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It is proposed that a family of Jackiw-Teitelboim supergravites, recently discussed in connection with
matrix models by Stanford and Witten, can be given a complete definition, to all orders in the topological
expansion and beyond, in terms of a specific combination of minimal string theories. This construction
defines nonperturbative physics for the supergravity that is well defined and stable. The minimal models
come from double-scaled complex matrix models and correspond to the cases ð2Γþ 1; 2Þ in the Altland-
Zirnbauer ðα; βÞ classification of random matrix ensembles, where Γ is a parameter. A central role is played
by a nonlinear “string equation” that naturally incorporates Γ, usually taken to be an integer, counting,
e.g., D-branes in the minimal models. Here, half-integer Γ also has an interpretation. In fact, Γ ¼ � 1

2
yields

the cases (0,2) and (2,2) that were shown by Stanford and Witten to have very special properties. These
features are manifest in this definition because the relevant solutions of the string equation have special
properties for Γ ¼ � 1

2
. Additional special features for other half-integer Γ’s suggest new surprises in the

supergravity models.

DOI: 10.1103/PhysRevD.103.046012

I. INTRODUCTION

Recently, there has been renewed interest in Jackiw-
Teitelboim (JT) gravity [1,2], a two-dimensional theory of
gravity that emerges in various physical contexts, such as
the study of the near-horizon dynamics of nearly extreme
black holes [3,4], or as a partial gravitational dual of certain
one-dimensional quantum mechanical systems pertinent to
studies of condensed matter and quantum chaos. (For
reviews, see Refs. [5,6].) In its own right, it is an arena
for further developing understanding of the interplay
between quantum mechanics, geometry, and topology.
The JT gravity partition function ZðβÞ can be written (in

a Euclidean presentation, where β is the period of compact
time) as a topological expansion summing contributions
from constant negative curvature surfaces of genus g (the
number of handles) with a boundary of fixed length β.
The dynamics of the theory lives on the boundary, and it

has a Schwarzian action [7–9]. The leading contribution,
which comes from the g ¼ 0 (disc) topology, gives a result
Z0ðβÞ, which can be written [10]

Z0ðβÞ ¼ eS0
Z

dEρ0ðEÞe−βE; ð1Þ

where ρ0ðEÞ is a spectral density function. Here, S0 is a
constant proportional to 1=G, where G is the Newton
constant of the 2D gravity. (In fact, S0 is the leading black
hole entropy, if approaching this model from a near–
horizon dynamics perspective.) Here, it will be useful to
define a parameter ℏ ¼ e−S0, since it will naturally appear
as a Planck constant in an important associated problem to
be described shortly. The result for the disc spectral density
is [11]

ρ0ðEÞ ¼
γ sinhð2π ffiffiffiffiffiffiffiffi

2γE
p Þ

2π2ℏ
; ðJTÞ ð2Þ

where ℏ−1 will be absorbed into its definition henceforth.
The value of γ determines the units when relating a coupling
in the Schwarzian to β. Here, γ ¼ 1

2
will be chosen.

JT gravity emerges [7–9,12] (at low energy) as a
gravitational dual of certain 1D quantum systems that
exhibit chaos, such as the Sachdev-Ye-Kitaev (SYK) model
[11,13,14], and various features of the chaotic dynamics
suggest [10,15,16] a relation to models of large-N random
matrix models. Then Saad, Shenker, and Stanford showed
[17] that the entire topological expansion for JT gravity can
be captured by a Hermitian matrix model in a certain
“double-scaling” limit [18–21]. The double-scaled 1=N
expansion of the model gives a genus expansion in 2D
surfaces [22,23], and has its contributions at higher genera
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fully determined by a family of recursion relations [24–27]
seeded by the disc spectral density ρ0ðEÞ, which was shown
[17] to precisely match analogous features of JT gravity.
The original double-scaled matrix models [18–21] were

used to define the sum over random surfaces that were
the string world sheets in what have now come to be
called “minimal string theories” [28]. While not itself a
minimal string theory, JT gravity shares a number of
features with them, and Ref. [17] suggests that JT gravity
can be thought of as an infinite-order limit of minimal
string theories. An (apparently) alternative picture, sug-
gested in Ref. [29] and expanded upon in Ref. [30] (see also
the recent Refs. [31,32]), is that JT gravity can be defined as
a special interpolating flow among an infinite set of
minimal string models. In fact, it will be proposed in
Sec. II that the two suggestions are complementary, the
latter being a refinement of the former.
The approach of constructing JT gravity out of minimal

string models has certain advantages, as will be further
demonstrated in this paper. The minimal models (arising
from one-cut double-scaled matrix models) have a great
deal of their physics readily accessible through an asso-
ciated 1D problem, with the Hamiltonian

H ¼ −ℏ2
∂2

∂x2 þ uðxÞ; ð3Þ

where the potential uðxÞ satisfies a nonlinear ordinary
differential equation (ODE) called a “string equation.”
This ODE supplies both perturbative and nonperturbative
information for uðxÞ, and the spectral density of this
system coincides with the spectral density of the double-
scaled matrix model. Knowledge of the properties of the
underlying string equation, especially nonperturbative
features, can be used to infer properties of the JT model
that are not apparent (or simply inaccessible) in the
perturbative/recursive approach. For example, Ref. [30]
used this insight to formulate a nonperturbative low-
energy completion of the JT matrix model of Ref. [17]
that is free of the instabilities of the definition based on
Hermitian matrix models.
In fact, the double-scaled matrix model description

extends to other kinds of JT gravity. Various JT gravity
and JT supergravity models were classified by Stanford and
Witten [33] in terms of the underlying distinct random
matrix ensembles available. They are either from the three β
ensembles à la Dyson-Wigner, or the seven ðα; βÞ ensem-
bles in the Altland-Zirnbauer taxonomy [34]. In a series of
nontrivial computations, the properties of the various
matrix model recursion relations were checked against
the corresponding JT gravity-type computations, and found
to support the correspondence. Various other (mostly
perturbative) features were uncovered in that work as well.
It is therefore natural to wonder if this wider class of JT

gravities and their matrix models can be constructed out of

appropriate kinds of minimal string models. Perhaps this
could help to clarify their properties, or supply information
about the nonperturbative sector, since the recursive meth-
ods of Refs. [17,33] are perturbative.
This paper will show that such constructions are

possible, at least for some of the models. The focus
will be directly on a set of JT supergravity theories
(with and without time-reversal symmetry) that were
discussed in Ref. [33], which is of relevance to N ¼ 1
supersymmetric generalizations of the Schwarzian
dynamics that arose in ordinary JT gravity, or the SYK
model [35–40]. The disc spectral density of these models
is [33,41]

ρ0ðEÞ ¼
coshð2π ffiffiffiffi

E
p Þ

πℏ
ffiffiffiffi
E

p ¼ ρ0
SJTffiffiffi
2

p ; SJT ð4Þ

where the factor of
ffiffiffi
2

p
gives the appropriate normaliza-

tion for comparing the pertinent matrix ensembles to the
supergravity path integral.
Before proceeding, it is prudent to enlarge the notation

slightly. So far, the “0” subscript on the partition function
and the corresponding density means that the result is at
disc order in the genus expansion. In this broader class of
theories, because of the possible inclusion of time-reversal
symmetry, spacetime can be nonorientable, and so cross-
caps should be included in the topological sum. Quantities
such as the spectral density function will therefore be
written perturbatively as

ρðEÞ ¼
X
g;b;c

ℏ2gþc−1ρg;cðEÞ; ð5Þ

where g is the number of handles of the surface, and c the
number of crosscaps. So in this notation, ρ0ðEÞ≡ ρ0;0ðEÞ.
Henceforth, the powers of ℏ will be explicitly included in
the density, as was already done in, e.g., Eqs. (2) and (4).
See Fig. 1 for the first three orders.
The core specific JT supergravity models in question are

the ðα; βÞ ¼ ðf0; 1; 2g; 2Þ in the Altland-Zirnbauer classi-
fication. Many perturbative aspects of these models were
constructed and exhibited in Ref. [33], including several
important peculiarities, such as the vanishing of perturba-
tive contributions to ρ0 beyond the disc for the cases
α ∈ f0; 2g. [As will become clear later, however, a broader

h
-1

hh
0

ρ
0,0

ρ
0,1

ρ
1,0

ρ
0,2

FIG. 1. Examples of perturbative contributions. A cross rep-
resents a crosscap insertion making a nonorientable surface.

CLIFFORD V. JOHNSON PHYS. REV. D 103, 046012 (2021)

046012-2



class of models, ð2Γþ 1; 2Þ, will also be accessible via the
methods of this paper too, and results for those will also be
presented.]
The present work will supply a description of these

supergravities in terms of an infinite interpolating set of
minimal string models (of type 0A [42–47]), i.e., using the
same ingredients presented in Ref. [30], but combining
them differently (see Secs. II and IV). This will yield the
spectral density [Eq. (4)] at disc level, in a way that
generalizes the case for ordinary JT in an interesting
(and suggestive) manner.
The approach used [the aforementioned string equa-

tions, and associated Hamiltonian problem (3)—see
Sec. III for an introduction] will be quite complemen-
tary to the approaches of Refs. [17,33], and will have
the advantage of making more manifest certain pertur-
bative features of the models. For example, the type-0A
minimal strings (via their defining string equation) have
just the right properties (see Sec. III D) needed to yield
the key leading (universal) 1=

ffiffiffiffi
E

p
dependence at low

energy. Their (fractional) power-law rise with E for
higher energies collectively contributes to the overall
exponential rise of the full model. As a further example,
the vanishing (observed in Ref. [33]) of all perturbative
contributions (beyond the leading terms) for α ∈ f0; 2g
will follow straightforwardly in this formalism, due to
certain special properties of the string equations. (This is
discussed in Sec. IVA.)
Moreover, the present approach allows a clear formu-

lation of the full nonperturbative physics of the models that
reduces to the disc result [Eq. (4)] for all E. This supple-
ments and extends to all energies the nonperturbative
aspects that were touched upon in Ref. [33], which applied
mostly to the low-energy regime. Model behaviors will be
displayed in Sec. IV C.
Another appealing feature of this paper’s approach is that

the formulation allows for a larger family of models—
ð2Γþ 1; 2Þ in the classification scheme—to be cast into a
single framework. The parameter Γ is likely to be identified
with the Stanford-Witten parameter ν, counting “Ramond
punctures” [33]. (See more discussion of this in Secs. Vand
IV B.) Again, certain perturbative features become manifest
here. For example, the observation of Ref. [33] that only
even numbers of punctures are allowed becomes a straight-
forward manifest feature of the formulation. The special
cases α ∈ f0; 2g correspond to Γ ¼ � 1

2
, which is a special

point of all type-0A solutions of the string equation.
However, the string equation shows that there are
other special features for more general half-integer Γ,
suggesting that there are new aspects of these JT super-
gravities to be discovered in these cases. The present
formulation supplies full nonperturbative physics here
too. See Secs. IVA and IV C.
Section V presents some closing remarks and ideas for

further exploration.

II. SPECTRAL DENSITIES FROM MINIMAL
STRINGS: DISC LEVEL

The JT gravity (and the JT supergravity) partition
function is structurally the same as a “macroscopic loop”
expectation value in the old double-scaled matrix model
language [48,49], involving the trace of an effective one-
dimensional Hamiltonian [Eq. (3)] that arises naturally
from the matrix model after double scaling:

ZðβÞ ¼
Z

μ

−∞
dxhxje−βHðp̂;x̂Þjxi; ð6Þ

where the upper limit on the x integration, μ, will be
discussed below. Instead of fixed loop length l, the
problem describes a fixed inverse temperature β, which
is the length of the boundary of the nearly AdS2 spacetime
here. As a quantum mechanics problem, to examine the
disc-level physics, all that is needed is to work at leading
order in ℏ. Denoting the leading/classical piece of the
potential as u0ðxÞ ¼ limℏ→0ðuðxÞÞ, inserting a complete set
of momentum states, and using the normalization hxjpi ¼
eipx=

ffiffiffiffiffiffiffiffi
2πℏ

p
for the wave function, we write

Z0ðβÞ ¼
Z

μ

−∞
dx

Z þ∞

−∞

dp
2πℏ

e−β½p2þu0ðxÞ�

¼ 1

2ℏ
ffiffiffiffiffiffi
πβ

p
Z

μ

−∞
dxe−βu0ðxÞ

¼ 1

2πℏ

ffiffiffi
π

β

r Z
∞

0

du0fðu0Þe−βu0 ; ð7Þ

where fðu0Þ ¼ −∂x=∂u0. The fact that u0ðμÞ ¼ 0 was
used, which will be confirmed below. The last integral can
be written as

Z0ðβÞ ¼
Z

∞

0

dE
Z

E

0

fðu0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0

p du0
2πℏ

e−βE

¼
Z

∞

0

dEρ0ðEÞe−βE; ð8Þ

where

ρ0ðEÞ ¼
1

2πℏ

Z
E

0

fðu0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0

p du0: ð9Þ

So, ρ0ðEÞ is determined if u0ðxÞ is known, since it
defines the fðu0Þ kernel of the integral transform in Eq. (9).
The lower limit is u0 ¼ 0 and can be seen to mark the
E ¼ 0 end of the classical spectral density in this con-
struction. A popular and important case is the simple
(“Airy”) potential, uðxÞ ¼ −x. So u0ðxÞ ¼ −x, and
fðu0Þ ¼ 1. This readily yields ρ0ðEÞ ¼ E1=2=πℏ. This is
the double-scaled limit of the famous Wigner semicircle
law for a Gaussian Hermitian matrix model.
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Of interest will be the behaviors indexed by integer k:
u0 ¼ ð−xÞ1=k for large x < 0, a well-known leading behav-
ior for certain classes of minimal string models (i.e., the
“multicritical” behavior in the old double-scaling language
[50]). (See the left region of Fig. 2.) Simple scaling of
Eq. (9) shows that this will yield a spectral density
ρ0 ¼ CkEk−1

2=2πℏ, but the numerical coefficient Ck will
be important in what follows. A bit of work shows that,
with z ¼ u0=E,

Ck ¼ k
Z

1

0

zk−1dzffiffiffiffiffiffiffiffiffiffi
1 − z

p ¼ 2k
Z

π=2

0

ðsin θÞ2k−1dθ

¼ 22k−1ððk − 1Þ!Þ2k
ð2k − 1Þ! ; ð10Þ

which can be proven by, e.g., expressing ðsin θÞn, for odd n,
in terms of sums of terms involving sinðnθÞ, sinððn − 2ÞθÞ,
etc. The coefficients are sums of those in the binomial
expansion.
Now, it is time to build more complicated spectral

densities relevant to JT and super-JT. For any k, the
potential u0 ¼ ð−xÞ1=k increases as x → −∞, and so this
form will dominate the large-E behavior. A general
minimal model (in this class) has the following defining
equation for u0, as x → −∞:

X∞
k¼1

tkuk0 ¼ −x; ð11Þ

where tk is the coupling that turns on the kth model. This
equation is to be thought of as an interpolating flow
connecting all the models. Such an equation is the leading
piece of what was called a “string equation” in the older
matrix model literature. (The full nonlinear string equations

will be discussed in Sec. III.) So, in preparation for working
with Eq. (9),

fðu0Þ ¼ −
∂x
∂u0 ¼

X∞
k¼1

ktkuk−10 : ð12Þ

The scheme to move forward with here is that any
Schwarzian-type disc-level spectral density ρ0ðEÞ that
has a series expansion in powers of the form Ek−1

2 can
be reconstructed from a potential u0ðxÞ that can be deduced
by using the ingredients above. It amounts to a specific
formula for the tk, determining the particular combination
of minimal models to be used to build the JT gravity model.
For example, in the case of the ordinary JT model, with the
disc spectral density given in Eq. (2),

ρ0ðEÞ ¼
1

4π2ℏ

X∞
k¼1

ð2π ffiffiffiffi
E

p Þ2k−1
ð2k − 1Þ! ðJTÞ

¼ 1

4π2ℏ

Z
E

0

X∞
k¼1

22k−1π2k−1

ð2k − 1Þ!
k
Ck

uk−10

du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0

p

¼ 1

4πℏ

Z
E

0

X∞
k¼1

π2k−2uk−10

ðk − 1Þ!2
du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0

p

¼ 1

4πℏ

Z
E

0

X∞
k¼1

ðπ ffiffiffiffiffi
u0

p Þ2k−2
ðk − 1Þ!2

du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0

p

¼ 1

2πℏ

Z
E

0

I0ð2π ffiffiffiffiffi
u0

p Þdu0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0

p ; ð13Þ

where I0ðsÞ is the zeroth modified Bessel function of the
first kind. From the above, it is clear from Eqs. (9) and (12)
that the tk are

tk ¼
π2k−2

2k!ðk − 1Þ! ; ð14Þ

as shown in Ref. [29] (with a different normalization), and
used in Ref. [30] as described in the Introduction.
It is worth pausing to reflect on the meaning of this. First,

and most importantly, note that the simple additive struc-
ture in Eq. (11) is deceptively simple. For each minimal
model, the full string equation (see Sec. III) will be highly
nonlinear in uðxÞ and its derivatives, and the additive
structure will couple together those nonlinear equations.
So, the resulting solution uðxÞ is not a simple sum of the
behavior of the uðxÞ’s from the individual models.
Remarkably, however, uðxÞ’s evolution as a function of
the tk is described by the kth (integrable) KdV flow
equation [48,51], which takes the form

∂u
∂tk ∝

∂
∂x R̃kþ1½u�; ð15Þ

x

(  )u x0

FIG. 2. Features of the leading potential for the minimal
models. For x < μ, u0ðxÞ ¼ ð−xÞ1=k (k ¼ 2 plotted here). This
is common to both the bosonic and the type-0A minimal models.
For x > μ, u0ðxÞ ¼ 0, a key feature of the type-0A minimal
models. [Fig. 5 shows the full uðxÞ for k ¼ 2 type 0A.]
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where the R̃k’s are polynomials in uðxÞ and its derivatives
[examples are listed in Eq. (26)], and the tk’s are the times
of the integrable flows. From a conformal field theory
perspective, for, e.g., the bosonic ð2; 2k − 1Þ minimal
models (similar remarks hold for the type-0A models
discussed later), the kth model has k − 1 operators, Ol,
(l ¼ 1; 2…; k − 1), and deformation with tl is equivalent to
turning on the operator Ol. It is natural, therefore, to think
of the result for the pattern of interpolating flows in Eq. (14)
[and in Eq. (19) to be derived shortly for the supergravity in
terms of type-0A minimal models] as simply a specific
operator deformation, or RG flow from the (infinite) kth
model to the other models at lower k. (See Fig. 3 for a
schematic diagram.) In this sense, the suggestions (on the
one hand) of Ref. [17] that JT gravity is an infinite-k limit
of the kth minimal model, and (on the other hand) of
Ref. [29] that JT gravity (or supergravity, as discussed in
this paper) is an infinite sum of all of them, are in fact
complementary.
Next, it is important to consider low-energy physics,

where the features of the potential uðxÞ at intermediate x
and indeed x > 0 become very important. In the case of
minimal models derived from Hermitian matrix models, the
leading potential u0ðxÞ is of the form x1=k as x → þ∞, and
this leads to nonperturbative problems at low energy. In
fact, Ref. [30] used different minimal models that have the
same large-E physics as those minimal models, but with
different, improved, low-E physics. In those models, the
leading-order low-energy physics of interest is simply
u0ðxÞ ¼ 0 for all k, a striking universal feature. See
Fig. 2. (This behavior is not arbitrarily imposed, but

actually a solution of the underlying matrix model, as
explained in Sec. III.) The feature of the spectral density
that results from this can be seen by converting Eq. (9) back
into an x integral, viz.

ρ0ðEÞ ¼
1

2πℏ

Z
μ

−jx0j

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0ðxÞ

p ; ð16Þ

(where the lower limit x ¼ −jx0j is where the square root
vanishes), and so the low-energy regime where u0ðxÞ ¼ 0
yields the leading behavior

ρ0ðEÞ ¼
1

2πℏ

Z
μ

0

dxffiffiffiffi
E

p ¼ 1

2πℏ
μffiffiffiffi
E

p þ � � � : ð17Þ

The choice μ ¼ 2 will be made here, a convention that
reproduces the leading term of Eq. (4). Beyond low E, other
physics takes over and the μ=

ffiffiffiffi
E

p
behavior is modified,

ultimately crossing over into behavior that is described by
whichever combination of the Ek−1

2 physics appears at high
E. In Ref. [30], that combination was chosen to be the same
as the ordinary JT gravity model, with μ ¼ 0, giving the
same large-E perturbative behavior as the JT matrix model
of Ref. [17], but better, stable, nonperturbative physics at
low E.
However, it is possible to instead reproduce the JT

supergravity disc spectral density given in Eq. (4). That it is
also a combination of minimal models (but with different
coefficients) should follow from again expanding, and
again using the integral representation [Eq. (9)] of positive
half-integer powers of E. Doing so yields

ρ0ðEÞ ¼
1

πℏ
ffiffiffiffi
E

p þ 2

ℏ

X∞
k¼1

22k−1π2k−1

ð2kÞ! Ek−1
2 ðSJTÞ

¼ 1

πℏ
ffiffiffiffi
E

p þ 2

ℏ

Z
E

0

X∞
k¼1

22k−1π2k−1

ð2kÞ!
kuk−10

Ck−1

du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0

p

¼ 1

πℏ
ffiffiffiffi
E

p þ 2π

ℏ

Z
E

0

X∞
k¼0

ðπ ffiffiffiffiffi
u0

p Þ2k
ð2kþ 2Þk!2

du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0

p

¼ 1

πℏ
ffiffiffiffi
E

p þ π

ℏ

Z
E

0

I1ð2π ffiffiffiffiffi
u0

p Þ
2π

ffiffiffiffiffi
u0

p du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0

p : ð18Þ

So remarkably, for the positive powers of E in this super-
gravity case, a natural generalization of what was seen for
the ordinary JT case emerges: fðu0Þ ¼ πI1ð2π ffiffiffiffiffi

u0
p Þ=

ð2π ffiffiffiffiffi
u0

p Þ, where I1ðsÞ is the first modified Bessel function
of the first kind [cf. the last line in Eq. (13)]. The special
E−1

2 part of the spectral density will be reproduced if there is
a leading contribution to the potential of form u0 ¼ 0, as
discussed above. As already mentioned, the minimal
models used below for the full (not just leading-order)
potential will naturally have this behavior built in. So, this
shows that the super-JT spectral density can be built out of a
combination of minimal models with

k- 4

k- 6

k- 5

2

1

k- 3
k- 2

k-1

k

t2

t1tk-6

tk-5

tk-4

tk-3

tk-1

tk-2

FIG. 3. A schematic diagram of the interpolating flow as a
pattern of operator deformations. A circle with i in it is the ith
minimal model. Here, k should be understood to be taken to
infinity. There are k − 1 operators in the model, labeled Ol, and
deformation with coefficient tl is equivalent to turning on the lth
model. The lengths of the bonds/arrows signify the differing
strengths of the tl’s.
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tk ¼
π2k−2

ðk!Þ2 : ð19Þ

A summary of the overall picture that contrasts the JT
and SJT cases is as follows: Writing y≡ π

ffiffiffiffi
E

p
,

SJT∶ ℏρ0ðEÞ ¼
coshð2yÞ

y
¼ 1

y
þ 2sinh2y

y

¼ 1

π
ffiffiffiffi
E

p þ π

Z
E

0

I1ð2π ffiffiffiffiffi
u0

p Þ
2π

ffiffiffiffiffi
u0

p du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0

p :

JT∶ 4π2ℏρ0ðEÞ ¼ sinhð2yÞ

¼ π

Z
E

0

I0ð2π ffiffiffiffiffi
u0

p Þ du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − u0

p : ð20Þ

The next step is to consider the perturbative physics
beyond the disc and, of course, nonperturbative aspects.

III. STRING EQUATIONS

As stated before, in the approach to double-scaled matrix
models that will mostly be taken here, the focus is on the
potential uðxÞ of the associated Hamiltonian problem
[Eq. (3)]. In the minimal string approach of old, the
nonlinear ODE that defines it was often called a “string
equation.” A sort of master string equation that contains all
the behavior of current interest is [42,44,45,52]

uR2 −
ℏ2

2
RR00 þ ℏ2

4
ðR0Þ2 ¼ ℏ2Γ2; ð21Þ

where for the kth model,

R≡ R̃k½u� þ x: ð22Þ

Here, R̃k½u� is the kth-order polynomial in uðxÞ and its x
derivatives defined by Gel’fand and Dikii [53], but nor-
malized so that the coefficient of uk is unity. For example,

R̃1½u� ¼ u;

R̃2½u� ¼ u2 −
1

3
u00;

R̃3½u� ¼ u3 −
1

2
ðu0Þ2 − uu00 þ 1

10
u0000;

..

.

R̃k½u� ¼ uk þ � � � þ #uð2k−2Þ: ð23Þ

Here a prime denotes an x derivative times a factor of ℏ, and
in the last line the superscript (2k − 2) means that number
of primes.
The string equation [Eq. (21)] was first derived (initially

with Γ ¼ 0) by taking [42,44,45] the double-scaling limit
of models of a random complex matrixM, with polynomial

potential VðM†MÞ. Diagonalization to work in terms of the
positive quantities λ2i , where λi are eigenvalues ofM, shows
that they are in the (1,2) Altland-Zirnbauer class of matrix
ensembles. It was soon realized [52] that nonzero Γ could
be introduced naturally from a number of different per-
spectives, including one where Γ corresponds to having
added Γ quark flavors, or in modern language, Γ back-
ground D-branes. There is an extra logarithmic term in the
potential with coefficient Γ, which amounts to studying the
ð2Γþ 1; 2Þ class of matrix ensembles. Later, Ref. [47]
supplied a type-0A interpretation, including an under-
standing of Γ as also counting units of R-R flux.
In almost all the work in the literature on Eq. (21), integer

Γ was considered the most physical choice, although it was
noticed that half-integer cases possessed certain interesting
(but not fully explained) properties. (Reference [54]
explored many of these properties, suggesting a partial
physical understanding in terms of minimal string theories
with no background D-branes.) In this paper, it will be
made clear that solutions with half-integer Γ are physical
and play a very important role.
For orientation, the natural next step is to study some

special cases.

A. Bosonic minimal models

Consider first the case of Γ ¼ 0. An obvious nontrivial
solution to the string equation (21) is R ¼ 0, defining a
subset of equations for any k. These are simply the ODEs
defining the original ð2; 2k − 1Þ bosonic minimal models
arising from double-scaling Hermitian matrix models
[18–21]. The case k ¼ 1 is the Airy model uðxÞ ¼ −x,
the case k ¼ 2 is the Painlevé I equation defining pure
gravity [with the leading u0 ¼ ð−xÞ1=2 þ � � �], and k ¼ 3 is
the gravitating Lee-Yang model [with the leading u0 ¼
ð−xÞ1=3 þ � � �], etc. Not much will be said about these
beyond this point in this paper, but it is perhaps useful to
signpost them for orientation.

B. A universal model

Another interesting special solution is the case where
R ¼ x, in which case there is an exact solution Eq. (21):

uðxÞ ¼ 0þ ℏ2
ðΓ2 − 1

4
Þ

x2
: ð24Þ

So, the leading piece of the potential is u0 ¼ 0. This, as we
have seen, will produce a 1=ðπℏ ffiffiffiffi

E
p Þ behavior in the spectral

density ρ0ðEÞ, and the order-ℏ2 piece that comes next
generates corrections.1 In fact, there is a niceway to organize

1This curious exact solution for uðxÞ, for Γ ¼ 0, was first
noticed in Ref. [52] and referred to as the k ¼ 0 solution. It was
generalized to an interesting infinite family of rational solutions
in Ref. [54].
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the higher-order corrections, giving an opportunity to
introduce a technique that will become useful later on.

C. A resolvent method

In fact, the spectral density can be written as

ρðEÞ ¼ Im
πℏ

Z
b

a
R̂ðx; EÞdx; ð25Þ

where the quantity R̂ðx; EÞ≡ hxjðH − EÞ−1jxi is the (diago-
nal of the) resolvent of the SchrödingerHamiltonianH given
in Eq. (3). The interval ½a; b� that is chosenwill depend upon
which x regime is being studied, and will be discussed
shortly. (The “Im” part of the prescription above means
taking the imaginary part of the integrated resolvent as it
approaches the real positive E line.)
It is very important to note that this is not the resolvent

expectation value RðxÞ used in Refs. [17,33]. That is the
resolvent of the raw random matrix of the matrix model,
from which physics is subsequently extracted in the scaling
limit. The resolvent here is that of the double-scaled
Hamiltonian that arises after double scaling. The hat will
hopefully go some way toward helping the reader separate
the two objects when they consult those papers. The
relation between them is that the x integral (between
appropriately chosen limits a and b) of the resolvent of
this paper is proportional to (the scaling part of) the
resolvent of those papers.
Rather usefully, R̂ðx; EÞ satisfies the Gel’fand-Dikii

equation [53]:

4ðu − EÞR̂2 − 2ℏ2R̂R̂00 þ ℏ2ðR̂0Þ2 ¼ 1; ð26Þ
where u ¼ uðxÞ, and a prime denotes a differentiation with
respect to x. This equation supplies, for an input potential
uðxÞ, the full (perturbative and nonperturbative) spectral
density ρðEÞ via Eq. (25). This alternative approach for
computing ρðEÞ is rather useful (see Ref. [55] for an earlier
study in this type-0A context), and in fact Ref. [30] used the
above equations to write a differential equation directly for
ρðE; xÞ. However, working directly with the resolvent is
illuminating: Starting with uðxÞ ¼ u0ðxÞ, the leading
piece in the limit ℏ ¼ 0, all derivative terms can be dropped
in Eq. (26), and the result [Eq. (16)] comes from the
solution R̂ ¼ −1=ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u0ðxÞ − E
p Þ (the sign is chosen to

give a positive density). The case u0ðxÞ ¼ 0 in the
integrand is between x ¼ 0 and x ¼ μ, giving the term
R̂ ¼ −1=ð2 ffiffiffiffiffiffiffi

−E
p Þ, and it leads to the contribution in

Eq. (17). Expanding around this leading result gives, using
Eq. (24), to order ℏ2,

R̂ ¼ −
1

2
ffiffiffiffiffiffiffi
−E

p −
ℏ2ðΓ2 − 1

4
Þ

4x2ð−EÞ3=2 þ � � � ; ð27Þ

which yields, using Eq. (25),

ρðEÞ ¼ 1

πℏ
ffiffiffiffi
E

p −
1

8

�
Γ2 −

1

4

�
ℏ

πE3=2 þ � � � : ð28Þ

The second term should be thought of as a combination
of ρ1;0ðEÞ (genus 1 with one boundary) and ρ0;2 (one
boundary and two crosscaps), depending upon the inter-
pretation of Γ.
Of course, there are nonperturbative contributions to

ρðEÞ that cannot be obtained by this perturbative pro-
cedure. It was shown in Ref. [56] that the wave function
ψðE; xÞ of this particular Hamiltonian problem [defined by
potential in Eq. (24)] can be written in closed form in terms
of Bessel functions of the first kind, JΓ:

ψðE; xÞ ¼ 1ffiffiffi
2

p
ℏ
x
1
2JΓ

� ffiffiffiffi
E

p
x

ℏ

�
; ð29Þ

and the spectral density can be computed [30,57,58]:

ρJðE; μÞ ¼
Z

μ

0

jψðE; xÞj2dx ¼ 1

4E

Z Eμ2

ℏ2

0

J2Γð
ffiffi
t

p Þdt

¼ μ2

4ℏ2

�
J2ΓðξÞ þ J2Γþ1ðξÞ −

2Γ
ξ
JΓðξÞJΓþ1ðξÞ

�
;

where ξ≡ μ
ffiffiffiffi
E

p
=ℏ: ð30Þ

Expanding this result with μ ¼ 2 yields the previously
obtained perturbative terms, as well as nonperturbative
terms oscillatory in

ffiffiffiffi
E

p
=ℏ.

This “Bessel” model is important, since it furnishes an
exact model of the low-energy sector for all the minimal
models, and for the full JT supergravity. For the special
cases of Γ ¼ � 1

2
[corresponding to the special (0,2)

and (2,2) cases discussed in Ref. [33]], things become
extremely simple. Since ordinary Bessel functions of half-
integer order can be written in terms of trigonometric
functions, specifically for this case,

J1
2
ðξÞ ¼

ffiffiffiffiffi
2

πξ

s
sin ξ; and J−1

2
ðξÞ ¼

ffiffiffiffiffi
2

πξ

s
cos ξ; ð31Þ

and using J3
2
ðξÞ ¼ ξ−1J1

2
ðξÞ − J−1

2
ðξÞ, the asymptotic form

given in Eq. (28) truncates to the leading piece, and
remarkably the full perturbative and nonperturbative parts
are contained in this compact form:

ρ�1
2
¼ 1

πℏ
ffiffiffiffi
E

p ∓ 1

4πE
sin

�
4

ffiffiffiffi
E

p

ℏ

�
: ð32Þ

These cases are plotted in Fig. 4.
The E → 0 behaviors of these two cases are markedly

different. For Γ ¼ þ 1
2
, in the limit there is a nice cancella-

tion between the first and second terms, and so ρ1
2
→ 0.
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There is a doubling instead of a cancellation for Γ ¼ − 1
2
,

resulting in an E−1=2 divergence for ρ−1
2
, even after non-

perturbative effects are taken into account. These two
behaviors will be seen again in the full nonperturbative
definition building JT supergravity out of minimal models,
proposed and explored in Sec. IV.
From the point of view of the recursive construction of

Stanford and Witten [33], the vanishing of all orders in
perturbation theory (beyond the disc for the spectral density,
or the discþ crosscap for the accompanying resolvent) is a
sort of perturbativemiracle.2 Here, working directly with the
potential uðxÞ, it is easier to isolate its origins, and to
anticipate what can happen in the full model defined in the
next section. Looking at the resolvent’s differential equation
[Eq. (26)], it is clear that exact vanishing of the potential at
Γ ¼ � 1

2
guarantees no perturbative corrections to R̂ðE; xÞ

[and hence ρðEÞ] beyond the disc. While the potential
vanishes, there is still, however, a nontrivial equation for
R̂ðE; xÞ, and this will encapsulate the nonperturbative
physics. A nice way to write it is to take another derivative.
The structure of the equation is such that there is a
cancellation between terms, and an overall factor of R̂
can be divided out, and for vanishing u,

R̂000 ¼ −4ER̂0; ð33Þ

with an obvious solution of a constant [already found to be
−1=ð2 ffiffiffiffiffiffiffi

−E
p Þ] plus an oscillatory piece with frequency

2
ffiffiffiffi
E

p
=ℏ. A natural choice of its coefficient is to make the

resolvent vanish at x ¼ 0, yielding

R̂ðE; xÞ ¼ −
1

2
ffiffiffiffiffiffiffi
−E

p
�
1 − exp

�
i
2

ffiffiffiffi
E

p

ℏ
x

��
: ð34Þ

Integrating this between x ¼ 0 and x ¼ μ ¼ 2 gives an
imaginary piece, which [via Eq. (25)] gives the exact density
in Eq. (32) forΓ ¼ þ 1

2
. (The caseΓ ¼ − 1

2
giving the relative

minus sign does not seem as natural here.)
Crucially, there is also a nonoscillatory term, 1=ð4πEÞ,

coming from the upper limit of the integration of the
exponential. It has the interpretation as a crosscap con-
tribution, but it does not appear in the density, since it is
real. This is the finite crosscap term discussed in Ref. [33]
in this Γ ¼ 1

2
case (and its Γ ¼ − 1

2
counterpart).

D. Type-0A minimal models

As should be clear from the previous section, the
potentials that are needed to construct JT supergravity
are ones which contain both types of behavior—where, for
nonzero Γ,

uðxÞ ¼ ð−xÞ1k þ ℏΓ
kð−xÞ1− 1

2k

þ � � � x → −∞;

uðxÞ ¼ 0þ ℏ2ðΓ2 − 1
4
Þ

x2
þ � � � x → þ∞: ð35Þ

For Γ ¼ 0, the large negative-x behavior is identical to that
of the bosonic minimal models, derived from Hermitian
matrix models. This is what inspired their original study
[42,44,45] as alternative formulations of minimal string
theories that had the same perturbative physics as the
bosonic case, but better nonperturbative behavior. This also
motivated a definition [30] of nonperturbative JT gravity
with them based on the choice of tk that yields the disc
spectral density [Eq. (2)] at large E. Note that the leading
large positive-x behavior is k-independent, showing a kind
of universality. Figure 5 shows the k ¼ 2 example, con-
structed numerically, of one of these solutions. [Compare it
to the leading piece, u0ðxÞ, shown in Fig. 2.]

ρ(  )E

E

FIG. 4. The special Bessel spectral densities for Γ ¼ 1
2
(solid)

and Γ ¼ − 1
2
(dashed).

x

x(  )u

FIG. 5. The potential uðxÞ that is supplied by Eq. (21) for the
case k ¼ 2. Cf. Fig. 2 for the leading part, u0ðxÞ, in this case.

2Also, it accompanies the fact that in this special case, the
whole perturbative analysis is saved from being afflicted by a
divergence in the volume of the one-crosscap moduli space that
would propagate to higher orders through recursion relations.
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The kth model is in fact the ð2; 4kÞ type-0A minimal
string theory: For nonzero Γ, in any given minimal model,
the first subleading term in the large negative-x regime has
the interpretation [where two integrations of uðxÞ gives the
minimal string free energy] as a disc term, with Γ counting
the Chan-Paton labels for open string sectors, i.e., D-branes
[52]. Also, in the minimal string picture, the large positive-
x regime is a purely closed string expansion [44,45] with
the interpretation [47] that Γ counts R-R flux insertions in
(type-0A) string theory. In the large positive-x regime, there
are features of the perturbative expansion that are common
to all k, and these will govern key aspects of the JT gravity
defined by combining them, as will become clear.
These types of solutions have been studied a lot, starting

with Refs. [42,44–46,52], and more recently Ref. [59].
There is strong evidence that there is a unique, smooth
solution for uðxÞ with those asymptotics for each k. This is
proven for k ¼ 1 (with Γ ¼ 0), since in that case there is a
map from the string equation to the Painleve II equation, for
which the relevant solution was constructed by Hastings
and McLeod [60]. A generalization of their methods was
applied to the wider class of solutions in Ref. [61],
providing strong evidence for their existence. Moreover,
the map established in Ref. [52] between its solutions and
those of the Painlevé II hierarchy suggests uniqueness for
some nonzero Γ via the results of Refs. [62,63]. Moreover,
the underlying KdV flow structure (see Sec. II), which can
evolve the unique k ¼ 1 solution into solutions for other k,
suggests that they exist, if not on their own ensuring
smoothness. More recently, a ’t Hooft–like large-Γ limit of
the string equation was discussed in Ref. [47], which also
suggests smooth solutions exist for all k. Numerical studies
started back in Ref. [44], and since then the solutions have
been exhibited numerically for numerous k (and Γ). See

Fig. 6 for the k ¼ 1 case, with the curves for Γ ¼ 0 and
Γ ¼ � 1

2
superimposed.

IV. JT SUPERGRAVITY FROM
MINIMAL MODELS

It is easy to define a general interpolating type-0A
model3 as well, simply by using the string equation (21)
with asymptotics [Eq. (35)], and as input,

R ¼
X∞
k¼1

tkR̃k½u� þ x; ð36Þ

with the specific choice of tk given in Eq. (19), ensuring
that the leading part of uðxÞ will yield the disc contribu-
tion that satisfies Eq. (11), and the disc spectral density will
be that of the SJT model. The full string equation then gives
the perturbative corrections to the disc, and the nonpertur-
bative physics beyond. In short, this is the fully non-
perturbative definition of the family of JT supergravity
models.
The next two sections will examine perturbative features

of this definition, coming from the two regimes where the
potential (see, e.g., Figs. 5 and 6) is perturbative: large
positive x and large negative x. Equivalently, and perhaps
more physically, these can alternatively be thought of as
regimes where ℏ is small, with x either positive or negative.
Perturbation theory is then organized in terms of powers of
ℏ. Perturbative physics from positive x and negative x are
separate families of corrections that should not be mixed
together, and there is a choice as to which family should be
used for expanding around the leading disc contribution
given by u0ðxÞ. The JT supergravity definition has the
spectral density determined by the integral (6), with μ
positive (equal to 2 in our conventions, as already dis-
cussed). Small ℏ is to be understood as small compared
in magnitude to μ, which is in the x > 0 regime. So,
positive x is therefore the meaningful perturbative regime.
(Conversely, were μ chosen to be negative, the meaningful
perturbative expansion to develop would be from the x < 0
regime, but that is not the situation here.)4

So, perturbative corrections away from the ρ0ðEÞ ¼
coshð2π ffiffiffiffi

E
p Þ=πℏ ffiffiffiffi

E
p

already determined from the u0ðxÞ
will come from expanding u0ðxÞ around 0 (its leading value

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1

0

1

2

3

4

5

6

7

8

9

10

x

(  )u x
-2 -1 0 1 2 3 4 5

-0.5

0

0.5

1

FIG. 6. The (mostly) central curve is the unique (k ¼ 1) Γ ¼ 0
solution to a special equation [Eq. (21)] derived from a matrix
model. Also shown are the k ¼ 1 solutions for the special cases
Γ ¼ 1

2
(uppermost) and Γ ¼ − 1

2
(lowermost).

3Reference [61] studied, in the context of (type-0A) minimal
strings, interpolations of this sort, following similar work on the
bosonic minimal models in Ref. [64].

4The case μ ¼ 0 is special, as it resembles the choice usually
made for ordinary JT gravity. To really connect to ordinary JT
gravity, it should be understood as μ ¼ 0−, thereby invoking the
x < 0 perturbation theory that coincides with the Hermitian
matrix models for which the string equation is simply R ¼ 0.
This is, in fact, what is used in Ref. [30], to use these type-0A
minimal models [with tk choice (14)] to give a nonperturbative
definition of JT gravity that coincides perturbatively with that
given by Hermitian matrix models.
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for x > 0) in the positive-x regime, and using the resolvent
Eq. (26) to develop an expansion for R̂ðx; EÞ, and finally
using Eq. (25) with limits ½a; b� ¼ ½0; μ� (where μ ¼ 2 in
this paper’s conventions).

A. Perturbation theory: Positive x

A most important feature of the definition is the fact that
in the positive-x regime, the potential has the perturbative
form uðxÞ ¼ ℏ2ðΓ2 − 1

4
Þ=x2 þ � � �. This controls the struc-

ture of the leading low-energy behavior, as already dis-
cussed above. The exact model of this sector, discussed in
Secs. III B and III C, has this leading behavior. But the
behavior beyond this is different for each k. So they supply
an infinite family of generalizations of the model, but with
one important feature: The factor ðΓ2 − 1

4
Þ multiplies the

entire asymptotic series (for large positive x) for any k. For
example, for k ¼ 1,

uðxÞ ¼ ðΓ2 − 1
4
Þℏ2

x2
− 2

ðΓ2 − 1
4
ÞðΓ2 − 9

4
Þℏ4

x5

þ 7
ðΓ2 − 1

4
ÞðΓ2 − 9

4
ÞðΓ2 − 21

4
Þℏ6

x8
þ � � � ; ð37Þ

and similarly, for k ¼ 2,

uðxÞ ¼ ðΓ2 − 1
4
Þℏ2

x2
− 2

ðΓ2 − 1
4
ÞðΓ2 − 9

4
ÞðΓ2 − 25

4
Þℏ6

x7

þ 11

48

�
Γ2 −

1

4

��
Γ2 −

9

4

��
Γ2 −

25

4

�

×
ð48Γ4 − 1240Γ2 þ 8371Þℏ10

x12
þ � � � : ð38Þ

From here it is possible to work out R̂ðx; EÞ, and hence the
contributions this sector makes to the density ρðEÞ beyond
the orders given in Eq. (28), using the resolvent techniques
of Sec. III C. For example, for k ¼ 1, the next order is

ρ2;0ðEÞ þ ρ1;2ðEÞ þ ρ0;4ðEÞ

¼ −
ℏ3

128π

�
Γ2 −

1

4

��
Γ2 −

9

4

� ð1 − EÞ
E5=2 ; ð39Þ

while for k ¼ 2, it is almost the same at this order [but with
the (1 − E) in brackets replaced by 1

2
], followed by

ρ4;0ðEÞþρ2;2ðEÞþρ1;4ðEÞþρ0;6ðEÞ

¼−
ℏ5

ð32Þ2π
�
Γ2−

1

4

��
Γ2−

9

4

��
Γ2−

25

4

�ð1− 4
3
E2Þ

E7=2

ð40Þ

at the next order.
Several remarks are due at this point. Perhaps the most

important is that for Γ ¼ � 1
2
, the entire perturbative series

beyond the disc order ρ0;0 vanishes—for all the general k

models from which the model is built—as happens in the
special case of the exact Bessel model of Sec. III C, and as
anticipated in Stanford and Witten’s general perturbative
analysis [33] for the full (0,2) and (2,2) supergravities. This
is highly suggestive that this prescription for building JT
supergravity from these minimal models is correct.
Indeed, this feature is definitely present in the full

interpolating theory that is proposed for the complete
interpolating definition. This follows from the special
nature of the equation in this regime. The whole perturba-
tive solution of Eq. (21), regardless of the form of the input
R (interpolating or not), is seeded by the k-independent
leading solution u ¼ ℏ2ðΓ2 − 1

4
Þ=x2. As a demonstration,

we pick the interpolating case

R¼ t2R̃2þ t1R̃1þx¼ t2

�
−
1

3
u00 þu2

�
þ t1uþx: ð41Þ

Working perturbatively, the solution leads with the univer-
sal piece, followed by the k ¼ 1 behavior, with k ¼ 2
behavior appearing at the next order, then both appearing
mixed in the expected nonlinear fashion:

uðxÞ ¼
�
Γ2 −

1

4

��
ℏ2

x2
þ
�
Γ2 −

9

4

��
−2

t1ℏ4

x5

þ ℏ6

x8

�
7t21

�
Γ2 −

21

4

�
− 2t2x

�
Γ2 −

25

4

��

þ ℏ8

x11
½t31ðpoly1Þ þ t1t2ðpoly2Þ�

�
þ � � �

�
; ð42Þ

where poly1;2 are fourth-order polynomials in Γ. The key
feature is the factor of Γ2 − 1

4
. This has an obvious

generalization to the fully interpolating model. So, the
vanishing of all orders at Γ ¼ � 1

2
is guaranteed in the full

proposed JT supergravity in this perturbative regime.
Another remark can be made about the (probably already

evident) intriguing pattern that is emerging. As k increases,
there are further special points at half-integer Γ. In such
cases, the entire series for uðxÞ truncates to the leading
Cℏ2=x̄2 term for some constant C. For example, k ¼ 1 has
the case Γ ¼ � 3

2
, for which uðxÞ ¼ 2ℏ2=x̄2 exactly. The

k ¼ 2model also has that case, and in addition Γ ¼ � 5
2
, for

which uðxÞ ¼ 6ℏ2=x̄2 exactly, and so on to higher k. Each
of these has their exact spectral density at low energy given
by Eq. (30), with the physics at all energies furnished by the
complete string equation (21). There is again a truncation of
the perturbative series to a finite number of terms, and all
the nonperturbative physics can be written in terms of
factors of oscillatory pieces with frequency 2

ffiffiffiffi
E

p
=ℏ. This

follows from the fact that, just as before, Bessel functions
of half-integer order can be written as combinations of
trigonometric functions.
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For example, working out the Γ ¼ 3
2
case explicitly is

interesting. The perturbative contributions are the disc and
the term that would previously be interpreted as the discþ
handle added to the disc and two crosscaps, given by
Eq. (28) with Γ ¼ 3

2
inserted. Once again, there are real

terms in
R
2
0 R̂ðx; EÞdx coming from the lower limit that

correspond to crosscap order, as happened for Γ ¼ 1
2
.

However, in this case they are divergent. It is natural to
suggest that this corresponds to the crosscap divergence
seen by Stanford and Witten for Γ ≠ � 1

2
, but this should be

further explored. Nevertheless, the density, which seems to
involve only even numbers of crosscaps, is finite and gives
a well-behaved function, presumably defining a sensible
theory for these broader values of Γ.
The presence of other special points for half-integer Γ

giving u ∼ ℏ2=x̄2 suggests further special circumstances in
the theory of JT supergravity. In fact, there is a much richer
story, which was elucidated in Ref. [54]. There, it was
shown that at half-integer Γ there are many rational
solutions for uðxÞ for each k, in the form of a ratio of
polynomials in x differing by 2 orders. This gives an
expression for uðxÞ that starts as Cℏ2=x̄2 þ � � � for some
constant C and then truncates at some order.

B. Perturbation theory: Negative x

As already mentioned above, perturbation corrections
beyond ρ0ðEÞ come from the expansion in the positive-x
regime discussed in the previous section. There, it was
confirmed that certain special features of JT supergravity
observed by Stanford and Witten are naturally reproduced
by the special properties of the string equation in this
regime. However, it is interesting to explore the structure of
the negative-x expansion. (This would be physically
relevant for the case of μ ¼ 0−; for example, relevant to
ordinary JT gravity were Γ ¼ 0; see footnote 4.) Moreover,
it will uncover a useful piece of physics missing from the
perturbative description of the previous section.
For each k, the leading form is given in the first line of

Eq. (35). As already discussed, the first (classical) piece
generates the contribution to the disc order that rises as
Ek−1

2, for each k. In this regime, there is no universal leading
form for uðxÞ across all models, and so general statements
about the nature of the potential in the interpolating model
are harder to make. It is useful, however, to look at some of
the behavior at individual k values, and the case of k ¼ 1 is
a good starting point. Going to a few orders beyond the
leading ones, the potential is

uðxÞ ¼ −x� Γℏ
ð−xÞ1=2 −

1

2

Γ2ℏ2

x2
� 5

32

Γð4Γ2 þ 1Þℏ3

ð−xÞ7=2

þ 1

8

Γ2ð8Γ2 þ 7Þℏ4

x5
� � � : ð43Þ

Just as before, the resolvent technique of Sec. III C can be
used to study the resulting spectral density. Some care must

be taken. Here, the integral over x is from −∞ to 0, and as
before, finite physics can come from either limit. As a test
of this methodology, consider the case Γ ¼ 0. Then, the
expansion of the resolvent is entirely generated from the
leading uðxÞ ¼ −x term, and the result for the density
should coincide with the result (expanded) of the Airy
model. Indeed, expanding Eq. (26) gives

R̂ðx; EÞΓ¼0 ¼ −
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðxþ EÞp −

5

64

ℏ2

ð−ðxþ EÞÞ7=2

−
1155

4096

ℏ4

ð−ðxþ EÞÞ13=2 þ � � � ; ð44Þ

and so integrating and using Eq. (25) gives

ρðEÞΓ¼0 ¼
ffiffiffiffi
E

p

πℏ
þ 1

32π

ℏ

E5=2 −
105

2048π

ℏ3

E11=2 þ � � � ; ð45Þ

which is indeed the first few terms of the large-E expansion
of the exact expression for spectral density of the Airy
model:

ρAiðEÞ¼ℏ−2=3ðAi0ðζÞ2−ζAiðζÞ2Þ; ζ≡−ℏ−2=3E: ð46Þ

The first term in Eq. (45) is the disc, accompanying the
1=ðπ ffiffiffiffi

E
p Þ present in Eq. (28), the next has a handle added,

then two handles, and so forth.
Having done that, consider Γ ≠ 0. Integrating the

expanded resolvent gives, at the first two nontrivial orders
with nonzero Γ,�

−
1

2

�Γℏ
ffiffiffiffiffiffi
−x

p

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðxþ EÞp −

1

32

4Γ2ℏ2

ð−ðxþ EÞÞ5=2
�
0

−∞
; ð47Þ

where a term that is either zero or divergent at the limits has
been neglected. The first term produces a crosscap term
�ℏΓ=2E from the lower limit, and zero from the upper
limit; and the second term produces an imaginary piece
from the upper limit which produces a double crosscap
contribution to the density, and zero from the lower limit.
Checking a few more orders in this manner completes the
expanded Airy result [Eq. (45)] for the density to

ρðEÞ ¼
ffiffiffiffi
E

p

πℏ
þ ð4Γ2 þ 1Þ

32π

ℏ

E5=2

−
ð336Γ4 þ 664Γ2 þ 105Þ

2048π

ℏ3

E11=2 þ � � � : ð48Þ

In fact, the crosscap term must be treated with care, and it
produces a special contribution.5 A single pole, 1=E,
produces an imaginary part discontinuity that is a delta
function: 1=ðE−iϵÞ−1=ðEþiϵÞ¼2iE=ðE2þϵ2Þ→2πiδðEÞ,

5The author thanks Felipe Rosso for pointing out this term’s
contribution.
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and so there is a delta function contribution to the density
from Γ states at zero energy: ρðEÞcrosscap ¼ �ΓδðEÞ. An
analogous term arises for any k, and presumably for the full
interpolating model, but it is the k ¼ 1 model that will
dominate the low-energy physics of the interpolatingmodel.
Such a contribution, and its significance, was discussed

in Ref. [33] [by Laplace transform, it corresponds to adding
jΓj to the partition function ZðβÞ]. Even though it was
found in the “wrong” perturbative regime here, it is relevant
to JT supergravity. Such a term is invisible in x > 0
perturbation theory and should be accessible only using
a nonperturbative approach. In a sense, the x < 0 pertur-
bation theory of this section (relevant to a negative-μ
theory) acts as a nonperturbative probe of the model from
the point of view of the positive μ case in hand. The result
can be trusted because it is μ-independent.

C. Nonperturbative results

Now it is time to turn to nonperturbative features of these
type-0A minimal models, including new ones that go
beyond the special features of the exact Bessel model of
Sec. III C. They will act as toy models of the nonperturba-
tive features of the full JT supergravity.
While it is not possible to write down the complete

spectral density for the fully interpolating minimal models
(since the string equation becomes formally of infinite
order), many of the key features are clear from looking at
any particular k. For k ¼ 1, for example, the spectral
densities for the cases Γ ¼ � 1

2
were computed numerically

using the same techniques employed6 for Γ ¼ 0 in
Ref. [30], and they are presented in Figs. 7 and 8. To
the left, there is the 1=

ffiffiffiffi
E

p
behavior at the disc level, plus

nonperturbative corrections, and just as in the special Γ ¼
� 1

2
models studied exactly in Sec. III C (see Fig. 4), for

Γ ¼ þ 1
2
, nonperturbative effects cancel the divergence to

zero, while for Γ ¼ − 1
2
, the divergence is enhanced. Rather

than falling off at larger E (as the special Bessel models do),
in this case new physics turns on and generates the rise to
the right, attaining the E

1
2 disc asymptote at large E. A final

important nonperturbative feature is, of course, the oscil-
latory modulation, indicative of the underlying random
matrix model structure, showing the effects of repulsion of
the eigenvalues. The basic frequency is 2

ffiffiffiffi
E

p
=ℏ [universal

for all k, and hence for the full JT supergravity, because of
the structure of the resolvent Eq. (26)], increasing to the
right, but the amplitude is also suppressed at larger E.
Note that these features are present for any k and the full

interpolating model defining the JT supergravity. (Of

course, there the rise with E is not Ek−1
2 as for the kth

model, but rather exponential.)
Finally, the nonperturbative spectral density for other

half-integer Γ cases can be readily computed. Again, for
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FIG. 7. The k ¼ 1 spectral density for Γ ¼ 1
2
.
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FIG. 8. The k ¼ 1 spectral density for Γ ¼ − 1
2
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FIG. 9. The k ¼ 1 spectral density for Γ ¼ 3
2
; 5
2
; 7
2
and 9

2
,

successively, beginning from left to right.

6Using a matrix Numerov method [65], the Schrödinger
problem of Eq. (3) was solved with −100 ≤ x ≤ þ100 on a grid
of 4000 × 4000. A suitable normalization was performed for the
4000 eigenfunctions, and then the spectral densitywas constructed
using a simple trapezoidal integration. See Ref. [30] for details.
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Γ < 0, the low-E behavior is divergent. Figure 9 shows the
case of k ¼ 1 with Γ ¼ 3

2
; 5
2
; 7
2
, and 9

2
superimposed.

It is likely that these cases (and the full JT supergravities
built out of them) can be generated from the Γ ¼ 1

2
case by

the transformation discovered in Ref. [59], that changes Γ
by an integer via a special “Bäcklund” transformation.
(That work also noticed several peculiar properties of
Γ < 0 that might be relevant here.)

V. DISCUSSION

As models of 2D quantum gravity, minimal string
theories (defined by the double-scaling limit of random
matrix models [18–21]) produced a great deal of excite-
ment 30 years ago because they captured, in a very compact
manner, both the perturbative and nonperturbative physics
of the dynamical topology of spacetime (the world sheet of
the string). The beautiful demonstrations [17,33] that JT
gravity and supergravity can be written as double-scaled
matrix models have renewed a lot of interest in the
topological dynamics of 2D gravity, but the results
(expressed through recursion relations connecting topol-
ogies) are intrinsically perturbative (mostly). The work
presented in this paper (and a recent earlier one [30]) is
based on the idea that building JT gravity and supergravity
out of minimal string models allows the powerful tech-
niques of the older framework to be used as a complement
to the recursive approach, and, moreover, helps to define
the nonperturbative sector. (Note that a relation to minimal
strings was suggested in Ref. [17], and another in Ref. [29].
Section II of this paper argues that the two suggestions are
complementary.)
The results of this paper show that the type-0A

minimal string models are the ideal components
with which to build the JT supergravities that were
classified in Ref. [33] as being in the ð2Γþ 1; 2Þ
Altland-Zirnbauer class. The precise recipe for combin-
ing them was found, which yields the disc-level result
from the super–Schwarzian approach. Key nontrivial
features of the perturbative physics were reproduced
(and, in fact, made manifest in the minimal string
formalism). The construction provides a stable and
(probably) unique nonperturbative completion of the
models, while pointing to new interesting features
beyond the cases Γ ¼ 0;� 1

2
(see below). (A companion

paper [66] explores this construction further, solving the
interpolating string equation and computing several
physical quantities.)
The technique used in this paper can probably be

extended in a number of directions. On the one hand, it
would be interesting to formulate other quantities [corre-
lation functions of ZðβÞ, the spectral form factor, etc.] in
this language, thus opening a useful new window on their
physical properties. On the other hand, formulating the
wider set of JT gravities and supergravities (as classified in

Ref. [33]) ought to be possible. One difficulty might be that
it is not clear if all the double-scaled matrix models of
interest (and hence the minimal strings) have an associ-
ated Hamiltonian analogous to the one discussed in this
paper [i.e., Eq. (3)], where uðxÞ is supplied by a string
equation. Its presence plays a central simplifying role in
the construction. In many cases, the analogue of uðxÞ is a
combination of two or more functions, with coupled string
equations linking them. The operator that, when double-
scaled, becomes H in one-cut Hermitian, complex, and
unitary matrix model cases does not seem to yield a
suitable H in those more general cases. (See, e.g.,
Refs. [67,68] for more on this issue of relevance to the
β ¼ 1, 4 Dyson-Wigner cases.) Nevertheless, perhaps
even in such cases a simple effective H for which the
spectral problem matches that of the JT system can be
found. In fact, the result that the various random matrix
ensembles each have an associated JT gravity encourages
the conjecture that such anHmust exist. However, there is
no guarantee that it emerges at the level of individual
minimal string models. That could just be a happy
circumstance in the cases discussed in this paper.
Finally, there were a number of results and observations
in the body of the paper that hinted at larger structures that
are worth further investigation. For example,
(1) In Sec. II, in determining the combination of

minimal models that yields the disc spectral density,
the version of the function that went into the integral
transform [Eq. (9)] was a simple (and striking)
generalization of that for ordinary JT gravity:
I1ðsÞ=s vs I0ðsÞ, where s ¼ 2π

ffiffiffiffiffi
u0

p
, where u0 is

the classical potential and InðsÞ is the nth modified
Bessel function of s. Perhaps there is a generaliza-
tion [InðsÞ=sn suggests itself] that plays a role in
defining other kinds of JT or JT-like systems.

(2) This paper’s definition of JT supergravity by using
component minimal models yielded (rather natu-
rally because of the structure of the string equation)
key properties of the (0,2) and (2,2) models that had
been observed in ref. [33]. It is clear that it also
supplies a definition for a wider class of models:
ð2Γþ 1; 2Þ. It would be interesting to explore more
properties of these, seeing if they are on at least
equal physical footing to the cases of Γ ¼ � 1

2
, for

example.
The fact that other half-integer Γ cases can be

reached by acting with the Bäcklund transforma-
tion derived in Ref. [59] [which explicitly gives the
potential uðx;Γ� 1Þ if uðx;ΓÞ is known] seems
worth studying in this context. Perhaps the trans-
formation has an interpretation as inserting the R-R
punctures of Ref. [33]. A connection seems natural:
In Ref. [59], it was pointed out that (since Bäcklund
transformations change a solution’s soliton number,
in the associated KdV context) Γ is to be associated
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with a special class of—it turned out—zero-veloc-
ity solitons present in the associated integrable
system. In addition to the observation made toward
the end of Sec. IV B, this connects Γ nicely to the
index ν counting additional zero-energy states
in Ref. [33].

(3) Additionally, the fact that the string equation (21)
has a rich family [54] of rational function solutions
for half-integer Γmay well have an application in the
study of JT systems.

It is hoped that these and other issues and ideas will yield
useful results to be reported soon.
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