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In this paper, the classical and quantum theory of A" = 1 supergravity in four spacetime dimensions will
be studied in the framework of loop quantum gravity. We discuss the canonical analysis of the supergravity
Holst action as first introduced by Tsuda. In this way, we also derive a compact expression of the
supersymmetry constraint, which plays a crucial role in canonical supergravity theories, akin to the role of
the Hamiltonian constraint in nonsupersymmetric generally covariant theories. The resulting theory is then
quantized using loop quantum gravity methods. In particular, we propose and discuss a quantization of the
supersymmetry constraint and derive explicit expressions of the action of the resulting operator. This is
important as it is the first step on the way to analyzing the Dirac algebra generated by supersymmetry and
Hamiltonian constraint in the quantum theory and for finding physical states. We also discuss some
qualitative properties of such solutions of the SUSY constraint.
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I. INTRODUCTION

The study of supergravity theories in the framework of
loop quantum gravity (LQG) already has a long history.
About ten years after the discovery of supergravity in 1976
by Freedman, Ferrara, and van Nieuwenhuizen [I],
Jacobson [2] introduced a chiral variant of the real N = 1
Poincaré supergravity action using Ashtekar’s self-dual
connection variables. Soon after, Fiilop [3] extended this
theory to anti—de Sitter supergravity including a cosmo-
logical constant where he also pointed out some interesting
remnant supersymmetric structure in the resulting Poisson
algebra between the Gauss and left supersymmetry (SUSY)
constraint. This paved the way toward a new approach to
nonperturbative supergravity in which parts of SUSY were
kept manifest.' In particular, this was more intensively
studied by Gambini and Pullin ez al. [5] as well as Ling and
Smolin [6,7], where the notion of super spin network first
appeared. Later it was also considered by Livine and Oeckl
[8] in the spinfoam approach to quantum gravity.

Canonical supergravity with real Asthekar-Barbero var-
iables was for the first time considered by Tsuda [9] where
a generalization of the chiral A" = 1 supergravity action to
arbitrary real Barbero-Immirzi parameters was found. In
parallel, Sawaguchi [10] constructed the phase space in
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For an earlier approach to the canonical quantization of
supergravity using Arnowitt-Deser-Misner (ADM) variables (in
which this manifest part of SUSY is absent) see [4].
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terms of real Ashtekar-Barbero variables by performing
a canonical transformation of the ADM phase space.
However, these considerations did not include a fully
consistent treatment of half-densitized fermionic fields as
proposed by Thiemann in [11] in order to solve the reality
conditions to be satisfied by the Rarita-Schwinger field.
Generalizations in the classical setting have been studied
for instance in [12], where Holst actions for extended
D = 4 supergravity theories have been constructed.

Finally, these considerations have been extended to
higher spacetime dimensions by Bodendorfer et al.
[13,14] based on a new method discovered by the same
authors in [15] allowing them to construct Ashekar-Barbero
type variables in case of more general spacetime dimen-
sions going beyond the limitations of the variables usually
applied in LQG. This, among other things, has the
advantage of being able to apply LQG methods to the
maximal N' = 1, D = 11 supergravity which is thought to
be the low energy limit of M-theory, a nonperturbative
unification of all existing D = 10 superstring theories.
Since we are not working in higher dimensions, we
use the standard Ashtekar connection, shifted by some
torsion terms. These are slightly different variables for the
gravitational field than [13,14]. However, [13] uses half-
densitized variables for the Rarita-Schwinger field, and it
introduces an ingenious technique for dealing with its
Majorana nature, which we will also employ.

In this work, we will be mainly interested in the N" = 1,
D =4 case, in particular, in the implementation of the
SUSY constraint in the quantum theory. In the chiral
approach, Jacobson studied the classical Poisson algebra
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generated by the left and right supersymmetry constraints
which maintain the right balance between fermionic and
bosonic degrees of freedom. In particular, it was shown that
the Poisson bracket among the SUSY constraints generates
the Hamiltonian constraint which is in fact a generic
feature in canonical supergravity theories. Similar results
obtained in [10] using real Ashtekar variables supported
this hypothesis showing that, on the constrained surface of
gauge and diffeomorphism invariant states, the Poisson
bracket between the SUSY constraints is indeed propor-
tional to the Hamiltonian constraint.

This has interesting consequences implying that the
SUSY constraint is superior to the Hamiltonian constraint
in the sense that the solutions of the SUSY constraint
immediately are solutions of the latter. Hence, in case of
presence of local supersymmetry, the SUSY constraint
plays a similar role as the Hamiltonian constraint in
ordinary field theories. In fact, it has been conjectured
early on that the SUSY constraint could be understood as
the “square root” of the Hamilton constraint, in the same
sense and with the same resulting simplifications as the
relation between the Dirac and Klein-Gordon operators
[16—18]. This is precisely what makes its study in LQG
particularly interesting. However, an explicit implementa-
tion of the SUSY constraint in the quantum theory has not
been considered so far in the literature. In fact, the SUSY
constraint turns out to have a different structure than the
Hamiltonian constraint which also requires special care for
its regularization. As a result, its implementation in the
quantum theory leads to an operator which has a different
structure than the Hamiltonian constraint operator. It would
be interesting to check by computing the commutators, in
which sense these operators can be related to each other.
This may also fix some of the quantization ambiguities. In
fact, for a certain subclass of symmetry reduced models, we
have explicitly shown in [19] that such a strong relationship
can indeed be maintained in quantum theory. It would be of
great interest to see whether these results can be extended to
the full theory.

The structure of this paper is as follows: In Sec. II, we
will review very briefly some important aspects about
Clifford algebras and Majorana spinors. We will use this
opportunity to fix our notation and conventions as well as to
collect important identities used in the main text. In Sec. III
we will subsequently discuss the canonical analysis of the
Holst action of D =4, N' = 1 supergravity as introduced
in [9] filling in some details concerning half-densitized
fermion fields. We will finally derive a compact expression
of the supersymmetry constraint that will be used for
implementation in quantum theory. The quantization of
the Rarita-Schwinger field will be discussed in detail in
Sec. VA following the proposal of [13] performing an
appropriate extension of the canonical phase space. In this
way, we will also use this occasion to point out some
interesting mathematical structures underlying the usual

quantization scheme of fermion fields in LQG also dis-
cussed in more detail in [20] in the context of the manifestly
supersymmetric approach to quantum supergravity.

Finally, in Sec. V B, we will turn to the quantization of
the SUSY constraint in the quantum theory. In particular, an
explicit expression of the quantum SUSY constraint will be
derived using a specific adapted regularization scheme. In
this way, we will also find some explicit formulas for its
action on spin network functions which may be of
particular interest in order to find relations to the standard
quantization scheme of the Hamiltonian constraint. In
Sec. V C, possible solutions of the SUSY constraint will
be discussed on a qualitative level showing that general
solutions may indeed be supersymmetric in the sense that
they need to contain both fermionic and bosonic degrees of
freedom.

Unless otherwise stated, we work in signature
(= 4+ ++). The gravitational coupling constant is denoted
by k¥ = 872G, the Barbero-Immirzi parameter by f. Indices
I,J...=0,...,3 are local Lorentz indices, i, j, ... = 1,2, 3
their spatial part. 4D Majorana spinor indices are denoted
by a,f, ...

II. SOME NOTES ON CLIFFORD ALGEBRAS
AND MAJORANA SPINORS

In this section, we will only recall some essential aspects
of Clifford algebras and Majorana spinors. Therefore, we
will mainly follow the mathematical exposition in [21],
although our conventions are those in [22]. Let (R*,7) be
the inner product space where # is a symmetric bilinear
form of signature (s, 1), i.e., with respect to the standard
basis {e;} of R/, I =0,...,s + t=:n, one has

-1, forlI=1,...,s

ieren = { (1)

+1, for/I=s+1,...,n

and n(e;,e;) =0 for I#J. The Clifford algebra
CI(R*",n) is an associative algebra over the reals with
unit 1 generated by n elements y; € CI(R*, ) satisfying

{risvs}y = 2ny. (2)

It follows that C1(R*, ) is real vector space of dimension
dim CI(R*, ) = 2" spanned by the unit 1 together with
elements of the form

YLL1, =YY s 7 (3)

for k=1,....n, where the bracket denotes
antisymmetrization.

The Clifford algebra has the structure of a graded
algebra via the decomposition CI(R*, ) = CI(R*', ), @®
CI(R*",5), where CI(R*/,5); for i =0 or 1 is the sub-
algebra generated by elements of the form (3) containing an

even, respectively, odd number of elements y;. The even

046010-2



N =1 SUPERGRAVITY WITH LOOP QUANTUM ...

PHYS. REV. D 103, 046010 (2021)

part C1(R*,#), contains a subset Spin™ (s, #) which turns
out to have the structure of a Lie group. In particular, it
follows that this Lie group defines a universal covering of
the orthochronous pseudo-orthogonal group SO (s, 1)
together with a covering map

AT :SpinT (s, 1) —» SO (s, 1). (4)

In case of Minkowski spacetime in D = 4, Spin™(1,3) is
isomorphic to SL(2,C). The Lie algebra 8pin*(s,7) of
Spin™ (s, 7) is generated by the elements

My, = %}'lﬁ (5)
In this article, we are mainly concerned about four
spacetime dimensions. In fact, most of the computations
do not require a specific representation of the Clifford
algebra. However, in Sec. VA, it will be worthwhile to
choose a representation in which the gamma matrices are
explicitly real. An explicit realization for such a type of
representation for arbitrary even spacetime dimensions can
be found for instance in [22].

For Sec. V B, it will prove particularly beneficial to work
instead in a chiral representation or Weyl representation.
This will also play a prominent role in the context of self-
dual variables as discussed in [19,20]. In this representa-
tion, the gamma matrices take the form

(0 0,) | <1] 0) ©
= n =
"=\s o) ™ "7 \o -

with y, = iygy 7273 the highest rank Clifford algebra
element also commonly denoted by y5 and o; := (=1, 5;)
and 6, == (1, 0;) where 6;, i = 1, ..., 3 denote the ordinary
Pauli matrices satisfying the product relation

U,’Uj = 5l]ﬂ + ie,-jkak. (7)
The generators (5) of 8pin™(1,3) then take the form

M _l 1(0[61—0151 0 ) (8)
I 0 5101—5101 ’

) Y = 4
Moreover, they satisfy well-known Lie algebra relations

[MIJ7MKL] =nyxMir —mixM . — Mk + 1M k.

©)

A useful formula which interrelates elements of the form
(3) with different degree is given by the following:

i
P = et . (10)

for 0 < r < 4, which will often be needed in the main text.
Here, e//KL = —¢; 5, denotes the completely antisymmet-
ric symbol in D = 4 with the convention €°!?* = 1.

Finally, let us briefly say something about Majorana
representations and Majorana spinors. Let «: Spin™ (s, 7) —
GL(A,) be the complex Dirac representation (for a detailed
account on complex Dirac representations in arbitrary
spacetime dimensions see for instance [21] and references
therein). A Majorana representation is then defined as an
induced representation on a real subspace of the complex
vector space A,. More precisely, one has the following.

Definition I1.1.—The complex spinor representation x is
called Majorana if it admits a real structure o, ie., a
complex antilinear map o:A, - A, such that o is
Spin™ (s, f) equivariant

ook(g) = K(g)eo (11)

¥ g € Spin* (s, ) and o is involutive 6 = id, .
The real structure defines a proper real Spin*(s,1)-
invariant subspace

Ag ={y € Alo(y) = v} (12)

of A, of real dimension dimp Ar = dim¢ A,. Moreover,
due to Spin (s, ) equivariance, it induces a real subrepre-
sentation

kr :Spin' (s, 1) = GL(AR) (13)

of the complex Dirac representation of Spin™ (s, 7) on Ag
called the Majorana representation of Spin™ (s, t).

Choosing a basis of A,,, one can write the condition y =
o(y) equivalently in the form

w* = By (14)

with B a complex matrix satisfying B*B = 1, which is also
often referred to as the Majorana condition in the literature.
This matrix is related to the charge conjugation matrix C
via B = ityCy" where t, € {£1} depends on the signature
and the dimension of the spacetime.

In case of Minkowski spacetime in four spacetime
dimensions, one usually sets #y = 1 in which case the
charge conjugation matrix is given by C = iy’y' and
therefore, in the chiral representation,

O —i02
B=y%'y = (m 0 > (15)
2

For a Dirac fermion w = (y, ¢)”, the Majorana condition
(14) then reads

v =By &y =—icrp* or ¢=ioy*. (16)
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III. HOLST ACTION FOR SUPERGRAVITY
IN D=4 AND ITS 3+1 DECOMPOSITION

Supergravity in D =4 with an N' =1 fermionic gen-
erator in the SUSY algebra can be described, in case of a
vanishing cosmological constant, as a super-Cartan geom-
etry modeled on a super-Klein geometry (ISO(R'31*),
Spin*(1,3)) with ISO(R'31) the super-Poincaré group
with super-Lie algebra

i8o(R134) = R x 8pint(1,3) ® Ag.  (17)
The super-Cartan connection A= e’ P; + 30" M;; +y*Q,
splits into the spin connection @ € Q' (P, 8pin™(1,3)),
the soldering form e € Q] (Py,.R'?) as well as the
Rarita-Schwinger field y € Q} . (Pgin. Ag) With Py, the
underlying spin structure.

For the purpose of describing supergravity in the context
of LQG, we take the Holst action of N' = 1 supergravity as

stated in [9] which, adapted to our conventions and written
in a coordinate free from, reads’

1
S(e,w,y) = Z{AZH A (PoF (@)X epxs

+2ke! A Ay +lﬁy*D“’y/ (18)

p

where k = 827G and D@y := dy + kg, (@) A y denotes
the exterior covariant derivative of y and

PoF(w))" := PV, F(w)XL  with
KL
1
PIJKL = 5fK5£] - _2ﬁ (:'IJKL (19)

with 8 the Barbero Immirzi parameter. Moreover, F(w) =
dw + w A w is the associated curvature of @ and

Ti=ene€Ql, (Pymspint(1,3).  (20)

One needs to ensure that the equations of motion resulting
from (18) are independent on the choice of the Barbero-
Immirzi parameter and, at second order, are equivalent to
those of ordinary A/ = 1 supergravity.

Therefore, one has to vary (18) with respect to the spin
connection @. As this is rarely done explicitly in the
literature, let us perform the variation for a general matter
contribution. That is, we consider an action S of the form
S =Sy + Symaters Where Sy is the standard Holst

’In supergeometry, the spin structure Py, arises as the so-
called body of the underlying principal super fiber bundle
corresponding to the super Cartan geometry (see [20] for more
detaﬂs)

*For convenience, x will be absorbed in the Rarita- Schwinger
field.

action of pure gravity and Sy paer 1S some Holst-like
modification of the matter contribution such that the
resulting equations of motion remain unchanged.

First, let us consider the Holst term

1
Sy = 41</ YA (POF(CU))KLGIJKL

=4 | (B PoF(@)) (21)

where (- A ) 1Q% (P, 8pin' (1,3)) x Q% (P, 8pin 't (1,
3)) — R is the extension of the Adjoint invariant bilinear
form on gpin*(1,3) to 8pin*(1,3)-valued forms on Pgy,.
Let us then consider a variation of connection @ + éw. The
variation of F(w) is then given by 6F(w) = D sw.
Since PoD@)éw = D'®)(Podw) and (X A D) (Podw)) =
—(D@Z A Podw) up to a total derivative [23], this yields

5SH_/

= D@)xIl] A
4K M

@)% A Podw)

(Po5a))KL€IJKL' (22)

Using (9), it follows that

1
D@E =d(e! Ae) —I—Za)” AZKL @ (M, My, ]V
=de! Ae! —el Ade! + o'k AZK + @' ATIK
=TI Ne! —el AT (23)
with T/ = de! + w'x A €KX the associated torsion 2-form.
Inserting (23) into (22), this yields
1 T KL
5SH:__ T Ne /\(PO(SG)) €1JKL
2K M
1
= - / eMNIO¢p e, Th ehy el (Podw, )X e, dvoly,

:——/ 3151 50 57 T}, ey ek (Podw,) L el dvoly,

= 2K PKL 1(2Tueel + Tt eiel] )swl dvoly,.

(24)

Hence, including the matter contribution, we find for the
variation of the total action

1
6SH.sG = A _2_PKLIJ(2T£ﬂel;(eL + Tppekel] )ow,!

K
S H-matter
e ol dvoly (25)
wl/

which vanishes if and only if
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5Sy.
PKL (2T ey + T, ) = 2xe™! %. (26)
v

Applying the inverse

- s 1
(P, :1+/32 5f§5§] ﬁeum‘ (27)

on both sides of (26), this gives

— 5SH—ma er
210 ,¢4 4+ Ty, = 2k (P71),,5* TKL“. (28)

This is the most general formula for the equations of motion

of the spin connection for arbitrary matter contributions

resulting from the variation of the Holst action. In case of
N = 1 supergravity, we have

OS H-matter 1 _ 1+ ipy.

— = —— el —_— 29

5(1)51“ 4 W/ﬂ/a 2,3 7KLl//p ( )

so that

p? 1+ ipy.

eHvpo

aep) e

1
X <711 + ﬁ €11KLJ’KL> 798 (30)

oS
P_1 KL H-matter _

Since €;,XLy ;= 2iy;;y7. by (10), this implies

oS
P_l KL H-matter

I S Y 2 i
= m WM}/GT Y+ Bylﬂ/* Y,
B 1+ ify. 1= ipy.

T L 2 p

i
= 8 ”W)Ul//ﬂyaYIJy*l//p (3 1)

l//,MY{;'},IJy*

Finally, using ¢y, = iey**"y,, we find
K _
2T, e +Ty" = Zl//ﬂ”w)?ul//p (32)

which are exactly the equations of motion of @ of N' =1
supergravity, in particular, completely independent of the
Barbero-Immirzi parameter. These can equivalently be
written in the form [22]

K _
Th, = V"W (33)

In view of the decomposition of the action (18), let us
rewrite in a coordinate dependent form which gives

e 1
Sh.s¢ = Ad4xﬂe767 (F(a))f,{, — ﬁeu F(cu){ff)
wom VTPV (0
+ e wﬂy“TDlg )W/)- (34)

As shown above, variation of (34) yields the same equation
of motion as the standard action of A = 1 supergravity. It
was then shown explicitly in [12], inserting the unique
solution of (33) into (34), that the terms proportional to 5~
together become purely topological. Hence, the Holst
action coincides with the ordinary one provided w satisfies
its field equations.

The 3 + 1 split of the action (34) follows the standard
procedure. Since M is supposed to be globally hyperbolic,
it is diffeomorphic to a foliation R x X, where X is a
spacelike Cauchy surface. Let ¢:R x £ — M denote such
a diffeomorphism. Then, for a specific time t € R, we
define the time slice X, via X, = ¢,(X), where ¢, = ¢(¢, )
describing the evolution of X in M. Furthermore, the flow
of the time slices induces a global timelike vector field 0,
which, on smooth functions f € C*(M), acts via

0) =5 Fod). (39)

We choose a unit normal vector field » which is normal to
the time slices such that there exists a lapse function N shift

vector field N with N tangential to the foliation, such that
0,=Nn+N. (36)

As the canonical analysis of the purely bosonic term in (34)
is very well known, let us only comment on some main
steps. The decomposition of the curvature tensor with
respect to the unit normal (co)vector field yields

53161PUKLF( ®) = Ee ebP”KLFflf‘

+eejein’ P g Fliln,  (37)

with FAL = 2(%(0 + Za)MM‘ D] . Using n”d,m, =
5w (Lo,w, —2N? 8ba)a] - 0,0,), where Lyw,, a=1,2,3
denotes the Lie derivative of a spatial component of @ with

respect to the global timelike vector field 0,, the last term in
(37) becomes
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1 .

= N\/_e“PO’KL(Zn/’(?[pa)KL + 2n/’a)L0‘M‘ p Ly
1 .
= —\/_e“La (ﬂwa - —€ N ) Vaei POk 0,0f — 2NP\/qet P ¢ 80"t

+2\/§e§‘PO’KLn/’a)LD| | Ia‘“

= %E;fLa,A; - %E?é)aAi + 2E¢PY i of yall*
— NPE¢PY g (20,0 4 + 20 b‘M‘a)g’]“‘) (38)
where
AL =T, +pKi, and E¢=./qe! (39)
is the usual Ashtekar connection and dual electric field, respectively, where we set I'l, := e okt and K == ,% for the

3D spin connection on X and extrinsic curvature, respectively. These satisfy the nonvanlshlng Poisson brackets

{AL(x). E}(9)} = kp5;5651) (x. y). (40)
Furthermore, in (38), we introduced the Lagrange multiplier A! := e 0+ oY =T + pKi. Since
A 1 1+ p?
2P, = AT, A = ;ﬁ K7€ K (41)

the two mid terms in (38) can be combined to give, after integration by parts and dropping a boundary term,

1 1 1+ p°
ﬁA I0,EY + 2E9PY 1) ok oMl = A;'B(ﬁaE? + e/ AKEY) — 1+r ——— K7€, KLE¢

1 14 p
—AilpWpe 1P
p p

For the last term in (38) proportional to the shift vector field, it follows that

K€, KLEY. (42)

— NEP PO gy (20,05 + 20f,0p")

N ﬁEb(F( )iy + (1+ )l KEKD) (43)

with F(A)" = dA + 1 1e kA’ A A¥ the curvature of the Ashtekar-Barbero connection. Finally. let us comment on the first
term appearing in the decomposition (37). Since e = N,/q, this can be written in the form

N iy 1 ..
Ee ebP’/KLF(a))be = ;/c_]efeﬁ? (F(a))lajb —l—ﬁe”kF(a))%)
NE{E} o 1 4 Ok
=27 F(F)g, + 200w, + 3¢ TiF (@) gy (44)

with F(T") the curvature of the 3D spin connection I'. Using

(D), = F(A) = 26D} K}y = el KUK} (45)
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it follows that (44) can be written in the form

5e, aeb P, F(w)KE = N 2’5\/’_5" i (F(A)gb — (14 ek, KK — %ﬁz)D[ K"]> (46)
Next, let us decompose the fermionic part of the supergravity action (34). Since e = —n"(9,) = N and e} = N°¢/,, we find
P Y ! J;;ﬁy* Dy, = ey, ! j;;ﬂy* DYy — Ne®™ 1y, ﬂ J;;ﬁy* DYy,
_ Ndeabey y +2 ;ﬂy* wa v
+ €Yy, ! —;;ﬂy* (Lz),l//c + %w{jJ/lJWc>
— ey % ((’Lv/f + %w{f m%) : (47)

Hence, taking the left derivative of the kinematical term
appearing in (47) with respect to y, and noticing that
fermionic fields are anticommuting, it follows that the
momentum conjugate to y,, is given by

abc, ﬂ+lﬁy*_l abc y*+lﬁ

4= — . 48
7= ey PR G (48)
These satisfy the nonvanishing Poisson brackets

{wa(x), zj(y)} = =655561%) (x, ). (49)

In particular, according to (48), the canonically conjugate
momentum z¢ is related to y, via the reality condition

Q= n" — Eeabcl//by*ycpﬁ =0 (50)

where we set

ot BT

= (51)

If we consider the last term in (47), it again follows after
integration by parts and dropping a boundary term that

abc,ys, 1 +lﬂ7* (

— €YWY

1
Oy, + wyylﬂ/’t)

25 4
_eabey g YEBYs L b o1, T IPY
Wi 2ﬁ YoWa 4 Wt c 71] Zﬂ YoWa
_ﬂ+lﬂ7/* abc ﬂ+lﬁ7/* €9b¢ oy
=V Da(e™ypw.) + W, 5 4 P wlly yw.
— ﬂ + lﬁ?* w abc
= WtTDE/I )(6 b YoWe)- (52)

Let us rewrite (52) in terms of the covariant derivative of the
Ashtekar connection. Since

a)a Y = wll }/l] + 2a)a Y0i (53)
= 2il%y.y0i + 2K\ yo; (54)
we find
1+ ipy.
Twyifu
T +ipy. -
= (Thy.voi — iKiyor)
i
1 . .
= (Thy.voi — iKiyor + ifThyo: + BKLy.7o0:)

1 o
= (AL = iKLy, + ipThy.)y.Yoi

1 , ‘
=—— (AL +ipAly, —i(1 + B)K'y.)r.70i

ip
T+ipy. .. . 1+ 4 .
=——"2iAly.v0i Klyoi. 55
o ZAarro + 5 i) (55)
Hence, this yields
T+ ipy. () 14 ipy. (A) 1 —|—ﬂ2 .
DYy, = — ) Ko
25 Y 25 v, + 45 Yoi¥n
(56)
with
i .
DMy, = Oy, + EALJ/*YOin- (57)

046010-7



KONSTANTIN EDER and HANNO SAHLMANN

PHYS. REV. D 103, 046010 (2021)

With respect to the chiral representation of the gamma
matrices, one has

i T; 0
~7«70i — . 58
57470 (0 n) (58)

Hence, in particular, in the chiral representation the
covariant derivative acts separately on the respective chiral
subcomponents of the Rarita-Schwinger field. We will use
this property later in Sec. V B, when we will study the
action of the SUSY constraint on spin network states. Note
that the appearance of the term %y*yo,- in the covariant
derivative in (57) is not a coincidence, but follows from the
|

identification of 811(2) as a Lie subalgebra of 8pin™(1,3)
generated by Mj =1y, such that A= —1Ale/*M
which implies

1 . . 1 .. . i )
KR*(A) = _EAlei]kK[R*(Mjk) = _ZAlei]kyjk = EV*VOiAl'

(59)

For the derivation of the SUSY constraint, we need to
collect the terms in (52) proportional to y,. Using (56), one
finds again by integration by parts and eventually dropping
boundary terms

aben, . VPV (@ aben 1V F iy, 1
ey, 2% DYy, — ey, 2% Oy, +Zw£’7uwt
_ abc 1+ lﬂ}/* (@ 1+ lﬂ}/* (@) ¢ abe
= ll/z<€ b J’aTDb )Wc +TDa (e“yLp.)
_ abc ]]+lﬂ7* A ﬂ+lﬂ7* A) ¢ abe 1+ﬂ2aci j
=Y, <€ by, TDI(? )Wc + 25 DE; )(6 by, c) —Te b Kbe{zl’o{h,l’j}l//c
A b VHifr. (a T+iBre (4), ave 145 .
= l//z<€ b yaTDZ e+ 2% D (e ey, TR P Kpavowe |- (60)

Hence, the SUSY constraint in the theory takes the form

1+ ipy.

1+ ify. DA

__ abc (4) ¢
S = eab a 2ﬂ Db Ve + Zﬂ a (eah th//c')
1+ p?
- Teabcyol//cha- (61)
For the term proportional to w, in (47) we compute, using (55),
L e T +ipy, ; I e T +ipy.
— ey, o e = Al == €Wy, ——" 170
2p ip
1 + 'BZ i,abc,g,
5 K™%y pyoc
o 1+p
= Aj <__7ra7*70il//a> + 5 KWy pyo e (62)
so that, combining with (42), this yields
) 1 4 i
AIG; = A] (@ DYE - En“y*mwa> . (63)
Hence, the Gauss constraint takes the form
N
G = ﬁDa E; ~ 50V
1 4 i _ 1+ ipy.
= @DS 'E¢ +§€“bcwawom,~ 25 Ve (64)
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As fermion fields anticommute, it follows that

ePWayoracWe = €Wl aetWa = =€ Waroraewe = 0. (65)
Therefore, combining the last term in (62) with the last term in (42), this gives
1 + ﬂZ i Lk ra 1 abc
5 Ki\ < €ie Kok = 7€ Warprowc
1+8% /1 |
== ﬂﬂ Ki <E e KSE] + Z€ab°€bil//a701//c> (66)
yielding the second class constraint
K _
e KEES + Zeabcebil/’ayol/’c =0. (67)

For the vector constraint, we need to collect terms proportional to the shift vector field N¢. From (43), we deduce,

using (62),

1 : ; 1 L+ ;
Nd@E?(F(A)Zb +(1+ ey KyK),) = N"EE?F(A)Q,, p — 5 NKgeu' KLE?
1 : 1+ p? _
= NdEEibF(A)ﬁib - N4 45 " K gy at o e (68)
On the other hand, (47) yields together with (56)
_ + lﬁ)/* ) - 1 =+ lﬁ}’* A 1 +/32 P -
NI iy D e = N g = D e = N e K ararow
_ 1+ ipy. 1+p4
= —N”’e“’”wamTDb Vet N e Koabarove. (69)
Therefore, the vector constraint is given by
1 _ 1+ ipy (4) 1+ ﬂz _
b b * b
H;:= EE PE(A)Y, — € Cl//aydTDb Ve +7€“ KpaWa¥o¥e- (70)
Finally, using (46), we find for the Hamilton constraint of the theory, modulo the second class constraint,
EaEb ‘j k 2\ ok mgn
21('\/. F(A)ab - (1 +ﬂ )6 mnKa Kb
1 +ipy. V4B pepei -
+ €9 ,70 TMD({‘)WC + 4—ﬂﬂ€“ch’bl//amv/c- (71)

At this point, we have expressed the constraints discovered
so far in terms of A, E, w, z, I', and K. However, while we
can further express K as K(A,T'), I' is undetermined as of
yet. At the same time we have a further second class
constraint, coming from the variation of the action with
respect to

AL =T,

— BKL. (72)

|
The nine components of this constraint, together with the
three components of (67) should allow us to solve for I" and
K,, thus solving the second class constraints. The calcu-
lation is tedious already for Dirac fermions coupled to
gravity [24], so we take a shortcut. The precise expression
for K, is not relevant for our purposes and the gravitational
contribution to I', the torsion-free spin connection, is well
known. The fermionic contribution is simply the spatial
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component of the contortion tensor C,;; which, using (33)
is given by

Cl = —e*Cyjp = —me””de;,(wwc + 20y Wa)-
(73)
This is a function of E, y, z. From now on, we always

assume that I' and K are determined by the canonical
variables in this way.

A. Introducing half-densitized fermion fields

As proposed in [11], in order to solve the reality
conditions of fermion fields in canonical quantum gravity,

it is worthwhile to go over to half-densitized fermion fields.
In the case of the Rarita-Schwinger field, this amounts to
introducing the new fields

. 1 .
= V/qefy, and 7, = \V—Ee;ﬂ“. (74)

As both sides have been rescaled by the spatial metric, it is
clear that this, a priori, does not define a canonical
transformation. In fact, as we will see in the following,
this requires a redefinition of the Ashtekar connection.
Therefore, following the same steps as in [13], we sub-
stitute the transformed fields (74) in the symplectic poten-
tial which yields

[ 1. 1 . .
dl/dsx_E?A;_”a.a:/dl/d3x—E?A;——E§‘7z’Lf YGELD
= [[ar [ @il - my - ny il
A s  Kp ¢ ¢ J

— A dr L d3xEE§‘A;—ﬂﬁ/,¢i+ﬂﬁ/)E?E{1¢j

= /Rd[\/‘zd?)xEE?A; - 71';5(15[ - E?La’ (ﬂ:bE{lfp])

| o -
_ / dr / Pt ESLy, (A — ki, Elgp,) — (75)
R ) K

where we have dropped a boundary term from the third to
the fourth line. Hence, transforming the Ashtekar connec-
tion via

Al — A =T + pKi (76)
with
. . ‘ 1+ipy,
K;’:K;—Kﬂ;jEflgbl Ki+— edbcedebekel Yk +ipy &,
q 2p
ik - T+ipy.
:Kb+l€”k€é Yk + by & (77)

2.4 i

this yields a canonical transformation with the new canoni-
cally conjugate pairs (A}, E) and (¢;, 7;) and the non-
vanishing Poisson brackets

{AG(x). E2(y)} = xp5) (x.y)  and

{97 (x). 7y ()} = ~8185519) (x. ). (78)

In the new variables, the reality condition (50) takes the
form

. . I .. -
Q= Ty — Ee”kquhykP; =0 (79)

which now, in particular, neither depends on the internal
triad nor on the spatial metric simplifying significantly the
further canonical analysis. As a next step, we have to
reformulate the constraints in the new variables. Since
we will mainly be interested in the explicit form of the
SUSY constraint, we will only derive the transformed
expressions of the Gauss and SUSY constraint in what
follows. The remaining constraints can be treated in
complete analogy.

1. Gauss constraint

By (64), the Gauss constraint takes the form

1 (A) i _ ]]+iﬂ}'*
G, =—D; E¢ +-e** ——— .
= { e Warrorsti oy Ve
1 (A) | 1+ ipy.
=—DME + "™y yovm¥i ——— r. 80
7 R (v 2% bi (80)

Considering the first part in (80), we find
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DVES = 0,E¢ + €, (A" + xpr Ebp)) E

(A" iKp 1+ ipy.
=DM Es + X
f+ 5

ep #

1 .mjk
Emit €™ ¢ﬂ’k

1+ ify.
ip

¢

‘2’17%
iKp 5 1] + Py,
2 ip
’ K - ZKﬂ =
= DY )E? + §¢i7’k¢k - 7¢i7*7k¢k

ik
T

_ pW)ps

i 4’[

5517*75(171-
Since y;y; = 0;; + 7ij, one has

1+ ipy.
2p

1
- Zejmkquyoym%(ﬁk +

i
"y VoY mi b

2

ﬁef K@ v oY m¥itr

1
= ZEJ k¢ﬂ/0ym7/l¢k - 4[}

¢]}/*}/Oymt¢k

€ isk ¢]}/*y0¢k

+—€f’"

4

By antisymmetry of the fermion fields, it follows that

(82)

where from the second to the last line we again used (83).
Hence, the Gauss constraint can be written as

¢l}/*7k¢ +3 ¢k7*yl¢ .
(85)

- —6 ff’,}’of/’k

In fact, this can be simplified even further. Therefore,
consider

_ . 1- . 1- .
¢j7/*7’k3’i7’(’¢k) = §¢j7*7k7’i}”¢k + §¢j7*}’k7fﬁ’k¢’

1- 1. .
=3 irririy! P - sPirarid! (86)

which, due to y;/ = 28] — y/y; yields

i . _ 1 )
bivririrVed = piy.rid* — 5¢17*7kj7i¢k — drrid®

i . _ _
= iekljﬁbklfo}’z?iﬁbj + girid* — rr.vid®

i . _ _
- §€ik1¢k}’o¢j + Qir.rid* — drr.vid®.

(87)
v robe = €M Pirrod; = —RPryode =0 (83
Pir-rode ir-rod; Pir-rodx (83) Thus, to summarize, in the new variables, we find that the
s0 that, using 7,7, = _ieijkyok, we find ?auss constraint can be written in the following compact
orm:
Ee’ k¢j7*707m7i7¢k ) i '
G, =D, E} — §¢j7*7k7i7(1¢k)- (88)
_ = jmk '
46 ¢]7/0me1¢1€ ﬁ¢IYk¢k +4ﬂ¢ky ¢z
— ;Lejmk(?)ﬂoymmbk - %&im(pk 2. Supersymmetry constraint
! 1 Finally, we want to express the supersymmetry con-
= ——e/* ot — — Pivicn (84)  straint § in the new variables. Therefore, inserting (74) and
4 ! 2p (81) into (61), the first two terms in (61) become
|
- 1 +ipy ( | 1+ ipy ) .
S =e"cely, - el | + “Dg | —= €k Edy i
Zﬁ b \4/6 J 2ﬂ W ¥k
lKﬂ o iin 1= PYs - 1+ipy.
2\/_ elmn etk 25 VY0¥ mYi®n (ff’ﬂ/k 25 &
KB i i 1 0P - T +ipy,
_ mn i ‘ 89
XA raro¥itun| it b (89)

where the second and last line in (89) can be summarized as
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IKp clmn ,,k<¢ 1+ ipy,
2\/_ TR

] 7 1 + * n i 7 1 + *
- % lmn ljk}/*J/Omtqsn (d’ﬂ/k ;ﬂy ¢l> \5}— ! /ky ¢n (‘ﬁﬂ/k ';ﬁy ¢l> (90)

Since y,yomi = —i€,,;"7,, the first term in the second line of (90) takes the form

1 .
ik l¢u<¢>4 *l’fy ms,-). (91)

¢1> { ﬂy*m[m, vil = J’O{YW }’i}:| by

K . - T+ ify,
Imn . p,ijk . —
2\4/66 €mi € qujn <¢]yk 2,3 ¢l> \4/—

Next, let us rewrite the “K term” of the supersymmetry constraint (61) as

abc 1 adc e

1 . .
Yo cKpa = —=¢€ ea170¢nKl ede = _6i1n70¢nKle§7

v W

K
= ———e"ely o, (Warow.) =

49q° 4\f

Hence, combining (92) with the second term in the second line of (90), this yields

"Ryt (dirobi). (92)

1+ ipy. Kk 14+ p
ei"e*yop, <¢ﬂ’k Pr ¢1> - P

ﬂ 4va 2p

1+ 1 2 -
f D)+ 5 (w ) = o

(¢IY*71¢ ¢zy*}’1¢l —l— 61 ¢ﬂ/0¢k> \/_]/0¢ <¢1}/ ¢l) Sﬂ\/_

}/0¢l (&5/}’0@) (93)

2\/_ "*yodn(divodr)

\/_ Yobi€ ™ (d;vodi)

(diraririrVeH) +

_4\4/6 \/— (¢ly ¢1) 8ﬂ\/_

where, from the third to the last line, identity (87) was used. Since
- i .- - .
ir'dr = =5 €M r.roririn + bjviririedh (94)

[this can be shown along the lines of Eqs. (86) and (87)] and e/*¢;yoby = —€/Xp;yoy1y:4p), the last line of (93) finally takes
the form

_ KB i i) ;
4\7- (¢/y*yk}/1y ¢ ) \/- (¢l d)l) Sﬂ\/-
i 1 . * ; . = 1 1 "
2 f <¢ij 4—2;3;/ J/i}’(’ci)k)) +$m¢’ <€'lk1¢j70 4—2;,53/ yk}',-qbl). (95)

To summarize, we have found the following form of the supersymmetry constraint in the new variables:

oY+ ipre a1 1+ ifye

— pabc i J

S=c¢ e,V Zﬂ Db \4/—_€C¢j + Zﬂ D, \V_g
T+ipy,

3 _ 14y, .
+\%e”"yl¢[ (d)l 25 k¢j> fmrﬁ’ <¢/7’k 2?/ 7i7(1¢k)>

By,
<€’kl¢j —;’;/y J’k}’i¢1>- (96)

y0¢l€ ik (¢ﬂ/0¢k)

€ijkE?7j¢k>

*iva
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With an eye towards quantization of this expression, it is useful to rewrite the second term in (96) depending on the

covariant derivative of the fermion field. In fact, using y.y:7«

, 1 1
p <— Gabcel;ii/kel&{’z) = 8a<

= —2iex'y; + viv.voi, We find

1 0
be ki, ol be k)1
e’ Cekaecff’z) +—=ee e AL 1. Y0iY ki

7a Va 7a 2
/ 1 1
= (Dng )elzi) 7 eCyelp + ebcely, b (“_\/5445[) (97)

so that we can write (96) equivalently as follows:

1 1 1+ ipy. A
§ = it elyy. Dy (7 eé¢,-) +4—ﬁeab0eé—2ﬁ 7D eb)
- 1+ ify, V+ify.
+ eyl <¢ — ;i 'y virVgh
ﬁ 26 \/— g
+ ify.
4\/— <€jkl¢ﬂ’02—/}yk7’i¢l>~ (98)
|
This is the most compact form of the supersymmetry 1 31 o _ b
constraint that we will use for quantization of the theory. 2L AL Ch L2e o _2LN\/6(2W’7/ VatWar W)
+ N — \/_ (101)
IV. ANTI-DE SITTER SUPERGRAVITY
The canonical analysis of A/ = l-anti—de Sitter super-  As for anticommuting fermionic ﬁelds one has
gravity in the chiral theory has been studied fo.r instapce in Wy, = W,y w,. Since ¢! =0 and e}, = L, we find
[3.5,6]. For the sake of completeness, let us briefly discuss
it in the case of real Barbero-Immirzi parameters. 1 3
In turns out that the isometry group SO(2, 3) of anti—de ‘3L 57 VW, +—5 L2
Sitter space’ AdS, can be extended to a super-Lie group 1 1 3
with A/ fermionic generators given by the orthosymplectic = —ZE“l//,y Wa+ N (i \/21'1/70}'”1//;, + 12 ﬁ)
Lie group OSp(A/]4). This leads to a supergravity theory K
with negative cosmological constant. For N = 1, the Holst (102)

action then takes the form

3 e (100)

1 _
Sh-asc = Su-sc + / d*x —e—w, /"y, +—
M kL

2L
with Sy g; the Holst action (18) [or (34)] of N =1
Poincaré supergravity where L is the so-called anti—de
Sitter radius which is related to the cosmological constant
via A = — 3. Since these additional terms do not depend
on the spm connection, it follows immediately that the
variation of (100) with respect to @ yields the same
equations of motions as in the A =0 case and thus, in
particular, are again independent of the Barbero-Immirzi
parameter. The 3 4+ 1 split of the additional terms is
straightforward and yields

“The four-dimensional anti-de Sitter spacetime is an em-
bedded submanifold of the semi-Riemannian manifold R>3
equipped with the metric 745 = diag(— + + + —) defined as

AdS, = {x € R¥3|n pxix? = —L%}. (99)

The first term in (102) yields an additional contribution to
the SUSY constraint whereas the second term contributes
to the Hamiltonian constraint. Hence, it follows that the
SUSY constraint in AdS supergravity takes the form

1+ipy. U+ iy, |,

=y, Dy, +— 2% e r)
14+ p 1 .
- 2/} abCYOWcha ZE?yOIWa (103)

which again can be reexpressed in terms of half-densitized
fermionic variables.

V. QUANTUM THEORY
A. Quantization of the Rarita-Schwinger field

The quantization of the Rarita-Schwinger field is more
complicated than for ordinary Dirac fermions due to the
form (79) of the reality condition Q/, which, however, has
already been drastically simplified using half-densitized
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fermionic fields since then (79) no longer depends on the
triads and the spatial metric.

In order to solve this second class constraint, we follow
the standard procedure and compute the corresponding
Dirac brackets for which we have to compute Poisson

brackets of the form {Q},, ;j} Using (79) as well as (78),
this yields (omitting the delta distribution for convenience)

{Q, Qg} = —56”‘[{(}51«5’ 7} (rriPy )0
— M s (1.1
- éeijkcﬂé(y*;/f; Ve = %eijkC“‘s (rerePy)’
_ éei/k[(cwkpg)gﬁ ~(C11AP} )]
= éeijk(Cy*yk[P; + P5])

= ieijk(cy*yk)aﬂ = Cgﬂ (104)

As we see, the operator P;E has dropped out completely so

that, in particular, (104) is independent of the Barbero-
Immirzi parameter. Finally, since

{p2.Q)} = -5/55 and {Qi.d;} = —8.C,y  (105)

it follows that the Dirac brackets for the Rarita-Schwinger
field take the form

{#¢. dis}op = —{d¢. QLHCT)H{QL dj5)

= _((C_l)ijc)a/; (106)

with C~! the inverse of (104) which satisfies

(C1);;C/* = 551. As can be checked by direct computa-
tion, this matrix takes the form

1
=Y0 <1]5ij - 271’7’]') c!

so that the resulting Dirac brackets can be written as

(€N, = (107)

{gb?(x), &’jﬁ(y)}DB = <<“5ij - ;7’i7j>70> ”ﬂ5(3)(x’ )’)-
(108)

Note that, since (79) does not depend on the internal triads,
the Dirac brackets of the bosonic degrees of freedom
(AL, E!) coincide with the original Poisson brackets. In
particular, the mixed Dirac brackets between bosonic and
fermionic degrees of freedom are still vanishing. For further
simplification, we will work in a real representation of the
Clifford algebra such that Majorana fermions are explicitly

real. In such a representation, the charge conjugation matrix
is given by C = iy and (108) yields

i

1) 0 00on =5 (18- 37, 89 w2) (109

together with the Majorana condition ¢} = ¢;. Due to the
complicated form of the Dirac bracket (109), the imple-
mentation of the Rarita-Schwinger field which simulta-
neously also allows a direct solution of the Gauss constraint
in the quantum theory is by far not straightforward.
However, in [13] a clever way was found to solve all
these issues simultaneously by appropriately enlarging the
phase space.

More precisely, the idea in [13] is to decompose ¢; in its
trace part ¢ := y'¢h; and its trace free part p; = ¢h; — %yia
with respect to the gamma matrices y; such that
b = p; —l—%y,»a. On the enlarged phase space, we then
impose the Poisson brackets

{pe. P} = i6,,6%5%) (x.y) and

9i

{dgoﬂ}::_niéﬁﬁméng,y) (110)

with the remaining brackets being zero such that the Dirac
bracket (109) is recovered. Moreover, in order to account
for the superfluous degrees of freedom, i.e., the trace
freeness of p;, one has to add the additional secondary
constraint A == y’p; = 0 [13]. Using {A%, AP} = 3i5%, this
yields the Dirac brackets

. 1
{P?,Pf}DB = l<5ij5aﬁ —g(J’in)aﬂ> 89 (x, y)

= iP;’f5<3>(x, y) (111)

where P;’]/} is the projection operator onto the subspace of
trace-free Rarita-Schwinger fields, i.e., p; = P; j¢f . Due to
the fact that, in contrast to (109), this indeed defines a
projection now allows for a direct implementation in the
quantum theory.

Before we do so, following [11], we first exploit the fact
that the ¢; (respectively, p; and o) are half-densities and
introduce new Grassmann-valued variables. For later pur-
poses, in contrast to [11], in view of the regularization of
the supersymmetry constraint, we therefore triangulate the
spatial slice X by disjoint (again up to common faces, edges
and vertices) tetrahedra A; instead of boxes at countably
infinite discrete points x; € X, i €Z (|Z] =R;), and
coordinate volume &; /6 such that £ =U;cr A;. Here, ; >
OVieZ are small positive numbers determining the
fineness of the triangulation. Then, for each i € Z, we
define [11]
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(112)

,.(xi— )
- /2 d3y“@y¢<y)

where y; (x; —y) is the characteristic function of the
tetrahedron A; centered at x;. These satisfy the bracket
relations

{6 (x,). 0 (x))}

Xs, (X — X) Xo, (X1 =)
:/d3 : > /d3 : > {¢:i(x).9,;(y)}pp
z 5 2z I
6 6
i 1 X5, (X — X)
= (18 ==y |5 d3x 22
D) ( ij 2717/) kl/}: X 52/6
1
(“5 717/)5/(1 (113)

We then take the continuum limit sup;e7{6;} — 0 and set

0;(x) = lim; _ 9 (x) Vx €ZX. Furthermore, setting

0" (x) = P,;6/(x) as well as 6°) := yi0,(x), this finally
yields

{0V (x),0/(y)} = iP;6,, and

{09)(x), 09 (y)} = - (114)
together with the Majorana conditions 91(.”) (x)* = 91(.”> (x)

and 0 (x)* = 0\°)(x) ¥ x,y € X. Hence, one ends up with
an abstract CAR *-algebra at any point x € X. The
quantization of the theory can be performed following
[13]. We will sketch the main idea and also use this
opportunity to point out some mathematical structure lying
behind this quantization scheme which has a beautiful
interpretation in the framework supergeometry and even
naturally arises in the chiral approach (see [20]).

For any point x € £ we choose the superspace RX‘N =
({x},Ay), also called a superpoint, with N fermionic
generators @4, A =1,...,N, whose sections f € A§ :=
Ay ® C of the complexified function sheaf take the form

f=> 1t

1EMy,

(115)

with f; € C for all multi-indices I € My of length
0 <|I| £N. On the superspace one has the standard
translation-invariant super scalar product &:A§ x Af, -
C given by the Berezin integral

S(f.9) ==/9d91~~-d9’vfg, Y f, geAy. (116)

This gives the space (A, &) the structure of a Krein space,
i.e., an indefinite inner product space for which there exists

an endomorphism S € End(A) such that §(-, S-) defines a
positive definite scalar product on AY;. The choice of such
an endomorphism S is not unique but is strongly restricted
by the implementation of reality conditions. A standard
choice of a scalar product is given by identifying A§ = c?
and setting

(117)

)= Zflgl-

IEMy

It follows, even for general super-Lie groups, that there
always exists an endomorphism S on A% such that’

(118)

Hence, this yields a Hilbert space HY = (A§, (-,-)). On
HY we define the multiplication operators 0" as well as odd
derivations 04 = 8%* forA=1,...,N via
'f=0'f and 0,60° =68 (119)
Vfe A}‘\:,. As shown in [13], due to the choice of the scalar
product (117), these operators are indeed self-adjoint on
HY. With these ingredients, one can then construct a
faithful representation of the CAR *-algebra (114).

Therefore, one takes the tensor product Hilbert space H, :=
HY ® HM with N = 12 and M = 4 and defines

él(./))a(X) = Pzajﬂ [\/E(% + 3/’;)] and

3f(ea o)

>

% (x) o= (120)
on HY and HY, respectively. By construction, these opera-
tors are then self-adjoint as required by the Majorana
conditions and moreover satisfy the anticommutation
relations

R R (o N on
67 (0).0(x)] = nPy;and (07 (x).6) (x)] = 1.
(121)
The quantized Rarita-Schwinger field on H, is then
given by
Bi(x) = 0 (x) + <701 122
) =000 437070, (122)

This construction then takes over to a family of points
{x1,...,x} yielding the tensor product Hilbert space

SFor this situation, such an endomorphism has been in fact
constructed explicitly in [13], although their definition of the
super scalar product differs from the definition chosen here.
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k
) = E)] Hx,» The fermionic Hilbert space Hf is

then obtained as the inductive limit over the corresponding
family of Hilbert spaces H, . .-

B. Quantization of the SUSY constraint

1. Part 1

Having derived the compact expression (98) of the
classical supersymmetry constraint with half-densitized
fermionic fields, we next want to find an implementa-
tion in the quantum theory. As stated in [10], the
Poisson bracket of the SUSY constraint with itself
should be proportional to the Hamiltonian constraint
modulo Gauss and diffeomorphism constraint. Hence, in
the quantum theory, it is expected that, on the subspace
of gauge and diffeomorphism invariant states, the
commutator of the SUSY constraint operator reproduces
the Hamiltonian constraint operator. This is in fact a
very interesting and important feature in canonical
supergravity theories as this provides a very strong
relationship between both operators and thus serves
as a consistency condition in the quantum theory.
This may also fix some of the quantization ambiguities.
In fact, in the framework of self-dual loop quantum
cosmology, for a certain subclass of symmetry reduced
models, it was shown explicitly in [19] that this strong
relationship even holds exactly in the quantum theory.
More precisely, it is shown that the (graded) commutator
between the SUSY constraints exactly reproduces the
classical Poisson relation.

Another point of view is that the SUSY constraint is
superior to the Hamiltonian constraint in the sense that
once the SUSY constraint is quantized (or even solved)
this immediately yields the quantization (or solution) of
the Hamiltonian constraint by computing the commutator.
For this reason, it is desirable to quantize the SUSY
constraint in a way that does not involve the Hamiltonian
constraint. For instance, it should not depend on the
extrinsic curvature as this, via Thiemann’s proposal,
would involve commutators with the Euclidean part of
the Hamiltonian. On the other hand, in order to be able to
compare it with the Hamiltonian constraint, it is desirable
to find an as compact expression as possible.

In the following, we will propose a specific quantization
scheme of the SUSY constraint that does not involve the
Hamiltonian constraint. As a first step, let us therefore
consider the first part in the classical expression (98)
depen6ding on the covariant derivative of the fermionic
fields

®In order to simplify our notation in what follows, the prime
indicating the transformed Ashtekar connection in case of half-
densitized fermionic variables will be dropped.

1
V4

Syl :=/d3xﬁie“bce;y,~y*D§7A)( e£¢j). (123)
>

This expression looks quite similar to the Dirac
Hamiltonian studied for instance in [25] with the crucial
difference that in (123) the conjugate spinor # now plays the
role of a smearing function and thus is not a dynamical
variable. Hence, in contrast to [25], we cannot change its
density weight going over to half-densities for the regu-
larization as this will change the density weight of the
constraint operator as a whole. Moreover, changing the
density weight of the smearing function may change
the constraint algebra which should be avoided. Hence,
particular attention is required for its regularization.

We will proceed in analogy with [26], i.e., we will
consider triangulations adapted to a graph y. First, we
describe triangulations of the neighborhood of a vertex v of
y that are labeled by a triplet of edges (e;, ¢, ex) at v. We
will keep track of the fineness of these triangulations,
measured in a fixed fiducial metric around the vertex, in
terms of a parameter 6 > 0.

(1) All edges of the graph are assumed be outgoing in
the sense that if e is an edge with vertices v, v’ as
endpoints, subdivide it into two new edges e and e,
such that e = eoe, and e, and e, are outgoing at v
and v/, respectively.

(i) Given an edge e; incident at a vertex v, choose a
segment s;:[0,1] - X of e; such that s; is also
incident and outgoing at v and such that it does not
include any other endpoint of the edge e;.

(iii) In order to treat all edges of the graph equally, at
each vertex v, let (e, e;, ex) be an arbitrary triple of
mutually distinct edges incident at the common
vertex v.” For each triple, we chose corresponding
segments (s;,s;,sx) shorter than 8. They span a
tetrahedron A with basepoint v(A) = v (see Fig. 1),
where the missing three edges of A are chosen in a
diffeomorphism covariant way [26]. Furthermore,
we assume that the triple is ordered in such a way
that the tangents of the segments are positively
oriented, i.e., det(s;, §;, 5x) > 0.

(iv) Let (e;, ey, ex) be a positively oriented triple of
edges as in (iii) with corresponding segments
(s;,87,8x). For any 6 > 0, we introduce another
segment s%:[0, 1] - X which is incident and out-
going at s;(1) in such a way, that in the limit § — 0,
s converges to the segment sy (see Fig. 1). As it
will become clear in what follows, the end result will
not depend on the specific choice of such an addi-
tional edge provided it satisfies the requirements just
mentioned.

"If the vertex is two-valent, one can adjoin a third edge in an
arbitrary manner. However, it will become clear below that the
action of the operator on such vertices is trivial.
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FIG. 1. A tetrahedron A with the edges used for the regulari-
zation. The star marks the location of the fermion operator.

(v) To obtain a triangulation 7'(y, v, 8, IJK) of a neigh-
borhood of v, we proceed as in [26] and construct
seven additional (“mirror”) tetrahedra.

We will now write down a regularization of the classical
expression (123), using some triangulation 7'(5) of fineness
0. Let A; be a tetrahedron from this triangulation spanned
by some triplet (s, s, sx) of edges. We will additionally
assume that edges s; have been chosen according to
(iv) above. As usual, we apply Thiemann’s trick and
replace the frame fields ef by the Poisson bracket of the
connection with the volume

= ALV = ALV} (124

where

V(x.5) = / yrse/ah)  (125)

is the volume of the tetrahedron A containing x € X, with
x5 its characteristic function, such that in the limit 6 — 0

one has lims.o&V(x.6) = /g(x). For §>0 small
enough, the holonomy A[A] along any segment s in triple
can approximately be written as h [ | =1+65Alr; +

O(8%) such that, using tr(z;7;) = —36;;, it follows that

1]7

2t (e AT (1, [A], V (x.6)}) = 8,854{A4(x). V(x.6)}.

(126)

This enables one to express (124) in terms of holonomies
and fluxes with the latter implicitly contained in the
definition of the volume.

Finally, in order regulate the covariant derivative in
(146), for any segment s, let

Hia = Pex ( [ xn )

(127)

be the holonomy of A in the 3u(2) subrepresentation of the
real Majorana representation kg, which, according to (58),
in the chiral representation consists of a direct sum of
two spin—% representations such that, with respect to this
representation, H[A] = diag(h[A], hs[A]) is in fact block-
diagonal. Again, in the limit of small § > 0, the holonomy
can approximately be written in the form HA] =1+
85 Ly, y0 AL + O(5%) which yields

H,[A](0,5)¥(s(8)) — ¥(s(0)) = 85(0)(DS¥)(s(0))
(128)

where ¥ stands for an arbitrary spinor-valued field defined
on X. With these preparations, we are now ready to write
down a regularization of (123). Given the triangulation
T(8) of fineness 6 > 0, we set

SVllm e S e e ) (5l V(30)))
AET(7.6)
X711 [Lr(s,(8:)) = Lr(x)] - (129)
with
_ tI'(Tkhs’K(A[ {h;Kl(Al)’ V(SJ(A ) 5)}>
Lk(ss(4))) = Vis,(4,),0)
X Hs,(A,-)eg(SJ(Ai)(‘s» (130)
and
tr(zihg, (a, hs‘1 V(x;, 0
) = >{V(Kf . W) ey 131

where in (129) for any base point x; = v(4A;), we have chosen
a particular triple of segments (s;(4;),s;(4;),sg(4;))
incident at x; and an additional segment s% such that the
above requirements are satisfied. First, let us show that (129)
indeed provides a regularization of (123). Therefore, we use
the fact that, by property (iv), s% converges to s in the limit
0 — 0 such that for small §, due to (128), we can approx-
imately write

Li(s(A) = Tx(x) 8285 (A)ig (8D}
% {A (x,,5)} )
((xl_’é) ) ).
(132)
Recall that, by (112), 6 is defined as
o) = [y

53
6
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so that, using O,ys(x —y) =

8)5” 9? (X ) =

53
6

bily) = / @y = 5 500,

—0yax5(x —y) [25], it follows that

_/ d3y ay”)@(x _y)
p

(134)

53
6

Hence, if B*(x;) denotes the term inside the covariant derivative of (132) depending on the volume V/(x;, §), we can rewrite

(132) as

DY (B4 (x))6(x;)) = (9B (x;)

O (x;) + B (x)) 0,00 (x;) + B (x;)

i )
EV*YOiAZ (xi)ei(xi>

-/ gy XatiZY) ((axazsk)(xi)ez(y) B ()00 () + Bk(xoiy*yo,-Az,<xi>aya¢,-<y>). (135)
\/E 2

By definition, for small § we have V(x;, ) ~

2. /q(x;). Hence, approximating the denominator in B*(x

) by \/83/63/q(x;)

and inserting it into Eq. (135) and finally usmg the fact that in the limit § — O one has ys(x; — y)/ 56 - 5(x; —y), (129)
becomes
1 . = . j {Acv V(xw 5>}
silin > at)itad(a). Vi o).y (B
247550 ) £t Va(x)
x €K& s (A;)57 ()35 (A) (136)
Hence, if we finally use
eVES s4(A)55(A))5%(A;) = €7P¢8% det(5, 55, 5x)(A;) = 6e*°vol(A;) (137)

Eq. (136) takes the form of a Riemann sum which in the
limit 6 — 0 converges to a Riemann integral which pre-
cisely coincides with expression (123). That is, we found

th( ] =

(1)
50 S™nl-

(138)

Hence, we can use (129) as a starting point for the
quantization. Therefore, we apply the identity

(AL V(%.8)} —#M{Az,

in order to express (129) respectively, (130) purely in terms
of Poisson brackets between holonomies and volume. The
corresponding quantum operator is then obtained by
replacing the classical phase space variables by their
respective quantum counterparts and replacing the Poisson
bracket by the commutator {-,-} — [, ].

At this point we have to pause, however, since we have to
specify the triangulation 7'(§) in adaptation to the graph y.
To do this, we follow precisely the procedure from [26]:
triangulations around the vertices are chosen as
T(y,v,6,1JK), and the rest of the space triangulated
arbitrarily. Finally an averaging over /, J, K at each vertex
is carried out. To write out this averaging, we denote by

V(x.8)}  (139)

E(v) the number of triples at the given vertex. With this
procedure, we end up with

A(l — -
Ss ] = T 32k 22

veEYy

- %K( )]tr(T]hYK( )[hy_ll(A)’ ‘71)])

)ieKy iy [k (5,(A))

(140)

with

A

Lk (s7(8)) =te(whg o) 17 )V Vs D H

s

0)0i(s(A))
(141)

and

X (x) = te(ahy ) [15) 5) VU DB(0)  (142)

where for reasons that will become clear below, the first
factor in the classical expression (129) depending on the
volume has been ordered to the right.

Note that in (140) we have implicitly assumed that the
discrete sum over all tetrahedra in the triangulation col-
lapses to a sum over the vertices of the underlying spin
network graph y. This is permissible in the case of the
Ashtekar-Lewandowski volume operator as this operator
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\ H % V' \ V'

FIG. 2. Illustrations of the action of $!)[;] on spin network
states. The picture on the right shows the action of the trace
operator O defined in (146) creating a new vertex v’ by adding a
new edge labeled with spin-1/2. The picture on the left illustrates
the action of &g (s;(A)) in (140) which, in contrast to O, creates
two new spin-1/2 edges at v/, one parallel and one transversal to
the spin-network edge j.

acts trivially on planar vertices. However, this also implies
that the operator 2k (s;(A)) in (141) becomes trivial as
V&% 5,(a) acts on a vertex with coplanar tangent vectors. But

then Xx(s;(A)) — Lk(x) is not a difference operator and
therefore this would not resemble a quantization of a
regularized covariant derivative. A resolution would be
to quantize a different classical quantity in which the
covariant derivative operator acts directly on the Rarita-
Schwinger field. The regularization can then be performed
as described above. However, we would like to keep the
SUSY constraint operator as simple as possible. For this
reason, we consider another possibility ensuring nontri-
viality of the action of 2k (s,(A)). Therefore, let us choose
instead the Rovelli-Smolin variant of the volume operator
[27-29]. This operator is defined on cylindrical functions
¥, according to [29,30]

‘A/U‘Py = Z mvl le (143)
vEY
with |g,| defined as
NI 5 ! i Ik
1q,] = 48 Z q1k| = 48 Z |€iij1JJJK| (144)

I#£J#K#] I#J#K#]

where the sum is taken over all possible triples (e;, ¢;.ex)
of mutually distinct edges at v. The operator g;;x can also
be written in the form

Lo i
qux = €ipd 1 90% = 7 1)? (Jik)?]

i (145)

with (J;;)? = (J; + J;)? the Casimir operator correspond-
ing to the total angular momentum J;; := J; 4+ J,. Note that
the modulus appears inside the sum. For this reason, the
action of the Rovelli-Smolin volume operator on vertices
with coplanar tangent vectors is in general nontrivial. At
first sight, this seems to be a problem as then the sum in
(140) would also include base points of tetrahedra located
inside a given edge of a spin network graph, i.e., the sum
would be a priori infinite. However, due to our choice of

the factor ordering, we will see that this indeed is not the
case. Therefore, let us consider the operator

O = te(e;h, [ VD)) (146)
appearing for instance to the right in (140) where the
holonomy #, is taken along an edge e incident at a vertex
sitting inside an spin network edge and which is transversal
to that particular edge (see Fig. 2). Given a spin network
state ¥, this operator will take the form

O¥, = tr(z;h,[h;", ﬁ])‘l’y
- tr(Tl-)ﬁ‘P}, — tr(z;h, ﬁh;l)‘l’y

= —Tiklhelm\/‘rlhe_lmkql}, (147)
where the first term in the second equation vanishes due the
trace freeness of the Pauli matrices. Since the matrix
components of a holonomy #,[A]", = m(h.[A])"; can
be identified with the matrix components of the spin-}
representation, it follows that

(O%,)[A] =~ (7 [A]) VT (mmmnmkwA]).

2

(148)

Hence, according to (148), the holonomy /4, adds a new
edge to the spin network graph y with spin quantum
number j :% (see Fig. 2). To evaluate the action of the
volume operator, note that, effectively, the state located at
the new created vertex can symbolically be written in the
form

lelZ = |(jlj2>j12a ’lm> (149)

N[ —

with j; = j, = j the spin quantum number of the original
spin network edge with j;, = O (for divalent spin network
vertices) and j; = % the spin quantum number of the new
created edge. For later purposes, it is worthwhile to keep
the computation a bit more general and assume that j; and
J» are not necessarily equal (therefore j;, does not have to
be zero). For the vertex under consideration, the operator
(145) takes the form

[(J12)%. (J23)?]- (150)

Hence, in order to determine its action on (149), we have to
perform a recoupling of angular momenta by coupling j,
and j;. This can be done using the Wigner 6-j symbols
which yields
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A O
Jis <J2§>J23;1m>- (151)

1 . .

. . 1 . - = ] ]
‘Pm—Z(—l)"+’2+2+’\/(2hz+1)\/(2st+1){12 j}

2

J2s J23

In this form, it is particularly easy to compute the action of (J,,)> which gives

1 . .

- - 5 Ji2 ] A A

(J)?Y;, = Z( 1)"+’2+2+JJ 3(jos + DV ()12 + DV (223 + 1){ > } Jis (]2 5)]23;Jm>
s Ji o Js )2
1 . .
;  Jiz J
:Z(— 1)yt (J23+1)\/(2J12+1)\/(2J23+1){ 2o }

s J1 o Jn )2

|~.

1 i/
3 A U
< (=)L @+ 1)y s + 1 { > H(Jljz)]/ui;lm>
7 i Js )2
o e J\S3 S i
=VQ2jin+1) Zj23(j23 +1)(2j2s + 1)1/ (271, + 1){ 2o }{ 2o }le’,z (152)
ool Ji J2z 2 Ji Jaz )2

where in the last line we have again performed a recoupling by coupling j; with j,. This immediately yields

(112) J2% ]12 =V 2]12"‘ th ]12 (2J12 1)

I

l ; ; 1 :/
7 J J 7 J
X 2122(123 +1)(2)j03 + ){ o }{]2 1 i }‘P/lz' (153)
1 2

s J1oJno )2 J23

It remains to evaluate the last term in the commutator of (150). In a similar way as above, one finds

(J23)*[(112)*W,,,] = ji2(ia + 1) (I23)* W), = 12 (o + 1)V (212 + l)z \/ 2/ + 1)

Ja
Pon 2o
X Zj23(jz3 + 1)(2j23 + 1){ 2o }{ > }‘P/’lz (154)
Jn Ji J»n )2 Ji J )2

Hence, we found

q¥;, _Z[(le) (J23)?] ¥, = v (2j12 + 1 Z\/ 2/ + 1) (12U + 1) = 12z + 1))

v
Yo I
X Zj23<j23 + 12 + 1){ 2o }{ > }‘P’l : (155)
o3 J1 J23 )2 Ji Js 2 :

In fact, this expression can be further simplified using the identity [31]

.. . ..
Z(2j23 +1)j23(ja3 + 1){ J.l J.12 J.2 }{jl J.12 J.2 }

J2s J3 J23 4 J3 J23 Ja
_1 (=1)JrHitististintid H X j4)%{ J2 )1 Jn2 }{13 Ja  Ji2 }
2 9 1 . . 1 P .
Ji12 1 J12 Ja

S+ D) +jala+1) o
2j12+1 J12J 1o

_I_

(156)

with X(j1, js) =2j1(2j1 + 1)(2j1 +2)2j4(2j4 + 1)(2j4 + 2). Due to the difference appearing in (155), it is immediate
that the matrix representation of g is purely off diagonal, i.e., only entries with ji, # jj, are nonzero. In this case, (156)
becomes
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J2

1 1
2 2

1 .
. .. 5 J
E (223 4 1) ja3(jo3 + 1){ 2 e

Ji Jn

j1Hia i tin +3 ;
(_1)./1 2R awivawiv] 2X<—,]2

z{l 3 le}{jl J2 jl2}
1o 3 L P

z}{%ﬁzz}
j2 jl j23 j2

(157)

with X (3, jz)% = 2\/6\/j2 (j» + 1)\/(2j, + 1). Furthermore, by the properties of the 6-j symbols, in order for (157) to be
nonzero j), has to appear in the decomposition of the tensor product representation jj, ® 1 = (jijo — 1) ® ji» ® (jin + 1),
that is j|, € {j;» — L. ji» + 1}. Thus, inserting (157) into (155), we finally obtain

iv6

q%;, = _T<_1)jl+j2+2j12+1+3\/<2j12 + DV + D)V (2 +1)

x Z k(2j10 +k+1)3/2j1n +2k + 1

ke{£1}

. 1 . . . .

J 2 J

s 2 12 }{11 . J2 ].12 }‘leﬁk- (158)
L jo+k 3 L jo+k jo

This is the most general form for the action of ¢ on a planar vertex with an additional decoupled edge labeled by spin—%.
Applying (158) to our situation, i.e., j; = j,=:j and jj, = 0, this yields

3iV2

g% =

3ivV2

—T%AW“¢W+U¢M+U{

=202 B VTG D

= VG,

where we used that

a b ¢ (_1)a+b+c
= . (160)
0 ¢ b V(©2b+1)/(2c + 1)
Similarly, for j;, = 1 one obtains
. e
g%, :—E\/](J‘Fl)‘y& (161)

Hence, with respect to the subspace spanned by the
orthonormal basis ¥, and ¥, the operator ¢ has the
following matrix representation:

N e 0 1

q=5\/1(1+1)(_1 0) (162)
from which we can directly deduce that

. R e

lal =/@'a =5l + 1. (163)

Hence, the Rovelli-Smolin volume operator (143) acts via
multiplication with the constant factor C on the subspace
spanned by ¥, and ¥,. This immediately implies that the
action of (146) is given by

33 \fJ J 1
1 . Tl
o1 1Jlo 1
_12j+1
(-1) w,
V62 + 13

(159)

[
(O®,)[A] = ~(r)* my(hJA) VT (my (k3 [A])" W, [A))
= —Chir(a;h, [ [A]) ¥, [A]

— —Clur(z,)¥, 4] = 0 (164)

that is, O simply vanishes on these types of edges and
therefore is only nonzero in case of spin network vertices
proving that (140) is indeed finite also justifying our choice
of the factor ordering. This is in fact different to the
situation of the standard regularization of the Hamiltonian
constraint [26] as, e.g, the Euclidean part contains a term of
the form tr(h,h,[h;', V]) where @ is a closed loop. In
contrast to (146), the action of this operator will then, in
general, be nonzero [in fact, as observed in (164), the
triviality of the action of @ mainly arose due to the
appearence of the Pauli matrix inside the trace]. At first
sight, this may look like a contradiction, as the commutator
of the SUSY constraint should reproduce the Hamiltonian
constraint. However, as already explained in the beginning
of this section, the SUSY constraint is superior to the
Hamiltonian constraint, i.e., once the SUSY constraint is
quantized, this yields a quantization of the Hamiltonian
constraint by computing its commutator. Hence, our
proposal of the quantum SUSY constraint provides, at
least in principle, another possibility for the quantization of
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the Hamiltonian constraint. It finally remains to check that
the action of the operator 'k (s;(A)) in (141) is nontrivial
such that 2¢(s;(A)) — Lk (x) can indeed be viewed as a
quantization of a regularized covariant derivative. There-
fore, we have to study the action of § on decoupled product
states of the form

1(J/)0) ®'%,m> ®‘%,m’> (165)
where |(jj)0) is again the gauge invariant divalent vertex
located inside a spin network edge and | % , m) respectively,
| 3. m') are the additional edges with spin-} arising from the
holonomies hs’,( (a) respectively, Hy (5) contained in (141)
(see Fig. 2). Note that for the ansatz (165) we have
implicitly chosen the chiral representation of the gamma

matrices so that the holonomy H, is indeed block diagonal
|

g 1 A P I | 1
60 8|3 ) |3y =[G10.3:3m) @] 3.

- (Sevam ]

J23
(_1)2j+1

_\/§V2j+1j23
_Jt1
V241
_
2j+1

S (=12 1

()L
Js ]2J 2

according to the decomposition of the restricted Majorana
representation into a direct sum of two spin—% representa-
tions. Hence, this operator does not mix between the two
chiral subrepresentations so that it suffices to restrict to one
particular chiral sector. However, note that for the quan-
tization of the Rarita-Schwinger field in Sec. VA a
representation was chosen in which the gamma matrices
are explicitly real. But, since both representations are
related via similarity transformations, one can map from
one representation to the other.

In order to compute the action of (150) on the state (165),
we first need to couple the angular momentum j corre-
sponding to the one part of the spin network edge e that is
incident at the vertex v € y under consideration with the
spin-% quantum number corresponding to the segment
s (A) that is parallel to that edge. Using again Wigner
6-j symbols, we find

~.

L), 1 oL
j Js 12 ]23’27” 2,m
1Y 1 ®1 ,
Js ]2 ]23,2m 2,m

=

j

1 ®1 /
,2m 2,m

7 l | — — ®l !
J> 12 J 2,2”1 2,m .

11

(166)

This can then be coupled with the remaining spin-} quantum number using the well-known identities

11 11
23) 8f3) |

and

11 11 1 1
S —,F-)=—74]|1,0) £ — .
’2, 2> ®‘2,¢2> ﬁ' ,0) \/§|0’0>

1N
27 2

(167)

11
==y =1,-1
2’ 2> I.-1)

(168)

Hence, we have to determine the action of (150) on states of the form

\Ilj:

R AW B . .
%7%’1:2‘(J:|:§])5,§,1m>, with j € {0,1}.

(169)

The action of g on (169) now follows directly from the general formula (158) setting j; = j + % and j, = j. Since jj, = % in
this case, only the k = +1 term in the sum of (158) remains yielding

9 = 331 ST @ T 1>{f

(170)

1L
2=
1<

LI I—
W= =
—
—

~.
- W

=
NI~
~. D=
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which, according to the first 6;-symbol appearing in (170), will be nonzero if and only if j € % ® % =~ 1 @ 2. Hence, in
particular, for j = 0 this immediately implies

gqvE  =0. (171)

On the other hand, for J =1, one obtains

T TR T W oy v ){1 . (172)

RIL I—
D= =
——
—N

~.
S

NI
NI~
~. D=

oI
(ST

1

—N—

IS}
pIw ~
~. D=
——

I

—N
- Q
[STEC
~. W
——

_4V€v%;¥;é%7177<<a+j+g>(%+j—a><%+a—j><a—%+j>)é (173)

it follows for a =1 and j =1 with a, =+/j(2j+3) and a_:=+/(+ 1)(2j-1).
L Since ¢ is Hermitian, its matrix representation in the
{1 P z} _ _l' (174) subspace spanned by the orthonormal basis ‘I’7 11 and

1 % % 3 ‘P;] thus takes the form

. day (0 1
%} (-1)% J(2j+3) (175) 61=7<_1 0>‘ (178)

For a = j 4 % one finds
J

i+3
{ 1 2V3 2+ 1+ 1)

and finally for a = j — 1

NS][SUI

As a consequence, the Rovelli-Smolin volume operator is
diagonal on this subspace so that, in particular,

{j—% j %}_(—1)”*1 GEDRI=D 4
1 j 2V3 V2 TViG+T)

Thus, inserting (174), (175), and (176) into (172) this yields

[\S] O8]

\/§: </|—2\1—| = 14/%]] =C.1 (179)

iy
; 2

H-

(177) i.e., V'V acts a multiplication operator with the constant

769 R .
q ! factor C.. In order to simplify our notation, we define

3
2

2=
=
=

|0 M), form=m = %
r ., .. 1 N\ M), form:%’ m' %
070.555m) 5.} <160 ] m) &) =4 0T T
|0 W), form=m=-1

Using then (166), (167), and (168) as well as (179), we find
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LI\ |11 il 1 (1

< ) +§’2’2>®’2’2>_ 2j+1ﬁj’<12>]_2’2’2>®‘2’2>
N1 1 j N1

TR RTE S ) Ry el | 7 g 11

(JJ+2>22 > 2j+1 ‘(” 2)22 >
O\, 11O\ |11 j

J: (fa) I3 5> ®'55> Vi 1S

]+
+

[j+1
= + C
2j+1 F

Jj+1
=1/57——C
2j+1 °F

Joo

0.11) =

=Al+.1)® 1) -B]-.1) ®|1) (180)
and similarly

/]—I—l /1 11 1 [ Ny, L1 1\ _[1 1
V.14 = 2 +1 Ci|Js <Jz>1+2 2’ E - ﬁc‘f 21Ty 2>®2’ 2>

=A@ N)-Bl- 1) ® ) (181)

Finally, using (168) and the fact that the action of the volume operator on states with vanishing total angular momentum
J = 0 is zero [cf. (171)], we find for the mixed spin components

ot = G ()3 ) o) e () o)
ey 1o> ; zmc\of—g);;»o>
—JEE S e R e I -\ [ S N e+ - b e )
et s e el -2l e (182

and analogously

V(0,1

Recall that we want to the determine the action of (141) on the spin network state ¥,. We therefore have already derived all
necessary ingredients. It only remains to evaluate the trace appearing in (141). For this, let us recall some basic facts
concerning the action of flux operators appearing e.g. in the volume operator.

The flux operator X, (S) smeared over two-dimensional surfaces S with smearing function n acts on holonomies #,[A] via [32]

X, (S a] = L (e, )"0 p . (184)

n=flenel s e -2-nel -2~ e (183)

Since {E, (S), h,[A]7'} = —h [A]7H{E,(S), h.|A] }h,[A]~", this yields in case of a single edge e ingoing at S N e
ihkf

X, (S A1 = A7 (X, ()h DA = PP p (4 n(b(e)) (185)
such that
X811, A1) = 5 s (Al (g Al o))
=T n(b@)y ) F AT ) = nb(e) L £, )0 AT (136)
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with L, the left-invariant vector field generated by
7, € 8u(2), re {1,2,3}, which is related to the push-
forward representation of the right regular representation

pr: SU(2) — B(L*(SU(2))). g+ (pr(9): f > f(9)

(187)
according to
(L)) =G| fthe) =5 pate) (1))

V f € C®(SU(2)) and h € SU(2) and extended uniquely to
a (unbounded) self-adjoint operator on L?(SU(2)), that is,

J = ifipg.(z,) = ihL,. (189)

In our case f, corresponds to the matrix components of the
spin- representation of SU(2), i.., f, = m(h,[A]™")"; for
any k,/€{0,1}. As is very well known, these matrix
components generate a proper invariant subrepresentation
of the right regular representation on L2 (SU(2)). In fact, since
for general spin-j

pR(g)(ﬂj)k[(h) = ﬂj(hg)kl = ﬂj<h)km”/(g)ml

for any g € SU(2), it follows that pg(g)V; C V; with V; =
spanc{(z;)* |m € {0,1}} and thus, in particular,

(190)

IV, CV,, ¥ k=01 (191)

Moreover, for j = 1, it follows

d
3 k _ 13 \k
J (77.'%) m(h) = 1f15 tioﬂ%(he ) "
d
— ih k tr3\n
ihay (i)' g (),
h k
=Sm(h)* (o3)",, (192)
22 n
so that
J3(m)k *ﬁ(m)k and J(m)k =——(m)* . (193)
70 230 31 31
To summarize, we have
1 l> 1 _l>
. 2°2 272
T = ( 1 l> 1 _l>> (194)
2°2 2°72

and, due to (190), the rows in (194) define two-dimensional
invariant subspaces with respect to the angular momentum
operator J" and thus, in particular, with respect to the
fluxes X,(S).

With these observations, let us now compute the action
of (141) on the spin network state ¥, which we take as a
product state ¥, = v, ® w; with y;, a proper spin network
function and y; an element of the fermionic part of the
Hilbert space. Using (180) as well as (194) and (190), we
then immediately find

\/‘T/h[A]_lmoHooé?Ty[A] = \/§|O 1) @ By

= (Ah™"™Mo[4, 1) = Bh™!"g|—, 1)) ® ;. (195)
On the other hand, we have
VR OO, (A = V0. 01) @
A A B B A
= (B ) 4 Gt = Dango ) = Zam - ) @y (196
as well as
ﬁh[A}_lmoHolé}le[A] = V¥ 1) ® by,
A A B B A
= (Eh_lmoH’ 1) +§h_1m1|+v T>—§h_lmo|—’ 1) —Eh_l"ﬁ - T>> ® iy,  (197)
and finally
VURAT HO, 0, [4] = VT10. L) ® By,
= (AR~ |+, ) = BRI |-, )) @ Olyy. (198)
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If we write for the holonomy

o)
y O

this yields for the action of (141)

(XY,)[A] = tr(z;h[A] VnjA]- DH 0 y[A] = 1, VATl Hop, ® Oy,
:tr<r,-h<2j §§)>I+,T>®9?wf+tr<rih<g §;Z>>I+,¢>®9?Wf
—U(nh<§: gﬁ))%aT>®9%q—ﬁ<ﬁh<g g:))rﬂ¢>®9%q
+tr<r,~h<§§ 2>>|+T> ®9,!z//f—|—tr<1,~h<?: 2§)>|+,¢>®0}y/f
AR S

This can be further simplified using that

Aagﬁ:aﬁ A0 _ (4
Ay 46 y §)\0 4 0

and

as well as

such that, for instance,

e e

(v )
tr T; =
Ay %5

and similar for the other traces. Hence, we finally end up with

B>

A

A A B

(XY,)[A] = EH—’ M ® 3Wf + |+ 1) ® (@) + leg)Wf ~ 4 |-
A P

+ﬁ%ﬁ®@-@WV

and thus
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1 ® 93ll/j A1) ® (@) + i@g)l//f
1) ® (01 - i0h)w, t1 |— 1) ® Oy,
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. A 0 A A a0 sy a
(XA = 2 1+.1) ® (05 + 01 — i)y + - |+, 1) @ (B + i - O3)yy

B ~ ~ _’\ B ~ ./\ A
— =) @ @8+ 01— iO)yy — 1= 1) @ (B + iy - 3)y, (206)
where
Il Goj+3) and B= |-l ((j+ D)@j- ) (207)
2(2j+1) 2(2j+1)

As we see, the action of (141) is indeed nontrivial as
required and, moreover, creates a new vertex coupled to a
fermion. In particular, we see that (206) is completely
independent on the additional segment s%(A) which was
needed for the regularization. This is indeed a good thing as
the choice of such an additional segment would be
completely arbitrary and not based on any fundamental
principles justifying the assumption made in (iv) above. Let
us make two final remarks about the quantization chosen
here.

Remark V.1.—We have seen that the properties of the
additional edge added at the new vertex, in the definition of
(206) are irrelevant for the end result. This property can
have some side effects, however. Consider the situation
depicted in Fig. 1, and additionally consider a second
tetrahedron spanned by the edge segments s, s, and a third
segment #; along an edge different from sy, $5, $3.
Depending on the orientation of the tangent vectors, the
triplet (sy,s,,73) may be either positively or negatively
oriented. However, the action of (206) will otherwise be
exactly the same in both cases. The relative orientation of
the two triplets enters through the e tensor and gives a
relative minus sign in one of the cases. If the orientations

differ, the two contributions to the operator ") cancel after
all. This runs counter to the intuition from the classical
theory. Thus one might consider defining a variant of this
operator in which an additional sign depending on the
orientation is introduced in (206).

Remark V.2.—Another possibility in quantizing the first
term in the SUSY constraint (98) would be to choose a
different variant in which the covariant derivative acts
directly on the Rarita-Schwinger field involving of course
additional contributions due to the derivation property. That
is, one could instead consider an expression of the form

SO = | Bxij—=eelyy,eiDM .

| i (208)

Following the standard procedure, it is then immediate to
see that a regularization of (208) is given by (see also Part 1T
below)

SO = 3 ) e

AET(1.5) K2/ V(x;,8)

X GIJKtr(Tlhs,(A,») [A[{ A, () [A]7L V(x:,8) Py

0y 1 [A] B [A] ) V(31,8)))

x (H(A)(sk(4:)(6))6 (s (A1) (8)) = 03(x;)).
(209)

For the quantization of (209), one can now use either the
Ashtekar-Lewandowski or Rovelli-Smolin volume opera-
tor. In both cases, based on our observations above, the
resulting operator will be finite, i.e., only terms involving
spin-network vertices contribute. Moreover, one obtains a
nontrivial action for the difference operator resulting from
the last term in (209) which is consistent for a regulari-
zation of a covariant derivative.

2. Part I1

Next, let us turn to the quantization of the second term in
the SUSY constraint (98) depending on the covariant
derivative of the frame field

(210)

We want to quantize this expression by similar means as in
the foregoing section. As we have recently observed, the
implementation of the regularized covariant derivative in
(129) yields an operator that creates new vertices. However,
according to (206), this new vertex is strongly coupled with
the fermion. Hence, in order for this additional contribution
to be nonzero, the presence of a fermion is crucial. One may
therefore expect that the quantization of the covariant
derivative in (210) by similar means will lead to vanishing
contributions of the operator acting apart from the spin
network vertex which seems to be inconsistent for the
regularization of a covariant derivative. For this reason, let

us introduce the total covariant derivative V,(JA) which acts
on both internal indices and spinor indices. With respect to
this covariant derivative, we can write
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Vi (k) — VP (211)

(D ef) ) =
In the quantum theory, this then has the advantage of
creating vertices coupled to fermion fields and therefore,
based on our previous observations, yields nontrivial
contributions. Inserting (211) into (210) yields two terms,
one which is very similar to expression (123) replacing the
covariant derivative acting on purely spinor indices with the
new total covariant derivative which also acts on internal

performed in analogy to the foregoing section. For this
reason, we will not explain the steps in detail. Concerning
the second contribution, one arrives at an expression of the
form

1+ ipy.
”h"€l~ iy el V. (212)

indices. The implementation of this quantity can be  We make the following Ansatz for a regularization of (212)
|
S50 = 0(x;) — = eFtr(tih, (a) [A{ gy a) A7 V(x.0)}) —
A,-ezT(;,é) 6K/ V (x;,0) 2p
xcte(zihg, (o) A s, ) A7 V(2. 0) (0 (51(8)) = %7 (x1) (213)
where
Y1(s;(8)) = H(A)(s;(4,)(8))07(s:(A,)(5)) (214)
and
¥1(xi) = 0 (x;). (215)

Here, H(A) denotes the holonomy induced by the total covariant derivative V() which, in the limit of small &, satisfies

H(A)(5,(8)(8))®,(5,(8;)(8)) = By(x;) = 85,(8,)° V), (x;)

(216)

where W is some spinor-valued co-vector field (with respect to internal indices) defined on X. Following the same steps as in
the previous section, it can be shown immediately that for § — 0, one obtains

lims. =i Al
PR ) Z 532V {C

X e”K53s,(Ai)S§(Ai)SK(Ai)

V(xi.6)}

T+ ify.

25 1AL V(i 9}V i (x)

(217)

so that, together with (137) and (124), this yields a Riemann sum so that in the limit § — 0 one finally arrives at

lims? [n] = 5. (218)
For the quantization of the regularized expression (213), we use
! 1 k 16 3\ Ak 3
———={Ac, V(x,8)H{A},, V(x,8)} = o {Ac, V(x, 8)i H{A}, V(x, )i} (219)
V(x,6) 9
and replace Poisson brackets by the respective commutator yielding
A ﬂ + ﬂ)’* _ ~3
571 !’k 7t (eehs, o) (Al ) (A V)
1)6}/
A A3
X (Y1(51(8)) = Y1) (wrhy, (8)[A] [y [A] 7 VD) (220)

with
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A

Y1(s1(8)) = H(A)(5,(8)(8))0,(s,(8)(8)) and
Y1(v) = 0,(v). (221)

In the infinite sum of (220) we were again allowed to
restrict to the sum over the vertices of the underlying spin
network graph since one of the trace terms was ordered to
the right. By (164), this yields vanishing contributions in
case the Rovelli-Smolin volume operator does not act on a
spin network vertex.

3. Part 111

Finally, we need to quantize the last three terms in the
SUSY constraint (98). These terms are all of very similar
structure and, in particular, do not contain any covariant
derivatives. Hence, it suffices for instance to consider the
last one which we write in the form

S<3)[’7] ‘_/d <€jkl¢ﬂ’0 —;;ﬂy* 7k7i¢1>-

(222)

ia

For its regularization, we make the ansatz

N i) 1o ()
AET(y.5) 4\/V(x;.0)

1+ify, .
S ykweﬂx,»)). (223)

x (dklé? (x:)70

Due to (112), we have

- 1+ ipy.
€jk197(xi)70 25

oo

1 .
X —;;ﬁy Yir'¢i(2)

kViQ?(xi)

2s5(xi — 2)
53/6

M (y)ro

(224)

and on the other hand

K _ x)((i(xt x)
47*‘/(%5) Yo0? (x;) —/d3 /6 4¢ a(x)

J/O¢t ()C

(225)

x)/% — 5(x; — x) and
moreover ys(x; — z)/‘%3 — 8(x; — z) and ys(x; — y) can be
replaced by the Kronecker delta 6, ,. Therefore, in this
limit, (223) finally becomes

In the limit § — 0, it follows y5(x; —

. Yodi(x;)

= T+ipy,
X (efklﬁl')ﬂ’o 25

_ kK ; T ﬂ+lﬂ7/*
:/Ed3xi74\4/a <€fkl¢j}’o 25 7k7i¢1>

= Sy (226)

7k7i¢l(xi)> vol(4,;)

and therefore (223) indeed provides an appropriate regu-
larization of (222). Its implementation in the quantum
theory is now straightforward yielding

A K
$9n) = Z Vv V7o (o

veV(y )

A T+
x <i€jk19}"(l}) ‘;’Bﬂy*y

k7i91(0)> (227)

where, in the real representation of the gamma matrices, we
used that the charge conjugation matrix is given by
C = iy°. There exist various possibilities for the imple-

mentation of the inverse volume operator V! such that this
operator is well defined and nonsingular. For instance, one
can reexpress it in terms of a product of Poisson brackets of
the form (124). However, for sake of simplicity, let us
choose a quantization as proposed in [33]. There, one
quantizes the inverse volume via

V1= lim, o (V? + 215)! (228)
with [, the Planck-length. This operator then simply

vanishes while acting on vertices with zero volume and
therefore provides a suitable regularization.

C. Solutions of the quantum SUSY constraint

In this last section, we would like to sketch possible
solutions of the quantum SUSY constraint. Going over to
the sector of diffeomorphism-invariant states, we are thus

looking for vectors W5 € Dy such that®

(Tphys|‘§[’1]w>zo7 VWEHkin:ngav®Hf’ ’/IEF(ER)

(229)

¥ Actually, working on the dual requires an antilinear repre-
sentation of the constraint algebra involving rather the adjoint
S[y)" of the SUSY constraint. However, since the classical theory,
the SUSY constraint is a real function and thus we could equally
quantize the complex conjugate S[y] which then yields S[y]".
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FIG. 3.

Schematic depiction of the action of the supersymmetry constraint on a 4-valent vertex v with intertwiner /. Each subdiagram

on the right side of the arrow represents a type of term that is appearing in the result. The star symbol represents a vertex containing a
fermion, and H is the new holonomy that connects a new vertex ¢’ to the intertwiner at v.

where I'(Ep) denotes the space of smooth sections of the
spinor bundle Ep, := Pg,, X, Ar induced by the Majorana
representation on Ap.

Considering the first part (140) of the quantum SUSY
constraint studied in Sec. VA, this operator creates new
vertices coupled to a fermion. A qualitative description of
the action is depicted in Fig. 3. Each diagram on the right
side of the arrow represents a type of term that is appearing in
the result. Fermions are created both at the original vertex v
and at new vertices ¢’ that lie on the edges incident at v. The
creation of fermions is a generic feature of the quantum
SUSY constraint because the conjugate spinor plays the role
of smearing function. In case of an ordinary Dirac fermion,
this would mean that even if, on the right-hand side of (229),
one initially started with a state y in the pure gravitational
sector of the Hilbert state, i.e., an ordinary spin network state
without any fermions, this operator would always create
states with nontrivial fermionic degrees of freedom. But
then, any pure gravitational state ¥, would be a solution
of (229) as the inner product between a pure bosonic and
fermionic state is always zero by (117) [or (118)].

This is however no longer true in case of Majorana
fermions. In fact, as seen in Sec. VA [see formula (120)],
due to the Majorana condition, it follows that the quanti-
zation of the Rarita-Schwinger field necessarily involves
both multiplication operators and derivations, i.e., creation
and annihilation operators. Therefore, the quantum SUSY
constraint generically both creates and annihilates fer-
mionic degrees of freedom. As a consequence, pure
gravitational states cannot be a solution of (229).

For purely fermionic states, the situation is less clear; we
cannot immediately rule out their existence. In any case,
such solutions of (229) would seem to be unphysical.

VI. CONCLUSIONS

In this paper, we have studied the canonical theory of
N =1 Poincaré and anti—de Sitter supergravity in four
spacetime dimensions based on the Holst action of

supergravity as first introduced by Tsuda in [9]. In this
framework we considered half-densitized fermion fields as
suggested by Thiemann [11] in order to simplify the reality
conditions for the Rarita-Schwinger field. We then derived
a compact expression for the classical SUSY constraint
which then served as a starting point for its implementation
in the quantum theory. Therefore, following [13], we
quantitzed the Rarita-Schwinger field by appropriately
extending the classical phase space.

With these prerequisites, we turned to the quantitzation
of the supersymmetry constraint which so far has not been
considered in the literature. This is important because the
quantum SUSY constraint in canonical supergravity the-
ories is as important as the quantum Hamiltonian constraint
in quantum gravity theories without local supersymmetry.
We therefore first need derive a suitable regularization of
the continuum expression guided by the principle that the
resulting operator should be as compact as possible. For the
regularization, special care was required. This is mainly due
to the fact that, although the SUSY constraint looks similar
to the Dirac Hamiltonian constraint, there is a crucial
difference: the conjugate spinor plays the role of a
Lagrangian multiplier. As a result, one cannot simply
follow the standard regularization procedure as the density
weight of the smearing function should be kept fixed in
order not the change the density weight of the SUSY
constraint as a whole. Changing its density weight may
change the resulting quantum algebra and thus its strong
relationship to the Hamiltonian constraint as indicated in
the classical regime in [10] in case of real Ashtekar-Barbero
variables. We succeeded in finding an appropriate regu-
larization such that the density weight is maintained.

The resulting operator consists of various different terms
one of which arose from the quantization of the covariant
derivative on the fermion field considered in Sec. V B.
Requiring consistency with the classical theory forced us to
choose the Rovelli-Smolin variant of the volume operator
for the quantization of the triads via Thiemann’s trick.
Based on an explicit calculation, it was shown, choosing an
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appropriate factor ordering, that the resulting operator was
still finite as the sum over the tetrahedra in the triangulation
again restricts on the sum over vertices of the underlying
graph. Different implementations in the quantum theory
involving the Ashtekar-Lewandowski volume operator
have also been discussed. For this, a different but equivalent
form of the classical SUSY constraint needs to be
considered.

As it turns out, the operator thus obtained has an
interesting feature as it creates new vertices strongly
coupled to fermions. This was shown via explicit compu-
tation evaluating its action on generic spin-network states.
Due to this fact, it is expected that solutions of the quantum
SUSY constraint need to contain both, gravity and matter
degrees of freedom, as required for supersymmetry. We
have seen that the reality condition enforced on Majorana
spinors is important. Whether these solutions indeed
contain the same number of bosons and fermions, however,
is still unclear so far and remains a question for the future.

Also it would be highly desirable to study the commutator
algebra of the quantum SUSY constraint. In, particular, it
would be very interesting in which sense the commutator
on diffeomorphism and gauge invariant states is related to
the Hamiltonian constraint. As a first step, one could try to
evaluate the commutator of the terms involving the quan-
tization of the covariant derivative and investigate whether
this can be related to the quantization of the curvature of the
connection along loops.
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