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In this paper, the classical and quantum theory ofN ¼ 1 supergravity in four spacetime dimensions will
be studied in the framework of loop quantum gravity. We discuss the canonical analysis of the supergravity
Holst action as first introduced by Tsuda. In this way, we also derive a compact expression of the
supersymmetry constraint, which plays a crucial role in canonical supergravity theories, akin to the role of
the Hamiltonian constraint in nonsupersymmetric generally covariant theories. The resulting theory is then
quantized using loop quantum gravity methods. In particular, we propose and discuss a quantization of the
supersymmetry constraint and derive explicit expressions of the action of the resulting operator. This is
important as it is the first step on the way to analyzing the Dirac algebra generated by supersymmetry and
Hamiltonian constraint in the quantum theory and for finding physical states. We also discuss some
qualitative properties of such solutions of the SUSY constraint.

DOI: 10.1103/PhysRevD.103.046010

I. INTRODUCTION

The study of supergravity theories in the framework of
loop quantum gravity (LQG) already has a long history.
About ten years after the discovery of supergravity in 1976
by Freedman, Ferrara, and van Nieuwenhuizen [1],
Jacobson [2] introduced a chiral variant of the real N ¼ 1
Poincaré supergravity action using Ashtekar’s self-dual
connection variables. Soon after, Fülöp [3] extended this
theory to anti–de Sitter supergravity including a cosmo-
logical constant where he also pointed out some interesting
remnant supersymmetric structure in the resulting Poisson
algebra between the Gauss and left supersymmetry (SUSY)
constraint. This paved the way toward a new approach to
nonperturbative supergravity in which parts of SUSY were
kept manifest.1 In particular, this was more intensively
studied by Gambini and Pullin et al. [5] as well as Ling and
Smolin [6,7], where the notion of super spin network first
appeared. Later it was also considered by Livine and Oeckl
[8] in the spinfoam approach to quantum gravity.
Canonical supergravity with real Asthekar-Barbero var-

iables was for the first time considered by Tsuda [9] where
a generalization of the chiral N ¼ 1 supergravity action to
arbitrary real Barbero-Immirzi parameters was found. In
parallel, Sawaguchi [10] constructed the phase space in

terms of real Ashtekar-Barbero variables by performing
a canonical transformation of the ADM phase space.
However, these considerations did not include a fully
consistent treatment of half-densitized fermionic fields as
proposed by Thiemann in [11] in order to solve the reality
conditions to be satisfied by the Rarita-Schwinger field.
Generalizations in the classical setting have been studied
for instance in [12], where Holst actions for extended
D ¼ 4 supergravity theories have been constructed.
Finally, these considerations have been extended to

higher spacetime dimensions by Bodendorfer et al.
[13,14] based on a new method discovered by the same
authors in [15] allowing them to construct Ashekar-Barbero
type variables in case of more general spacetime dimen-
sions going beyond the limitations of the variables usually
applied in LQG. This, among other things, has the
advantage of being able to apply LQG methods to the
maximal N ¼ 1, D ¼ 11 supergravity which is thought to
be the low energy limit of M-theory, a nonperturbative
unification of all existing D ¼ 10 superstring theories.
Since we are not working in higher dimensions, we
use the standard Ashtekar connection, shifted by some
torsion terms. These are slightly different variables for the
gravitational field than [13,14]. However, [13] uses half-
densitized variables for the Rarita-Schwinger field, and it
introduces an ingenious technique for dealing with its
Majorana nature, which we will also employ.
In this work, we will be mainly interested in the N ¼ 1,

D ¼ 4 case, in particular, in the implementation of the
SUSY constraint in the quantum theory. In the chiral
approach, Jacobson studied the classical Poisson algebra
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supergravity using Arnowitt-Deser-Misner (ADM) variables (in
which this manifest part of SUSY is absent) see [4].
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generated by the left and right supersymmetry constraints
which maintain the right balance between fermionic and
bosonic degrees of freedom. In particular, it was shown that
the Poisson bracket among the SUSY constraints generates
the Hamiltonian constraint which is in fact a generic
feature in canonical supergravity theories. Similar results
obtained in [10] using real Ashtekar variables supported
this hypothesis showing that, on the constrained surface of
gauge and diffeomorphism invariant states, the Poisson
bracket between the SUSY constraints is indeed propor-
tional to the Hamiltonian constraint.
This has interesting consequences implying that the

SUSY constraint is superior to the Hamiltonian constraint
in the sense that the solutions of the SUSY constraint
immediately are solutions of the latter. Hence, in case of
presence of local supersymmetry, the SUSY constraint
plays a similar role as the Hamiltonian constraint in
ordinary field theories. In fact, it has been conjectured
early on that the SUSY constraint could be understood as
the “square root” of the Hamilton constraint, in the same
sense and with the same resulting simplifications as the
relation between the Dirac and Klein-Gordon operators
[16–18]. This is precisely what makes its study in LQG
particularly interesting. However, an explicit implementa-
tion of the SUSY constraint in the quantum theory has not
been considered so far in the literature. In fact, the SUSY
constraint turns out to have a different structure than the
Hamiltonian constraint which also requires special care for
its regularization. As a result, its implementation in the
quantum theory leads to an operator which has a different
structure than the Hamiltonian constraint operator. It would
be interesting to check by computing the commutators, in
which sense these operators can be related to each other.
This may also fix some of the quantization ambiguities. In
fact, for a certain subclass of symmetry reduced models, we
have explicitly shown in [19] that such a strong relationship
can indeed be maintained in quantum theory. It would be of
great interest to see whether these results can be extended to
the full theory.
The structure of this paper is as follows: In Sec. II, we

will review very briefly some important aspects about
Clifford algebras and Majorana spinors. We will use this
opportunity to fix our notation and conventions as well as to
collect important identities used in the main text. In Sec. III
we will subsequently discuss the canonical analysis of the
Holst action of D ¼ 4, N ¼ 1 supergravity as introduced
in [9] filling in some details concerning half-densitized
fermion fields. We will finally derive a compact expression
of the supersymmetry constraint that will be used for
implementation in quantum theory. The quantization of
the Rarita-Schwinger field will be discussed in detail in
Sec. VA following the proposal of [13] performing an
appropriate extension of the canonical phase space. In this
way, we will also use this occasion to point out some
interesting mathematical structures underlying the usual

quantization scheme of fermion fields in LQG also dis-
cussed in more detail in [20] in the context of the manifestly
supersymmetric approach to quantum supergravity.
Finally, in Sec. V B, we will turn to the quantization of

the SUSY constraint in the quantum theory. In particular, an
explicit expression of the quantum SUSY constraint will be
derived using a specific adapted regularization scheme. In
this way, we will also find some explicit formulas for its
action on spin network functions which may be of
particular interest in order to find relations to the standard
quantization scheme of the Hamiltonian constraint. In
Sec. V C, possible solutions of the SUSY constraint will
be discussed on a qualitative level showing that general
solutions may indeed be supersymmetric in the sense that
they need to contain both fermionic and bosonic degrees of
freedom.
Unless otherwise stated, we work in signature

ð−þþþÞ. The gravitational coupling constant is denoted
by κ ¼ 8πG, the Barbero-Immirzi parameter by β. Indices
I; J… ¼ 0;…; 3 are local Lorentz indices, i; j;… ¼ 1, 2, 3
their spatial part. 4D Majorana spinor indices are denoted
by α; β;….

II. SOME NOTES ON CLIFFORD ALGEBRAS
AND MAJORANA SPINORS

In this section, we will only recall some essential aspects
of Clifford algebras and Majorana spinors. Therefore, we
will mainly follow the mathematical exposition in [21],
although our conventions are those in [22]. Let ðRs;t; ηÞ be
the inner product space where η is a symmetric bilinear
form of signature ðs; tÞ, i.e., with respect to the standard
basis feIg of Rs;t, I ¼ 0;…; sþ t≕ n, one has

ηðeI; eIÞ ¼
�−1; for I ¼ 1;…; s

þ1; for I ¼ sþ 1;…; n
ð1Þ

and ηðeI; eJÞ ¼ 0 for I ≠ J. The Clifford algebra
ClðRs;t; ηÞ is an associative algebra over the reals with
unit 1 generated by n elements γI ∈ ClðRs;t; ηÞ satisfying

fγI; γJg ¼ 2ηIJ: ð2Þ

It follows that ClðRs;t; ηÞ is real vector space of dimension
dimClðRs;t; ηÞ ¼ 2n spanned by the unit 1 together with
elements of the form

γI1I2���Ik ≔ γ½I1γI2 ·… · γIk� ð3Þ

for k ¼ 1;…; n, where the bracket denotes
antisymmetrization.
The Clifford algebra has the structure of a graded

algebra via the decomposition ClðRs;t; ηÞ ¼ ClðRs;t; ηÞ0 ⊕
ClðRs;t; ηÞ1 where ClðRs;t; ηÞi for i ¼ 0 or 1 is the sub-
algebra generated by elements of the form (3) containing an
even, respectively, odd number of elements γI. The even
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part ClðRs;t; ηÞ0 contains a subset Spinþðs; tÞ which turns
out to have the structure of a Lie group. In particular, it
follows that this Lie group defines a universal covering of
the orthochronous pseudo-orthogonal group SOþðs; tÞ
together with a covering map

λþ∶Spinþðs; tÞ → SOþðs; tÞ: ð4Þ

In case of Minkowski spacetime in D ¼ 4, Spinþð1; 3Þ is
isomorphic to SLð2;CÞ. The Lie algebra spinþðs; tÞ of
Spinþðs; tÞ is generated by the elements

MIJ ≔
1

2
γIJ: ð5Þ

In this article, we are mainly concerned about four
spacetime dimensions. In fact, most of the computations
do not require a specific representation of the Clifford
algebra. However, in Sec. VA, it will be worthwhile to
choose a representation in which the gamma matrices are
explicitly real. An explicit realization for such a type of
representation for arbitrary even spacetime dimensions can
be found for instance in [22].
For Sec. V B, it will prove particularly beneficial to work

instead in a chiral representation or Weyl representation.
This will also play a prominent role in the context of self-
dual variables as discussed in [19,20]. In this representa-
tion, the gamma matrices take the form

γI ¼
�

0 σI

σ̄I 0

�
and γ� ¼

�
1 0

0 −1

�
ð6Þ

with γ� ≔ iγ0γ1γ2γ3 the highest rank Clifford algebra
element also commonly denoted by γ5 and σI ≔ ð−1; σiÞ
and σ̄I ≔ ð1; σiÞ where σi, i ¼ 1;…; 3 denote the ordinary
Pauli matrices satisfying the product relation

σiσj ¼ δij1þ iϵijkσk: ð7Þ

The generators (5) of spinþð1; 3Þ then take the form

MIJ ¼
1

2
γIJ ¼

1

4

�
σI σ̄J − σJσ̄I 0

0 σ̄IσJ − σ̄JσI

�
: ð8Þ

Moreover, they satisfy well-known Lie algebra relations

½MIJ;MKL� ¼ ηJKMIL − ηIKMJL − ηJLMIK þ ηILMJK:

ð9Þ

A useful formula which interrelates elements of the form
(3) with different degree is given by the following:

γI1I2…Irγ� ¼
i

ð4 − rÞ! ϵ
IrIr−1…I1J1…J4−rγJ1…J4−r ð10Þ

for 0 ≤ r ≤ 4, which will often be needed in the main text.
Here, ϵIJKL ¼ −ϵIJKL denotes the completely antisymmet-
ric symbol in D ¼ 4 with the convention ϵ0123 ¼ 1.
Finally, let us briefly say something about Majorana

representations and Majorana spinors. Let κ∶Spinþðs; tÞ →
GLðΔnÞ be the complex Dirac representation (for a detailed
account on complex Dirac representations in arbitrary
spacetime dimensions see for instance [21] and references
therein). A Majorana representation is then defined as an
induced representation on a real subspace of the complex
vector space Δn. More precisely, one has the following.
Definition II.1.—The complex spinor representation κ is

called Majorana if it admits a real structure σ, i.e., a
complex antilinear map σ∶Δn → Δn such that σ is
Spinþðs; tÞ equivariant

σ∘κðgÞ ¼ κðgÞ∘σ ð11Þ

∀ g ∈ Spinþðs; tÞ and σ is involutive σ2 ¼ idΔn
.

The real structure defines a proper real Spinþðs; tÞ-
invariant subspace

ΔR ≔ fψ ∈ ΔnjσðψÞ ¼ ψg ð12Þ

of Δn of real dimension dimR ΔR ¼ dimC Δn. Moreover,
due to Spinþðs; tÞ equivariance, it induces a real subrepre-
sentation

κR∶Spinþðs; tÞ → GLðΔRÞ ð13Þ

of the complex Dirac representation of Spinþðs; tÞ on ΔR
called the Majorana representation of Spinþðs; tÞ.
Choosing a basis of Δn, one can write the condition ψ ¼

σðψÞ equivalently in the form

ψ� ¼ Bψ ð14Þ

with B a complex matrix satisfying B�B ¼ 1, which is also
often referred to as theMajorana condition in the literature.
This matrix is related to the charge conjugation matrix C
via B ¼ it0Cγ0 where t0 ∈ f�1g depends on the signature
and the dimension of the spacetime.
In case of Minkowski spacetime in four spacetime

dimensions, one usually sets t0 ¼ 1 in which case the
charge conjugation matrix is given by C ¼ iγ3γ1 and
therefore, in the chiral representation,

B ¼ γ0γ1γ3 ¼
�

0 −iσ2
iσ2 0

�
: ð15Þ

For a Dirac fermion ψ ¼ ðχ;ϕÞT , the Majorana condition
(14) then reads

ψ� ¼ Bψ ⇔ χ ¼ −iσ2ϕ� or ϕ ¼ iσ2χ�: ð16Þ
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III. HOLST ACTION FOR SUPERGRAVITY
IN D= 4 AND ITS 3+ 1 DECOMPOSITION

Supergravity in D ¼ 4 with an N ¼ 1 fermionic gen-
erator in the SUSY algebra can be described, in case of a
vanishing cosmological constant, as a super-Cartan geom-
etry modeled on a super-Klein geometry ðISOðR1;3j4Þ;
Spinþð1; 3ÞÞ with ISOðR1;3j4Þ the super-Poincaré group
with super-Lie algebra

isoðR1;3j4Þ ¼ R1;3 ⋊ spinþð1; 3Þ ⊕ ΔR: ð17Þ

The super-Cartan connectionA¼ eIPI þ 1
2
ωIJMIJ þψαQα

splits into the spin connection ω ∈ Ω1ðPspin; spinþð1; 3ÞÞ,
the soldering form e ∈ Ω1

horðPspin;R1;3Þ as well as the
Rarita-Schwinger field ψ ∈ Ω1

horðPspin;ΔRÞ with Pspin the
underlying spin structure.2

For the purpose of describing supergravity in the context
of LQG, we take the Holst action ofN ¼ 1 supergravity as
stated in [9] which, adapted to our conventions and written
in a coordinate free from, reads3

Sðe;ω;ψÞ ¼ 1

4κ

Z
M
ΣIJ ∧ ðP∘FðωÞÞKLϵIJKL

þ 2κeI ∧ ψ̄ ∧ γI
1þ iβγ�

β
DðωÞψ ð18Þ

where κ ¼ 8πG and DðωÞψ ≔ dψ þ κR�ðωÞ ∧ ψ denotes
the exterior covariant derivative of ψ and

ðP∘FðωÞÞIJ ≔ PIJ
KLFðωÞKL with

PIJ
KL ≔ δI½Kδ

J
L� −

1

2β
ϵIJKL ð19Þ

with β the Barbero Immirzi parameter. Moreover, FðωÞ ≔
dωþ ω ∧ ω is the associated curvature of ω and

Σ ≔ e ∧ e ∈ Ω2
horðPspin; spinþð1; 3ÞÞ: ð20Þ

One needs to ensure that the equations of motion resulting
from (18) are independent on the choice of the Barbero-
Immirzi parameter and, at second order, are equivalent to
those of ordinary N ¼ 1 supergravity.
Therefore, one has to vary (18) with respect to the spin

connection ω. As this is rarely done explicitly in the
literature, let us perform the variation for a general matter
contribution. That is, we consider an action S of the form
S ¼ SH þ SH-matter, where SH is the standard Holst

action of pure gravity and SH-matter is some Holst-like
modification of the matter contribution such that the
resulting equations of motion remain unchanged.
First, let us consider the Holst term

SH ¼ 1

4κ

Z
M
ΣIJ ∧ ðP∘FðωÞÞKLϵIJKL

≕
1

4κ

Z
M
hΣ ∧ P∘FðωÞi ð21Þ

where h·∧ ·i∶Ω2ðPspin;spinþð1;3ÞÞ×Ω2ðPspin;spinþð1;
3ÞÞ→R is the extension of the Adjoint invariant bilinear
form on spinþð1; 3Þ to spinþð1; 3Þ-valued forms on Pspin.
Let us then consider a variation of connection ωþ δω. The
variation of FðωÞ is then given by δFðωÞ ¼ DðωÞδω.
Since P∘DðωÞδω ¼ DðωÞðP∘δωÞ and hΣ ∧ DðωÞðP∘δωÞi ¼
−hDðωÞΣ ∧ P∘δωi up to a total derivative [23], this yields

δSH ¼ 1

4κ

Z
M
hDðωÞΣ ∧ P∘δωi

¼ −
1

4κ

Z
M
DðωÞΣIJ ∧ ðP∘δωÞKLϵIJKL: ð22Þ

Using (9), it follows that

DðωÞΣIJ ¼ dðeI ∧ eJÞ þ 1

4
ωIJ ∧ ΣKL ⊗ ½MIJ;MKL�IJ

¼ deI ∧ eJ − eI ∧ deJ þωI
K ∧ ΣKJ þωJ

K ∧ ΣIK

¼ TI ∧ eJ − eI ∧ TJ ð23Þ

with TI ¼ deI þ ωI
K ∧ eK the associated torsion 2-form.

Inserting (23) into (22), this yields

δSH ¼ −
1

2κ

Z
M
TI ∧ eJ ∧ ðP∘δωÞKLϵIJKL

¼ −
1

4κ

Z
M
ϵMNJOϵIJKLTI

μνe
μ
Me

ν
NðP∘δωρÞKLeρOdvolM

¼ −
1

4κ

Z
M
3!δ½MI δNKδ

O�
L TI

μνe
μ
Me

ν
NðP∘δωρÞKLeρOdvolM

¼ −
1

2κ

Z
M
PKL

IJð2Tρ
ρμe

μ
Ke

ν
L þ Tν

μρe
μ
Ke

ρ
LÞδωIJ

ν dvolM:

ð24Þ

Hence, including the matter contribution, we find for the
variation of the total action

δSH-SG ¼
Z
M
−

1

2κ
PKL

IJð2Tρ
ρμe

μ
Ke

ν
L þ Tν

μρe
μ
Ke

ρ
LÞδωIJ

ν

þ δSH-matter

δωIJ
ν

δωIJ
ν dvolM ð25Þ

which vanishes if and only if

2In supergeometry, the spin structure Pspin arises as the so-
called body of the underlying principal super fiber bundle
corresponding to the super Cartan geometry (see [20] for more
details).

3For convenience, κ will be absorbed in the Rarita-Schwinger
field.
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PKL
IJð2Tρ

ρKe
ν
L þ Tν

KLÞ ¼ 2κe−1
δSH-matter

δωIJ
ν

: ð26Þ

Applying the inverse

ðP−1ÞIJKL ¼ β2

1þ β2

�
δK½Iδ

L
J� þ

1

2β
ϵIJ

KL

�
ð27Þ

on both sides of (26), this gives

2Tρ
ρIe

ν
J þ Tν

IJ ¼ 2κe−1ðP−1ÞIJKL
δSH-matter

δωKL
ν

: ð28Þ

This is the most general formula for the equations of motion
of the spin connection for arbitrary matter contributions
resulting from the variation of the Holst action. In case of
N ¼ 1 supergravity, we have

δSH-matter

δωKL
ν

¼ −
1

4
ϵμνρσψ̄μγσ

1þ iβγ�
2β

γKLψρ ð29Þ

so that

ðP−1ÞIJKL
δSH-matter

δωKL
ν

¼ β2

4ð1þ β2Þ ϵ
μνρσψ̄μγσ

1þ iβγ�
2β

×

�
γIJ þ

1

2β
ϵIJ

KLγKL

�
ψρ: ð30Þ

Since ϵIJ
KLγKL ¼ 2iγIJγ� by (10), this implies

ðP−1ÞIJKL
δSH-matter

δωKL
ν

¼ β2

4ð1þ β2Þ ϵ
μνρσψ̄μγσ

1þ iβγ�
2β

�
γIJ þ

i
β
γIJγ�

�
ψρ

¼ β2

4ð1þ β2Þ iϵ
μνρσψ̄μγσγIJγ�

1þ iβγ�
2β

1 − iβγ�
β

ψρ

¼ i
8
ϵμνρσψ̄μγσγIJγ�ψρ: ð31Þ

Finally, using ϵμνρσγσ ¼ ieγμνργ�, we find

2TρI
ρeνJ þ TIJ

ν ¼ κ

4
ψ̄μγ

μνργIJψρ ð32Þ

which are exactly the equations of motion of ω of N ¼ 1
supergravity, in particular, completely independent of the
Barbero-Immirzi parameter. These can equivalently be
written in the form [22]

Tρ
μν ¼ κ

2
ψ̄μγ

ρψν: ð33Þ

In view of the decomposition of the action (18), let us
rewrite in a coordinate dependent form which gives

SH-SG ¼
Z
M
d4x

e
2κ

eμI e
ν
J

�
FðωÞIJμν −

1

2β
ϵIJKLFðωÞKLμν

�
þ ϵμνρσψ̄μγσ

1þ iβγ�
2β

DðωÞ
ν ψρ: ð34Þ

As shown above, variation of (34) yields the same equation
of motion as the standard action of N ¼ 1 supergravity. It
was then shown explicitly in [12], inserting the unique
solution of (33) into (34), that the terms proportional to β−1

together become purely topological. Hence, the Holst
action coincides with the ordinary one provided ω satisfies
its field equations.
The 3þ 1 split of the action (34) follows the standard

procedure. Since M is supposed to be globally hyperbolic,
it is diffeomorphic to a foliation R × Σ, where Σ is a
spacelike Cauchy surface. Let ϕ∶R × Σ → M denote such
a diffeomorphism. Then, for a specific time t ∈ R, we
define the time slice Σt via Σt ¼ ϕtðΣÞ, where ϕt ≔ ϕðt; ·Þ
describing the evolution of Σ in M. Furthermore, the flow
of the time slices induces a global timelike vector field ∂t
which, on smooth functions f ∈ C∞ðMÞ, acts via

∂tðfÞ ¼
d
dt
ðf∘ϕtÞ: ð35Þ

We choose a unit normal vector field n which is normal to
the time slices such that there exists a lapse function N shift
vector field N⃗ with N⃗ tangential to the foliation, such that

∂t ¼ Nnþ N⃗: ð36Þ

As the canonical analysis of the purely bosonic term in (34)
is very well known, let us only comment on some main
steps. The decomposition of the curvature tensor with
respect to the unit normal (co)vector field yields

e
2
eμI e

ν
JP

IJ
KLFðωÞKLμν ¼ e

2
eai e

b
jP

ij
KLFKL

ab

þ eeμI e
ν
Jn

ρPIJ
KLFKL

ρ½μnν� ð37Þ

with FKL
μν ¼ 2∂ ½μωKL

ν� þ 2ωK
½μjMjω

ML
ν� . Using nρ∂ ½ρωa� ¼

1
2N ðL∂tωa − 2Nb∂ ½bωa� − ∂aωtÞ, where L∂tωa, a¼ 1;2;3
denotes the Lie derivative of a spatial component of ω with
respect to the global timelike vector field ∂t, the last term in
(37) becomes
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eeμI e
ν
Jn

ρPIJ
KLFKL

ρ½μnν� ¼ −N
ffiffiffi
q

p
nρeμi

�
Fi0
ρμ −

1

2β
ϵi0klFkl

ρμ

�
¼ N

ffiffiffi
q

p
eai P

0i
KLnρFKL

ρa

¼ N
ffiffiffi
q

p
eai P

0i
KLð2nρ∂ ½ρωKL

a� þ 2nρωK
½ρjMjω

ML
a� Þ

¼ 1

β

ffiffiffi
q

p
eai L∂t

�
βω0i

a −
1

2
ϵiklω

kl
a

�
−

ffiffiffi
q

p
eai P

0i
KL∂aω

KL
t − 2Nb ffiffiffi

q
p

eai P
0i
KL∂ ½bωKL

a�

þ 2
ffiffiffi
q

p
eai P

0i
KLnρωK

½ρjMjω
ML
a�

¼ 1

β
Ea
i L∂tAi

a −
1

β
Ea
i ∂aAi

t þ 2Ea
i P

0i
KLω

K
t Mω

ML
a

− NbEa
i P

0i
KLð2∂ ½bωKL

a� þ 2ωK
½bjMjω

ML
a� Þ ð38Þ

where

Ai
a ¼ Γi

a þ βKi
a and Ea

i ¼
ffiffiffi
q

p
eai ð39Þ

is the usual Ashtekar connection and dual electric field, respectively, where we set Γi
a ≔ − 1

2
ϵiklω

kl
a and Ki

a ≔ ωa
0i for the

3D spin connection on Σ and extrinsic curvature, respectively. These satisfy the nonvanishing Poisson brackets

fAi
aðxÞ; Eb

j ðyÞg ¼ κβδijδ
b
aδ

ð3Þðx; yÞ: ð40Þ

Furthermore, in (38), we introduced the Lagrange multiplier Ai
t ≔ − 1

2
ϵiklω

kl
t þ βωt

0i≕Γi
t þ βKi

t. Since

2P0i
KL ¼ 1

β
Am
t ϵmn

iAn
a −

1þ β2

β
Km

t ϵmn
iKn

a ð41Þ

the two mid terms in (38) can be combined to give, after integration by parts and dropping a boundary term,

1

β
Ai
t∂aEa

i þ 2Ea
i P

0i
KLω

K
t Mω

ML
a ¼ Ai

t
1

β
ð∂aEa

i þ ϵik
lAk

aEa
l Þ −

1þ β2

β
Km

t ϵmn
iKn

aEa
i

¼ Ai
t
1

β
DðAÞ

a Ea
i −

1þ β2

β
Km

t ϵmn
iKn

aEa
i : ð42Þ

For the last term in (38) proportional to the shift vector field, it follows that

− NaEb
i P

0i
KLð2∂ ½aωKL

b� þ 2ωK
½ajMjω

ML
b� Þ

¼ Na 1

β
Eb
i ðFðAÞiab þ ð1þ β2ÞϵiklKk

aKl
bÞ ð43Þ

with FðAÞi ¼ dAi þ 1
2
ϵijkAj ∧ Ak the curvature of the Ashtekar-Barbero connection. Finally. let us comment on the first

term appearing in the decomposition (37). Since e ¼ N
ffiffiffi
q

p
, this can be written in the form

e
2
eai e

b
jP

ij
KLFðωÞKLab ¼ N

ffiffiffi
q

p
2

eai e
b
j

�
FðωÞijab þ

1

β
ϵijkFðωÞ0kab

�
¼ NEa

i E
b
j

2
ffiffiffi
q

p
�
FðΓÞijab þ 2ω0i

½aω
0j
b� þ

1

β
ϵijkFðωÞ0kab

�
ð44Þ

with FðΓÞ the curvature of the 3D spin connection Γ. Using

FðΓÞiab ¼ FðAÞiab − 2βDðΓÞ
½a Ki

b� − β2ϵijkK
j
aKk

b ð45Þ
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it follows that (44) can be written in the form

e
2
eai e

b
jP

ij
KLFðωÞKLab ¼ −

NEa
i E

b
j

2
ffiffiffi
q

p ϵijk

�
FðAÞkab − ð1þ β2ÞϵkmnKm

a Kn
b −

2ð1þ β2Þ
β

DðΓÞ
½a Kk

b�

�
: ð46Þ

Next, let us decompose the fermionic part of the supergravity action (34). Since e0t ¼ −n♭ð∂tÞ ¼ N and eit ¼ Naeia, we find

ϵμνρσψ̄μγσ
1þ iβγ�

2β
DðωÞ

ν ψρ ¼ ϵabcψ̄ tγa
1þ iβγ�

2β
DðωÞ

b ψc − Nϵabcψ̄aγ0
1þ iβγ�

2β
DðωÞ

b ψc

− Ndϵabcψ̄aγd
1þ iβγ�

2β
DðωÞ

b ψc

þ ϵabcψ̄aγb
1þ iβγ�

2β

�
L∂tψc þ

1

4
ωIJ
t γIJψc

�
− ϵabcψ̄aγb

1þ iβγ�
2β

�
∂cψ t þ

1

4
ωIJ
c γIJψ t

�
: ð47Þ

Hence, taking the left derivative of the kinematical term
appearing in (47) with respect to ψ t and noticing that
fermionic fields are anticommuting, it follows that the
momentum conjugate to ψa is given by

πa ¼ −ϵabcψ̄bγc
1þ iβγ�

2β
¼ i

2
ϵabcψ̄bγ�γc

γ� þ iβ
iβ

: ð48Þ

These satisfy the nonvanishing Poisson brackets

fψα
aðxÞ; πbβðyÞg ¼ −δabδαβδð3Þðx; yÞ: ð49Þ

In particular, according to (48), the canonically conjugate
momentum πa is related to ψa via the reality condition

Ωa ≔ πa −
i
2
ϵabcψ̄bγ�γcPþ

β ¼ 0 ð50Þ

where we set

P�
β ≔

iβ � γ�
iβ

: ð51Þ

If we consider the last term in (47), it again follows after
integration by parts and dropping a boundary term that

− ϵabcψ̄aγb
1þ iβγ�

2β

�
∂cψ t þ

1

4
ωIJ
c γIJψ t

�
¼ ϵabc∂cψ̄ t

1þ iβγ�
2β

γbψa −
1

4
ϵabcψ̄ tω

IJ
c γIJ

1þ iβγ�
2β

γbψa

¼ ψ̄ t
1þ iβγ�

2β
∂aðϵabcγbψcÞ þ ψ̄ t

1þ iβγ�
2β

1

4
ϵabcωIJ

a γIJγbψc

¼ ψ̄ t
1þ iβγ�

2β
DðωÞ

a ðϵabcγbψcÞ: ð52Þ

Let us rewrite (52) in terms of the covariant derivative of the
Ashtekar connection. Since

ωIJ
a γIJ ¼ ωij

a γij þ 2ω0i
a γ0i ð53Þ

¼ 2iΓi
aγ�γ0i þ 2Ki

aγ0i ð54Þ

we find

1þ iβγ�
2β

ωIJ
a γIJ

¼ −
1þ iβγ�

iβ
ðΓi

aγ�γ0i − iKi
aγ0iÞ

¼ −
1

iβ
ðΓi

aγ�γ0i − iKi
aγ0i þ iβΓi

aγ0i þ βKi
aγ�γ0iÞ

¼ −
1

iβ
ðAi

a − iKi
aγ� þ iβΓi

aγ�Þγ�γ0i

¼ −
1

iβ
ðAi

a þ iβAi
aγ� − ið1þ β2ÞKi

aγ�Þγ�γ0i

¼ 1þ iβγ�
2β

2iAi
aγ�γ0i þ

1þ β2

β
Ki

aγ0i: ð55Þ

Hence, this yields

1þ iβγ�
2β

DðωÞ
a ψb ¼

1þ iβγ�
2β

DðAÞ
a ψb þ

1þ β2

4β
Ki

aγ0iψb

ð56Þ

with

DðAÞ
a ψb ≔ ∂aψb þ

i
2
Ai
aγ�γ0iψb: ð57Þ
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With respect to the chiral representation of the gamma
matrices, one has

i
2
γ�γ0i ¼

�
τi 0

0 τi

�
: ð58Þ

Hence, in particular, in the chiral representation the
covariant derivative acts separately on the respective chiral
subcomponents of the Rarita-Schwinger field. We will use
this property later in Sec. V B, when we will study the
action of the SUSY constraint on spin network states. Note
that the appearance of the term i

2
γ�γ0i in the covariant

derivative in (57) is not a coincidence, but follows from the

identification of suð2Þ as a Lie subalgebra of spinþð1; 3Þ
generated by Mjk ¼ 1

2
γjk such that A ¼ − 1

2
Aiϵi

jkMjk

which implies

κR�ðAÞ ¼ −
1

2
Aiϵi

jkκR�ðMjkÞ ¼ −
1

4
Aiϵi

jkγjk ¼
i
2
γ�γ0iAi:

ð59Þ

For the derivation of the SUSY constraint, we need to
collect the terms in (52) proportional to ψ t. Using (56), one
finds again by integration by parts and eventually dropping
boundary terms

ϵabcψ̄ tγa
1þ iβγ�

2β
DðωÞ

b ψc − ϵabcψ̄aγb
1þ iβγ�

2β

�
∂cψ t þ

1

4
ωIJ
c γIJψ t

�
¼ ψ̄ t

�
ϵabcγa

1þ iβγ�
2β

DðωÞ
b ψc þ

1þ iβγ�
2β

DðωÞ
a ðϵabcγbψcÞ

�
¼ ψ̄ t

�
ϵabcγa

1þ iβγ�
2β

DðAÞ
b ψc þ

1þ iβγ�
2β

DðAÞ
a ðϵabcγbψcÞ −

1þ β2

4β
ϵabcKi

be
j
aγ0fγi; γjgψc

�
¼ ψ̄ t

�
ϵabcγa

1þ iβγ�
2β

DðAÞ
b ψc þ

1þ iβγ�
2β

DðAÞ
a ðϵabcγbψcÞ −

1þ β2

2β
ϵabcKbaγ0ψc

�
: ð60Þ

Hence, the SUSY constraint in the theory takes the form

S ¼ ϵabcγa
1þ iβγ�

2β
DðAÞ

b ψc þ
1þ iβγ�

2β
DðAÞ

a ðϵabcγbψcÞ

−
1þ β2

2β
ϵabcγ0ψcKba: ð61Þ

For the term proportional to ωt in (47) we compute, using (55),

1

4
ϵabcψ̄aγb

1þ iβγ�
2β

ωIJ
t γIJψc ¼ Ai

t

�
−
1

4
ϵabcψ̄aγb

1þ iβγ�
iβ

γ�γ0iψc

�
þ 1þ β2

4β
Ki

tϵ
abcψ̄aγbγ0iψc

¼ Ai
t

�
−
i
2
πaγ�γ0iψa

�
þ 1þ β2

4β
Ki

tϵ
abcψ̄aγbγ0iψc ð62Þ

so that, combining with (42), this yields

Ai
tGi ¼ Ai

t

�
1

κβ
DðAÞ

a Ea
i −

i
2
πaγ�γ0iψa

�
: ð63Þ

Hence, the Gauss constraint takes the form

Gi ¼
1

κβ
DðAÞ

a Ea
i −

i
2
πaγ�γ0iψa

¼ 1

κβ
DðAÞ

a Ea
i þ

i
2
ϵabcψ̄aγ�γ0γbγi

1þ iβγ�
2β

ψc: ð64Þ
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As fermion fields anticommute, it follows that

ϵabcψ̄aγ0γdeψc ¼ ϵabcψ̄cγdeγ0ψa ¼ −ϵabcψ̄aγ0γdeψc ¼ 0: ð65Þ

Therefore, combining the last term in (62) with the last term in (42), this gives

−
1þ β2

β
Ki

t

�
1

κ
ϵik

lKk
aEa

l −
1

4
ϵabcψ̄aγbγ0iψc

�
¼ −

1þ β2

β
Ki

t

�
1

κ
ϵik

lKk
aEa

l þ
1

4
ϵabcebiψ̄aγ0ψc

�
ð66Þ

yielding the second class constraint

ϵik
lKk

aEa
l þ

κ

4
ϵabcebiψ̄aγ0ψc ¼ 0: ð67Þ

For the vector constraint, we need to collect terms proportional to the shift vector field Na. From (43), we deduce,
using (62),

Nd 1

κβ
Eb
i ðFðAÞidb þ ð1þ β2ÞϵiklKk

dK
l
bÞ ¼ Nd 1

κβ
Eb
i FðAÞidb þ

1þ β2

4κβ
NdKk

dϵkl
iKl

bE
b
i

¼ Nd 1

κβ
Eb
i FðAÞidb − Nd 1þ β2

4β
ϵabcKdbψ̄aγ0ψc: ð68Þ

On the other hand, (47) yields together with (56)

−Ndϵabcψ̄aγd
1þ iβγ�

2β
DðωÞ

b ψc ¼ −Ndϵabcψ̄aγd
1þ iβγ�

2β
DðAÞ

b ψc − Nd 1þ β2

4β
ϵabcKi

bψ̄aγdγ0iψc

¼ −Ndϵabcψ̄aγd
1þ iβγ�

2β
DðAÞ

b ψc þ Nd 1þ β2

4β
ϵabcKbdψ̄aγ0ψc: ð69Þ

Therefore, the vector constraint is given by

Hd ≔
1

κβ
Eb
i FðAÞidb − ϵabcψ̄aγd

1þ iβγ�
2β

DðAÞ
b ψc þ

1þ β2

2β
ϵabcK½bd�ψ̄aγ0ψc: ð70Þ

Finally, using (46), we find for the Hamilton constraint of the theory, modulo the second class constraint,

H ¼ Ea
i E

b
j

2κ
ffiffiffi
q

p ϵijk

�
FðAÞkab − ð1þ β2ÞϵkmnKm

a Kn
b

�
þ ϵabcψ̄aγ0

1þ iβγ�
2β

DðAÞ
b ψc þ

1þ β2

4β
ϵabcKi

bψ̄aγ0iψc: ð71Þ

At this point, we have expressed the constraints discovered
so far in terms of A, E, ψ , π, Γ, and K. However, while we
can further express K as KðA;ΓÞ, Γ is undetermined as of
yet. At the same time we have a further second class
constraint, coming from the variation of the action with
respect to

−Ai
a ¼ Γi

a − βKi
a: ð72Þ

The nine components of this constraint, together with the
three components of (67) should allow us to solve for Γ and
Kt, thus solving the second class constraints. The calcu-
lation is tedious already for Dirac fermions coupled to
gravity [24], so we take a shortcut. The precise expression
for Kt is not relevant for our purposes and the gravitational
contribution to Γ, the torsion-free spin connection, is well
known. The fermionic contribution is simply the spatial
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component of the contortion tensor CρIJ which, using (33)
is given by

Ci
a ≔ −ϵijkCajk ¼ −

κ

8jej ϵ
bcdeidðψ̄bγaψc þ 2ψ̄bγcψaÞ:

ð73Þ

This is a function of E, ψ , π. From now on, we always
assume that Γ and K are determined by the canonical
variables in this way.

A. Introducing half-densitized fermion fields

As proposed in [11], in order to solve the reality
conditions of fermion fields in canonical quantum gravity,

it is worthwhile to go over to half-densitized fermion fields.
In the case of the Rarita-Schwinger field, this amounts to
introducing the new fields

ϕi ¼
ffiffiffi
q4

p
eai ψa and πiϕ ¼ 1ffiffiffi

q4
p eiaπa: ð74Þ

As both sides have been rescaled by the spatial metric, it is
clear that this, a priori, does not define a canonical
transformation. In fact, as we will see in the following,
this requires a redefinition of the Ashtekar connection.
Therefore, following the same steps as in [13], we sub-
stitute the transformed fields (74) in the symplectic poten-
tial which yields

Z
R
dt
Z
Σ
d3x

1

κβ
Ea
i
_Ai
a − πa _ψa ¼

Z
R
dt
Z
Σ
d3x

1

κβ
Ea
i
_Ai
a −

1ffiffiffi
q4

p Ea
i π

i
ϕL∂tð

ffiffiffi
q4

p
Ej
aϕjÞ

¼
Z
R
dt
Z
Σ
d3x

1

κβ
Ea
i
_Ai
a − πiϕ

_ϕi − πiϕE
a
i
_Ej
aϕj

¼
Z
R
dt
Z
Σ
d3x

1

κβ
Ea
i
_Ai
a − πiϕ _ϕi þ πiϕ _E

a
i E

j
aϕj

¼
Z
R
dt
Z
Σ
d3x

1

κβ
Ea
i
_Ai
a − πiϕ

_ϕi − Ea
i L∂tðπiϕEj

aϕjÞ

¼
Z
R
dt
Z
Σ
d3x

1

κ
Ea
i L∂tðAi

a − κβπiϕE
j
aϕjÞ − πiϕ

_ϕi ð75Þ

where we have dropped a boundary term from the third to
the fourth line. Hence, transforming the Ashtekar connec-
tion via

Ai
a → A0i

a ¼ Γi
a þ βK0i

a ð76Þ

with

K0i
a ¼Ki

a− κπiϕE
l
aϕl ¼Ki

aþ
κ

q
ϵdbceide

j
be

k
celaϕ̄jγk

1þ iβγ�
2β

ϕl

¼Ki
aþ

iκ
2
ffiffiffi
q

p ϵijkelaϕ̄jγk
1þ iβγ�

iβ
ϕl ð77Þ

this yields a canonical transformation with the new canoni-
cally conjugate pairs ðA0i

a; Ea
i Þ and ðϕi; πiϕÞ and the non-

vanishing Poisson brackets

fA0i
aðxÞ; Eb

j ðyÞg ¼ κβδð3Þðx; yÞ and

fϕα
i ðxÞ; πjϕβðyÞg ¼ −δjiδαβδð3Þðx; yÞ: ð78Þ

In the new variables, the reality condition (50) takes the
form

Ωi ≔ πiϕ −
i
2
ϵijkϕ̄jγ�γkPþ

β ¼ 0 ð79Þ

which now, in particular, neither depends on the internal
triad nor on the spatial metric simplifying significantly the
further canonical analysis. As a next step, we have to
reformulate the constraints in the new variables. Since
we will mainly be interested in the explicit form of the
SUSY constraint, we will only derive the transformed
expressions of the Gauss and SUSY constraint in what
follows. The remaining constraints can be treated in
complete analogy.

1. Gauss constraint

By (64), the Gauss constraint takes the form

Gi ¼
1

κβ
DðAÞ

a Ea
i þ

i
2
ϵabcψ̄aγ�γ0γbγi

1þ iβγ�
2β

ψc

¼ 1

κβ
DðAÞ

a Ea
i þ

i
2
ϵjmkϕ̄jγ�γ0γmγi

1þ iβγ�
2β

ϕk: ð80Þ

Considering the first part in (80), we find
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DðAÞ
a Ea

i ¼ ∂aEa
i þ ϵnimðA0m

a þ κβπmϕE
l
aϕlÞEa

n

¼ DðA0Þ
a Ea

i þ
iκβ
2

ϵmi
lϵmjkϕ̄jγk

1þ iβγ�
iβ

ϕl

¼ DðA0Þ
a Ea

i þ
iκβ
2

ϕ̄iγk
1þ iβγ�

iβ
ϕk

−
iκβ
2

ϕ̄lγi
1þ iβγ�

iβ
ϕl

¼ DðA0Þ
a Ea

i þ
κ

2
ϕ̄iγkϕ

k −
iκβ
2

ϕ̄iγ�γkϕk

þ iκβ
2

ϕ̄lγ�γiϕl: ð81Þ

Since γiγj ¼ δij þ γij, one has

i
2
ϵjmkϕ̄jγ�γ0γmγi

1þ iβγ�
2β

ϕk

¼ 1

4
ϵjmkϕ̄jγ0γmγiϕk þ

i
4β

ϵjmkϕ̄jγ�γ0γmγiϕk

¼ 1

4
ϵjmkϕ̄jγ0γmγiϕk −

i
4β

ϵijkϕ̄jγ�γ0ϕk

þ i
4β

ϵjmkϕ̄jγ�γ0γmiϕk: ð82Þ

By antisymmetry of the fermion fields, it follows that

ϵijkϕ̄jγ�γ0ϕk ¼ ϵijkϕ̄kγ�γ0ϕj ¼ −ϵijkϕ̄jγ�γ0ϕk ¼ 0 ð83Þ

so that, using γ�γij ¼ −iϵijkγ0k, we find

i
2
ϵjmkϕ̄jγ�γ0γmγi

1þ iβγ�
2β

ϕk

¼ 1

4
ϵjmkϕ̄jγ0γmγiϕk −

1

4β
ϕ̄iγkϕk þ

1

4β
ϕ̄kγ

kϕi

¼ 1

4
ϵjmkϕ̄jγ0γmγiϕk −

1

2β
ϕ̄iγkϕk

¼ −
1

4
ϵi

jkϕ̄jγ0ϕk −
1

2β
ϕ̄iγkϕk ð84Þ

where from the second to the last line we again used (83).
Hence, the Gauss constraint can be written as

Gi ¼ DðA0Þ
a Ea

i −
1

4
ϵi

jkϕ̄jγ0ϕk −
i
2
ϕ̄iγ�γkϕk þ i

2
ϕ̄kγ�γiϕk:

ð85Þ

In fact, this can be simplified even further. Therefore,
consider

ϕ̄jγ�γkγiγðjϕkÞ ¼ 1

2
ϕ̄jγ�γkγiγjϕk þ 1

2
ϕ̄jγ�γkγiγkϕj

¼ 1

2
ϕ̄jγ�γkγiγjϕk −

1

2
ϕ̄jγ�γiϕj ð86Þ

which, due to γiγ
j ¼ 2δji − γjγi yields

ϕ̄jγ�γkγiγðjϕkÞ ¼ ϕ̄iγ�γkϕk −
1

2
ϕ̄jγ�γkjγiϕk − ϕ̄kγ�γiϕk

¼ i
2
ϵkljϕ̄kγ0γlγiϕj þ ϕ̄iγ�γkϕk − ϕ̄kγ�γiϕk

¼ −
i
2
ϵi

kjϕ̄kγ0ϕj þ ϕ̄iγ�γkϕk − ϕ̄kγ�γiϕk:

ð87Þ

Thus, to summarize, in the new variables, we find that the
Gauss constraint can be written in the following compact
form:

Gi ¼ DðA0Þ
a Ea

i −
i
2
ϕ̄jγ�γkγiγðjϕkÞ: ð88Þ

2. Supersymmetry constraint

Finally, we want to express the supersymmetry con-
straint S in the new variables. Therefore, inserting (74) and
(81) into (61), the first two terms in (61) become

S ¼ ϵabceiaγi
1þ iβγ�

2β
DðA0Þ

b

�
1ffiffiffi
q4

p ejcϕj

�
þ 1þ iβγ�

2β
DðA0Þ

a

�
1ffiffiffi
q4

p ϵijkEa
i γjϕk

�
þ iκβ
2
ffiffiffi
q4

p ϵlmnϵijk
1 − iβγ�

2β
γ�γ0γmγiϕn

�
ϕ̄jγk

1þ iβγ�
2β

ϕl

�
−

iκβ
2
ffiffiffi
q4

p ϵlmnϵijk
1þ iβγ�

2β
γ�γ0γiγmϕn

�
ϕ̄jγk

1þ iβγ�
2β

ϕl

�
ð89Þ

where the second and last line in (89) can be summarized as
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iκβ
2
ffiffiffi
q4

p ϵlmnϵijk
�
ϕ̄jγk

1þ iβγ�
2β

ϕl

��
1

2β
γ�γ0½γm; γi� −

i
2
γ0fγm; γig

�
ϕn

¼ iκ
2
ffiffiffi
q4

p ϵlmnϵijkγ�γ0miϕn

�
ϕ̄jγk

1þ iβγ�
2β

ϕl

�
−

κβ

2
ffiffiffi
q4

p ϵi
lnϵijkγ0ϕn

�
ϕ̄jγk

1þ iβγ�
2β

ϕl

�
: ð90Þ

Since γ�γ0mi ¼ −iϵmi
pγp, the first term in the second line of (90) takes the form

κ

2
ffiffiffi
q4

p ϵlmnϵmi
pϵijkγpϕn

�
ϕ̄jγk

1þ iβγ�
2β

ϕl

�
¼ κffiffiffi

q4
p ϵijkγlϕ½l

�
ϕ̄i�

1þ iβγ�
2β

γkϕj

�
: ð91Þ

Next, let us rewrite the “K term” of the supersymmetry constraint (61) as

ϵabcγ0ψcKba ¼
1ffiffiffi
q4

p ϵadcenceaiγ0ϕnKi
be

j
de

b
j ¼

1ffiffiffi
q4

p ϵi
jnγ0ϕnKi

bE
b
j

¼ −
κ

4
ffiffiffi
q4

p ϵabcenbγ0ϕnðψ̄aγ0ψcÞ ¼
κ

4
ffiffiffi
q4

p ϵnjkγ0ϕnðϕ̄jγ0ϕkÞ: ð92Þ

Hence, combining (92) with the second term in the second line of (90), this yields

−
κβ

2
ffiffiffi
q4

p ϵi
lnϵijkγ0ϕn

�
ϕ̄jγk

1þ iβγ�
2β

ϕl

�
−

κ

4
ffiffiffi
q4

p 1þ β2

2β
ϵnjkγ0ϕnðϕ̄jγ0ϕkÞ

¼ iκβ
4
ffiffiffi
q4

p γ0ϕ
kðϕ̄lγ�γkϕlÞ þ κβ

2
ffiffiffi
q4

p γ0ϕ
j

�
ϕ̄jγ

l 1þ iβγ�
2β

ϕl

�
−

κ

4
ffiffiffi
q4

p 1þ β2

2β
ϵnjkγ0ϕnϕ̄jγ0ϕk

¼ iκβ
4
ffiffiffi
q4

p γ0ϕ
i

�
ϕ̄lγ�γiϕl − ϕ̄iγ�γlϕl þ i

2
ϵi

jkϕ̄jγ0ϕk

�
þ κ

4
ffiffiffi
q4

p γ0ϕ
iðϕ̄iγ

lϕlÞ −
κ

8β
ffiffiffi
q4

p γ0ϕiϵ
ijkðϕ̄jγ0ϕkÞ

¼ −
iκβ
4
ffiffiffi
q4

p γ0ϕ
iðϕ̄jγ�γkγiγðjϕkÞÞ þ κ

4
ffiffiffi
q4

p γ0ϕ
iðϕ̄iγ

lϕlÞ −
κ

8β
ffiffiffi
q4

p γ0ϕiϵ
ijkðϕ̄jγ0ϕkÞ ð93Þ

where, from the third to the last line, identity (87) was used. Since

ϕ̄iγ
lϕl ¼ −

i
2
ϵjklϕ̄jγ�γ0γkγiϕl þ ϕ̄jγkγiγ

ðjϕkÞ ð94Þ

[this can be shown along the lines of Eqs. (86) and (87)] and ϵijkϕ̄jγ0ϕk ¼ −ϵjklϕ̄jγ0γkγiϕl, the last line of (93) finally takes
the form

−
iκβ
4
ffiffiffi
q4

p γ0ϕ
iðϕ̄jγ�γkγiγðjϕkÞÞ þ κ

4
ffiffiffi
q4

p γ0ϕ
iðϕ̄iγ

lϕlÞ −
κ

8β
ffiffiffi
q4

p γ0ϕiϵ
ijkðϕ̄jγ0ϕkÞ

¼ κβ

2
ffiffiffi
q4

p γ0ϕ
i

�
ϕ̄jγk

1þ iβγ�
2β

γiγ
ðjϕkÞ

�
þ κ

4
ffiffiffi
q4

p γ0ϕ
i

�
ϵjklϕ̄jγ0

1þ iβγ�
2β

γkγiϕl

�
: ð95Þ

To summarize, we have found the following form of the supersymmetry constraint in the new variables:

S ¼ ϵabceiaγi
1þ iβγ�

2β
DðA0Þ

b

�
1ffiffiffi
q4

p ejcϕj

�
þ 1þ iβγ�

2β
DðA0Þ

a

�
1ffiffiffi
q4

p ϵijkEa
i γjϕk

�
þ κffiffiffi

q4
p ϵijkγlϕ½l

�
ϕ̄i�

1þ iβγ�
2β

γkϕj

�
þ κβ

2
ffiffiffi
q4

p γ0ϕ
i

�
ϕ̄jγk

1þ iβγ�
2β

γiγ
ðjϕkÞ

�
þ κ

4
ffiffiffi
q4

p γ0ϕ
i

�
ϵjklϕ̄jγ0

1þ iβγ�
2β

γkγiϕl

�
: ð96Þ
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With an eye towards quantization of this expression, it is useful to rewrite the second term in (96) depending on the
covariant derivative of the fermion field. In fact, using γ�γ0iγk ¼ −2iϵiklγl þ γkγ�γ0i, we find

DðA0Þ
a

�
1ffiffiffi
q4

p ϵabcekbγke
l
cϕl

�
¼ ∂a

�
1ffiffiffi
q4

p ϵabcekbγke
l
cϕl

�
þ 1ffiffiffi

q4
p ϵabcekbe

l
cAi

a
i
2
γ�γ0iγkϕl

¼ ðDðA0Þ
a ekbÞ

1ffiffiffi
q4

p ϵabcγkelcϕl þ ϵabcekbγkD
ðA0Þ
a

�
1ffiffiffi
q4

p elcϕl

�
ð97Þ

so that we can write (96) equivalently as follows:

S ¼ iϵabceiaγiγ�D
ðA0Þ
b

�
1ffiffiffi
q4

p ejcϕj

�
þ 1ffiffiffi

q4
p ϵabcelc

1þ iβγ�
2β

γkðDðA0Þ
a ekbÞϕl

þ κffiffiffi
q4

p ϵijkγlϕ½l

�
ϕ̄i�

1þ iβγ�
2β

γkϕj

�
þ κβ

2
ffiffiffi
q4

p γ0ϕ
i

�
ϕ̄jγk

1þ iβγ�
2β

γiγ
ðjϕkÞ

�
þ κ

4
ffiffiffi
q4

p γ0ϕ
i

�
ϵjklϕ̄jγ0

1þ iβγ�
2β

γkγiϕl

�
: ð98Þ

This is the most compact form of the supersymmetry
constraint that we will use for quantization of the theory.

IV. ANTI–DE SITTER SUPERGRAVITY

The canonical analysis of N ¼ 1-anti–de Sitter super-
gravity in the chiral theory has been studied for instance in
[3,5,6]. For the sake of completeness, let us briefly discuss
it in the case of real Barbero-Immirzi parameters.
In turns out that the isometry group SOð2; 3Þ of anti–de

Sitter space4 AdS4 can be extended to a super-Lie group
with N fermionic generators given by the orthosymplectic
Lie group OSpðN j4Þ. This leads to a supergravity theory
with negative cosmological constant. For N ¼ 1, the Holst
action then takes the form

SH-ASG ¼ SH-SG þ
Z
M
d4x − e

1

2L
ψ̄μγ

μνψν þ
3

κL2
e ð100Þ

with SH-SG the Holst action (18) [or (34)] of N ¼ 1
Poincaré supergravity where L is the so-called anti–de
Sitter radius which is related to the cosmological constant
via Λ ¼ − 3

L2. Since these additional terms do not depend
on the spin connection, it follows immediately that the
variation of (100) with respect to ω yields the same
equations of motions as in the Λ ¼ 0 case and thus, in
particular, are again independent of the Barbero-Immirzi
parameter. The 3þ 1 split of the additional terms is
straightforward and yields

−e
1

2L
ψ̄μγ

μνψνþ
3

κL2
e¼−

1

2L
N

ffiffiffi
q

p ð2ψ̄ tγ
taψaþ ψ̄aγ

abψbÞ

þN
3

κL2

ffiffiffi
q

p
: ð101Þ

As for anticommuting fermionic fields one has
ψ̄aγ

atψ t ¼ ψ̄ tγ
taψa. Since eti ¼ 0 and et0 ¼ 1

N, we find

− e
1

2L
ψ̄μγ

μνψν þ
3

κL2
e

¼ −
1

L
Ea
i ψ̄ tγ

0iψa þ N

�
1

2L
ffiffiffi
q

p
ψ̄aγ

abψb þ
3

κL2

ffiffiffi
q

p �
:

ð102Þ

The first term in (102) yields an additional contribution to
the SUSY constraint whereas the second term contributes
to the Hamiltonian constraint. Hence, it follows that the
SUSY constraint in AdS supergravity takes the form

S ¼ ϵabcγa
1þ iβγ�

2β
DðAÞ

b ψc þ
1þ iβγ�

2β
DðAÞ

a ðϵabcγbψcÞ

−
1þ β2

2β
ϵabcγ0ψcKba −

1

L
Ea
i γ

0iψa ð103Þ

which again can be reexpressed in terms of half-densitized
fermionic variables.

V. QUANTUM THEORY

A. Quantization of the Rarita-Schwinger field

The quantization of the Rarita-Schwinger field is more
complicated than for ordinary Dirac fermions due to the
form (79) of the reality condition Ωi

α which, however, has
already been drastically simplified using half-densitized

4The four-dimensional anti–de Sitter spacetime is an em-
bedded submanifold of the semi-Riemannian manifold R2;3

equipped with the metric ηAB ¼ diagð−þþþ −Þ defined as

AdS4 ≔ fx ∈ R2;3jηABxAxB ¼ −L2g: ð99Þ

N ¼ 1 SUPERGRAVITY WITH LOOP QUANTUM … PHYS. REV. D 103, 046010 (2021)

046010-13



fermionic fields since then (79) no longer depends on the
triads and the spatial metric.
In order to solve this second class constraint, we follow

the standard procedure and compute the corresponding
Dirac brackets for which we have to compute Poisson
brackets of the form fΩi

α;Ω
j
βg. Using (79) as well as (78),

this yields (omitting the delta distribution for convenience)

fΩi
α;Ω

j
βg ¼ −

i
2
ϵiklfϕ̄kδ; π

j
βgðγ�γlPþ

β Þδα

−
i
2
ϵjmnfπiα; ϕ̄mδgðγ�γnPþ

β Þδβ

¼ i
2
ϵijkCβδðγ�γkPþ

β Þδα −
i
2
ϵijkCαδðγ�γkPþ

β Þδβ

¼ i
2
ϵijk½ðCγ�γkPþ

β ÞTαβ − ðCγ�γkPþ
β Þαβ�

¼ i
2
ϵijkðCγ�γk½Pþ

β þ P−
β �Þ

¼ iϵijkðCγ�γkÞαβ ≕Cij
αβ: ð104Þ

As we see, the operator P�
β has dropped out completely so

that, in particular, (104) is independent of the Barbero-
Immirzi parameter. Finally, since

fϕα
i ;Ω

j
βg ¼ −δjiδαβ and fΩi

α; ϕ̄jβg ¼ −δijCαβ ð105Þ

it follows that the Dirac brackets for the Rarita-Schwinger
field take the form

fϕα
i ; ϕ̄jβgDB ¼ −fϕα

i ;Ωk
γgðC−1ÞγδklfΩl

δ; ϕ̄jβg
¼ −ððC−1ÞijCÞαβ ð106Þ

with C−1 the inverse of (104) which satisfies
ðC−1ÞijCjk ¼ δki 1. As can be checked by direct computa-
tion, this matrix takes the form

ðC−1Þij ¼ −γ0
�
1δij −

1

2
γiγj

�
C−1 ð107Þ

so that the resulting Dirac brackets can be written as

fϕα
i ðxÞ; ϕ̄jβðyÞgDB ¼

��
1δij −

1

2
γiγj

�
γ0

�
α

β

δð3Þðx; yÞ:

ð108Þ

Note that, since (79) does not depend on the internal triads,
the Dirac brackets of the bosonic degrees of freedom
ðAi

a; Ei
aÞ coincide with the original Poisson brackets. In

particular, the mixed Dirac brackets between bosonic and
fermionic degrees of freedom are still vanishing. For further
simplification, we will work in a real representation of the
Clifford algebra such that Majorana fermions are explicitly

real. In such a representation, the charge conjugation matrix
is given by C ¼ iγ0 and (108) yields

fϕα
i ðxÞ;ϕβ

j ðyÞgDB ¼ i
2

�
1δij −

1

2
γiγj

�
αβ

δð3Þðx; yÞ ð109Þ

together with the Majorana condition ϕ�
i ¼ ϕi. Due to the

complicated form of the Dirac bracket (109), the imple-
mentation of the Rarita-Schwinger field which simulta-
neously also allows a direct solution of the Gauss constraint
in the quantum theory is by far not straightforward.
However, in [13] a clever way was found to solve all
these issues simultaneously by appropriately enlarging the
phase space.
More precisely, the idea in [13] is to decompose ϕi in its

trace part σ ≔ γiϕi and its trace free part ρi ≔ ϕi − 1
3
γiσ

with respect to the gamma matrices γi such that
ϕi ¼ ρi þ 1

3
γiσ. On the enlarged phase space, we then

impose the Poisson brackets

fραi ; ρβjg ¼ iδijδαβδð3Þðx; yÞ and

fσα; σβg ¼ −
9i
2
δijδ

αβδð3Þðx; yÞ ð110Þ

with the remaining brackets being zero such that the Dirac
bracket (109) is recovered. Moreover, in order to account
for the superfluous degrees of freedom, i.e., the trace
freeness of ρi, one has to add the additional secondary
constraintΛ ≔ γiρi ¼ 0 [13]. Using fΛα;Λβg ¼ 3iδαβ, this
yields the Dirac brackets

fραi ; ρβjgDB ¼ i

�
δijδ

αβ −
1

3
ðγiγjÞαβ

�
δð3Þðx; yÞ

≕ iPαβ
ij δ

ð3Þðx; yÞ ð111Þ

where Pαβ
ij is the projection operator onto the subspace of

trace-free Rarita-Schwinger fields, i.e., ρi ¼ Pijϕ
j. Due to

the fact that, in contrast to (109), this indeed defines a
projection now allows for a direct implementation in the
quantum theory.
Before we do so, following [11], we first exploit the fact

that the ϕi (respectively, ρi and σ) are half-densities and
introduce new Grassmann-valued variables. For later pur-
poses, in contrast to [11], in view of the regularization of
the supersymmetry constraint, we therefore triangulate the
spatial slice Σ by disjoint (again up to common faces, edges
and vertices) tetrahedra Δi instead of boxes at countably
infinite discrete points xi ∈ Σ, i ∈ I (jI j ¼ ℵ0), and
coordinate volume δ3i =6 such that Σ ¼∪i∈I Δi. Here, δi >
0∀ i ∈ I are small positive numbers determining the
fineness of the triangulation. Then, for each i ∈ I , we
define [11]
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θðδiÞðxiÞ ≔
Z
Σ
d3y

χδiðxi − yÞffiffiffi
δ3i
6

q ϕðyÞ ð112Þ

where χδiðxi − yÞ is the characteristic function of the
tetrahedron Δi centered at xi. These satisfy the bracket
relations

fθðδkÞi ðxkÞ; θðδlÞj ðxlÞg

¼
Z
Σ
d3x

χδkðxk − xÞffiffiffi
δ3k
6

q Z
Σ
d3y

χδlðxl − yÞffiffiffi
δ3l
6

q fϕiðxÞ;ϕjðyÞgDB

¼ i
2

�
1δij −

1

2
γiγj

�
δkl

Z
Σ
d3x

χδkðxk − xÞ
δ3k=6

¼ i
2

�
1δij −

1

2
γiγj

�
δkl: ð113Þ

We then take the continuum limit supi∈Ifδig → 0 and set

θiðxÞ ≔ limδx→0 θ
ðδxÞ
i ðxÞ∀ x ∈ Σ. Furthermore, setting

θðρÞi ðxÞ ≔ Pijθ
jðxÞ as well as θðσÞ ≔ γiθjðxÞ, this finally

yields

fθðρÞi ðxÞ; θðρÞj ðyÞg ¼ iPijδx;y and

fθðσÞðxÞ; θðσÞðyÞg ¼ −
9i
2
1δx;y ð114Þ

together with the Majorana conditions θðρÞi ðxÞ� ¼ θðρÞi ðxÞ
and θðσÞðxÞ� ¼ θðσÞðxÞ∀ x; y ∈ Σ. Hence, one ends up with
an abstract CAR *-algebra at any point x ∈ Σ. The
quantization of the theory can be performed following
[13]. We will sketch the main idea and also use this
opportunity to point out some mathematical structure lying
behind this quantization scheme which has a beautiful
interpretation in the framework supergeometry and even
naturally arises in the chiral approach (see [20]).

For any point x ∈ Σ we choose the superspace R0jN
x ≔

ðfxg;ΛNÞ, also called a superpoint, with N fermionic
generators θA, A ¼ 1;…; N, whose sections f ∈ ΛC

N ≔
ΛN ⊗ C of the complexified function sheaf take the form

f ¼
X
I∈MN

fIθI ð115Þ

with fI ∈ C for all multi-indices I ∈ MN of length
0 ≤ jIj ≤ N. On the superspace one has the standard
translation-invariant super scalar product S∶ΛC

N × ΛC
N →

C given by the Berezin integral

Sðf; gÞ ≔
Z
B
dθ1 � � � dθNf̄g; ∀ f; g ∈ ΛC

N: ð116Þ

This gives the space ðΛC
N;SÞ the structure of a Krein space,

i.e., an indefinite inner product space for which there exists

an endomorphism S ∈ EndðΛC
NÞ such thatSð·;S·Þ defines a

positive definite scalar product on ΛC
N . The choice of such

an endomorphism S is not unique but is strongly restricted
by the implementation of reality conditions. A standard
choice of a scalar product is given by identifying ΛC

N ≅ C2N

and setting

hf; gi ≔
X
I∈MN

f̄IgI: ð117Þ

It follows, even for general super-Lie groups, that there
always exists an endomorphism S on ΛC

N such that5

h·; ·i ¼ Sð·;S·Þ: ð118Þ

Hence, this yields a Hilbert space HN
x ≔ ðΛC

N; h·; ·iÞ. On
HN

x we define the multiplication operators θ̂A as well as odd
derivations ∂A ≡ ∂

∂θA for A ¼ 1;…; N via

θ̂Af ≔ θAf and ∂Aθ
B ≔ δBA ð119Þ

∀ f ∈ ΛC
N . As shown in [13], due to the choice of the scalar

product (117), these operators are indeed self-adjoint on
HN

x . With these ingredients, one can then construct a
faithful representation of the CAR *-algebra (114).
Therefore, one takes the tensor product Hilbert spaceHx ≔
HN

x ⊗ HM
x with N ¼ 12 and M ¼ 4 and defines

θ̂ðρÞαi ðxÞ ≔ Pαβ
ij

� ffiffiffi
ℏ
2

r
ðθjβ þ ∂j

βÞ
�

and

θ̂ðσÞαðxÞ ≔ 3
ffiffiffi
ℏ

p

2
ðθα þ ∂αÞ ð120Þ

onHN
x andHM

x , respectively. By construction, these opera-
tors are then self-adjoint as required by the Majorana
conditions and moreover satisfy the anticommutation
relations

½θ̂ðρÞi ðxÞ; θ̂ðρÞj ðxÞ� ¼ ℏPij and ½θ̂ðσÞi ðxÞ; θ̂ðσÞðxÞ� ¼ 9ℏ
2
1:

ð121Þ

The quantized Rarita-Schwinger field on Hx is then
given by

θ̂iðxÞ ≔ θ̂ðρÞi ðxÞ þ 1

3
γiθ̂

ðσÞðxÞ: ð122Þ

This construction then takes over to a family of points
fx1;…; xkg yielding the tensor product Hilbert space

5For this situation, such an endomorphism has been in fact
constructed explicitly in [13], although their definition of the
super scalar product differs from the definition chosen here.
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Hfx1;…;xkg ≔ ⊗
k

i¼1
Hxi . The fermionic Hilbert space Hf is

then obtained as the inductive limit over the corresponding
family of Hilbert spaces Hfx1;…;xkg.

B. Quantization of the SUSY constraint

1. Part I

Having derived the compact expression (98) of the
classical supersymmetry constraint with half-densitized
fermionic fields, we next want to find an implementa-
tion in the quantum theory. As stated in [10], the
Poisson bracket of the SUSY constraint with itself
should be proportional to the Hamiltonian constraint
modulo Gauss and diffeomorphism constraint. Hence, in
the quantum theory, it is expected that, on the subspace
of gauge and diffeomorphism invariant states, the
commutator of the SUSY constraint operator reproduces
the Hamiltonian constraint operator. This is in fact a
very interesting and important feature in canonical
supergravity theories as this provides a very strong
relationship between both operators and thus serves
as a consistency condition in the quantum theory.
This may also fix some of the quantization ambiguities.
In fact, in the framework of self-dual loop quantum
cosmology, for a certain subclass of symmetry reduced
models, it was shown explicitly in [19] that this strong
relationship even holds exactly in the quantum theory.
More precisely, it is shown that the (graded) commutator
between the SUSY constraints exactly reproduces the
classical Poisson relation.
Another point of view is that the SUSY constraint is

superior to the Hamiltonian constraint in the sense that
once the SUSY constraint is quantized (or even solved)
this immediately yields the quantization (or solution) of
the Hamiltonian constraint by computing the commutator.
For this reason, it is desirable to quantize the SUSY
constraint in a way that does not involve the Hamiltonian
constraint. For instance, it should not depend on the
extrinsic curvature as this, via Thiemann’s proposal,
would involve commutators with the Euclidean part of
the Hamiltonian. On the other hand, in order to be able to
compare it with the Hamiltonian constraint, it is desirable
to find an as compact expression as possible.
In the following, we will propose a specific quantization

scheme of the SUSY constraint that does not involve the
Hamiltonian constraint. As a first step, let us therefore
consider the first part in the classical expression (98)
depending on the covariant derivative of the fermionic
fields6

Sð1Þ½η� ≔
Z
Σ
d3xη̄iϵabceiaγiγ�D

ðAÞ
b

�
1ffiffiffi
q4

p ejcϕj

�
: ð123Þ

This expression looks quite similar to the Dirac
Hamiltonian studied for instance in [25] with the crucial
difference that in (123) the conjugate spinor η̄ now plays the
role of a smearing function and thus is not a dynamical
variable. Hence, in contrast to [25], we cannot change its
density weight going over to half-densities for the regu-
larization as this will change the density weight of the
constraint operator as a whole. Moreover, changing the
density weight of the smearing function may change
the constraint algebra which should be avoided. Hence,
particular attention is required for its regularization.
We will proceed in analogy with [26], i.e., we will

consider triangulations adapted to a graph γ. First, we
describe triangulations of the neighborhood of a vertex v of
γ that are labeled by a triplet of edges ðeI; eJ; eKÞ at v. We
will keep track of the fineness of these triangulations,
measured in a fixed fiducial metric around the vertex, in
terms of a parameter δ > 0.

(i) All edges of the graph are assumed be outgoing in
the sense that if e is an edge with vertices v, v0 as
endpoints, subdivide it into two new edges e1 and e2
such that e ¼ e1∘e2 and e1 and e2 are outgoing at v
and v0, respectively.

(ii) Given an edge eI incident at a vertex v, choose a
segment sI∶½0; 1� → Σ of eI such that sI is also
incident and outgoing at v and such that it does not
include any other endpoint of the edge eI.

(iii) In order to treat all edges of the graph equally, at
each vertex v, let ðeI; eJ; eKÞ be an arbitrary triple of
mutually distinct edges incident at the common
vertex v.7 For each triple, we chose corresponding
segments ðsI; sJ; sKÞ shorter than δ. They span a
tetrahedron Δ with basepoint vðΔÞ ¼ v (see Fig. 1),
where the missing three edges of Δ are chosen in a
diffeomorphism covariant way [26]. Furthermore,
we assume that the triple is ordered in such a way
that the tangents of the segments are positively
oriented, i.e., detð_sI; _sJ; _sKÞ > 0.

(iv) Let ðeI; eJ; eKÞ be a positively oriented triple of
edges as in (iii) with corresponding segments
ðsI; sJ; sKÞ. For any δ > 0, we introduce another
segment s0K∶½0; 1� → Σ which is incident and out-
going at sIð1Þ in such a way, that in the limit δ → 0,
s0K converges to the segment sK (see Fig. 1). As it
will become clear in what follows, the end result will
not depend on the specific choice of such an addi-
tional edge provided it satisfies the requirements just
mentioned.

6In order to simplify our notation in what follows, the prime
indicating the transformed Ashtekar connection in case of half-
densitized fermionic variables will be dropped.

7If the vertex is two-valent, one can adjoin a third edge in an
arbitrary manner. However, it will become clear below that the
action of the operator on such vertices is trivial.
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(v) To obtain a triangulation Tðγ; v; δ; IJKÞ of a neigh-
borhood of v, we proceed as in [26] and construct
seven additional (“mirror”) tetrahedra.

We will now write down a regularization of the classical
expression (123), using some triangulation TðδÞ of fineness
δ. Let Δi be a tetrahedron from this triangulation spanned
by some triplet ðsI; sJ; sKÞ of edges. We will additionally
assume that edges s0I have been chosen according to
(iv) above. As usual, we apply Thiemann’s trick and
replace the frame fields eai by the Poisson bracket of the
connection with the volume

2eia ¼
1

κ
fAi

a; Vg ¼ 1

κ
fAi

a; Vðx; δÞg ð124Þ

where

Vðx; δÞ ≔
Z
Σ
d3yχδðx; yÞ

ffiffiffiffiffiffiffiffiffi
qðyÞ

p
ð125Þ

is the volume of the tetrahedron Δ containing x ∈ Σ, with
χδ its characteristic function, such that in the limit δ → 0

one has limδ→0
6
δ3
Vðx; δÞ ¼ ffiffiffiffiffiffiffiffiffi

qðxÞp
. For δ > 0 small

enough, the holonomy hs½A� along any segment s in triple
can approximately be written as hs½A� ¼ 1þ δ_saAi

aτi þ
Oðδ2Þ such that, using trðτiτjÞ ¼ − 1

2
δij, it follows that

2trðτihs½A�fhs½A�−1; Vðx; δÞgÞ ¼ δijδ_safAj
aðxÞ; Vðx; δÞg:

ð126Þ

This enables one to express (124) in terms of holonomies
and fluxes with the latter implicitly contained in the
definition of the volume.
Finally, in order regulate the covariant derivative in

(146), for any segment s, let

Hs½A� ≔ P exp

�Z
s
κR�ðAÞ

�
ð127Þ

be the holonomy of A in the suð2Þ subrepresentation of the
real Majorana representation κR� which, according to (58),
in the chiral representation consists of a direct sum of
two spin-1

2
representations such that, with respect to this

representation, Hs½A� ¼ diagðhs½A�; hs½A�Þ is in fact block-
diagonal. Again, in the limit of small δ > 0, the holonomy
can approximately be written in the form Hs½A� ¼ 1þ
δ_sa i

2
γ�γ0iAi

a þOðδ2Þ which yields

Hs½A�ð0; δÞΨðsðδÞÞ −Ψðsð0ÞÞ ¼ δ_sað0ÞðDðAÞ
a ΨÞðsð0ÞÞ

ð128Þ

where Ψ stands for an arbitrary spinor-valued field defined
on Σ. With these preparations, we are now ready to write
down a regularization of (123). Given the triangulation
TðδÞ of fineness δ > 0, we set

Sð1Þδ ½η�≔ 1

6κ2
X

Δi∈Tðγ;δÞ
η̄ðxiÞiϵIJKtrðτjhsIðΔiÞfh−1sIðΔiÞ;Vðxi;δÞgÞ

× γjγ�½XKðsJðΔiÞÞ−XKðxiÞ� ð129Þ

with

XKðsJðΔiÞÞ ≔
trðτkhs0KðΔiÞfh−1s0KðΔiÞ; VðsJðΔiÞ; δÞgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðsJðΔiÞ; δÞ
p

×HsJðΔiÞθ
δ
kðsJðΔiÞðδÞÞ ð130Þ

and

XKðxiÞ ≔
trðτkhsKðΔiÞfh−1sKðΔiÞ; Vðxi; δÞgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vðxi; δÞ
p θδkðxiÞ ð131Þ

where in (129) for any base point xi ≡ vðΔiÞ, we have chosen
a particular triple of segments ðsIðΔiÞ; sJðΔiÞ; sKðΔiÞÞ
incident at xi and an additional segment s0K such that the
above requirements are satisfied. First, let us show that (129)
indeed provides a regularization of (123). Therefore, we use
the fact that, by property (iv), s0K converges to sK in the limit
δ → 0 such that for small δ, due to (128), we can approx-
imately write

XKðsJðΔiÞÞ −XKðxiÞ ≈ δ2 _sbJðΔiÞ_scKðΔiÞDðAÞ
b

×

�fAk
c; Vðxi; δÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðxi; δÞ

p θδkðxiÞ
�
:

ð132Þ

Recall that, by (112), θδi is defined as

θδi ðxÞ ¼
Z

d3y
χδðx − yÞffiffiffi

δ3

6

q ϕiðyÞ ð133Þ

v
s1

s2s3

v'

s'3

FIG. 1. A tetrahedron Δ with the edges used for the regulari-
zation. The star marks the location of the fermion operator.
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so that, using ∂xaχδðx − yÞ ¼ −∂yaχδðx − yÞ [25], it follows that

∂xaθ
δ
i ðxÞ ¼ −

Z
Σ
d3y

∂yaχδðx − yÞffiffiffi
δ3

6

q ϕiðyÞ ¼
Z
Σ
d3y

χδðx − yÞffiffiffi
δ3

6

q ∂yaϕiðyÞ: ð134Þ

Hence, if BkðxiÞ denotes the term inside the covariant derivative of (132) depending on the volume Vðxi; δÞ, we can rewrite
(132) as

DðAÞ
a ðBkðxiÞθδkðxiÞÞ ¼ ð∂xaBkÞðxiÞθδkðxiÞ þ BkðxiÞ∂xaθ

δ
kðxiÞ þ BkðxiÞ

i
2
γ�γ0iAi

aðxiÞθδkðxiÞ

¼
Z

d3y
χΔðxi − yÞffiffiffi

δ3

6

q �
ð∂xaBkÞðxiÞθδkðyÞ þ BkðxiÞ∂xaθ

δ
kðyÞ þ BkðxiÞ

i
2
γ�γ0iAi

aðxiÞ∂yaϕiðyÞ
�
: ð135Þ

By definition, for small δ we have Vðxi; δÞ ≈ δ3

6

ffiffiffiffiffiffiffiffiffiffi
qðxiÞ

p
. Hence, approximating the denominator in BkðxiÞ by

ffiffiffiffiffiffiffiffiffi
δ3=6

p ffiffiffiffiffiffiffiffiffiffi
qðxiÞ4

p
and inserting it into Eq. (135) and finally using the fact that in the limit δ → 0 one has χδðxi − yÞ= δ3

6
→ δðxi − yÞ, (129)

becomes

1

24κ2
lim
δ→0

X
Δi∈Tðγ;δÞ

η̄ðxiÞifAj
aðxiÞ; Vðxi; δÞgÞγjγ�DðAÞ

b

�fAk
c; Vðxi; δÞgffiffiffi

q4
p ðxiÞ

ϕkðxiÞ
�

× ϵIJKδ3saI ðΔiÞ_sbJðΔiÞ_scKðΔiÞ·: ð136Þ

Hence, if we finally use

ϵIJKδ3saI ðΔiÞ_sbJðΔiÞ_scKðΔiÞ ¼ ϵabcδ3 detð_sI; _sJ; _sKÞðΔiÞ ¼ 6ϵabcvolðΔiÞ ð137Þ

Eq. (136) takes the form of a Riemann sum which in the
limit δ → 0 converges to a Riemann integral which pre-
cisely coincides with expression (123). That is, we found

lim
δ→0

Sð1Þδ ½η� ¼ Sð1Þ½η�: ð138Þ

Hence, we can use (129) as a starting point for the
quantization. Therefore, we apply the identity

fAi
a;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðx; δÞ

p
g ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðx; δÞp fAi

a; Vðx; δÞg ð139Þ

in order to express (129) respectively, (130) purely in terms
of Poisson brackets between holonomies and volume. The
corresponding quantum operator is then obtained by
replacing the classical phase space variables by their
respective quantum counterparts and replacing the Poisson
bracket by the commutator f·; ·g → 1

iℏ ½·; ·�.
At this point we have to pause, however, since we have to

specify the triangulation TðδÞ in adaptation to the graph γ.
To do this, we follow precisely the procedure from [26]:
triangulations around the vertices are chosen as
Tðγ; v; δ; IJKÞ, and the rest of the space triangulated
arbitrarily. Finally an averaging over I, J, K at each vertex
is carried out. To write out this averaging, we denote by

EðvÞ the number of triples at the given vertex. With this
procedure, we end up with

Ŝð1Þδ ½η� ≔ −
1

3ℏ2κ2
X
v∈γ

8

EðvÞ η̄ðxiÞiϵ
IJKγjγ�½X̂KðsJðΔÞÞ

− X̂KðxÞ�trðτjhsKðΔÞ½h−1sIðΔÞ; V̂v�Þ ð140Þ

with

X̂KðsJðΔÞÞ≔ trðτkhs0KðΔÞ½h−1s0KðΔÞ;
ffiffiffiffi
V̂

p
sJðΔÞ�ÞHsJðΔÞθ̂kðsJðΔÞÞ

ð141Þ

and

X̂KðxÞ ≔ trðτkhsKðΔÞ½h−1sKðΔÞ;
ffiffiffiffi
V̂

p
v�Þθ̂kðvÞ ð142Þ

where for reasons that will become clear below, the first
factor in the classical expression (129) depending on the
volume has been ordered to the right.
Note that in (140) we have implicitly assumed that the

discrete sum over all tetrahedra in the triangulation col-
lapses to a sum over the vertices of the underlying spin
network graph γ. This is permissible in the case of the
Ashtekar-Lewandowski volume operator as this operator
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acts trivially on planar vertices. However, this also implies
that the operator X̂KðsJðΔÞÞ in (141) becomes trivial asffiffiffiffi
V̂

p
sJðΔÞ acts on a vertex with coplanar tangent vectors. But

then X̂KðsJðΔÞÞ − X̂KðxÞ is not a difference operator and
therefore this would not resemble a quantization of a
regularized covariant derivative. A resolution would be
to quantize a different classical quantity in which the
covariant derivative operator acts directly on the Rarita-
Schwinger field. The regularization can then be performed
as described above. However, we would like to keep the
SUSY constraint operator as simple as possible. For this
reason, we consider another possibility ensuring nontri-
viality of the action of X̂KðsJðΔÞÞ. Therefore, let us choose
instead the Rovelli-Smolin variant of the volume operator
[27–29]. This operator is defined on cylindrical functions
Ψγ according to [29,30]

V̂vΨγ ≔
X
v∈γ

ffiffiffiffiffiffiffiffi
jq̂vj

p
Ψγ ð143Þ

with jq̂vj defined as

jq̂vj ≔
1

48

X
I≠J≠K≠I

jq̂IJKj ≔
1

48

X
I≠J≠K≠I

jϵijkJiIJjJJkKj ð144Þ

where the sum is taken over all possible triples ðeI; eJ:eKÞ
of mutually distinct edges at v. The operator q̂IJK can also
be written in the form

qIJK ¼ ϵijkJiIJ
j
JJ

k
K ¼ i

4
½ðJIJÞ2; ðJJKÞ2� ð145Þ

with ðJIJÞ2 ≔ ðJI þ JJÞ2 the Casimir operator correspond-
ing to the total angular momentum JIJ ≔ JI þ JJ. Note that
the modulus appears inside the sum. For this reason, the
action of the Rovelli-Smolin volume operator on vertices
with coplanar tangent vectors is in general nontrivial. At
first sight, this seems to be a problem as then the sum in
(140) would also include base points of tetrahedra located
inside a given edge of a spin network graph, i.e., the sum
would be a priori infinite. However, due to our choice of

the factor ordering, we will see that this indeed is not the
case. Therefore, let us consider the operator

Ô ≔ trðτihe½h−1e ;
ffiffiffiffi
V̂

p
�Þ ð146Þ

appearing for instance to the right in (140) where the
holonomy he is taken along an edge e incident at a vertex
sitting inside an spin network edge and which is transversal
to that particular edge (see Fig. 2). Given a spin network
state Ψγ , this operator will take the form

ÔΨγ ¼ trðτihe½h−1e ;
ffiffiffiffi
V̂

p
�ÞΨγ

¼ trðτiÞ
ffiffiffiffi
V̂

p
Ψγ − trðτihe

ffiffiffiffi
V̂

p
h−1e ÞΨγ

¼ −τiklhelm
ffiffiffiffi
V̂

p
h−1e m

kΨγ ð147Þ

where the first term in the second equation vanishes due the
trace freeness of the Pauli matrices. Since the matrix
components of a holonomy he½A�mk ¼ π1

2
ðhe½A�Þmk can

be identified with the matrix components of the spin-1
2

representation, it follows that

ðÔΨγÞ½A� ¼ −τiklπ1
2
ðh−1e ½A�Þlm

ffiffiffiffi
V̂

p �
π1

2
ðhe½A�ÞmkΨγ½A�

�
:

ð148Þ

Hence, according to (148), the holonomy he adds a new
edge to the spin network graph γ with spin quantum
number j ¼ 1

2
(see Fig. 2). To evaluate the action of the

volume operator, note that, effectively, the state located at
the new created vertex can symbolically be written in the
form

Ψj12 ≔ jðj1j2Þj12;
1

2
; jmi ð149Þ

with j1 ¼ j2 ¼ j the spin quantum number of the original
spin network edge with j12 ¼ 0 (for divalent spin network
vertices) and j3 ¼ 1

2
the spin quantum number of the new

created edge. For later purposes, it is worthwhile to keep
the computation a bit more general and assume that j1 and
j2 are not necessarily equal (therefore j12 does not have to
be zero). For the vertex under consideration, the operator
(145) takes the form

q̂123 ≕ q̂ ¼ i
4
½ðJ12Þ2; ðJ23Þ2�: ð150Þ

Hence, in order to determine its action on (149), we have to
perform a recoupling of angular momenta by coupling j2
and j3. This can be done using the Wigner 6-j symbols
which yields

h

j
j

v'H

½

½

h

j
j

v'

½

v v

FIG. 2. Illustrations of the action of Ŝð1Þ½η� on spin network
states. The picture on the right shows the action of the trace
operator Ô defined in (146) creating a new vertex v0 by adding a
new edge labeled with spin-1=2. The picture on the left illustrates
the action of X̂KðsJðΔÞÞ in (140) which, in contrast to Ô, creates
two new spin-1=2 edges at v0, one parallel and one transversal to
the spin-network edge j.
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Ψj12 ¼
X
j23

ð−1Þj1þj2þ1
2
þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j12 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j23 þ 1Þ

p � 1
2

j12 j

j1 j23 j2

�				j1;�j2 12
�
j23; jm



: ð151Þ

In this form, it is particularly easy to compute the action of ðJ12Þ2 which gives

ðJ23Þ2Ψj12 ¼
X
j23

ð−1Þj1þj2þ1
2
þjj23ðj23 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j12 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j23 þ 1Þ

p � 1
2

j12 j

j1 j23 j2

�				j1;�j2 12
�
j23; jm




¼
X
j23

ð−1Þj1þj2þ1
2
þjj23ðj23 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j12 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j23 þ 1Þ

p � 1
2

j12 j

j1 j23 j2

�

×
X
j0
12

ð−1Þj1þj2þ1
2
þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j012 þ 1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j23 þ 1Þ

p � 1
2

j012 j

j1 j23 j2

�				ðj1j2Þj012: 12 ; jm



¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j12 þ 1Þ

p X
j23;j012

j23ðj23 þ 1Þð2j23 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j012 þ 1Þ

q � 1
2

j12 j

j1 j23 j2

�� 1
2

j012 j

j1 j23 j2

�
Ψj0

12
ð152Þ

where in the last line we have again performed a recoupling by coupling j1 with j2. This immediately yields

ðJ12Þ2½ðJ23Þ2Ψj12 � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j12 þ 1Þ

p X
j0
12

j012ðj012 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j012 þ 1Þ

q

×
X
j23

j23ðj23 þ 1Þð2j23 þ 1Þ
� 1

2
j12 j

j1 j23 j2

�� 1
2

j012 j

j1 j23 j2

�
Ψj0

12
: ð153Þ

It remains to evaluate the last term in the commutator of (150). In a similar way as above, one finds

ðJ23Þ2½ðJ12Þ2Ψj12 � ¼ j12ðj12 þ 1ÞðJ23Þ2Ψj12 ¼ j12ðj12 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j12 þ 1Þ

p X
j0
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j012 þ 1Þ

q

×
X
j23

j23ðj23 þ 1Þð2j23 þ 1Þ
� 1

2
j12 j

j1 j23 j2

�� 1
2

j012 j

j1 j23 j2

�
Ψj0

12
: ð154Þ

Hence, we found

q̂Ψj12 ¼
i
4
½ðJ12Þ2; ðJ23Þ2�Ψj12 ¼

i
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j12 þ 1Þ

p X
j0
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j012 þ 1Þ

q
ðj012ðj012 þ 1Þ − j12ðj12 þ 1ÞÞ

×
X
j23

j23ðj23 þ 1Þð2j23 þ 1Þ
� 1

2
j12 j

j1 j23 j2

�� 1
2

j012 j

j1 j23 j2

�
Ψj0

12
: ð155Þ

In fact, this expression can be further simplified using the identity [31]

X
j23

ð2j23 þ 1Þj23ðj23 þ 1Þ
�
j1 j12 j2
j3 j23 j4

��
j1 j012 j2
j3 j23 j4

�

¼ 1

2
ð−1Þj1þj2þj3þj4þj12þj12 0þ1Xðj1; j4Þ12

�
j2 j1 j12
1 j120 j1

��
j3 j4 j12
1 j120 j4

�
þ j1ðj1 þ 1Þ þ j4ðj4 þ 1Þ

2j12 þ 1
δj12j012 ð156Þ

with Xðj1; j4Þ ≔ 2j1ð2j1 þ 1Þð2j1 þ 2Þ2j4ð2j4 þ 1Þð2j4 þ 2Þ. Due to the difference appearing in (155), it is immediate
that the matrix representation of q̂ is purely off diagonal, i.e., only entries with j12 ≠ j012 are nonzero. In this case, (156)
becomes
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X
j23

ð2j23 þ 1Þj23ðj23 þ 1Þ
� 1

2
j12 j

j1 j23 j2

�� 1
2

j012 j

j1 j23 j2

�

¼ 1

2
ð−1Þj1þj2þjþj12þj12 0þ3

2X

�
1

2
; j2

�1
2

� j 1
2

j12

1 j120 1
2

��
j1 j2 j12
1 j012 j2

�
ð157Þ

with Xð1
2
; j2Þ12 ¼ 2

ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ðj2 þ 1Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2j2 þ 1Þp

. Furthermore, by the properties of the 6-j symbols, in order for (157) to be
nonzero j012 has to appear in the decomposition of the tensor product representation j12 ⊗ 1 ≅ ðj12 − 1Þ ⊗ j12 ⊗ ðj12 þ 1Þ,
that is j012 ∈ fj12 − 1; j12 þ 1g. Thus, inserting (157) into (155), we finally obtain

q̂Ψj12 ¼ −
i
ffiffiffi
6

p

4
ð−1Þj1þj2þ2j12þjþ3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j12 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ðj2 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j2 þ 1Þ

p
×
X

k∈f�1g
kð2j12 þ kþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j12 þ 2kþ 1

p � j 1
2

j12

1 j12 þ k 1
2

��
j1 j2 j12
1 j12 þ k j2

�
Ψj12þk: ð158Þ

This is the most general form for the action of q̂ on a planar vertex with an additional decoupled edge labeled by spin-1
2
.

Applying (158) to our situation, i.e., j1 ¼ j2 ≕ j and j12 ¼ 0, this yields

q̂Ψ0 ¼
3i

ffiffiffi
2

p

2
ð−1Þ2jþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p � 1
2

1
2

1

0 1 1
2

��
j j 1

0 1 j

�
Ψ1

¼ 3i
ffiffiffi
2

p

2
ð−1Þ2jþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p 1ffiffiffi
6

p ð−1Þ2jþ1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p ffiffiffi
3

p Ψ1

¼ i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
Ψ1 ð159Þ

where we used that�
a b c

0 c b

�
¼ ð−1Þaþbþcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2bþ 1Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2cþ 1Þp : ð160Þ

Similarly, for j12 ¼ 1 one obtains

q̂Ψ1 ¼ −
i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
Ψ0: ð161Þ

Hence, with respect to the subspace spanned by the
orthonormal basis Ψ0 and Ψ1, the operator q̂ has the
following matrix representation:

q̂ ¼ i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p �
0 1

−1 0

�
ð162Þ

from which we can directly deduce that

jq̂j ¼
ffiffiffiffiffiffiffiffi
q̂†q̂

q
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
1: ð163Þ

Hence, the Rovelli-Smolin volume operator (143) acts via
multiplication with the constant factor C on the subspace
spanned by Ψ0 and Ψ1. This immediately implies that the
action of (146) is given by

ðÔΨγÞ½A� ¼ −ðτiÞklπ1
2
ðhe½A�Þlm

ffiffiffiffi
V̂

p
ðπ1

2
ðh−1e ½A�Þm

k
Ψγ½A�Þ

¼ −C1
4trðτihe½A�h−1e ½A�ÞΨγ½A�

¼ −C1
4trðτiÞΨγ½A� ¼ 0 ð164Þ

that is, Ô simply vanishes on these types of edges and
therefore is only nonzero in case of spin network vertices
proving that (140) is indeed finite also justifying our choice
of the factor ordering. This is in fact different to the
situation of the standard regularization of the Hamiltonian
constraint [26] as, e.g, the Euclidean part contains a term of
the form trðhαhe½h−1e ; V̂�Þ where α is a closed loop. In
contrast to (146), the action of this operator will then, in
general, be nonzero [in fact, as observed in (164), the
triviality of the action of Ô mainly arose due to the
appearence of the Pauli matrix inside the trace]. At first
sight, this may look like a contradiction, as the commutator
of the SUSY constraint should reproduce the Hamiltonian
constraint. However, as already explained in the beginning
of this section, the SUSY constraint is superior to the
Hamiltonian constraint, i.e., once the SUSY constraint is
quantized, this yields a quantization of the Hamiltonian
constraint by computing its commutator. Hence, our
proposal of the quantum SUSY constraint provides, at
least in principle, another possibility for the quantization of
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the Hamiltonian constraint. It finally remains to check that
the action of the operator X̂KðsJðΔÞÞ in (141) is nontrivial
such that X̂KðsJðΔÞÞ − X̂KðxÞ can indeed be viewed as a
quantization of a regularized covariant derivative. There-
fore, we have to study the action of q̂ on decoupled product
states of the form

jðjjÞ0i ⊗
				 12 ; m



⊗
				 12 ; m0



ð165Þ

where jðjjÞ0i is again the gauge invariant divalent vertex
located inside a spin network edge and j 1

2
; mi respectively,

j 1
2
; m0i are the additional edges with spin-1

2
arising from the

holonomies hs0KðΔÞ respectively, HsJðΔÞ contained in (141)
(see Fig. 2). Note that for the ansatz (165) we have
implicitly chosen the chiral representation of the gamma
matrices so that the holonomy He is indeed block diagonal

according to the decomposition of the restricted Majorana
representation into a direct sum of two spin-1

2
representa-

tions. Hence, this operator does not mix between the two
chiral subrepresentations so that it suffices to restrict to one
particular chiral sector. However, note that for the quan-
tization of the Rarita-Schwinger field in Sec. VA a
representation was chosen in which the gamma matrices
are explicitly real. But, since both representations are
related via similarity transformations, one can map from
one representation to the other.
In order to compute the action of (150) on the state (165),

we first need to couple the angular momentum j corre-
sponding to the one part of the spin network edge e that is
incident at the vertex v ∈ γ under consideration with the
spin-1

2
quantum number corresponding to the segment

s0KðΔÞ that is parallel to that edge. Using again Wigner
6-j symbols, we find

jðjjÞ0i ⊗
				 12 ; m



⊗
				 12 ; m0



¼
				ðjjÞ0; 12 ; 12m



⊗
				 12 ; m0



¼
�X

j23

ð−1Þ2jþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j23 þ 1

p �
j23 j 1

2

0 1
2

j

�				j;�j 12
�
j23;

1

2
m


�
⊗
				 12 ; m0




¼ ð−1Þ2jþ1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
X
j23

ð−1Þjþ1
2
þj23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j23 þ 1

p 				j;�j 12
�
j23;

1

2
m



⊗
				 12 ; m0




¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1

2jþ 1

s 				j;�j 12
�
jþ 1

2
;
1

2
m



⊗
				 12 ; m0




−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j

2jþ 1

s 				j;�j 12
�
j −

1

2
;
1

2
m



⊗
				 12 ; m0



: ð166Þ

This can then be coupled with the remaining spin-1
2
quantum number using the well-known identities				 12 ; 12



⊗
				 12 ; 12



¼ j1; 1i;

				12 ;− 1

2



⊗
				12 ;− 1

2



¼ j1;−1i ð167Þ

and 				12 ;� 1

2



⊗
				12 ;∓ 1

2



¼ 1ffiffiffi

2
p j1; 0i � 1ffiffiffi

2
p j0; 0i: ð168Þ

Hence, we have to determine the action of (150) on states of the form

Ψ�
1
2
;1
2
;j
≔
				�j� 1

2
j

�
1

2
;
1

2
; j m



; with j ∈ f0; 1g: ð169Þ

The action of q̂ on (169) now follows directly from the general formula (158) setting j1 ¼ j� 1
2
and j2 ¼ j. Since j12 ¼ 1

2
in

this case, only the k ¼ þ1 term in the sum of (158) remains yielding

q̂Ψ�
1
2
;1
2
;j
¼ −3i

ffiffiffi
3

p
ð−1Þ2jþ1

2
�1

2
þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þ

p � j 1
2

1
2

1 3
2

1
2

��
j� 1

2
j 1

2

1 3
2

j

�
Ψ3

2
;1
2
;j ð170Þ
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which, according to the first 6j-symbol appearing in (170), will be nonzero if and only if j ∈ 3
2
⊗ 1

2
≅ 1 ⊕ 2. Hence, in

particular, for j ¼ 0 this immediately implies

q̂Ψ�
1
2
;1
2
;0
¼ 0: ð171Þ

On the other hand, for j ¼ 1, one obtains

q̂Ψ�
1
2
;1
2
;1
¼ 3i

ffiffiffi
3

p
ð−1Þ2jþ1

2
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þ

p �
1 1

2
1
2

1 3
2

1
2

��
j� 1

2
j 1

2

1 3
2

j

�
Ψ3

2
;1
2
;1: ð172Þ

Using the general formula

�
a j 1

2

1 3
2

j

�
¼
�
a j 3

2

1 1
2

j

�

¼ ð−1Þaþ3
2
þj

4
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp ��

aþ jþ 5

2

��
3

2
þ j − a

��
3

2
þ a − j

��
a −

1

2
þ j

��1
2 ð173Þ

it follows for a ¼ 1 and j ¼ 1
2�

1 1
2

1
2

1 3
2

1
2

�
¼ −

1

3
: ð174Þ

For a ¼ jþ 1
2
one finds�

jþ 1
2

j 1
2

1 3
2

j

�
¼ ð−1Þ2j

2
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2jþ 3Þpffiffiffiffiffiffiffiffiffiffiffiffiffi

2jþ 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðjþ 1Þp ð175Þ

and finally for a ¼ j − 1
2�

j − 1
2

j 1
2

1 3
2

j

�
¼ ð−1Þ2jþ1

2
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþ 1Þð2j − 1Þpffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp : ð176Þ

Thus, inserting (174), (175), and (176) into (172) this yields

q̂Ψ�
1
2
;1
2
;1
¼ ia�

2
Ψ3

2
;1
2
;1 ð177Þ

with aþ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2jþ 3Þp

and a− ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþ 1Þð2j − 1Þp

.
Since q̂ is Hermitian, its matrix representation in the
subspace spanned by the orthonormal basis Ψ�

1
2
;1
2
;1

and

Ψ�
3
2
;1
2
;1
thus takes the form

q̂ ¼ ia�
2

�
0 1

−1 0

�
: ð178Þ

As a consequence, the Rovelli-Smolin volume operator is
diagonal on this subspace so that, in particular,

ffiffiffiffi
V̂

p
¼

ffiffiffiffiffiffi
jq̂j4

p
¼

ffiffiffiffiffiffi
a�
2

4

r
1≕C�1 ð179Þ

i.e.,
ffiffiffiffi
V̂

p
acts a multiplication operator with the constant

factor C�. In order to simplify our notation, we define

				ðjjÞ0; 12 ; 12m



⊗
				 12 ; m0



¼ jðjjÞ0i ⊗

				 12 ; m



⊗
				 12 ; m0



≔

8>>>>><>>>>>:
j0;↑↑i; for m ¼ m0 ¼ 1

2

j0;↑↓i; for m ¼ 1
2
; m0 ¼ − 1

2

j0;↓↑i; for m ¼ − 1
2
; m0 ¼ 1

2

j0;↓↓i; for m ¼ m0 ¼ − 1
2

:

Using then (166), (167), and (168) as well as (179), we find
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ffiffiffiffi
V̂

p
j0;↑↑i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1

2jþ 1

s ffiffiffiffi
V̂

p 				j;�j 12
�
jþ 1

2
;
1

2
;
1

2



⊗
				 12 ; 12



−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j

2jþ 1

s ffiffiffiffi
V̂

p 				j;�j 12
�
j −

1

2
;
1

2
;
1

2



⊗
				 12 ; 12




¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1

2jþ 1

s
Cþ

				�jjþ 1

2

�
1

2
;
1

2
; 1; 1



−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j

2jþ 1

s
C−

				�jj − 1

2

�
1

2
;
1

2
; 1; 1




¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1

2jþ 1

s
Cþ

				j;�j 12
�
jþ 1

2
;
1

2
;
1

2



⊗
				 12 ; 12



−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j

2jþ 1

s
C−

				j;�j 12
�
j −

1

2
;
1

2
;
1

2



⊗
				 12 ; 12



≕Ajþ;↑i ⊗ j↑i − Bj−;↑i ⊗ j↑i ð180Þ

and similarly

ffiffiffiffi
V̂

p
j0;↓↓i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1

2jþ 1

s
Cþ

				j;�j 12
�
jþ 1

2
;
1

2
;−

1

2



⊗
				12 ;− 1

2



−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j

2jþ 1

s
C−

				j;�j 12
�
j −

1

2
;
1

2
;−

1

2



⊗
				12 ;− 1

2



¼ Ajþ;↓i ⊗ j↓i − Bj−;↓i ⊗ j↓i: ð181Þ

Finally, using (168) and the fact that the action of the volume operator on states with vanishing total angular momentum
j ¼ 0 is zero [cf. (171)], we find for the mixed spin components

ffiffiffiffi
V̂

p
j0;↓↑i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1

2jþ 1

s ffiffiffiffi
V̂

p 				j;�j 12
�
jþ 1

2
;
1

2
;−

1

2



⊗
				 12 ; 12



−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j

2jþ 1

s ffiffiffiffi
V̂

p 				j;�j 12
�
j −

1

2
;
1

2
;−

1

2



⊗
				 12 ; 12




¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1

2jþ 1

s
Cþ

				�jjþ 1

2

�
1

2
;
1

2
; 1; 0



−

1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

j
2jþ 1

s
C−

				�jj − 1

2

�
1

2
;
1

2
; 1; 0




¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1

2jþ 1

s
Cþ
2

ðjþ;↑i ⊗ j↓i þ jþ;↓i ⊗ j↑iÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi

j
2jþ 1

s
C−

2
ðj−;↑i ⊗ j↓i þ j−;↓i ⊗ j↑iÞ

¼ A
2
jþ;↑i ⊗ j↓i þ A

2
jþ;↓i ⊗ j↑i − B

2
j−;↑i ⊗ j↓i − B

2
j−;↓i ⊗ j↑i ð182Þ

and analogously ffiffiffiffi
V̂

p
j0;↑↓i ¼ A

2
jþ;↑i ⊗ j↓i þ A

2
jþ;↓i ⊗ j↑i − B

2
j−;↑i ⊗ j↓i − B

2
j−;↓i ⊗ j↑i: ð183Þ

Recall that we want to the determine the action of (141) on the spin network state Ψγ . We therefore have already derived all
necessary ingredients. It only remains to evaluate the trace appearing in (141). For this, let us recall some basic facts
concerning the action of flux operators appearing e.g. in the volume operator.
The fluxoperatorXnðSÞ smearedover two-dimensional surfacesSwith smearing functionn acts onholonomieshe½A� via [32]

XnðSÞhe½A� ¼
iℏκβ
2

ϵðe; SÞ nðbðeÞÞ
2

he½A�: ð184Þ

Since fEnðSÞ; he½A�−1g ¼ −he½A�−1fEnðSÞ; he½A�ghe½A�−1, this yields in case of a single edge e ingoing at S ∩ e

XnðSÞhe½A�−1 ¼ −he½A�−1ðXnðSÞhe½A�Þhe½A�−1 ¼
iℏκβ
4

he½A�−1nðbðeÞÞ ð185Þ

such that

XnðSÞfγðhe½A�−1Þ ¼
∂fγ

∂ðhe½A�−1Þkl ðhe½A�
−1Þ
�
iℏκβ
4

he½A�−1nðbðeÞÞ
�

k

l

¼ iℏκβ
4

nðbðeÞÞr d
dt

				
t¼0

fγðhe½A�−1etτrÞ ¼
κβ

4
nðbðeÞÞrðiℏLrfγÞðhe½A�−1Þ ð186Þ
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with Lr the left-invariant vector field generated by
τr ∈ suð2Þ, r ∈ f1; 2; 3g, which is related to the push-
forward representation of the right regular representation

ρR∶ SUð2Þ → BðL2ðSUð2ÞÞÞ; g ↦ ðρRðgÞ∶ f ↦ fð·gÞÞ
ð187Þ

according to

ðLrfÞðhÞ ¼
d
dt

				
t¼0

fðhetτrÞ ¼ d
dt

				
t¼0

ρRðetτrÞðfÞðhÞ

¼ ρR�ðτrÞfðhÞ ð188Þ

∀ f ∈ C∞ðSUð2ÞÞ and h ∈ SUð2Þ and extended uniquely to
a (unbounded) self-adjoint operator on L2ðSUð2ÞÞ, that is,

Jr ≔ iℏρR�ðτrÞ ¼ iℏLr: ð189Þ
In our case fγ corresponds to the matrix components of the
spin-1

2
representation of SU(2), i.e., fγ ¼ π1

2
ðhe½A�−1Þkl for

any k; l ∈ f0; 1g. As is very well known, these matrix
components generate a proper invariant subrepresentation
of the right regular representationonL2ðSUð2ÞÞ. In fact, since
for general spin-j

ρRðgÞðπjÞklðhÞ ¼ πjðhgÞkl ¼ πjðhÞkmπjðgÞml ð190Þ
for any g ∈ SUð2Þ, it follows that ρRðgÞVk ⊆ Vk with Vk ≔
spanCfðπjÞkmjm ∈ f0; 1gg and thus, in particular,

JrVk ⊆ Vk; ∀ k ¼ 0; 1: ð191Þ

Moreover, for j ¼ 1
2
, it follows

J3ðπ1
2
Þk

m
ðhÞ ¼ iℏ

d
dt

				
t¼0

π1
2
ðhetτ3Þk

m

¼ iℏπ1
2
ðhÞkn

d
dt

				
t¼0

ðetτ3Þnm

¼ ℏ
2
π1

2
ðhÞk

n
ðσ3Þnm ð192Þ

so that

J3ðπ1
2
Þk

0
¼ ℏ

2
ðπ1

2
Þk

0
and J3ðπ1

2
Þk

1
¼ −

ℏ
2
ðπ1

2
Þk

1
: ð193Þ

To summarize, we have

π1
2
¼
 
j 1
2
; 1
2
i j1

2
;− 1

2
i

j 1
2
; 1
2
i j1

2
;− 1

2
i

!
ð194Þ

and, due to (190), the rows in (194) define two-dimensional
invariant subspaces with respect to the angular momentum
operator Jr and thus, in particular, with respect to the
fluxes XnðSÞ.
With these observations, let us now compute the action

of (141) on the spin network state Ψγ which we take as a
product stateΨγ ¼ ψb ⊗ ψf with ψb a proper spin network
function and ψf an element of the fermionic part of the
Hilbert space. Using (180) as well as (194) and (190), we
then immediately find

ffiffiffiffi
V̂

p
h½A�−1m0H

0
0θ̂

0
iΨγ½A�≡

ffiffiffiffi
V̂

p
j0;↑↑i ⊗ θ̂0iψf

¼ ðAh−1m0jþ;↑i − Bh−1m0j−;↑iÞ ⊗ θ̂0iψf: ð195Þ
On the other hand, we haveffiffiffiffi

V̂
p

h½A�−1m1H
0
0θ̂

0
iΨγ½A�≡

ffiffiffiffi
V̂

p
j0;↓↑i ⊗ θ̂0iψf

¼
�
A
2
h−1m0jþ;↓i þ A

2
h−1m1 jþ;↑i−B

2
h−1m0j−;↓i −

B
2
h−1m1 j−;↑i

�
⊗ θ̂0iψf ð196Þ

as well asffiffiffiffi
V̂

p
h½A�−1m0H

0
1θ̂

1
iΨγ½A�≡

ffiffiffiffi
V̂

p
j0;↑↓i ⊗ θ̂1iψf

¼
�
A
2
h−1m0jþ;↓i þ A

2
h−1m1jþ;↑i−B

2
h−1m0j−;↓i −

B
2
h−1m1j−;↑i

�
⊗ θ̂1iψf ð197Þ

and finally

ffiffiffiffi
V̂

p
h½A�−1m1H

0
1θ̂

1
iΨγ½A�≡

ffiffiffiffi
V̂

p
j0;↓↓i ⊗ θ̂1iψf

¼ ðAh−1m1jþ;↓i − Bh−1m1j−;↓iÞ ⊗ θ̂1iψf: ð198Þ
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If we write for the holonomy

h−1 ≔
�
α β

γ δ

�
ð199Þ

this yields for the action of (141)

ðX̂ΨγÞ½A� ¼ trðτih½A�
ffiffiffiffi
V̂

p
h½A�−1ÞH0

βθ̂
βψ ½A� ¼ τi

k
lhlm

ffiffiffiffi
V̂

p
h−1mkH0

βψb ⊗ θ̂βi ψf

¼ tr

 
τih

 
Aα A

2
β

Aγ A
2
δ

!!
jþ;↑i ⊗ θ̂0iψf þ tr

 
τih

 
0 A

2
α

0 A
2
γ

!!
jþ;↓i ⊗ θ̂0iψf

− tr

 
τih

 
Bα B

2
β

Bγ B
2
δ

!!
j−;↑i ⊗ θ̂0iψf − tr

 
τih

 
0 B

2
α

0 B
2
γ

!!
j−;↓i ⊗ θ̂0iψf

þ tr

 
τih

 
A
2
β 0

A
2
δ 0

!!
jþ;↑i ⊗ θ̂1iψf þ tr

 
τih

 
A
2
α Aβ

A
2
γ Aδ

!!
jþ;↓i ⊗ θ̂1iψf

− tr

 
τih

 
B
2
β 0

B
2
δ 0

!!
j−;↑i ⊗ θ̂1iψf − tr

 
τih

 
B
2
α Bβ

B
2
γ Bδ

!!
j−;↓i ⊗ θ̂1iψf: ð200Þ

This can be further simplified using that 
Aα A

2
β

Aγ A
2
δ

!
¼
 
α β

γ δ

! 
A 0

0 A
2

!
¼ h−1

 
A 0

0 A
2

!
ð201Þ

and  
0 A

2
α

0 A
2
γ

!
¼
 
α β

γ δ

! 
0 A

2

0 0

!
¼ h−1

 
0 A

2

0 0

!
ð202Þ

as well as  
A
2
β 0

A
2
δ 0

!
¼ h−1

 
0 0

A
2

0

!
ð203Þ

such that, for instance,

tr

 
τi

 
Aα A

2
β

Aγ A
2
δ

!!
¼

8>><>>:
0; for i ¼ 1

0; for i ¼ 2
A
4i ; for i ¼ 3

ð204Þ

and similar for the other traces. Hence, we finally end up with

ðX̂ΨγÞ½A� ¼
A
4i
jþ;↑i ⊗ θ̂03ψf þ

A
4i
jþ;↓i ⊗ ðθ̂01 þ iθ̂02Þψf −

B
4i
j−;↑i ⊗ θ̂03ψf −

B
4i
j−;↓i ⊗ ðθ̂01 þ iθ̂02Þψf

þ A
4i
jþ;↑i ⊗ ðθ̂11 − iθ̂12Þψf −

A
4i
jþ;↓i ⊗ θ̂13ψf −

B
4i
j−;↑i ⊗ ðθ̂11 − iθ̂12Þψf þ

B
4i
j−;↓i ⊗ θ̂13ψf ð205Þ

and thus
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ðX̂ΨγÞ½A� ¼
A
4i
jþ;↑i ⊗ ðθ̂03 þ θ̂11 − iθ̂12Þψf þ

A
4i
jþ;↓i ⊗ ðθ̂01 þ iθ̂02 − θ̂13Þψf

−
B
4i
j−;↑i ⊗ ðθ̂03 þ θ̂11 − iθ̂12Þψf −

B
4i
j−;↓i ⊗ ðθ̂01 þ iθ̂02 − θ̂13Þψf ð206Þ

where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1

2ð2jþ 1Þ

s
ðjð2jþ 3ÞÞ14 and B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j

2ð2jþ 1Þ

s
ððjþ 1Þð2j − 1ÞÞ14: ð207Þ

As we see, the action of (141) is indeed nontrivial as
required and, moreover, creates a new vertex coupled to a
fermion. In particular, we see that (206) is completely
independent on the additional segment s0KðΔÞ which was
needed for the regularization. This is indeed a good thing as
the choice of such an additional segment would be
completely arbitrary and not based on any fundamental
principles justifying the assumption made in (iv) above. Let
us make two final remarks about the quantization chosen
here.
Remark V.1.—We have seen that the properties of the

additional edge added at the new vertex, in the definition of
(206) are irrelevant for the end result. This property can
have some side effects, however. Consider the situation
depicted in Fig. 1, and additionally consider a second
tetrahedron spanned by the edge segments s1, s2 and a third
segment t3 along an edge different from s1, s2, s3.
Depending on the orientation of the tangent vectors, the
triplet ðs1; s2; t3Þ may be either positively or negatively
oriented. However, the action of (206) will otherwise be
exactly the same in both cases. The relative orientation of
the two triplets enters through the ϵ tensor and gives a
relative minus sign in one of the cases. If the orientations
differ, the two contributions to the operator Ŝð1Þ cancel after
all. This runs counter to the intuition from the classical
theory. Thus one might consider defining a variant of this
operator in which an additional sign depending on the
orientation is introduced in (206).
Remark V.2.—Another possibility in quantizing the first

term in the SUSY constraint (98) would be to choose a
different variant in which the covariant derivative acts
directly on the Rarita-Schwinger field involving of course
additional contributions due to the derivation property. That
is, one could instead consider an expression of the form

S0ð1Þ½η� ≔
Z
Σ
d3xη̄

iffiffiffi
q4

p ϵabceiaγiγ�e
j
cD

ðAÞ
b ϕj: ð208Þ

Following the standard procedure, it is then immediate to
see that a regularization of (208) is given by (see also Part II
below)

S0ð1Þδ ½η� ¼
X

Δi∈Tðγ;δÞ
η̄ðxiÞ

1

κ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðxi; δÞ

p
× ϵIJKtrðτlhsIðΔiÞ½A�fhsIðΔiÞ½A�−1; Vðxi; δÞgÞγlγ�
× trðτjhsJðΔiÞ½A�fhsJðΔiÞ½A�−1; Vðxi; δÞgÞ
× ðHðAÞðsKðΔiÞðδÞÞθδjðsKðΔiÞðδÞÞ − θδjðxiÞÞ:

ð209Þ

For the quantization of (209), one can now use either the
Ashtekar-Lewandowski or Rovelli-Smolin volume opera-
tor. In both cases, based on our observations above, the
resulting operator will be finite, i.e., only terms involving
spin-network vertices contribute. Moreover, one obtains a
nontrivial action for the difference operator resulting from
the last term in (209) which is consistent for a regulari-
zation of a covariant derivative.

2. Part II

Next, let us turn to the quantization of the second term in
the SUSY constraint (98) depending on the covariant
derivative of the frame field

Sð2Þ½η� ≔
Z
Σ
d3xη̄

1ffiffiffi
q4

p ϵabcelc
1þ iβγ�

2β
γkðDðAÞ

a ekbÞϕl:

ð210Þ

We want to quantize this expression by similar means as in
the foregoing section. As we have recently observed, the
implementation of the regularized covariant derivative in
(129) yields an operator that creates new vertices. However,
according to (206), this new vertex is strongly coupled with
the fermion. Hence, in order for this additional contribution
to be nonzero, the presence of a fermion is crucial. One may
therefore expect that the quantization of the covariant
derivative in (210) by similar means will lead to vanishing
contributions of the operator acting apart from the spin
network vertex which seems to be inconsistent for the
regularization of a covariant derivative. For this reason, let

us introduce the total covariant derivative ∇ðAÞ
a which acts

on both internal indices and spinor indices. With respect to
this covariant derivative, we can write
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ðDðAÞ
a ekbÞϕl ¼ ∇ðAÞ

a ðekbϕlÞ − ekb∇ðAÞ
a ϕl: ð211Þ

In the quantum theory, this then has the advantage of
creating vertices coupled to fermion fields and therefore,
based on our previous observations, yields nontrivial
contributions. Inserting (211) into (210) yields two terms,
one which is very similar to expression (123) replacing the
covariant derivative acting on purely spinor indices with the
new total covariant derivative which also acts on internal
indices. The implementation of this quantity can be

performed in analogy to the foregoing section. For this
reason, we will not explain the steps in detail. Concerning
the second contribution, one arrives at an expression of the
form

S0ð2Þ½η� ≔
Z
Σ
d3xη̄

1ffiffiffi
q4

p ϵabcelc
1þ iβγ�

2β
γkekb∇ðAÞ

a ϕl: ð212Þ

We make the following Ansatz for a regularization of (212)

S0ð2Þδ ½η� ¼
X

Δi∈Tðγ;δÞ
η̄ðxiÞ

−1
6κ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðxi; δÞ

p ϵIJKtrðτlhsKðΔiÞ½A�fhsKðΔiÞ½A�−1; Vðx; δÞgÞ
1þ iβγ�

2β
γk

× trðτkhsJðΔiÞ½A�fhsJðΔiÞ½A�−1; Vðx; δÞgÞðYδ
l ðsIðΔÞÞ −Yδ

l ðxiÞÞ ð213Þ

where

Yδ
l ðsIðΔÞÞ ≔ HðAÞðsIðΔiÞðδÞÞθδl ðsIðΔiÞðδÞÞ ð214Þ

and

YlðxiÞ ≔ θδl ðxiÞ: ð215Þ

Here, HðAÞ denotes the holonomy induced by the total covariant derivative ∇ðAÞ which, in the limit of small δ, satisfies

HðAÞðsIðΔiÞðδÞÞΨlðsIðΔiÞðδÞÞ −ΨlðxiÞ ¼ δ_sIðΔiÞa∇ðAÞ
a ΨlðxiÞ ð216Þ

whereΨ is some spinor-valued co-vector field (with respect to internal indices) defined on Σ. Following the same steps as in
the previous section, it can be shown immediately that for δ → 0, one obtains

lim
δ→0

S0ð2Þδ ½η� ¼ lim
δ→0

X
Δi∈Tðγ;δÞ

−1
32κ2

ffiffiffi
q4

p ðxiÞ
fAl

c; Vðxi; δÞg
1þ iβγ�

2β
γkfAk

b; Vðxi; δÞg∇ðAÞ
a ϕlðxiÞ

× ϵIJKδ3 _saI ðΔiÞ_sbJðΔiÞ_scKðΔiÞ ð217Þ

so that, together with (137) and (124), this yields a Riemann sum so that in the limit δ → 0 one finally arrives at

lim
δ→0

S0ð2Þδ ½η� ¼ S0ð2Þ½η�: ð218Þ

For the quantization of the regularized expression (213), we use

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðx; δÞp fAl

c; Vðx; δÞgfAk
b; Vðx; δÞg ¼ 16

9
fAl

c; Vðx; δÞ34gfAk
b; Vðx; δÞ

3
4g ð219Þ

and replace Poisson brackets by the respective commutator yielding

Ŝ0ð2Þδ ½η� ≔ 8

27ℏ2κ2
X
v∈γ

8

EðvÞ η̄ðvÞϵ
IJK 1þ iβγ�

2β
γktrðτkhsJðΔÞ½A�½hsJðΔÞ½A�−1; V̂

3
4
v�Þ

× ðŶlðsIðΔÞÞ − ŶlðxiÞÞtrðτlhsKðΔÞ½A�½hsKðΔÞ½A�−1; V̂
3
4
v�Þ ð220Þ

with
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ŶlðsIðΔÞÞ ≔ HðAÞðsIðΔÞðδÞÞθ̂lðsIðΔÞðδÞÞ and

ŶlðvÞ ≔ θ̂lðvÞ: ð221Þ

In the infinite sum of (220) we were again allowed to
restrict to the sum over the vertices of the underlying spin
network graph since one of the trace terms was ordered to
the right. By (164), this yields vanishing contributions in
case the Rovelli-Smolin volume operator does not act on a
spin network vertex.

3. Part III

Finally, we need to quantize the last three terms in the
SUSY constraint (98). These terms are all of very similar
structure and, in particular, do not contain any covariant
derivatives. Hence, it suffices for instance to consider the
last one which we write in the form

Sð3Þ½η� ≔
Z
Σ
d3xη̄

κ

4
ffiffiffi
q4

p γ0ϕ
i

 
ϵjklϕ̄jγ0

1þ iβγ�
2β

γkγiϕl

!
:

ð222Þ

For its regularization, we make the ansatz

Sð3Þδ ½η� ≔
X

Δi∈Tðγ;δÞ
η̄ðxiÞ

κ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðxi; δÞ

p γ0θ
δ
i ðxiÞ

×

 
ϵjklθ̄δjðxiÞγ0

1þ iβγ�
2β

γkγ
iθδl ðxiÞ

!
: ð223Þ

Due to (112), we have

ϵjklθ̄δjðxiÞγ0
1þ iβγ�

2β
γkγ

iθδl ðxiÞ

¼
Z

d3y
Z

d3z
χδðxi − yÞχδðxi − zÞ

δ3=6
ϵjklϕ̄jðyÞγ0

×
1þ iβγ�

2β
γkγ

iϕlðzÞ ð224Þ

and on the other hand

κ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðxi; δÞ

p γ0θ
δ
i ðxiÞ ¼

Z
d3x

χδðxi − xÞ
δ3=6

κ

4
ffiffiffiffiffiffiffiffiffiffi
qðxiÞ4

p γ0ϕiðxÞ:

ð225Þ

In the limit δ → 0, it follows χδðxi − xÞ= δ3

6
→ δðxi − xÞ and

moreover χδðxi − zÞ= δ3

6
→ δðxi − zÞ and χδðxi − yÞ can be

replaced by the Kronecker delta δxi;y. Therefore, in this
limit, (223) finally becomes

lim
δ→0

Sð3Þδ ½η� ¼ lim
δ→0

X
Δi∈Tðγ;δÞ

η̄ðxiÞ
κ

4
ffiffiffi
q4

p ðxiÞ
γ0ϕiðxiÞ

×

 
ϵjklϕ̄jγ0

1þ iβγ�
2β

γkγ
iϕlðxiÞ

!
volðΔiÞ

¼
Z
Σ
d3xη̄

κ

4
ffiffiffi
q4

p γ0ϕ
i

 
ϵjklϕ̄jγ0

1þ iβγ�
2β

γkγiϕl

!
¼ Sð3Þ½η� ð226Þ

and therefore (223) indeed provides an appropriate regu-
larization of (222). Its implementation in the quantum
theory is now straightforward yielding

Ŝð3Þ½η� ≔ κ

4

X
v∈VðγÞ

8

EðvÞ η̄ðvÞ
ffiffiffiffiffiffiffiffidV−1
v

q
γ0θ̂iðvÞ

×

 
iϵjklθ̂Tj ðvÞ

1þ iβγ�
2β

γkγ
iθ̂lðvÞ

!
ð227Þ

where, in the real representation of the gamma matrices, we
used that the charge conjugation matrix is given by
C ¼ iγ0. There exist various possibilities for the imple-

mentation of the inverse volume operatordV−1 such that this
operator is well defined and nonsingular. For instance, one
can reexpress it in terms of a product of Poisson brackets of
the form (124). However, for sake of simplicity, let us
choose a quantization as proposed in [33]. There, one
quantizes the inverse volume via

dV−1 ≔ limt→0ðV̂2 þ t2l6pÞ−1V̂ ð228Þ

with lp the Planck-length. This operator then simply
vanishes while acting on vertices with zero volume and
therefore provides a suitable regularization.

C. Solutions of the quantum SUSY constraint

In this last section, we would like to sketch possible
solutions of the quantum SUSY constraint. Going over to
the sector of diffeomorphism-invariant states, we are thus
looking for vectors Ψphys ∈ D�

diff such that8

ðΨphysjŜ½η�ψi¼0; ∀ ψ ∈Hkin¼Hgrav⊗Hf; η∈ΓðERÞ
ð229Þ

8Actually, working on the dual requires an antilinear repre-
sentation of the constraint algebra involving rather the adjoint
Ŝ½η�† of the SUSY constraint. However, since the classical theory,
the SUSY constraint is a real function and thus we could equally
quantize the complex conjugate S̄½η� which then yields Ŝ½η�†.
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where ΓðERÞ denotes the space of smooth sections of the
spinor bundle ER ≔ Pspin ×κR ΔR induced by the Majorana
representation on ΔR.
Considering the first part (140) of the quantum SUSY

constraint studied in Sec. VA, this operator creates new
vertices coupled to a fermion. A qualitative description of
the action is depicted in Fig. 3. Each diagram on the right
side of the arrow represents a type of term that is appearing in
the result. Fermions are created both at the original vertex v
and at new vertices v0 that lie on the edges incident at v. The
creation of fermions is a generic feature of the quantum
SUSY constraint because the conjugate spinor plays the role
of smearing function. In case of an ordinary Dirac fermion,
this wouldmean that even if, on the right-hand side of (229),
one initially started with a state ψ in the pure gravitational
sector of theHilbert state, i.e., an ordinary spin network state
without any fermions, this operator would always create
states with nontrivial fermionic degrees of freedom. But
then, any pure gravitational state Ψphys would be a solution
of (229) as the inner product between a pure bosonic and
fermionic state is always zero by (117) [or (118)].
This is however no longer true in case of Majorana

fermions. In fact, as seen in Sec. VA [see formula (120)],
due to the Majorana condition, it follows that the quanti-
zation of the Rarita-Schwinger field necessarily involves
both multiplication operators and derivations, i.e., creation
and annihilation operators. Therefore, the quantum SUSY
constraint generically both creates and annihilates fer-
mionic degrees of freedom. As a consequence, pure
gravitational states cannot be a solution of (229).
For purely fermionic states, the situation is less clear; we

cannot immediately rule out their existence. In any case,
such solutions of (229) would seem to be unphysical.

VI. CONCLUSIONS

In this paper, we have studied the canonical theory of
N ¼ 1 Poincaré and anti–de Sitter supergravity in four
spacetime dimensions based on the Holst action of

supergravity as first introduced by Tsuda in [9]. In this
framework we considered half-densitized fermion fields as
suggested by Thiemann [11] in order to simplify the reality
conditions for the Rarita-Schwinger field. We then derived
a compact expression for the classical SUSY constraint
which then served as a starting point for its implementation
in the quantum theory. Therefore, following [13], we
quantitzed the Rarita-Schwinger field by appropriately
extending the classical phase space.
With these prerequisites, we turned to the quantitzation

of the supersymmetry constraint which so far has not been
considered in the literature. This is important because the
quantum SUSY constraint in canonical supergravity the-
ories is as important as the quantum Hamiltonian constraint
in quantum gravity theories without local supersymmetry.
We therefore first need derive a suitable regularization of
the continuum expression guided by the principle that the
resulting operator should be as compact as possible. For the
regularization, special care was required. This is mainly due
to the fact that, although the SUSY constraint looks similar
to the Dirac Hamiltonian constraint, there is a crucial
difference: the conjugate spinor plays the role of a
Lagrangian multiplier. As a result, one cannot simply
follow the standard regularization procedure as the density
weight of the smearing function should be kept fixed in
order not the change the density weight of the SUSY
constraint as a whole. Changing its density weight may
change the resulting quantum algebra and thus its strong
relationship to the Hamiltonian constraint as indicated in
the classical regime in [10] in case of real Ashtekar-Barbero
variables. We succeeded in finding an appropriate regu-
larization such that the density weight is maintained.
The resulting operator consists of various different terms

one of which arose from the quantization of the covariant
derivative on the fermion field considered in Sec. V B.
Requiring consistency with the classical theory forced us to
choose the Rovelli-Smolin variant of the volume operator
for the quantization of the triads via Thiemann’s trick.
Based on an explicit calculation, it was shown, choosing an

v

v v

v v

H

v

v

v'

I'

I

+ +

+++

FIG. 3. Schematic depiction of the action of the supersymmetry constraint on a 4-valent vertex v with intertwiner I. Each subdiagram
on the right side of the arrow represents a type of term that is appearing in the result. The star symbol represents a vertex containing a
fermion, and H is the new holonomy that connects a new vertex v0 to the intertwiner at v.
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appropriate factor ordering, that the resulting operator was
still finite as the sum over the tetrahedra in the triangulation
again restricts on the sum over vertices of the underlying
graph. Different implementations in the quantum theory
involving the Ashtekar-Lewandowski volume operator
have also been discussed. For this, a different but equivalent
form of the classical SUSY constraint needs to be
considered.
As it turns out, the operator thus obtained has an

interesting feature as it creates new vertices strongly
coupled to fermions. This was shown via explicit compu-
tation evaluating its action on generic spin-network states.
Due to this fact, it is expected that solutions of the quantum
SUSY constraint need to contain both, gravity and matter
degrees of freedom, as required for supersymmetry. We
have seen that the reality condition enforced on Majorana
spinors is important. Whether these solutions indeed
contain the same number of bosons and fermions, however,
is still unclear so far and remains a question for the future.

Also it would be highly desirable to study the commutator
algebra of the quantum SUSY constraint. In, particular, it
would be very interesting in which sense the commutator
on diffeomorphism and gauge invariant states is related to
the Hamiltonian constraint. As a first step, one could try to
evaluate the commutator of the terms involving the quan-
tization of the covariant derivative and investigate whether
this can be related to the quantization of the curvature of the
connection along loops.
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