect attrib-
utable entirely to nonperturbative effects. The (2,2) JT
supergravity has, as mentioned in the previous Sec. IV,
nonperturbative effects that cancel the 1=

ffiffiffiffi
E

p
behavior

at low energy, coming from the leading disc amplitude.
The (0,2) version does not cancel this away, and so while
for larger E the two models’ spectra are roughly similar

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

20

40

60

80

100

120

140

FIG. 12. Two examples (μ ¼ 1, lower; μ ¼ 5, upper) of the full
spectral density for the (2,2) model of JT supergravity, for ℏ
reduced to 1

5
. The (blue) dots are points from Eq. (25). In each

case, the dashed line is the disc result of Eq. (23). Cf. the ℏ ¼ 1
cases of Fig. 9.
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FIG. 13. The disconnected (starting higher at the left) vs the
connected (lower) two-point function of the partition function
as a function of β at ℏ ¼ 1, showing a phase transition at
βcr ≃ 13.56.
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(see Figs. 2 and 8), there is an enhancement at low E that
means much larger contributions to the partition function
for any fixed β. This marked difference between the
nonperturbative physics will make a major appearance in
the temporal behavior of the spectral form factor too,
studied next.

C. Time dependence

The above computation serves as a useful guide for what
to expect for the spectral form factor, which tracks the
correlation function over time. This is done by setting
β → β þ it and β0 → β − it, with β fixed, studying the
dependence on t. The fixed β can be above or below βcr.
The disconnected part will start out as the squared partition
function and then decrease with t. This is the “slope”
behavior of the spectral form factor. On the other hand,
looking at Eq. (26), it can be seen that the connected part
has a t-independent part, Zð2βÞ, from which is subtracted a
positive piece which gets small at large t, with significant
contributions only from energies that are close to each
other. The value of Zð2βÞ therefore sets the height of the
universal “plateau” feature, and the approach to it, the
“ramp,” has its size set by how rapidly the energy
correlations die away at large t. The “dip” region is formed
by the process of handing over from the decreasing
disconnected part to the increasing connected part. The
formalism here allows, using the complete package of
almost 1000 good wave functions and energies, for this
all to be computed to good accuracy for JT supergravity
(and for a nonperturbatively well-behaved definition
of JT gravity in Sec. VI) for the first time. Using again
the JT supergravity example, Fig. 14 shows the discon-
nected contribution to the spectral density function, for
β ¼ 50 > βcr, with log10 axes.

The slope behavior is quite evident. Since the axes are
logarithmic, it is easy to see from the figure that the slope of
it is roughly −3, suggesting a falloff of ∼t−3. This might
seem surprising, since it is similar to the perturbative falloff
rate for ordinary JT gravity (see Ref. [31]). The reason for
this faster rate is clear, and again attributable to non-
perturbative physics. The slope’s falloff is controlled by the
behavior of the end point of the spectral density. While at
the disc level for JT supergravity ρðEÞ ∼ 1=

ffiffiffiffi
E

p
, producing

a t−1 falloff [63], the fact that in the (2,2) case non-
perturbative corrections remove this 1=

ffiffiffiffi
E

p
behavior results

in the faster falloff more usually associated with the
ordinary JT case (and Hermitian matrix models). There
are far fewer states in the vicinity of the end point. This
reasoning predicts that for the (0,2) supergravity, the slope
should be closer to a t−1 falloff. Indeed, this is clear from
the behavior of the disconnected piece for (0,2) super-
gravity, shown in Fig. 15, for β ¼ 50. There, the slope of
the linear part shows t−1 falloff. Continuing in line with
these expectations is a computation of the same quantity for
the ℏ ¼ 1=5 case mentioned earlier. The spectrum was
shown in Fig. 12, and from there it is natural to guess that
the falloff would be even faster, since the nonperturbative
effects have scooped away even more states near the end
point. A check showed that this is indeed correct, although
another figure will not be presented to display the result, to
save repetition.
Moving to the connected contribution’s time depend-

ence, the (2,2) case is shown in Fig. 16 for the same value of
β ¼ 50. The ramp and plateau structures, and the transition
between them, are visible. Strikingly, the rise to the plateau
is very short lived, the ramp regime rising only a small (on
the logarithmic scale) amount before transitioning to the
plateau.
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FIG. 14. The disconnected part of the (2,2) JT supergravity
spectral density function vs t, at β ¼ 50 and ℏ ¼ 1, showing the
classic slope feature.
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FIG. 15. The disconnected part of the (0,2) JT supergravity
spectral density function vs t, at β ¼ 50 and ℏ ¼ 1.
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The beginning shape of the ramp is already anticipated in
the perturbative answer, ∼β−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ t2

p
, long known for

two-macroscopic-loop correlators [44] (appropriately con-
tinued to yield the t dependence [5]), but there are strong
nonperturbative corrections such that before the long-time
linear part can manifest, the other effects turn the ramp over
into the plateau.
A similar story is told, initially, by the ramp shape seen

for the (0,2) case, shown in Fig. 17 (again for β ¼ 50).
However, there is a new feature. The rise is indeed slow, but
it is remarkably slow. After almost 2 orders of magnitude
more time has elapsed, as compared to the (2,2) case, the
saturation to the plateau has still not quite completed.
This is a rather novel feature of this case, and worth

further investigation. The origin of this physics is most

likely again to be attributed to the peculiar pileup of states
in the vicinity of E ¼ 0 that this model has. There is an
endless supply of closely spaced low-lying states contrib-
uting to the part of the form factor that subtracts from the
saturation value Zð2βÞ [see Eq. (26)]. At longer and longer
times, there are even more low-lying states to contribute,
and still more closely spaced, maintaining their effect of
slowing the saturation.
Turning back to the ramp itself, note that this was [for

both (2,2) and (0,2)] for the case ℏ ¼ 1. At smaller values
of ℏ, there is more time for the ramp to develop, with an
increased rate of rise before the turnover. Note, however,
that it is only for extremely small ℏ that the linear behavior
of the ramp has a chance to appear.
There are two important lessons here. The first is that

associating the ramp with linear behavior (as is sometimes
done in the literature) is maybe not the most accurate
descriptor. The second is that nonperturbative effects can
enhance the appearance of the ramp in the JT supergravity
case (in the full spectral form factor made by taking the sum
of disconnected and connected parts), even though pertur-
bative expectations might have suggested a reduction [63].
The potential reduction of the ramp feature is based on the
idea that a slow t−1 rate of fall might not give the ramp time
to develop before the plateau sets in. In fact, nonperturba-
tive effects are seen here to produce a rapid fall (sometimes
faster even than the perturbative bosonic t−3), giving plenty
of time to develop a sharp “dip”, a clear ramp, and a smart
turnover into the plateau for the (2,2) case.
The sum of the connected and disconnected pieces gives,

for (2,2) supergravity, the classic saxophone shape10 known
from studying spectral density functions in a wide range of
contexts. It is displayed in Fig. 18. This is for ℏ ¼ 1, and
the case of ℏ ¼ 1=5 was already presented in Fig. 1, at
β ¼ 35. The latter, being at smaller β and ℏ, is larger overall
and develops a wider variation. The linear part of the
ramp would be even more visible for lower values of these
parameters.
For (0,2) JT supergravity, Fig. 19 shows the resulting

ℏ ¼ 1 full spectral form factor, again at β ¼ 50. It is, as is to
be anticipated, almost 2 orders of magnitude larger than for
the (2,2) case, because of nonperturbative effects (already
discussed). There is (on the logarithmic scale) a ramp-to-
plateau transition [although it is, from the discussion above,
much slower than for (2,2)]. Also visible is the slower
slope-to-dip time (due to its slower decay rate), as already
discussed.

D. Temperature dependence

It is of interest to see how the spectral form factor evolves
as a function of temperature. The results for a series of
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FIG. 16. The connected part of the (2,2) JT supergravity
spectral density function vs t, at β ¼ 50 and ℏ ¼ 1, showing
the classic ramp and plateau features.
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FIG. 17. The connected part of the (0,2) JT supergravity
spectral density function vs t, at β ¼ 50 and ℏ ¼ 1.

10The shape deserves a name, and saxophone seems a good
choice, to balance out the many uses of the name “trumpet” in
other aspects of JT gravity.
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increasing temperatures, β ¼ 50, 46, 42, 38, 34, and 30,
are presented for the disconnected part of the spectral
density in Fig. 20.
The highest-temperature curve is at the top. Strikingly,

the curves soon merge into each other and follow the falloff
already discussed, regardless of the starting temperature.
In Fig. 21, there is a series of the full spectral density,
for the same set of temperatures. Crucially, for comparison
purposes, the curves are all uniformly scaled (on the
vertical axis) to have the same initial height as the high-
est-temperature (β ¼ 30) case, which is the lowermost
curve. Therefore, in this figure, relative slopes should
not be taken literally. This scaling allows for ready access
to some of the more meaningful comparisons to be made,
such as the relative sizes of the curves: Higher-temperature
(smaller β) gives a vertically larger curve: Higher temper-
ature “shakes up” the system more, resulting in a wider

amplitude of deviation from the initial value before it settles
down. Interestingly though, the dip time increases slightly
with higher temperature, although not dramatically. The
rapid ramp time also changes very slowly with β.
Heading toward smaller (but still moderate) values of β

(in the region of β ≃ βcrit), there are small modulations in
both the disconnected and connected parts of the form
factors, accumulating (in the latter) near the crossover from
ramp to plateau. The combined result of these higher-
temperature structures is that there is a damped wobble as
the ramp merges into the plateau. An example of the full
spectral form factor showing this feature is given in Fig. 22
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FIG. 18. The full spectral form factor for the (2,2) model of JT
supergravity at β ¼ 50, ℏ ¼ 1. (The case of ℏ ¼ 1=5 is in Fig. 1).
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FIG. 19. The full spectral form factor for (0,2) JT supergravity.
Here, β ¼ 50 and ℏ ¼ 1. Cf. the (2,2) case in Fig. 18.
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FIG. 20. A series showing the evolution, with β, of the
disconnected part of the spectral form factor, for (2,2) JT
supergravity. Here ℏ ¼ 1.
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FIG. 21. A series showing the evolution, with β, of the full
spectral form factor, for (2,2) JT supergravity. Here, ℏ ¼ 1. For
comparison, the curves have been rescaled to start out at the same
height as the highest-temperature curve.
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for the case β ¼ 14. Whether this is interesting physics or
not is not clear.11 The value of the temperature at which this
can be seen seems comfortably below the highest energy
allowed by the truncation.
Some other fascinating structures become apparent in the

very high-temperature regime. How useful they are for the
physics in question is debatable, since this whole context
(the Schwarzian, the connection to black holes, SYK, etc.)
is in a low-energy limit. Moreover, high temperature also
begins to go beyond the energies for which the truncation
of the string equation remains reliable. However, it is
interesting to observe the features anyway, and could well
be instructive for understanding JT models with a cutoff
[65–68]. Looking at the disconnected part of the spectral
form factor for the (2,2) supergravity case, a series of dips
evolve, becoming more pronounced toward higher temper-
ature (smaller β). See Fig. 23.
They have a clear pattern and structure and are consistent

with observations made for large-N random matrix systems
(even without double scaling). (They are also analytically
obtainable in the exact Airy example reviewed in
Appendix A.)
In fact, the disconnected function is beginning to

resemble the form J1ðtÞ2=t2 that has been derived analyti-
cally for the infinite-temperature case. After taking the
logarithm, the zeroes of the Bessel function J1 become the
dips in the logarithmic plot. It would be interesting to show
that this analytical form (or a variation thereof) emerges
in this JT supergravity context as well. Following the

numerics to smaller β seems to confirm this (a zero in the
connected function also appears, in some examples),
although eventually numerical inaccuracies begin to over-
whelm the results, presumably because the correct physics
needs to include contributions from energies that lie beyond
the cutoff on the spectrum up to which the truncated
equations are valid.

VI. NONPERTURBATIVE JT GRAVITY

This section presents results analogous to those shown
in earlier sections for the nonperturbative completion of
ordinary JT gravity presented in Ref. [3]. It might seem odd
to have studied the JT supergravity examples first, leaving
this case for last, but there is good reason. The non-
perturbative physics of this case is more subtle. JT gravity
was shown, in Ref. [5], to be perturbatively (in the
topological expansion) equivalent to a double-scaled
Hermitian matrix model—i.e., classified in the Gaussian
unitary ensemble (β ¼ 2 in the Dyson-Wigner series). On
general grounds, such double-scaled Hermitian matrix
models are known to sometimes have nonperturbative
(in topology) instabilities, and so it is possible that the
JT gravity definition inherits them. More specifically,
thinking about the model in terms of constituent minimal
models, as in Sec. III, it is made up of an interpolating
family of minimal models that have the x → −∞ boundary
condition in Eq. (12) in both directions, and instead solve
the string equation R ¼ 0. [Recall that R is given in
Eq. (10)]. These are the ð2k − 1; 2Þ bosonic minimal string
models. For even k, these models are nonperturbatively
unstable, as has been known for some time [46,69–71].
From the point of view of the spectrum, all the models,
when nonperturbative effects are taken into account, have
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FIG. 22. The full spectral form factor at β ¼ 14, ℏ ¼ 1, for
(2,2) JT supergravity. A (relatively) high-temperature feature
appears near the crossover from ramp to plateau. See text for
discussion.
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FIG. 23. Disconnected part of the spectral form factor at β ¼ 9,
ℏ ¼ 1, for (2,2) JT supergravity. The growing dips are consistent
with a pattern of zeros developing at infinite temperature.

11It is reminiscent of features of an interesting exact expression
derived in Ref. [64] in the context of an SYK model with source
terms.
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contributions from arbitrarily negative energy sectors. Even
though exponentially suppressed, for even k, the effective
potential turns downward for states at these energies,
signaling the system’s wish to tunnel to an entirely new
solution that is quite different from the one around which
perturbation theory was developed. From the perspective of
this paper (solving string equations nonperturbatively), this
means that for each of those (k-even) models, there simply
are no real smooth solutions of the kth equation with those
conditions [46,70,72,73]. Since JT gravity is made up of,
in equal measure, even and odd k models, this strongly
suggests that it inherits these problems, as already noted in
Ref. [5].12

The route that Ref. [3] took to supply a nonperturbative
definition of JT gravity was to embed it into a larger
problem. The minimal models used in previous sections for
JT supergravity, also indexed by k, have the same x → −∞
boundary condition as the bosonic minimal models, and in
fact when Γ ¼ 0, they have identical perturbation theory to
solutions to the differential equation (9). Put differently,
they solve R ¼ 0 perturbatively at large −x. This means
that if used to construct a JT gravity model, they will
yield the same physics at high energies E, but yield
different physics at lower energies that is untroubled by
the stability issues. The combination of models needed
(that will give the Schwarzian spectral density [Eq. (4)]) at
high E is as follows:

tk ¼
1

2

π2k−2

k!ðk − 1Þ! : ð28Þ

(This relation was first derived in Ref. [12], but with
different normalization.) In fact, it is possible to integrate
the fðu0Þ that results from this combination to find the
explicit classical potential u0ðxÞ that yields the Schwarzian
density, through

x ¼ −
ffiffiffiffiffi
u0

p
π

I1ð2π ffiffiffiffiffi
u0

p Þ; ð29Þ

the analogue of the case (15) for the JT supergravity
found earlier. Then the uðxÞ for JT gravity is constructed
fully nonperturbatively using Eq. (9) with Γ ¼ 0. This
nonperturbative taming of JT gravity can be explored
extensively along the same lines as was done for the JT

supergravity models. The truncation scheme works sim-
ilarly, and so there is no need to retread the ideas again.
A solution to the string equation [Eq. (9)] with the

bosonic JT combination of minimal models [Eq. (28)] was
found with the first seven models turned on, constituting a
very good truncation where energies up to E ∼ 1.5 can be
trusted. A combination of numerical and analytic methods
was used to find the solution to the 15th-order differential
equation. See Sec. I of Appendix B for some tips on how
this was done. Figure 24 shows the solution, with the
classical (disc-level) potential that gives the JT spectral
density [Eq. (4)], displayed as a dashed line.
Again, there is a small well (not deep enough to support

bound states) in the interior, and then uðxÞ settles to zero at
the right. These are features shared by the JT supergravity
models, as should be expected, since their components
are being used here as a nonperturbative low-energy
“regulator” in a sense, removing the leakage to negative
energy.
The methods of Sec. IV then allow for the spectrum to be

computed. For this definition, μ ¼ 0− is used for the upper
limit in Eq. (21), matching the x < 0 perturbation theory
that builds JT gravity (see the discussion in Ref. [4] for
more discussion about how to efficiently extract perturba-
tion theory using the Gel’fand-Dikii resolvent equation), so
in contrast to the JT supergravity cases, there is no 1=

ffiffiffiffi
E

p
classical contribution to the spectrum. Figure 25 displays,
for the first time, the spectral density of a nonperturbative
completion of JT gravity with all perturbative and non-
perturbative corrections included (up to this energy).
It is clear from the figure that the nonperturbative
ripples have already begun to die away and merge into
the classical smooth region, showing that this truncation
has captured the key physics that is affected by

FIG. 24. The solution (solid line) of the string equation for
truncation up to t7. The inset shows the well that develops in the
interior. The full classical solution is shown too (dotted line).

12An earlier version of this manuscript contained an idea for a
possible evasion of this reasoning. Since individual odd-k
members of the ð2k − 1; 2Þ minimal series are better nonpertur-
batively defined, the idea was that perhaps one could define the
model as an odd-k model (for large k) within which all the lower-
order models are turned on. This was thought to possibly yield
good nonperturbative solutions to the R ¼ 0 differential equa-
tion, as deformations of the known good solutions for odd k. This
does not seem to work.
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nonperturbative contributions. Notice that the spectrum is
naturally bounded below by E ¼ 0, as was already shown
explicitly in preliminary studies in Ref. [3]. Note that
Ref. [3] generalized the construction by turning on the
parameter μ that was discussed in the supergravity context
in Sec. IV. This is straightforward to do, and there were no
additional insights to be gained, and so results are not
presented here. The tail of the resulting distribution, not
surprisingly, resembles the tails already displayed in
Ref. [3], including the interesting feature that nonpertur-
bative effects generate a nonzero ρðE ¼ 0Þ.
Of course, with the spectrum in hand (approximately

1800 normalized wave functions and their energies), the
next natural step is to compute the spectral form factor,

using the methods of Sec. V. The correlator of two
boundaries is readily computed, and the phase transition
where the disconnected part (two black holes) hands over
to the connected part (wormhole) happens at βcr. (A figure
similar to Fig. 13 is omitted here to avoid repetition.)
For β ¼ 50, the disconnected, connected, and combined
spectral form factors are shown in Figs. 26, 27, and 28,
respectively.
The most striking feature overall is in the disconnected

portion of the form factor, controlling the initial slope. As
might be expected from the absence of the 1=

ffiffiffiffi
E

p
low-

energy behavior of the regulating models, the time depend-
ence of the slope is not t−1 [as it is for the (0,2) JT
supergravity], but neither is it the t−3 expected from the
classical low-energy physics to be read off from the β−3=2
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FIG. 25. The full spectral density, for the nonperturbative
completion of JT gravity in Ref. [3]. The dashed blue line is
the disc-level result of Eq. (4).
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FIG. 26. The disconnected part of the JT gravity spectral form
factor vs t, at β ¼ 50 and ℏ ¼ 1, for the nonperturbative scheme
of Ref. [3].
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FIG. 27. The connected part of the JT gravity spectral form
factor vs t, at β ¼ 50 and ℏ ¼ 1, for the nonperturbative scheme
of Ref. [3].
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FIG. 28. The full JT gravity spectral form factor vs t, at β ¼ 50
and ℏ ¼ 1, for the nonperturbative scheme of Ref. [3].
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dependence of the partition function [Eq. (2)]. Rather, it
interpolates between them, and is ∼t−2, to the nearest
integer. From what was learned from the supergravity
cases of the previous section, the origin of this is clear.
The end point of the distribution has a different structure
(see Fig. 25), with some nonzero ρð0Þ at the end. There
are far fewer states than for the (0,2) supergravity case,
but more than for the (2,2) case, and hence the falloff rate
(at least for this value of ℏ) is between that of those
two cases.
Again, as is seen in all the models studied in this paper

(and also the special Airy model recalled in Appendix A),
nonperturbative effects hasten the transition from dip to
ramp to plateau such that the linear part of the classical
contribution to the ramp that emerges at long times simply
does not have time to develop for moderate values of ℏ.

VII. CLOSING REMARKS

The purpose of this paper was to explicitly uncover and
examine the nonperturbative physics for JT gravity and
supergravity that is accessible if they are formulated using
minimal model building blocks. This construction is not a
simple large-k limit of a minimal model, but a more refined
affair involving coupling them together in a particular
combination, as suggested perturbatively in Ref. [12],
and extended to nonperturbative physics in Refs. [3,4].
The principal applications that demonstrated the facility of
the technique were the explicit computation, for the first
time, of the full nonperturbative spectral densities of
various JT gravity and supergravity models, and the use
of these spectral densities to compute the spectral form
factor in each case, showing how the nonperturbative
effects affect the shape (sometimes dramatically) of this
important diagnostic quantity. Having explicit access to the
nonperturbative features in this manner turned out to be
rather instructive, as extensively discussed in the body of
the paper.
Techniques to allow such nonperturbative properties to

be extracted, in a consistent and well-defined scheme (for
generic values of β and ℏ), have not been presented in the
literature before, and it is hoped that these methods and
results will go some way toward helping uncover more of
the fascinating web of interconnections between geometry,
quantum mechanics, gravity, and chaos that seems to be
emerging from these studies.
It is likely that other models of JT gravity can be

“deconstructed” in terms of minimal models in a way
analogous to what was done here, and thereby can be given
a nonperturbative definition, not just in principle, but (as
shown here) in useful accessible terms. It could possibly
also encompass some of the new kinds of matrix model
descriptions of JT-gravity black holes mentioned recently
in Refs. [74,75]. Perhaps the results of explorations along
these lines will be reported soon.
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APPENDIX A: NUMERICAL TESTBED:
THE AIRY MODEL

As a means of sharpening understanding of some of the
key features of the spectral form factor, and for modeling
what kinds of physics can be reliably captured by the
numerical approaches used in the main body of the paper,
this appendix presents a numerical exploration of the
exactly solvable Airy model, which is the double-scaled
limit of the simple Hermitian matrix model with Gaussian
potential, obtained by magnifying the infinitesimal region
at the edge of Wigner’s semicircle [44]. It is the k ¼ 1
model of the ð2k − 1; 2Þ minimal string series, and as such
is also a model of the extreme low-energy tail of the matrix
model of JT gravity in Ref. [5].
In the language of this paper, it comes from using the

simple linear potential uðxÞ ¼ −x in the Hamiltonian
[Eq. (7)], and the resulting equation to solve for the
spectrum is simply (after a change of variables) Airy’s
differential equation. The wave functions for energy E are

ψðE; xÞ ¼ ℏ−2
3Aið−ℏ−2

3ðEþ xÞÞ; ðA1Þ

and the spectral density that results is

ρðEÞ ¼
Z

0

−∞
jψðE;xÞj2dx¼ ℏ−2

3½Ai0ðζÞ2 − ζAiðζÞ2�; ðA2Þ

where ζ ¼ −ℏ−2
3E. See Fig. 29 for a plot of the spectrum,

showing the exponential tail running to negative E. At
large E, the nonperturbative oscillations of the Airy
function die out, leaving the classical (disc) contribution
ρ0ðEÞ ¼ ðπℏÞ−1 ffiffiffiffi

E
p

. This is shown as a dashed line.
The correlator of two boundaries can be computed

exactly using properties of the Airy functions out of which
the wave function is built.13 The disconnected part is simply
the square of the partition function, which can be evaluated
by Laplace transform, remembering to include negative
energies to incorporate the full nonperturbative spectrum:

ZAiðβÞ ¼
Z þ∞

−∞
ρAiðEÞe−βEdE ¼ e

ℏ2
12
β3

2π1=2ℏβ3=2
: ðA3Þ

This gives

13In fact, Ref. [76] writes down expressions for correlators of
multiple loops in this model.
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hZðβÞihZðβ0Þi ¼ e
ℏ2
12
ðβ3þβ03Þ

4πℏ2ðββ0Þ3=2 ; ðA4Þ

while implementing Eq. (26) yields the connected piece
to be

hZðβÞZðβ0Þi ¼ e
ℏ2
12
ðβþβ0Þ3

2π1=2ℏðβ þ β0Þ3=2 Erf
�
1

2
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ββ0ðβ þ β0Þ

p �
:

ðA5Þ

These are exact expressions—i.e., both perturbative
and nonperturbative parts are incorporated (see
Refs. [44,76] and the review in the Appendix of
Ref. [12]). Nevertheless, it is instructive to pretend that
only a finite number of wave functions are known (only
numerically) for a discrete set of energies up to some
maximum energy. The question is then how well the exact
expressions can be reproduced. This is the situation of the
body of the paper, resulting from the controlled trunca-
tion of the infinite-order string equation.
The answer to the question, reassuringly, is that a great

deal of the important physics is accessible. To show this,
a set of 1000 of the wave functions [Eq. (A1)] were
discretized on the same size grid used in the body of the
paper (x is broken up into 20 000 points), for a range of
energies −20 ≥ E ≥ 20, and the same code that performed
the numerical implementation of the expressions given in
Eqs. (20) and (26) was carried out for this exact model. The
result presented in Fig. 30 shows the crossover between
the two portions of the correlator as a function of β, and
Figs. 31, 32, and 33 show the disconnected, connected, and
combined parts of the spectral form factor, for temperature
β ¼ 1=2. The dashed lines are the plots of the exact

functions (A4) and (A5), while the dots show the results
of the numerical computations.
As might be expected, significant deviations from the

dashed lines occur when β becomes too small, including
patterns of zeros representing finite size effects. This
signals temperatures that excite higher energies that are
not included in the numerical scheme (but are in the exact
expressions), and hence the results deviate. As long as such
extremes are avoided (depending upon the truncation
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FIG. 29. The full spectral density for the exactly solvable Airy
model, at ℏ ¼ 1. The dashed line is the disc-level result.
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FIG. 30. The disconnected (starting higher at the left) vs the
connected (lower) two-point function of the Airy model’s
partition function as a function of β, showing a phase transition
at β ¼ βcr ≃ 0.92. A dashed line shows the exact result; the dots
are for a numerical truncation.
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FIG. 31. The disconnected part of the Airy model’s spectral
form factor vs t, at β ¼ 1=2, showing the classic slope feature. A
dashed line shows the exact result; dots are for a numerical
truncation. (The undulations at the end are numerical errors at
ultrasmall values, and so should be ignored.)
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energy chosen), the numerical results are very reliable.
This is a good controlled model of the truncation scheme
used in the body of the paper, showing that the results
obtained are robust.

APPENDIX B: NUMERICAL RECIPES

1. Suggestions for solving the string equation

The string equation that supplies the potential uðxÞ for a
particular problem is highly nonlinear, and of high order
(2k) in derivatives if truncating to the kth model. Even the
simplest solution [with the boundary conditions of interest
given in Eq. (12)], where all tk’s are set to zero except
k ¼ 1, requires numerical techniques to extract its explicit

form (it is related to a Painléve transcendent, and hence
cannot be written in terms of other elementary functions).
Here are some suggestions for finding numerical solutions,
to help the interested reader learn how to extract useful
information for themselves. First, Maple was used in this
case (although MATLAB works well too, as probably would
other programs). The dsolve routine was used, with an
error tolerance of 10−5 − 10−10, depending upon the
equation being solved. (In fact, when these equations were
first solved [50,77], it was for the cases k ¼ 1, 2, and 3,
including cases where the models were nontrivially coupled
[78]. Back then, their solution was found by writing a
program in FORTRAN that called the routine D02RAF, part of
the NAG libraries.)
As mentioned in the text, for various reasons, it makes

sense to take an additional derivative of the equation. This
reduces the nonlinearity somewhat, at the expense of
increasing the order, which is a small price to pay. This
is because the first derivative results in an overall factor
of R, which can be divided out, since it will not vanish for
the solutions of interest. A derivative explicitly removes Γ
from the equation, however. Now, the only knowledge the
system has of the desired choice of Γ is through subleading
(in the small-ℏ expansion) terms in the boundary con-
ditions, which need to be solved for with all tk’s present.
This is nicely organized on the x > 0 boundary because the
presence of the tk’s coming in one by one at successively
higher terms in the 1=x2 expansion (see Ref. [4]). It is less
nice to perform analytically on the x < 0 boundary. There,
all the tk’s contribute at the next order, and solving for the
order-ℏΓ correction requires solving a kth-order polyno-
mial. Beyond the k ¼ 4 truncation, this becomes unpleas-
ant at best. However, if the system is solved on a large
enough region, with a small enough discretization, terms
beyond the leading left boundary condition can be safely
ignored, and a good approximation to the solution can be
found anyway. (If needed, however, a recursive code for
solving for the subleading corrections to the boundary
conditions numerically can be employed.)
This works well for Γ ¼ 1

2
, while for Γ ¼ − 1

2
a different

technique is used, because the numerical approach is less
stable due to a more complicated well shape appearing
in the interior, which is hard to control in a 13th-order
differential equation. Reference [57] noticed that Γ can be
changed by an integer using a special “Backlünd” trans-
formation, and actually derived an analytic expression
showing how to build the new uðxÞ at Γ� 1 from the
old uðxÞ (and its derivatives) at Γ. Here it is:

uΓ�1 ¼
3ðR0Þ2 − 2RR00 � 8ℏΓR0 þ 4ℏ2Γ2

4R2
; ðB1Þ

[whereR≡RðuΓÞ, and a sign has been switched to match
the current conventions]. So once uðxÞ for the case of Γ ¼ 1

2

was found using Maple, the output of dsolve contains all
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FIG. 32. The connected part of the Airy model’s spectral form
factor vs t, at β ¼ 1=2. A dashed line shows the exact result; dots
are for a numerical truncation.
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FIG. 33. The full spectral form factor of the Airy model vs t, at
β ¼ 1=2.
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the derivatives of uðxÞ needed to construct uðxÞ at Γ ¼ − 1
2
,

giving the well structure seen in Fig. 7.
In fact, a similar story held for the case of Γ ¼ 0 used in

Sec. VI. There is also a well structure in the interior, which
is hard to solve for numerically when at high order and
with boundary conditions far from the structure itself.
Experience from studying positive-integer Γ suggested that
Γ ¼ 1 would be smoother to solve for, and that was indeed
the case. From there, the transformation (B1) was used to
construct the desired Γ ¼ 0 solution.

2. Suggestions for solving the spectrum

As mentioned in Sec. IV, in order to solve for the
solutions to the eigenvalue problem, fE;ψðE; xÞg, a matrix
Numerov method [58] was used, as it was in Refs. [3,4].
This simply puts the system into a box, and turns the
problem into a large matrix diagonalization problem, for a
given input potential uðxÞ. This was done using MATLAB.
A key point is that it is desirable to have a large number of
eigenvalues in the energy range from zero to the chosen
highest energy (determined by the level of the truncation of
the string equation). So two choices were made to ensure
a good set of solutions. The first was to use a large grid,
so a grid of 20 000 × 20 000 was used. The second was to
use a large box. As stated, the spectrum solving method is
essentially putting the system into a box, and a portion of
the output eigenvalues and eigenfunctions will be affected
by the edges of the box. Those should be discarded, and
the larger the box, the more useable eigenstates will be
available in the reliable energy window. Since, as already
observed in Sec. III, the solution for uðxÞ becomes similar
to the disc-level behavior far away enough from the central
region, the box can be easily made larger by connecting the
solution (solved numerically out to −200 ≤ x ≤ þ200) to a
wider region [e.g., −2645 ≤ x ≤ þ2645 for the (2,2) and
(0,2) models], where just the exact disc solution u0ðxÞ is
used. [A smooth (enough) transition between the two
solutions was performed at x < −100, corresponding to
energies well above the cutoff determined by good match-
ing for the truncation, so this does not affect the physics.]

APPENDIX C: GEL’FAND-DIKII POLYNOMIALS

In case they are needed, here are some of the higher-
order Gel’Fand-Dikii polynomials, normalized such that
the coefficient of the pure uk term is unity. In the following

equation, a prime denotes an x derivative times a factor
of ℏ. For high numbers of derivatives, instead, a notation
uðnÞ is used for n primes. The first five are listed here:

R̃1½u� ¼ u;

R̃2½u� ¼ u2 −
1

3
u00;

R̃3½u� ¼ u3 −
1

2
ðu0Þ2 − uu00 þ 1

10
u0000;

R̃4½u� ¼ u4 − 2uðu0Þ2 − 2u2u00 þ 4

5
u0u000 þ 3

5
ðu00Þ2

þ 2

5
uu0000 −

1

35
uð6Þ;

R̃5½u� ¼ u5 − 5u2ðu0Þ2 − 10

3
u3u00 þ 11

3
u00ðu0Þ2

þ 3uðu00Þ2 þ 4uu0u000 þ u2u0000 −
23

42
ðu000Þ2

−
19

21
u0000u00 −

3

7
uð5Þu0 −

1

7
uð6Þuþ 1

126
uð8Þ: ðC1Þ

It will transpire that R̃6½u� and R̃7½u� will be needed as well,
in order to get the required level of accuracy for the
quantities computed in this paper. They are rather lengthy
quantities, so it is not clear if there is much value in listing
them here. Instead, they (and higher-order ones) can be
easily computed using the recursion relation

CkR̃0
kþ1 ¼

ℏ3

4
R̃000
k − uℏR̃0

k −
ℏ
2
u0R̃k; ðC2Þ

and the requirement that they vanish when u does. Ck is
chosen to normalize the pure uk term to unity.
More useful, therefore, are the following three lines of

Maple code, which can be iterated, with obvious adjust-
ments, to get to arbitrarily high order:

> R½1� ≔ uðxÞ;
> DR½2� ≔ ð1=4Þ � h3 � ðdiffðR½1�; x$3ÞÞ

− uðxÞ � h � ðdiffðR½1�; xÞÞ
− ð1=2Þ � h � ðdiffðu½x�; xÞÞ � R½1�;

> R½2� ≔ simplifyð−4 � integrateðDR½2�; xÞ=ð3 � hÞÞ;
ðC3Þ
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