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This article concerns the problems regarding different lattice regularization techniques for the matter
fields of Hamiltonian constraints defined in the framework of loop quantum gravity. The analysis is
formulated in the phase space-reduced cosmological model of the hypothetical theory of canonical
quantum general relativity. This article explains why a different than links-related lattice smearing of fields
leads to a local violation of general covariance. This happens by assuming, for instance, the nodes-related
smearing. Therefore, this problem occurs in the case of any polymerlike scalar field quantization method by
breaking the background independence of the semiclassical predictions. In consequence, the diffeo-
morphism symmetry that depends on a links distribution is broken locally at the level of generally
relativistic corrections. Moreover, by using the phase space-reduced gauge fixing technique to analyze this
issue, the results are general and they concern any coupling with the links-regularized gravitational degrees
of freedom in loop quantum gravity. Therefore, they lead to the following no-go conclusion. Any lattice
smearing of matter, not defined by using the geometrical distribution specified by the links-fluxes duality,
violates the general principle of relativity.
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I. INTRODUCTION

Nonperturbative quantum gravity is a theoretical branch
of physics, which assumes that the unification of the
principles of general relativity (GR) with a possibly
quantum nature of the gravitational field is probable.
The quantum theory that aims to capture the restrictions
of the strong equivalence principle is loop quantum gravity
(LQG) [1,2]. In this model, the gravitational field is
described by the Ashtekar variables [3]. Its kinematical
structure is similar to one in the SU(2) Yang-Mills field [4].
By following the example of the regularization in quantum
chromodynamics [5], LQG is formulated in terms of
suð2Þ-invariant variables on a lattice [3]. This theory,
however, does not lead to the generally covariant descrip-
tion of experiments and observations. The general postulate
of relativity [6] in LQG concerns only the gravitational
field, which is described equivalently in all coordinate
systems. However, a procedure providing measurable
predictions, which should not depend on any character
of an observer’s frame, is not uniquely determined even
only for this field. This equivalent description in LQG is
known as the strong formulation of systems equivalence
(SE) for gravitation (the equivalence principle without
its standard Einstein’s version for matter fields) [7,8].

The observer-independent predictions are known as the
background independence (BI) of the related observations
(the law of general covariance) [6,9].
The fundamental consistency of the theory requires a

unique procedure of the quantum corrections derivation
in LQG, which will guarantee the BI of this framework.
Almost any research toward possibly detectable predic-
tions of quantum gravity requires also an extension of SE
and BI to matter. Only pure gravitational experiments or
observations would not need this extension. Therefore,
physical studies on gravitational waves, which involve
their possible quantum nature, could be described by
LQG. However, any cosmological research of the inter-
actions between quantum spacetime and matter requires a
more general framework.
The first unified construction of GR and quantum field

theories of matter interactions (QFT), formulated as an
extension of LQG, is known as canonical quantum
general relativity (CQGR) [2]. In this article, CQGR is
going to have a more general meaning. We use this name
for any hypothetical theory, which generalizes the inter-
actions between the Newtonian gravitational field and
QFT into a consistent quantum model that satisfies SE
and BI, and which is quantized in the canonical pro-
cedure [10].
Although, any complete formulation of CQGR does not

exist, one can investigate a coupling between LQG and a*bilski@zjut.edu.cn
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simple model of a bosonic matter field that has SE and
BI. By assuming that both the gravitational and matter
fields satisfy the general postulates of relativity and by
constructing the quantization of these fields, which pre-
serves these postulates, one can formulate the following
hypothesis. The postulated model can correctly describe
physical interactions between gravity and bosonic matter
by satisfying the physical constructional requirements.
Therefore, it could be worth it to study the phenomeno-
logical predictions also of the toy model that would be a
symmetry-preserving simplification of a more general
theory. However, by finding agreements between the
predictions and the related measurements, one could not
claim the truthfulness or universality of this model yet. This
would only increase the probability that the toy model is the
simplified version of a correct fundamental theory. In
consequence, it would be worth it to look for a theory,
the particular limit of which is this toy model, that was
found to be in agreement with the data.
Conversely, one can also construct an inconsistent toy

model in purpose, for instance, because in this way it would
be simpler. The result, however, could be used only for
theoretical analysis; for instance, to verify the behavior of a
particular mathematical procedure. Using this inconsistent
model to study phenomenology would not have any
physical value. Moreover, if one would do it anyhow
and find any agreement between the predictions and data,
this would tell nothing about the nature of the only
apparently “predicted” phenomenon.
By following the preceding methodology of the quali-

tative evaluation of toy models, several proposed cos-
mological theories based on the framework of LQG are
going to be tested as the potential candidates to study
phenomenology. This directly involves the consistency
verification of the restrictions and methods regarding
whether the formulation of quantum gravitational fields
and quantum matter fields has SE and BI. Both types of
these fields must satisfy both conditions and be inde-
pendently quantizable.
To demonstrate that a model is inconsistent is enough to

indicate a single violation of the methodological assump-
tions. Hence, the investigation of the less strict and
recurrent element of quantum cosmological models is
going to be studied. To find problems regarding this
element is more probable. Therefore, the matter sector of
different approaches to quantum cosmology and the BI of
its semiclassical limit is analyzed in this article. The general
investigation of this issue would require detailed studies for
each model separately. To avoid this complication, a
maximal simplification of these theories is going to be
assumed. In what follows it will be enough to consider the
formalism of anisotropic loop quantum cosmology (LQC)
[11,12]. The SE gravitational degrees of freedom descrip-
tion is going to be coupled with the SE framework of the
scalar field [13,14]. This is the simplest system, which

could be considered as a cosmological phase space reduc-
tion [15] of CQGR. As the reader will see, the violation of
the general covariance in this system will be found.
Therefore, it is worth it to introduce one more reference
matter field, the quantization of which is more similar to the
one of gravity. This is the vector field [13,16], and its
simplest Abelian version will be considered. Finally, the
formalism linking the isotropic and anisotropic cosmology
with the vector matter field will be derived to demonstrate
how BI, which is violated in the scalar field case, can be
preserved in the theory. The essential part of this analysis is
going to be the investigation of the so-called inverse
volume corrections in LQG.
In this article the standard framework of canonical

LQG is considered. The 3þ 1 decomposition of a
manifold M that represents spacetime is introduced by
the foliation into Cauchy hypersurfaces Σt [17,18]. The
tetrad formalism with an internal SU(2) symmetry is
applied and the time gauge is assumed. In this article, the
gravitational coupling constant is defined as κ ¼ 16πG,
where the speed of light is normalized to c ¼ 1. The
fundamental constant for the canonical DeWitt quantiza-
tion [10] is defined as�k ≔ 1

2
γℏκ ¼ 8πγl2P, where γ and lP

are the real Immirzi parameter and the Planck length,
respectively. The repeated indices written in () brackets
are not summed; all the other indices follow the Einstein
summation convention.
The article is organized as follows. In Sec. II the lattice

regularization of bosonic fields is introduced. In Sec. III
the phase space-reduced cosmological framework of
CQGR is defined. Then the verification of general covari-
ance is done in Sec. IV. The conclusions of the article are
that the node-related regularization of the matter sector
leads to background-dependent predictions. The general
postulate of relativity can be preserved by considering only
the links smearing of all the propagating degrees of
freedom in CQGR.

II. REGULARIZATION

A. Lattice Yang-Mills theory

Two examples of the Yang-Mills field [4] are important
concerning the cosmological analysis in this article. The
simplest representative of the matter vector field is the
Abelian Yang-Mills field. Its non-Abelian variant that
satisfies the suð2Þ algebra describes gravity [3].
Let l∶½0; 1� → Σt be a smooth path parametrized by s ∈

½0; 1� and located inside the constant time surface Σt
constructed by the Arnowitt-Deser-Misner (ADM) method
[17,18]. One can define an embedding of lðsÞ in Σt and
introduce a parameter ε such that lεðsÞ ≔ lðεsÞ. In this
article ε has the dimension of a length, its maximal value is
restricted by the subsequent definition and the minimal one
by the choice of the so-called shadow states [19] (the
coherent states in LQC); this leads to the inequality
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1 > ε2 > jγjl2P that is implicitly expressed in some
length scale units.1 The parallel transport equation for a
vector uðsÞ along lεðsÞ reads

∂_lε
uðsÞ ¼ d

ds
uðsÞ þ Að_lεðsÞÞuðsÞ ¼ 0: ð1Þ

It has the following solution: uðsÞ ¼ ðhlεðsÞÞ−1uð0Þ, known
as a holonomy, where

hlε ≔ P exp

�Z
1

0

dsAð_lεðsÞÞ
�
: ð2Þ

The propagating degrees of freedom of the Abelian
matter vector field Aμ are introduced by the action

SðAÞ ≔ −
1

4g2A

Z
M
d4x

ffiffiffiffiffiffi
−g

p
gμνgξπFμξFνπ; ð3Þ

where gμν, gμν, and g are the metric tensor, its inverse, and
determinant, respectively. The coupling constant is denoted
by g2A and Fμξ is the curvature of Aμ.
The 3þ 1 spacetime splitting allows one to derive the

momentum Ea ¼
ffiffi
q

p
g2A

eμ0q
abFμb canonically conjugated to

Aa. Here, q denotes the determinant of the qab ≔ eiaeib
metric on Σt and eμ0 ¼ ð1=N;−Na=NÞ is the upper row of
the vierbein matrix eμα (‘α’ represents directions in the
Minkowski space).
The Legendre transform of (3) leads to the completely

constrained system with the total Hamiltonian HðAÞ
T ¼

VðAÞ þHðAÞ that is composed of 2 first class constraints.
The vector constraint (called also the diffeomorphism
constraint)

VðAÞ ≔
Z
Σt

d3xNaVðAÞ
a ¼

Z
Σt

d3xNaFabEb ð4Þ

imposes the invariance under the spatial diffeomorphism
transformations. The Hamiltonian constraint (called also
the scalar constraint)

HðAÞ ≔
Z
Σt

d3xNHðAÞ

¼
g2A
2

Z
Σt

d3xN
1ffiffiffi
q

p qabðEaEb þ BaBbÞ ð5Þ

generates the time reparametrization symmetry. The last
quantity in the preceding equation is the magnetic field
Ba ≔ 1

2g2A
ϵabcFbc, where ϵabc ≔ ffiffiffi

q
p

ϵ̃abc and ϵ̃abc is the

Levi-Civita tensor. It is worth noting that Ea and Ba are a
vector density and a pseudovector density, respectively. By
being densities, these objects scale properly according to the
scaling of the integration measure d3x, where d3x

ffiffiffi
q

p
is the

measure invariant in R3 and
ffiffiffi
q

p
is a weight-1 scalar density.

In the lattice framework the vector constraint in (4) is
added to its gravitational analog and they are solved at the
classical level. The Hamiltonian constraint in (5) is quan-
tized after the regularization of the canonical fields on the
diffeomorphisms-invariant lattice. This leads to the con-
struction of the Hamiltonian constraint operator (HCO),

which is the only element of HðAÞ
T that is going to be solved

at the quantum level.
The regularization procedure assumes the introduction of

the Wilson loops [5]. In the Abelian case they trivially
reduce to loop holonomies

hl↺l0 ¼ εlεl0Fab
_la_l0b þOðε3Þ; ð6Þ

where the loop begins at the initial point of the l link, goes
along a quadrilateral path (in the cosmological framework
in this article), and returns to the same point along l0. The
second lattice-regularized variable takes the form of
the Ea ¼ 1

2
ϵabc�Ebc field flux, constructed by smearing

the two-form �Ebc (Hodge dual to Ea) over a two-dimen-
sional surface S,

fðSÞ ≔
Z
S

�E ¼
Z
S
naEa; ð7Þ

where na ≔ ϵabcdxb ∧ dxc is the normal to S.

B. GR in terms of Ashtekar variables

The gravitational degrees of freedom are represented by
the non-Abelian real vector field Ai

a ≔ 1
2
ϵijkΓjka þ γKi

a

known as the Ashtekar-Barbero connection [3,22]. Here,
Γjka is the spin connection, Ki

a ≔ Γi
0a is the dreibein-

contracted extrinsic curvature, and γ denotes the Immirzi
parameter. By neglecting the possible coupling of spinors
to gravity, the kinematics of the gravitational field can be
defined by the Einstein-Hilbert action

SðgrÞ ≔
1

κ

Z
M
d4x

ffiffiffiffiffiffi
−g

p
R; ð8Þ

where R is the Ricci scalar and the gravitational coupling
constant reads κ ¼ 16πG. The momentum of Ai

a is given by
the densitized dreibein Ea

i ≔
ffiffiffi
q

p
eai . These fields are in the

canonical relation

1This assumption on the one hand decreases the universality of
this analysis but, on the other hand, allows to quickly compare the
obtained results with the most popular LQC’s framework-related
models. It is worth noting that an improved approach to the lattice
regularization [20] and the related cosmologically reduced model
[21] would lead to the same conclusions concerning the structure
of the semiclassical corrections. In this case the lower cutoff on ε2
would not be needed.

REGULARIZATION OF THE COSMOLOGICAL SECTOR OF LOOP … PHYS. REV. D 103, 046008 (2021)

046008-3



fAi
aðt;xÞ; Eb

j ðt; yÞg ¼ γκ

2
δbaδ

i
jδ

3ðx − yÞ ð9Þ

with respect to the ADM variables.

The total Hamiltonian HðAÞ
T ¼ GðAÞ þ VðAÞ þHðAÞ cor-

responding to (8) is composed of three constraints:

GðgrÞ ≔
1

γκ

Z
Σt

d3xAi
tDaEa

i ;

VðgrÞ ≔
1

γκ

Z
Σt

d3xNaFi
abE

b
i ;

HðgrÞ ≔
1

κ

Z
Σt

d3xN

×

�
1ffiffiffi
q

p ðFi
ab − ðγ2 þ 1ÞϵilmKl

aKm
b ÞϵijkEa

jE
b
k

�
:

ð10Þ
The operatorDa is the covariant derivative of the Ashtekar-
Barbero connection and the curvature of this suð2Þ field is
specified by Fi

ab ≔ ∂aAi
b − ∂bAi

a þ ϵijkA
j
aAk

b.
As in the case of the matter vector field, the constraints

that do not contain propagating degrees of freedom are
solved classically. These are the Gauss constraint GðAÞ and
the diffeomorphism one VðAÞ. The scalar constraint is
regularized and quantized on the suð2Þ-invariant and
diffeomorphisms-invariant lattice. These procedures lead
to the HCO for gravity. The fields Fi

ab and Ea
i are

regularized in the way presented in (6) and (7), respectively.
Due to the internal symmetry of the Ashtekar variables, the
precise formulas read

trðτihl↺l0 Þ ¼ −
1

2
εlεl0Fi

ab
_la_l0b þOðε3Þ ð11Þ

and

fiðSÞ ≔
Z
S
naEa

i ; ð12Þ

respectively.
The object absent in (5) but present in HðgrÞ is the

extrinsic curvature Ki
a. However, in the cosmological

framework discussed in this article, the spin connection
Γjka contribution to the constant field Ai

a vanishes and this
latter field becomes proportional to Ki

a. Therefore, any
separated regularization of the extrinsic curvature does
have to be introduced. Finally, the lattice smearing of the
Ashtekar-Barbero connection is defined in analogy to (11),

trðτihlÞ ¼ −
1

2
εlAi

a
_la þOðε2Þ: ð13Þ

It is worth noting that expressions (11) and (13) are not
expended up to the same order. We neglect this problem in

this article, although it is an essential issue concerning the
general investigation of the lattice regularization procedure
in LQG, cf. [20,23].

C. Methods of scalar fields coupling to LQG

The simplest classical representative of the bosonic
matter content in cosmology is the real massless scalar
field φ without internal degrees of freedom. To formulate a
diffeomorphism-invariant representation of φ, one needs to
rely on a different strategy than for vector fields. This issue
is related to different geometrical properties of the afore-
mentioned objects. The scalar field and its momentum π are
not a one-form density and a vector density, respectively,
but a scalar and a pseudoscalar density, respectively.
Therefore, their smearing along a link and through a
surface would not be correct. The point-solid duality
appears to be the right pair of objects that allows one to
describe the degrees of freedom of φ and π on a lattice.
The massless Klein-Gordon scalar field is defined by the

action

SðφÞ ≔
1

2g2φ

Z
M
d4x

ffiffiffiffiffiffi
−g

p
gμν∂μφ∂νφ; ð14Þ

where g2φ is the coupling constant. The Legendre transform
results in the same structure of the total Hamiltonian

HðφÞ
T ¼ VðφÞ þHðφÞ as in the case of the vector matter

field. The diffeomorphism and Hamiltonian analogs of the
constraints in (4) and (5) are

VðφÞ ≔
Z
Σt

d3xNa∂aφπ ð15Þ

and

HðφÞ ≔
1

2

Z
Σt

d3xN

�
g2φffiffiffi
q

p π2 þ
ffiffiffi
q

p
g2φ

qab∂aφ∂bφ

�
; ð16Þ

respectively. The explicit form of the momentum canoni-

cally conjugated to φ is π ¼
ffiffi
q

p
g2φ

eμ0∂μφ. It is worth noting

that the aforementioned quantities can be easily extended to
the self-interacting field formalism. In this case, the
potential can be given by a polynomial of φ. This potential
trivially couples to gravity only by multiplication with

ffiffiffi
q

p
,

hence it does not bring any significant contribution to the
analysis in this article.
The simplest point-solid symmetry reflecting the lattice

representation of the Klein-Gordon field is the following.
The representation analogous to the holonomy one in
[13,24] located at a node v (an intersection of links) is

Φv ≔ expðiεvφðxÞÞ: ð17Þ

The solid-related momentum representation is
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ΠðRvÞ ≔
Z
Rv

d3xδv;xπðxÞ; ð18Þ

where the integration was done all over the region Rv and
centered at v. The last quantity in (18) is assumed to be
a priori smeared, reading πðxÞ ≔ P

y∈R δ
3ðx − yÞΠðyÞ.

The preceding pair of definitions is related to nodes.
Their trivial distribution all over the lattice leads to a simple
construction of the related Fock space. In this case one
usually considers the polymer representation [25–28] with
nodes-located states having a similar form to the definition
in (17).

D. Models contradictive with CQGR

At the end of this section three popular quantum
cosmological models that are indirectly related to LQG
are going to be discussed. Each of these models is
associated with a different approach to regularize and
quantize matter. By following the review of these theories
[29], three quantization procedures can be recognized: the
effective constraints, dress metric, and the separate universe
quantization approach. By concerning the methodology
introduced in Sec. I, one can verify if these models meet the
quantum general postulate of relativity criterion. In this
way, one can check if any of these approaches could
be considered as a simplification of CQGR, hence as a
phenomenology-valued cosmological model.
The effective constraints method [30–32] does not

define any QFT for matter. Instead, it introduces unspeci-
fied perturbations around the classical cosmological matter
density derived from LQC [12,33,34]. The structure of
these perturbations is then restricted by a closeness of the
constraint algebra. Therefore, this effective model is not
a priori contradictive with CQGR, unless the formulation
of LQC is not a cosmological limit of CQGR. In the latter
case, one can always repeat the procedures of the effective
constraints method around a different cosmological frame-
work obtained from LQG. However, the results of this
model, by definition, do not provide any insight into the
structure of the matter sector. This approach formulates
only an effective description of the cosmological data, but it
does not describe the mechanism that explains the origin of
this data. Hence, the effective constraints method may have
physical applications but not as a phenomenology predict-
ing technique.
The dressed metric approach is based on the idea

proposed in [35]. It was applied both to the scalar [36]
and vector [37] fields, which were described by the method
of QFT in curved spacetime. By defining the Fock space for
matter fields and by choosing the expectation value of the
HCO in LQC as a background, one directly violates SE in
the construction of the theory. As a consequence, the
approximation of this model omits the corrections that
otherwise would be present as a result of the quantization of
the gravitational degrees of freedom in the HCO of the

matter sector. These corrections would be of the same order
of significance as the cosmological corrections from the
free sector of gravity and the QFT perturbations of matter—
see also Sec. IVA. This argument demonstrates that the BI
violation indicates the related incompleteness of the results.
A particular form of the corrections based on the SE
formulation of LQC and the BI method of the derivation of
its semiclassical results is used to define the background on
which the Fock space for the matter sector is constructed.
Then, by definition, these corrections will be absent in the
semiclassical limit of the matter sector. Therefore, the
dressed metric approach is an inconsistently formulated
toy model and it cannot be applied as a physical tool. This
model can be used only to study particular theoretical
mechanisms. It is worth noting that a specific variant of this
approach, called the hybrid quantization [38,39], addition-
ally assumes left and right multiplication of the total HCO
by the quantized equivalent of the q−1=4 quantity. This
affects the gravitational sector, which, by construction of
the mentioned multiplication, cannot be thought as a limit
of SE LQG. In the case of a possibility to compare any
results of this model with data, the same predicable
inapplicability arguments, as in the case of the dressed
metric approach, hold.
Finally, the separate universe quantization [40] is the

long-wavelength gravitational modes quantization on the
LQC background. This method uses the long-wavelength
approximation to construct a loop quantization both for the
background and perturbations. It could be an improvement
of the dressed metric approach for particular applications.
This model does not assume a separate quantization for the
background variables (in the LQG-like method) and the
perturbative degrees of freedom (in the Fock space method)
like the previously discussed approach. However, the
separate universe quantization generates a different prob-
lem by neglecting the specific structure of quantum matter
fields with their corresponding corrections. It is difficult to
imagine a generalization of this effective approach to all the
matter fields in the Standard Model of particle physics.
Moreover, from the perspective of a simple effective
cosmological theory, the separate universe quantization
neglects the gravitational corrections to the matter sector.
Hence, by construction, this model cannot be expected to
be the cosmological limit of a fundamental theory of
CQGR, which would be constructed as LQG with an
analogous quantization of matter fields.
Concluding, all the aforementioned models are not

fundamental and cannot provide any certain insight into
real cosmological processes. They are not compatible with
the SE and BI canonical procedures of QFT (including the
theory of gravity) on a lattice. However, they can be used to
study particular theoretical or mathematical procedures.
Moreover, the first one, the effective constraints method
can be used to describe all the cosmological data sta-
tistically. The possible physical application of the second
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and the third model is more limited. However, they can still
be used as the effective tools to describe cosmological data
from the epochs in which their incomplete predictions are
expected to be negligible. In general, none of these models
is expected to give a deeper insight into the understanding
of cosmology than the standard methods of QFT on curved
spacetime. Let us emphasize that this statement is based on
the assumption that the hypothetical fundamental quantum
theory of gravity and matter has SE and BI. More detailed
critical reviews concerning also other problems of the
mentioned models can be found in [41–43].
In the next section a toy model satisfying the SE

condition will be constructed. Then its BI will be tested
to set a direction toward future attempts of a fundamental
model construction.

III. KINEMATICS

A. Cosmological models

To discuss general covariance regarding the semiclass-
ical limit of what could be a SE cosmological limit of
LQGmethods-based fundamental theory, one needs to con-
sider consistent regularization and quantization procedures.
The cosmological phase space reduction of the lattice-
regularized gravity formulated in the Ashtekar variables is
described in [15]. Here, the cosmological phase space
reduction is defined as the SU(2) breakdown of the internal
space invariance into the U(1) case and the breakdown of
the spatial diffeomorphisms into the ones that satisfy the
Bianchi I symmetry. This result of the reduction is identical
if it is done before the regularization and if after the
reduction, the corresponding lattice structure is adjusted to
the symmetry of the reduced Ashtekar variables [15]. In
both cases of the phase space reduction, applied either to
the holonomy-flux description or the Ashtekar variables
formulation, the resulting (classical) lattice-regularized
Hamiltonian constraint is equivalent with the one assumed
in the Bianchi I extension of LQC in [11]. The reduction
can be also applied to the expectation values of the
operators on the states providing the classical limit of
the system. Naturally, the structure of the HCO is again the
same [15]. In this latter case, however, the states are already
given by the formalism of LQG (these are the symmetry-
reduced spin network states [1,44,45]) and are different
than the ones assumed in the extended LQC [11,12].
By assuming the expectation value of the HCO for

the cosmological reduction of LQG and by keeping all the
quantum corrections up to the quadratic order in the
regularization parameter ε, one obtains

hĤðgrÞi ¼ −
2

γ2κ

X
v

Nv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ēa
1δ

1
aĒb

2δ
2
bĒ

c
3δ

3
c

q
1

jĒd
i δ

i
dj
Y
k≠i

×
sinðεðĀk

eδ
e
kÞ

εðkÞ

�
1þO

�
1

ðj̄ðiÞÞ2
��

: ð19Þ

Here, ĀðiÞ
a δai is the Ashtekar connection’s diagonal sector

that is obtained by a simultaneous fixing of the internal and
diffeomorphism symmetries. Analogously, Ēa

i denotes the
diagonal densitized dreibein, reintroduced by the corre-
spondence principle, i.e., by replacing the eigenvalue of
the Êa

i operator with its classical equivalent. It is worth
mentioning that the same result was postulated by the
incorrectly derived [15] “partial quantum reduction pro-
cedure” known as quantum reduced loop gravity (QRLG)
[46,47]. Moreover, the expectation value of the HCO in
cosmological coherent quantum gravity (CCQG) [48],
derived from LQG by assuming a particular selection of
states, is the same up to the terms of order ε2. Moreover, a
similar expression with the same structure up to the order ε2

appears when the Lorentzian term (see the subsequent
analysis) is taken into account [49]. Finally, the second
term in the quadratic bracket in (19) is not written explicitly
because it differs in the mentioned models by a numerical
factor. This term is known as the inverse volume correc-
tions. It was first noticed in the isotropic model of LQC in
[50]. As demonstrated in [51], the related corrections have a
significant contribution to the dynamics of the primordial
universe. Their structure is going to be the essential issue
studied in this article.
By neglecting the differences in the order-ε3 corrections

coming from the expansion of the trigonometric functional
in the gravitational sector of the scalar constraint,2 the
structure of the expectation value of the HCO in the
aforementioned models, including the inverse volume
corrections, remains the same up to a constant factor.3

These latter corrections appear as a result of the action
of the operator

ĥ−1a ½V̂; ĥa�: ð20Þ

Analogous corrections to the gravitational degrees of
freedom are present also in the matter sector. These
corrections are sourced from a more general expression

ĥ−1a ½V̂n; ĥa�; ð21Þ

where n is a positive rational number. It is worth being
emphasized that here the volume operator acts on a state
that is initially modified by the gravitational holonomy
operator ĥa. The latter operator acts by multiplication. Then
the difference in the states, on which the volume operator
acts, results in the inverse volume corrections.

2The form of the trigonometric functional slightly varies
from one model to another. However, this form remains
always expandable into a power series of connections.

3This statement is true, in general, as long as the volume
operator is an eigenoperator of the states defined on a cuboidal
lattice, cf. [52].
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To identify each occurrence of the terms given in (21), as
well as each value of then parameter in theHCOof the entire
system, it is enough to investigate all the classical contribu-
tions to the lattice-smeared scalar constraint. The explicit
expression of this object for the torsionless gravity is givenby

HðgrÞ ¼
Z
Σt

d3xNðxÞðHðgrÞ
EuclðxÞ þHðgrÞ

Lor ðxÞÞ; ð22Þ

where

HðgrÞ
EuclðxÞ ≔

22

γκ2
lim
ε→0

ϵabctr

�
1

ε2

�
habðxÞ − h−1abðxÞ

�
1

ε
h−1c ðxÞfVðxÞ; hcðxÞg

�
ð23Þ

and

HðgrÞ
Lor ðxÞ ≔ −

25ðγ2 þ 1Þ
γ3κ4

lim
ε→0

ϵabctr

�
1

ε
h−1a ðxÞfKðxÞ; haðxÞg

1

ε
h−1b ðxÞfKðxÞ; hbðxÞg

1

ε
h−1c ðxÞfVðxÞ; hcðxÞg

�
: ð24Þ

The terms in the form of the expression in (20) are easily recognizable.
The structure of the lattice corrections in the matter sector is also directly readable from the regularized form of the

Hamiltonian constraint. In the case of the vector field, it is given by

HðAÞ ¼
Z
Σt

d3xNðxÞðHðAÞ
elecðxÞ þHðAÞ

magnðxÞÞ; ð25Þ

where

HðAÞ
elecðxÞ ¼

27g2A
ðγκÞ2 lim

ε→0
EaðxÞtr

�
τi
1

ε
h−1a ðxÞfV1

2ðxÞ; haðxÞg
�Z

d3yδ3ðx − yÞEbðyÞtr
�
τi
1

ε
h−1b ðyÞfV1

2ðyÞ; hbðyÞg
�

ð26Þ

and

HðAÞ
magnðxÞ ¼

27g2A
ðγκÞ2 lim

ε→0
BaðxÞtr

�
τi
1

ε
h−1a ðxÞfV1

2ðxÞ; haðxÞg
�Z

d3yδ3ðx − yÞBbðyÞtr
�
τi
1

ε
h−1b ðyÞfV1

2ðyÞ; hbðyÞg
�
: ð27Þ

Analogously, the regularized scalar field Hamiltonian is expressed by

HðφÞ ¼
Z
Σt

d3xNðxÞðHðφÞ
momðxÞ þHðφÞ

der ðxÞ þHðφÞ
pot ðxÞÞ; ð28Þ

where

HðφÞ
momðxÞ ¼

221g2φ
32ðγκÞ6 lim

ε→0
πðxÞϵijkϵabc

Z
d3zδ3ðx − zÞtr

�
τi
1

ε
h−1a ðzÞfV1

2ðzÞ; haðzÞg
�

× tr

�
τj
1

ε
h−1b ðzÞfV1

2ðzÞ; hbðzÞg
�
tr

�
τk
1

ε
h−1c ðzÞfV1

2ðzÞ; hcðzÞg
�

×
Z

d3yδ3ðx − yÞπðyÞϵlmnϵ
def

Z
d3z0δ3ðy − z0Þtr

�
τl
1

ε
h−1d ðz0ÞfV1

2ðz0Þ; hdðz0Þg
�

× tr

�
τm

1

ε
h−1e ðz0ÞfV1

2ðz0Þ; heðz0Þg
�
tr

�
τn

1

ε
h−1f ðz0ÞfV1

2ðz0Þ; hfðz0Þg
�
; ð29Þ

HðφÞ
der ðxÞ ¼

217

34ðγκÞ4g2φ
lim
ε→0

∂aφðxÞϵijkϵabctr
�
τj
1

ε
h−1b ðxÞfV3

4ðxÞ; hbðxÞgÞtr
�
τk
1

ε
h−1c ðxÞfV3

4ðxÞ; hcðxÞg
�

×
Z

d3yδ3ðx − yÞ∂dφðyÞϵilmϵdef tr
�
τl
1

ε
h−1e ðyÞfV3

4ðyÞ; heðyÞg
�
tr

�
τm

1

ε
h−1f ðyÞfV3

4ðyÞ; hfðyÞg
�

ð30Þ
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and

HðφÞ
pot ðxÞ ¼

1

2g2φ

ffiffiffiffiffiffiffiffiffi
qðxÞ

p
V½φðxÞ� ≈ 1

2g2φ
lim
ε→0

V½φðxÞ� 1
ε3
Vðx; εÞ:

ð31Þ

Here, for clearness, the potential term was introduced to
demonstrate the ambiguity in the choice of its form V½φðxÞ�
about the presence of the related gravitational corrections.
These do not appear because, after the quantization, the
volume operator does not act on holonomy-modified states.

B. States space

To discuss the form of the semiclassical quantum-
geometrical corrections in the cosmological simplification
of CQGR, one needs to specify the states space. It is worth
repeating the fact already recalled in the previous sub-
section. The only terms in the scalar constraint contributing
to the next-to-the-leading-order inverse volume corrections
have the same structure independently of the selected
cosmological model that does not break SE. These terms
depend entirely on the postulated classical action of all
the contributing fields and on the power of volume in the
following approximate identity [1,2,13] applied to the
regularization procedure,

fAi
a;Vng ¼ nγκ

4

1

Ea
i
ð

ffiffiffiffiffiffi
jEj

p
Þn þOðεÞ: ð32Þ

It is worth noting that neglecting the last lattice correction
term is as precise as neglecting the analogous correction
in (13). Moreover, in the n ¼ 1 case, this term vanishes
identically and the additional constraint εn ≪ 1 is
required. Furthermore, in the limit ε → 0, this correction
vanishes and the whole lattice-regularized system takes
an ε-independent finite form.
The fact that the structure of next-to-the-leading-order

inverse volume corrections does not depend on the selected
cosmological formulation is a result of the proper phase
space reduction of the hypothetical fundamental theory.
The reduction of variables into the Bianchi I symmetry
have to entail the reduction of the lattice structure into the
cuboidal form [15]. The volume operator or its power Vn,
expressed as a functional of the diagonal densitized
dreibein fluxes, is an eigenoperator of the states defined
on a cuboidal lattice [52]. The modifications of the states by
the holonomy contribution to formula (21) generate the
inverse volume corrections along directions of these hol-
onomies. Therefore, to investigate the semiclassical struc-
ture of the generated inverse volume corrections, it is
enough to select the simplest states that reveal these
corrections and derive the semiclassical limit. This last
step can be easily done by defining the coherent states as

the states that restore the volume from the eigenvalue of the
related operator V̂ by the correspondence procedure.
One can consider the system of minimally coupled

bosonic matter and gravity with the Hilbert space

Hkin ≔ HðgrÞ
kin ⊗ HðAÞ

kin ⊗ HðφÞ
kin : ð33Þ

The vector matter field sector is labeled by HðAÞ
kin and it is

defined analogously to the one for the SU(2)-invariant

gravitational field in LQG labeled by HðgrÞ
kin , cf. [1,2]. In

both cases one assumes the space of cylindrical functions of
the gauge connections holonomies. Also, in both cases, the
basis states are the invariant spin network states: jΓ; j

l
i for

the Abelian vector field and jΓ; jl; ivi for the SU(2)-
invariant gravitational field, respectively. They are labeled
by quantum numbers (spins) j

l
and jl, respectively. These

numbers determine the notion of the gauge groups irre-
ducible representations at each link l. To preserve the gauge
invariance in the non-Abelian gravitational case of LQG,
the corresponding intertwiners iv are attached at each
node v. The reduced phase space approach allows one to
fix the internal space to the Abelian U(1) case [15]. Con-
sequently, one can drop the trivial intertwiners from states;
any Hilbert space is, by definition, specified up to a number.
Concluding, the simplest states for the matter and gravita-
tional vector fields are defined along the cuboidal lattice

links and are denoted by jΓ; j
l
i ∈ HðAÞ

kin and jΓ; jli ∈ HðgrÞ
kin .

The nodes-related states are qualitatively different. The
Hilbert space describing the scalar field point holonomy
representation is defined as

HðφÞ
kin ≔ fa1Uπ1 þ � � � þ anUπn∶ai ∈ C; n ∈ N; πi ∈ Rg;

ð34Þ

where the wave function reads

UπðφÞ ≔ hφjUfv1;…;vng;fπv1 ;πvngi ≔ eiΣv∈Σπvφv : ð35Þ

This definition explicitly preserves the rotational symmetry
of the scalar field at each point. The whole collection of
nodes forms a trivial polymerlike structure. Moreover, by
construction, this structure is diffeomorphically indepen-
dent of any spacetime geometry. The modes of the scalar
field do not oscillate in space but are statically located at
points, and the distance between these points is only
trivially coupled with gravity—by multiplication. This
isotropic structure distributed over the lattice does not
reflect any possible internal quantum relation between the
gravitational and matter degrees of freedom.
By considering the single-point state hφjv;Uπi ≔ eiπvφv

located at v, the action of the canonical operators is trivially
defined in the exponential form. The point holonomy shifts
the state as follows:
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eiπ
0
v0 φ̂v0 jv;Uπi ≔ eiπ

0
v0φv0 jv;Uπi ¼ jv ∪ v0;Uπþπ0 i: ð36Þ

Analogous action for the momentum operator correspond-
ing to the ε-smeared momentum π in the region around the
v node is given by the eigenequation

Π̂ðv0Þjv;Uπi ≔ −iℏ
∂

∂φðv0Þ jv;Uπi ¼ ℏπv0δv;v0 jv;Uπi:

ð37Þ

The scalar product definition is simply adjusted to the
trivial form of the canonical operators, reading

hv;Uπjv0;Uπ0 i ¼ δv;v0δπv;π0v0
: ð38Þ

More details concerning these polymer states for the point
holonomy representation are given in [14,25–28].
Concluding, the basis states are defined by

Hkin ∋ jΓ; jl; jl; Uπi ≔ jΓ; jli ⊗ jΓ; j
l
i ⊗ jΓ;Uπi: ð39Þ

By considering a single hexavalent node state cv ∈ Γ, one
can express the related Hilbert space structure in the
graphical form, see Fig. 1. The dashed frame specifies
the normalization that allows to tessellate the reduced space
with the embedded graph structure. This tessellation results

in the set of the cuboidal cylindrical functions. Here, jðiÞp;q;r
and jðiÞ

p;q;r
are the spin numbers associated to the links lðiÞp;q;r.

The scalar field state is represented by the point holonomy
eiπp;q;rφp;q;r at the node vp;q;r ∈ Γ, where πp;q;r is the real
coefficient.

It is worth mentioning that the analogous structure in
LQC is represented by a normalized hexavalent node state
in Fig. 2. This latter structure also preserves the symmetry
of the anisotropic Bianchi I model. However, it does not
reflect the symmetry of the volume operator in LQG that
acts at nodes. Moreover, the nodes-located distribution of
the scalar field polymer structure has to coincide with the
symmetry of any separable cellular form of the Fock space.
This observation is based on the fact that the general form
of the Fock space for LQG, known as the spin network, is
not separable and has no a priori defined centers of
symmetry [2]. Conversely, the trivial states space for the
scalar field restricts the modes oscillations to a point. To
keep this symmetry at the quantum level, one cannot
specify the elementary cell in the way proposed in
Fig. 2. In this latter case, the scalar field contribution
would need to be determined as the sum of the degrees of
freedom at eight nodes, which would break the classical
local rational symmetry of this field. Therefore, the
specification of the elementary cell for the separable
Fock space defined in (39) is uniquely restricted to the
form in Fig. 1.
Finally, only by staring at the structure of the state

represented in Fig. 1, one should recognize a methodo-
logical inconsistency in the construction of this multimatter
coupling model—the scalar field is lattice regularized in a
qualitatively different manner than the other fields. On the
one hand, this inconsistency will be the source of the
general covariance violation of the quantum corrections.
On the other hand, the consistency in the lattice regulari-
zation of the gravitational and the vector field will be
preserved in the final results. This issue shows how to
formulate the gravitational-matter coupling correctly in the
future.

FIG. 2. Basic state of bosonic fields for cubic lattice in LQC.FIG. 1. Normalized basic state of bosonic fields for cubic
lattice.
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C. Gravitational coherent states

To discuss the semiclassical corrections precisely, one
needs to define coherent states. For clearness of the
analysis, the notation typical to LQC [11,12,33] is going
to be used. The reduced canonical variables [15] are
specified to

Ãi
aðtÞ ≔

1

lðiÞ0
c̃ðiÞðtÞ 0eia; ð40Þ

Ẽa
i ðtÞ ≔

lðiÞ0
V0

p̃ðiÞðtÞ
ffiffiffiffiffi
0q

q
0eai : ð41Þ

The matrices 0eai and 0eia represent constant orthonormal
Cartesian frame and coframe fields, respectively. The
determinant of the fiducial metric 0qab in (41) compensates

the density weight of Ẽa
i ðtÞ. The fiducial length lðiÞ0 and the

corresponding volume V0 ≔ l10l
2
0l

3
0 of the fiducial cell are

introduced to simplify the symplectic structure of the
system. This leads to the following Poisson brackets,

fc̃ðiÞðtÞ; p̃ðjÞðtÞg ¼ κγ

2
δðiÞðjÞ: ð42Þ

The semiclassical dynamics of the cosmologically
reduced CQGR is specified by the Ehrenfest theorem4

and depends on the coherent states ji ∈ Hkin. The form
of these states in this article is defined as the tensor product
of the coherent states for different fields. The related
Heisenberg equation reads,

d
dt

hÔi −
�∂Ô
∂t

�
¼ 1

iℏ
h½Ô; Ĥ�i; ð43Þ

where the states factorize as follows:

j i ¼ ˜j iðgrÞ⊗ jiðmattÞ ¼ ˜j iðgrÞ⊗⊗
Φ
j iðΦÞ: ð44Þ

The symbolΦ represents any matter field, and the term h∂Ô∂t i
was neglected by assuming only implicit time dependence
of variables.
The normalized Bianchi I coherent states for the gravi-

tational sector are defined as

˜j iðgrÞ ≔
X
v

⊗
3

i
ðhcðiÞv ðÃÞjcðiÞv ðÃÞiÞ−1

2jcðiÞv ðÃÞi: ð45Þ

The last factor is known as the shadow state [19] with a
d-width Gaussian distribution around the densitized drei-
bein operator eigenvalue. The form of this state reads

jcðiÞv ðÃÞi ≔
X
μðiÞv

exp

�
−

1

2d2

�
μðiÞv
2

−
p̃ðiÞ

k

�
2
�

× exp

�
−i
�
μðiÞv
2

−
p̃ðiÞ

k

�
c̃ðiÞ

�
jμðiÞv i: ð46Þ

This formula is constructed on the link excitation states
[11,33] (the last factor above) that are given by the
expression

jμðiÞv i ≔ exp

�
i
μðiÞv
2

c̃ðiÞ
�
; μðiÞ ∈ Z: ð47Þ

This definition is formulated in a direct analogy to the
reduced form of the holonomy,

h̃ðiÞν ðvÞ ≔ exp

�Z
νðiÞv lðiÞ

0

0

dsÃi
aτ

i_laνðsÞ
�

¼ eν
ðiÞ
v c̃iτi ; ð48Þ

cf. [15]. Then, the actions of the lattice-regularized Bianchi
I variables in (40) and (41) read

ˆ̃cðiÞjμðiÞv i ≔ −
2

νðiÞv
trðτðiÞh̃ðiÞν ÞjμðiÞv i

¼ i

νðiÞv
ðjμðiÞv − νðiÞv i − jμðiÞv þ νðiÞv iÞ ð49Þ

and

ˆ̃pðiÞjμðiÞv i ≔ − ik
∂

∂c̃ðiÞ jμ
ðiÞ
v i ¼ μðiÞv

2
kjμðiÞv i; ð50Þ

respectively.
In this article only the structure of the corrections, not

their exact value, is going to be verified. This allows one to
simplify the notation even more by replacing the reduced
variables in (40) and (41) by

Āi
aðtÞ ≔ AðiÞ

ðaÞðtÞ0eia ¼
1

ε
cðiÞðtÞ ð51Þ

Ēa
i ðtÞ ≔ EðaÞ

ðiÞ ðtÞ0eai ¼
1

ε2
pðiÞðtÞ; ð52Þ

respectively, where ε is the small regularization parameter.
Here, the anisotropy and inhomogeneity of the regulators
that depend on links’ lengths was neglected. This second
simplification does not affect the structure of corrections.
Moreover, in the properly reduced system, the final form of
the Hamiltonian should be regulator-independent (this has
been verified in the recent improved cosmological model
in [21]), hence this operation is not going to modify
conclusions. The reduced holonomy becomes

4It is worth noting that the operator equation in (43), known as
the Ehrenfest theorem, was derived by Heisenberg [53].
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hðiÞðvÞ ¼ exp

�Z
ε

0

dsĀi
aτ

i_laνðsÞ
�

¼ ec
iτi ; ð53Þ

and the related link excitation states, analogous to (47),
takes the form

jmðiÞ
v i ≔ exp½imðiÞ

v cðiÞ�; 2mðiÞ ∈ Z: ð54Þ

Then, the actions of the lattice-regularized variables on
these states are

ĉðiÞjmðiÞ
v i ≔ −

2

ε
trðτðiÞhðiÞÞjmðiÞ

v i

¼ i
ε

�				mðiÞ
v −

1

2

�
−
				mðiÞ

v þ 1

2

��
ð55Þ

and

p̂ðiÞjmðiÞ
v i ≔− i�k ∂

∂cðiÞ jm
ðiÞ
v i ¼ mðiÞ

v
�kjmðiÞ

v i: ð56Þ

The parameter mðiÞ
v is linked to the spin number jðiÞv by the

relation jðiÞv ¼ jmðiÞ
v j.

The last step toward formulation of the node-symmetric
toy-model states, on which the structure of the cosmologi-
cal sector of CQGR will be tested, is needed. To indicate
the basic cell states centered at nodes (see Fig. 1), one has
to split the link states initially formulated to describe the
states for LQC (see Fig. 2). This fitting of the well-known
LQC shadow states to the analysis in this article is specified
in the following relation:

jmðiÞ
v i ¼ exp½im⃗ðiÞ

v cðiÞ�exp½im⃖ðiÞ
vþεðiÞc

ðiÞ� ¼ jm⃗ðiÞ
v i⊗ jm⃖ðiÞ

vþεðiÞ i;
ð57Þ

where the oriented link lðiÞðvÞ that starts at point v was split
in half,

lðiÞðvÞ ¼ ⃗lðiÞðvÞ½⃖lðiÞðvþ εðiÞÞ�−1: ð58Þ

The quantity v ∓ εðiÞ labels the nearest node along the
negatively/positively-oriented ith direction. In this way,

two paths, ⃗lðiÞðvÞ and ½⃖lðiÞðvþ εðiÞÞ�−1, which have the
following properties:

lðiÞðvÞð0Þ ¼ ⃗lðvÞð0Þ ¼ ½⃖lðiÞðvÞ�−1ð0Þ;
lðiÞðvÞð1=2Þ ¼ ⃗lðiÞðvÞð1Þ ¼ ½⃖lðiÞðvþ εðiÞÞ�−1ð0Þ;
lðiÞðvÞð1Þ ¼ ½⃖lðiÞðvþ εðiÞÞ�−1ð1Þ ¼ ⃗lðiÞðvþ εðiÞÞð0Þ;

ð59Þ

were created. Then, the quantum numbers became fitted
to this structure by postulating the simple averaging

m⃗ðiÞ
v ¼ m⃖ðiÞ

vþεðiÞ ¼ 1
2
mðiÞ

v .5 This completes the definition of
the node-centered states that share the symmetry of both the
volume operator and the scalar field distribution. These
simple toy-model states are

jm̄ðiÞ
v i ≔

				 12m
ðiÞ
v−εðiÞ ;

1

2
mðiÞ

v

�
¼ jm⃖ðiÞ

v i ⊗ jm⃗ðiÞ
v i

¼ exp

�
i
2
ðmðiÞ

v−εðiÞ þmðiÞ
v ÞcðiÞ

�
¼ exp½im̄ðiÞ

v cðiÞ�: ð60Þ

The lattice-regularized canonical variables have the follow-
ing actions on these basis states,

ĉðiÞjm̄ðiÞ
v i ¼ −

2

ε
tr

�
τðiÞhðiÞ1

2

�
ðjm⃖ðiÞ

v i ⊗ jm⃗ðiÞ
v iÞ

¼ i
ε

�				mðiÞ
v−εðiÞ −

ε

2

�
−
				mðiÞ

v þ ε

2

��
ð61Þ

and

p̂ðiÞjm̄ðiÞ
v i ¼ m̄ðiÞ

v kjm̄ðiÞ
v i: ð62Þ

Notice that in the former equation in (61), the half-link-
adjusted holonomy operator is

hðiÞ ¼ eεA
ðiÞ
ðaÞ

0eðiÞðaÞτ
ðiÞ
→ hðiÞ1

2

≔ e
ε
2
AðiÞ
ðaÞ

0eðiÞðaÞτ
ðiÞ ¼ e

1
2
ciτi : ð63Þ

Then the coherent states analogous to (45) are given by
the formula

jiðgrÞ ≔
X
v

⊗
3

i
½ðh c!ðiÞ

v ðAÞj c!ðiÞ
v ðAÞiÞ−1

2j c!ðiÞ
v ðAÞi

⊗ ðhc⃖ðiÞv ðAÞjc⃖ðiÞv ðAÞÞ−1
2jc⃖ðiÞv ðAÞi�: ð64Þ

The corresponding link-oriented shadow coherent state is

j c⇆ðiÞ
v ðAÞi ≔

X
m
⇆ðiÞ

v

exp

�
−

1

2d2

�
m
⇆ðiÞ

v −
pðiÞ
�k

�
2
�

× exp

�
−i
�
m
⇆ðiÞ

v −
pðiÞ
�k

�
cðiÞ

�
jm⇆ðiÞ

v i: ð65Þ

The node-centered coherent states, adjusted to (60) are
defined analogously,

jiðgrÞ ≔
X
v

⊗
3

i
ðhcðiÞv ðAÞjcðiÞv ðAÞiÞ−1

2jcðiÞv ðAÞi; ð66Þ

5It is worth noting that this arithmetical mean corresponds to
the averaging of the division of the analogous gravitational
momentum, which would be constructed by the correspondence
principle related to the original shadow states.
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where their node-centered shadow state coefficients are

jcðiÞv ðAÞi ≔
X
m̄ðiÞ

v

exp

�
−

1

2d2

�
mðiÞ

v −
pðiÞ
�k

�
2
�
exp

�
−i
�
mðiÞ

v −
pðiÞ
�k

�
cðiÞ

�
jm̄ðiÞ

v i: ð67Þ

It is worth noting that these states (and the ones in (46), before the symmetrization) satisfy the coherent states
requirements discussed concerning different aspects of LQG [19,54–56]. The detailed analysis of the constructions of
analogous states as the gauge-invariant projection of a product over links of heat kernels for the complexification of group
elements can be found in [47].
Finally, the reader more familiar with LQC might be interested in whether the simplified node-symmetrized

model leads to the same expectation values of the canonical operators. By deriving the expectation value of the ĉðiÞ
operator,

hc̄ðiÞv ðAÞjĉðiÞjc̄ðiÞv ðAÞi ¼ Rhc⃖ðiÞv ðAÞj ⊗ Rh c!ðiÞ
v ðAÞjĉðiÞj c!ðiÞ

v ðAÞiR ⊗ jc⃖ðiÞv ðAÞiR
¼ 2

3
exp

�
−
�

ε

2d

�
2
�X
mðiÞ

v

exp

�
−

1

d2

�
pðiÞ
�k −mðiÞ

v

�
2
�
sin

�
ε

2
cðiÞ þ iε

�
pðiÞ
�k −mðiÞ

v

��
; ð68Þ

one obtains the result analogous to the one know for LQC.
The identification would be exact after the replacement

m̄ðiÞ
v →

1

2
μðiÞv : ð69Þ

By substituting the appropriate correspondence principle

m̄ðiÞ
v →

pðiÞ
�k ; ð70Þ

the result can be recast in the simple form

hĉðiÞi ¼ cðiÞð1þOðε2ÞÞ: ð71Þ

Analogously, the expectation value of the reduced flux
operator becomes

hp̂ðiÞi ¼ pðiÞ: ð72Þ

The last pair of equations will be enough to discuss the SE
quantum matter coupling to LQG concerning the BI of the
related semiclassical results.

IV. QUANTUM CORRECTIONS

A. Ehrenfest theorem and Heisenberg equation

In this section the matrix elements on the coherent states
of what could be the cosmological reduction of CQGR are
analyzed. All the conclusions are going to be studied in the
formalism general enough to be directly related with LQC,
QRLG, CCGR, and analogous models.
The semiclassical dynamics of the whole cosmological

system is given by the Heisenberg equations

dhĉiðgrÞ
dt

¼ 1

iℏ
ðh½ĉ; ĤðgrÞ�iðgrÞ þ h½ĉ; ĤðmattÞ�iðgrÞÞ ¼ 1

iℏ
h½ĉ; ĤðgrÞ�iðgrÞ þ ΔHðmattÞ

c ; ð73Þ

dp
dt

¼ 1

iℏ
h½p̂; ĤðgrÞ�iðgrÞ; ð74Þ

dhΦ̂iðmattÞ

dt
¼ 1

iℏ
hh½Φ̂; ĤðmattÞ�iðmattÞiðgrÞ ¼ 1

iℏ
h½Φ̂; ĤðmattÞ�iðmattÞ þ ΔjiðgrÞ

Φ : ð75Þ

Analogously to (44), the symbol Φ represents any matter
field. Precisely, it denotes either the canonical field variable
or the corresponding conjugate momentum. The indices
labeling the directions and position of operators were
omitted for simplicity. It was also assumed that the

gravitational and matter fields are not explicitly time
dependent, and their evolution is encoded only in the
equations of motion.
The quantum GR corrections both in (73) and (75) are of

the same order in the inverse spin number, precisely
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ΔHðmattÞ
c ∝ ΔjiðgrÞ

Φ ∝
1

m̄2
: ð76Þ

Here, the large quantum number approximation jm̄j ≫ 1
is needed.6 The detailed derivation and the exact numeri-
cal value of these SE-sourced corrections is model
dependent—see for instance [16,28,47]. In what follows,
only the structure of the gravitational degrees of freedom
contributing to the corrections from Eq. (75) is going to be
used in the general covariance verification. Consequently,
the decomposition into the gravity- and matter-related
expressions will be later introduced [in (87)]. Finally, the
explicit derivation of the structure of the matter sector-
related GR corrections, needed for the verification pro-
cedure, will be given in Sec. IV C.
The second type of the classical dynamics perturbations

that come from the quantum gravitational corrections will
be denoted by δ_c, δc, and δp. These quantities are sourced
by the terms

dhĉiðgrÞ
dt

¼ dc
dt

ð1þ δ_cÞ; ð77Þ

h½ĉ; ĤðgrÞ�iðgrÞ ¼ iℏ
δHðgrÞ

δp
ð1þ δcÞ; ð78Þ

and

h½p̂; ĤðgrÞ�iðgrÞ ¼ − iℏ
δHðgrÞ

δc
ð1þ δpÞ; ð79Þ

respectively. They have a qualitatively different structure
than the quantum GR corrections in (76), by satisfying

δ_c ∝ δc ∝ δp ∝ ε2: ð80Þ

Another difference between these corrections is in the fact
that the gravitational corrections are functionals of the
connection δ_c ¼ δ_c½c�, δc ¼ δc½c�, and δp ¼ δp½c� and are
related only to the regularization of the gravitational sector.
The GR corrections are related to the SE restriction
imposition and depend only on quantum numbers. Thus,
by the correspondence principle in (70), they indirectly
depend on the reduced flux, which is directly related to the
spatial metric tensor. However, they are independent of the
gravitational correction. This feature can be written as

∂
∂cΔ

HðmattÞ
c ¼ ∂

∂cΔ
jiðgrÞ
Φ ¼ 0: ð81Þ

Notice also that by neglecting the evolution of the gravi-
tational degrees of freedom in (75), this Heisenberg
equation takes the form

dhΦ̂iðmattÞ

dt
¼ 1

iℏ
h½Φ̂; ĤðmattÞ�iðmattÞ; ΔjiðgrÞ

Φ ¼ 0: ð82Þ

Thus it is the same as the Heisenberg equation for the
lattice-regularized QFT on curved spacetime. It is worth
mentioning that if one included the effects of this evolution,
one would obtain additional dynamical corrections of order
m̄2=p3 [28]
The structure of the quantum GR corrections in (76) is

the essential element for the analysis in this article. These
are the only gravitational degrees of freedom-dependent
corrections present in the matter sector. They were sourced
by SE and their structure verifies BI of this system.
Therefore, general covariance can be tested investigating
these quantum perturbations structure.
The gravitational coupling in the matter sector of GR is

implemented by the multiplication by the q�1=2 factors and/
or by the contraction with the qab metric tensor—see the
expressions in (5) and (16). After the lattice regularization,
these recalled expressions take the forms given in formulas
(25) and (28), respectively. The GR corrections in these
formulas will be sourced by the quantized version of the
terms

trðτih−1ðaÞðvÞfVnðvÞ; hðaÞðvÞgÞ; n ∈ Qþ ð83Þ

that were constructed by using the relation in (32). At the
quantum level, the aforementioned quantity becomes
the trace of the product of the suð2Þ generator and the
operators in (21), and its structure varies for different matter
fields. Moreover, even in the Hamiltonian constraint for a
given field, the elements with different power of volume in
(83) are present—compare (29), (30), and (31). To study
these differences, the expression in (75) has to be decom-
posed more specifically.
One should first observe the following relation,

hh½Φ̂; ĤðmattÞ�iðmattÞiðgrÞ ¼ h½Φ̂; hĤðmattÞiðgrÞ�iðmattÞ: ð84Þ

This leads to the conclusion that the structure of ΔjiðgrÞ
Φ

depends only on the matrix element hĤðmattÞiðgrÞ. Then, by
splitting the matter sector Hamiltonian into the contribu-
tions from different fields Φα,

7 one finds the following
decomposition:

6This approximation relates the single fiducial cell formula
with the Hamiltonian on Σt in the continuum limit [2,57].
Generalization to any value of m̄ is possible, but it would require
a redefinition of the coherent states. Heuristically, this could
be done replacing m̄ with m̄ε ≔ m̄=ε in the definition (60).
Precise approach would require redefinition of LQG and the
appropriate phase space reduction. The first articles concerning
the former issue was recently announced, cf. [20]. The regulator-
independent formulation of the lattice reduced theory is based on
[23] and is given in [21].

7In this general approach, Φα represents any matter field. In
the case of the simplified cosmological model with bosonic
matter and with the Hilbert space given in (33), only two different
matter fields are considered: ΦA ≔ A and Φφ ≔ φ.
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HðmattÞ ¼
X
α

HðΦαÞ ≔
X
α

ðHðΦαÞ
one þHðΦαÞ

two þ � � �Þ

≕
X
α

� X
elements

HðΦαÞ
element

�
: ð85Þ

The second splitting in the formula above is given by

the introduction of the terms HðΦαÞ
one ; HðΦαÞ

two ;… that label
different elements in the Φα field Hamiltonian. For in-
stance, the Hamiltonian of ΦA decomposes as follows:

HðAÞ ≕HðΦAÞ ¼ H
ðΦAÞ
elec þH

ðΦAÞ
magn.

The matrix element derivation is a linear operation, thus
without loss of generality it is enough to focus on a single
element

hĤðΦαÞ
elementiðgrÞ ¼ HðΦαÞ

elementð1þ δðΦαÞ
element þ δ0ðΦαÞ

element þ � � �Þ;
ð86Þ

where δðΦαÞ
element ∝ 1=m̄2, δ0ðΦαÞ

element ∝ 1=m̄4, etc. For simplicity,
the terms of order 1=m̄4 and smaller are going to be
neglected. Consequently, the quantum GR corrections to
the matter sector are expressible by

ΔjiðgrÞ
Φ ¼ 1

iℏ

X
α

X
elements

h½Φ̂α ; ĤðΦαÞ
element�iðmattÞδðΦαÞ

element; ð87Þ

where the linearity of a commutator was used. Finally, it
shouldbepointedout thatwhen the correspondence principle
in (70) is applied, the corrections become explicitly dreibein
dependent, thus also metric tensor dependent. In the case of
the vector field in the cosmological framework, the structure
of this dependence is readable from the expression

hh½Φ̂; ĤðAÞ�iðAÞiðgrÞ ¼
X3
a

hh½Φ̂; ĤðAÞ
ðaÞ �iðAÞiðgrÞ

¼
X3
a

h½Φ̂; ĤðAÞ
ðaÞ �iðAÞð1þ δ

ðAÞ
ðaÞ Þ; ð88Þ

where

δ
ðAÞ
ðaÞ ∝

�k2
ðpðaÞÞ2 : ð89Þ

The form of the preceding outcome reflects the symmetry
between the regularized elements in the Hamiltonian con-
tributions in (26) and (27). The analogous matrix element of
the scalar field leads to the result

hh½Φ̂; ĤðφÞ�iðφÞiðgrÞ ¼ h½Φ̂; ĤðφÞ
mom�iðφÞð1þ δðφÞmomÞ

þ
X3
a

h½Φ̂; ĤðφÞ
ðaÞder �iðφÞð1þ δðφÞðaÞderÞ

þ h½Φ̂; ĤðφÞ
pot �iðφÞ; ð90Þ

where

δðφÞmom ∝
X3
a

�k2
ðpðaÞÞ2 ; ð91Þ

δðφÞðaÞder ∝
X
b≠a

�k2
ðpðbÞÞ2 : ð92Þ

This outcome is not symmetric with respect to the metric
tensor structure, hence the BI of the indicated quantum GR
corrections is explicitly broken.

B. General quantum relativity

Before describing the general covariance breaking in
more details by the use of inconsistently selected regulari-
zation methods, it is worth it to state more precisely what is
the general postulate of relativity [6] in the context of
quantum physics.
This postulate was originally formulated as follows:
“The general laws of nature are to be expressed by

equations which hold good for all systems of co-ordinates,
that is, are covariant with respect to any substitutions
whatever (generally co-variant).
… For the sum of all substitutions in any case includes

those which correspond to all relative motions of three-
dimensional systems of co-ordinates.… Moreover, the
results of our measuring are nothing but verifications of
such meetings of the material points of our measuring
instruments with other material points, coincidences
between the hands of a clock and points of the clock dial,
and observed point-events happening at the same place at
the same time.” [6]
The postulate and its explanation (see also their earlier

formulations in [7–9]) consists of two restrictions on a
physical theory. The theory has to have SE, i.e., the
equations must be equivalently expressed in all systems
of coordinates. It also has to have BI, i.e., the predictions of
the theory must be invariant under any substitution of a
reference frame.
It should be emphasized that SE does not require any

independence of coordinates or a metric involving formal-
ism. The SE model can be explicitly formulated in a
particular system of coordinates, however, the choice of
any other system has to lead to the equivalent formulation.
Furthermore, BI does not assume any restriction on a
formalism. The BI theory has to provide universal pre-
dictions independently of any particular characteristics of
an observer.
In this article it is assumed that a hypothetical CQGR

model satisfies SE and BI. This does not provide any
a priori reference to gravity. Whatever content is included
in the theory, it has to have SE and BI. This clarifies what
GR means in the context of CQGR. Now, the meaning of
quantum should be specified. This term is going to be
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understood in the sense of the quantum mechanical
formalism adjusted to each component of CQGR. In
particular, this assumes the probabilistic distributional
framework, noncommutative relations and the predictions
formulated as expectation values. The description of these
features is well understood in terms of interacting quantum
fields. Therefore, CQGR is going to be understood as QFT
that satisfies SE and BI. It is not difficult to realize how to
impose these latter restrictions on QFT.
The SE formulation of QFT means that the formulation

of interacting quantum fields is equivalent in any system of
coordinates. Therefore, the action of any operator on any
state cannot, in reality, depend on any reference frame.
However, an apparent dependence is not excluded. This
means that operator equations cannot be localized at any
fixed spacetime points, and the scalar product cannot
depend on the position in a Fock space. All the interactions
must consist of the relations between certain characteristics
of quantum operators and states and cannot depend on any
fixed reference frames that would classify these character-
istics. Simply speaking, the framework of QFT has to be
generally relative.
It is easy to see that the phenomenological models

discussed in Sec. II D violate the SE requirement. This
excludes these models from being a candidate for a
cosmological limit of CQGR funded by using the LQG’s
framework. It is then surprising that there are several
studies toward formulation of phenomenological predic-
tions by using these effective models. These models
directly break SE in their constructions, which are based
on the LQG’s formalism that was created to describe the
QFT of gravity in the SE way. Thus, these mentioned
phenomenological applications as the predictions that
could explain reality are methodologically inconsistent.
The framework satisfying the SE requirement was

introduced in Sec. III A. In Sec. IV C details of the BI
verification are explained. In general, the BI formulation of
QFT means that the predictions of the theory are indepen-
dent of any reference frame. In the context of quantum
physics this restriction is directly related to the notion of
observables. These are the indirectly measurable quantities
in QFT. However, the predictions are not formulated in
terms of observables. Only the eigenvalues of these
operators are directly measurable. Therefore the BI of a
quantum theory means BI spectra of all observables. These
are the only quantities in which an observer verifies the
laws of nature. They are described relatively if their
predictions are formulated independently of how, when,
and where they can be tested.
Eventually, the model of quantum GR (see Fig. 3) that is

based on the framework of LQG assumes canonical
quantization procedure. This last property defines how
the classical and quantum descriptions are related. As
pointed out in [20], this relation is not clear in LQG,
which is a separate problem and is not going to be

discussed in this article. In general, the canonical quanti-
zation is defined as a replacement of canonical variables
with their operator representations and a replacement of
Poisson brackets with commutators. Then, the change of
variables into operators should preserve the relative ori-
entations and positions of these objects, accordingly, to all
the frames indicated in a theory (this is not properly
implemented in the original canonical formulation of
LQG [1,2], cf. [20]). In this way, the gauge invariance is
properly preserved both locally and globally.
Concluding, the properly formulated candidate for

CQGR has to satisfy the following restrictions:
(a) Quantization is performed in a canonical procedure

that preserves gauge invariance both locally and
globally.

(b) Equivalence principle is satisfied strongly for all the
fields and all the coordinates systems.

(c) All the predictions are background independent, thus
are the same for any observer.

The first condition allows one to analyze phase space-
reduced versions of CQGR and obtain results related to the
general model. The second restriction is imposed already in
the construction of theories, hence one can focus only on
the models that satisfy this condition. To verify the last
restriction, kinematics of the theory has to be derived and
its dynamics has to be formulated.
Finally, it is worth it to emphasize that besides the

theoretical notion of the analysis in this article, one can also
indicate its practical value. In order to describe the physical
meaning of the correct formulation of CQGR cosmological
reduction, an independent consideration of the matrix
element of the HCO, only with respect to the matter or
to the gravitational degrees of freedom, is going to be

FIG. 3. Bronstein cube in c−1ℏG orientation.
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discussed. This will be presented on the Bronstein cube
[58] illustrative diagram in Fig. 3.
The semiclassical low energy approximation of quantum

matter excitations corresponds to the classical matter fields
theory on quantum geometry. The semiclassical slightly
curved approximation of quantum geometry coincides with
QFTon classical curved spacetime. The first approximation
corresponds to taking the ℏ → 0 limit and the second one to
taking the G → 0 limit. These approximations can be
relevant in different physical processes—see Fig. 4.
The classical and flat limit of CQGR can be (not

rigorously) understood as lP → 0. To study only the
semiclassical corrections of the theory, one can expand
the results around a small (but not zero) value of the Planck
length. This expansion can be represented by the hyperbola
in Fig. 4. This figure expresses the c ¼ 1 face of the
Bronstein cube in Fig. 3 and the sketched curve is going to
be called the Planck hyperbola.
From the cosmological perspective, the well-known QFT

on curved spacetime approach [59] can be applied, for
instance, to explain the details of the inflation process [60].
The classical field theory on quantum geometry can be used
as an approximation of the early phase in the Universe
evolution. This model predicts, for instance, a big bounce
scenario at the origin of the Universe [61,62]. Therefore, to
understand the whole Universe evolution, even only
approximately by studying the semiclassical corrections
of CQGR, one needs to be able to smoothly move along the
Planck hyperbola. Then, to be sure that this move is
smooth, the cosmological reduction of CQGR has to be
properly constructed. Although, if the general theory is not
completely formulated, one cannot be absolutely sure that
the cosmological limit of CQGR can be precisely applied as
a model of the Universe. This argumentation provides the
physical motivation for the verification of the covariant
structure of the corrections indicated in Sec. IVA.

C. Violation of general covariance

The explicit form of the quantum GR corrections
indicated in expressions (88) and (90) depends on the state
on which the operator constructed from the term in (83)
acts. The symmetrized shadow states in (67), which satisfy
basic properties of correctly formulated coherent states, are
based on the links excitations states in (60). Thus, only the
results of the reduced operators actions on these links
excitations states have to be verified.
The holonomy operator in (53) of the constant Abelian

connection, resulting from the phase space reduction of
CQGR, leads to the following simplification of the cor-
rections generating operator,

trðτiĥ−1ðaÞ½V̂n; ĥðaÞ�Þ ¼ sin

�ĉiðaÞ
2

�
V̂n cos

� ⃗ĉðaÞ
2

�

− cos

� ⃗ĉðaÞ
2

�
V̂n sin

�ĉiðaÞ
2

�
: ð93Þ

For clearness, the projection of the spatial directions into
the internal ones and the related correction of variables’
weights [15,33] is not explicitly written in this expression.
The vector symbol over the connection in ⃗ĉðaÞ indicates the
direction-independent series representation of the cosine
operator functional

cos
� ⃗ĉðaÞ

2

�
¼

X∞
k¼0

ð−1Þk
ð2kÞ!

�ĉiðaÞĉiðaÞ
4

�
k
: ð94Þ

By assuming only cuboidal cells, the action of the
volume operator in (93), expressed in terms of the reduced
momenta in (52), simplifies into the operator constructed
from the following quantity:

V̄ ≔
1

ε3

Z
ε3

0

d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

q
¼ ε3

ffiffiffī
q

p
: ð95Þ

The square root of operators after quantization is going to
be derived by the expansion of the radicand around the
coherent state, resulting in the expression

ˆ̄V
n ¼ ε3nðh ˆ̄qiÞn2

X∞
k¼0

�
n=2

k

��
ˆ̄q − h ˆ̄qi
h ˆ̄qi

�
k
; ð96Þ

where the expectation value of the ˆ̄q operator is

h ˆ̄qi ¼�k3m̄1m̄2m̄3: ð97Þ

The reduced holonomy in (93) leads to the states
modifications indicated in (55). The action of the volume
operator in (96) on these modified states can be expressed
in the form of a power series,

FIG. 4. Planck hyperbola, lP ¼ constant.
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ˆ̄V
n
				m̄ðiÞ

v � 1

2

�
¼ ð�k3m̄1

vm̄2
vm̄3

vÞn2
�
1� n

4

1

m̄ðiÞ
v

þ nðn − 2Þ
25

1

ðm̄ðiÞ
v Þ2

� nðn − 2Þðn − 4Þ
27 · 3

1

ðm̄ðiÞ
v Þ3

þO
�

1

ðm̄ðiÞ
v Þ4

��				m̄ðiÞ
v � 1

2

�
:

ð98Þ

Here, the large quantum numbers assumption was needed. Then, the action of the quantum GR corrections generating
operator is easily calculable and reads

trðτðiÞĥ−1ðjÞ½V̂n; ĥðjÞ�Þ⊗
3

k
jm̄ðkÞ

v i ¼ in

4m̄ðiÞ
v

ð�k3m̄1
vm̄2

vm̄3
vÞn2δðiÞðjÞ

�
1þ n2 − 6nþ 8

25 · 3
1

ðm̄ðiÞ
v Þ2

þO
�

1

ðm̄ðiÞ
v Þ4

��
⊗
3

k
jm̄ðkÞ

v i: ð99Þ

Consequently, the values of the dimensionless corrections
in (89), (91), and (92) are

δ
ðAÞ
ðiÞ ¼ 7

26
1

ðm̄ðiÞ
v Þ2

→ 7π2γ2
l4P
ε4
qðiÞðiÞ
jq̄j ; ð100Þ

δðφÞmom ¼ 7

26

X3
i

1

ðm̄ðiÞ
v Þ2

¼
X3
i

δ
ðAÞ
ðiÞ ; ð101Þ

and

δðφÞðiÞder ¼
65

28 · 3

X
j≠i

1

ðm̄ðjÞ
v Þ2

¼ 65

84

X
j≠i

δ
ðAÞ
ðjÞ ; ð102Þ

respectively.
For the analysis in this article, only the precise structure

of corrections is needed. However, the reader interested in
the explicit values can easily derive each correction by
using the correspondence principle in (70)—as demon-
strated on the right-hand side of formula (100). The lP=ε
ratio must be regularized by a cutoff on the value of the
regulator, which has to be consistent with the large spin
approximation in (98). The condition ε2 > jγjl2P is accept-
able, but it should be replaced with ε2 ⋙ γl2P. Otherwise,
keeping the trigonometric form of the reduced holonomy in
(93) has no sense and the approximation sinðĉiðaÞ=2Þ≃
ĉiðaÞ=2, cosðĉiðaÞ=2Þ ≃ 1 is indistinguishable from that form.

This occurs for instance by using the so-called area gap,
ε2 ≈ 25γl2P, cf. [12]. This cutoff imposed on the phase
space-reduced CQGR leads to the domination of the
inverse volume corrections over any other quantum cor-
rections and the HCO becomes almost exactly an eigen-
vector of the basis states.
Finally, one can test BI of the cosmologically reduced

CQGR. By applying the phase space reduction, all the
gauge symmetries of the theory became restricted to
their reduced versions but not violated or modified.
Therefore, by the inspection of the reduced diffeomorphism
transformations of the CQGR semiclassical limit, general
covariance can be verified.

The main vector field observables are the Êa and B̂a

operators. Their expectation values are the electric vector
field density and the magnetic pseudovector field density.
They are the weight 1 physical quantities that are the
measurable modes of an electromagnetic wave. Another
observable is the HCO. Its expectation value is the weight 1
scalar density that represents the energy density. The
difference between the energy densities related to different
spacetime points is also an explicitly measurable quantity.
The semiclassical limit of the related HCO reads

hĤðAÞi ¼
X3
i

hĤðAÞ
ðiÞ i ¼

X3
i

hĤðAÞ
ðiÞ iðAÞð1þ δ

ðAÞ
ðiÞ Þ: ð103Þ

It is clear that the reduced diffeomorphism transformations
describable by the metric tensor contraction are the same in
the electric and magnetic elements of the scalar constraint.
Moreover, the corrections in (103) are preserved concern-
ing the temporal diffeomorphism transformation, i.e., these
corrections are independent of dynamics—see (88).
Therefore, although the quantum GR corrections appa-
rently change the contraction with the metric tensor, the
relative diffeomorphism symmetry, along all the reduced
directions, is not modified.
Considering then the quantum system of the vector field

and gravity, one could wish to be able to restore the explicit
classical form of the general covariance specifying spatial
metric tensor. This would allow one to apply the methods of
QFT on curved spacetime to the expectation values of the
matter degrees of freedom in an effective model. This
effective procedure would be possible by assuming that the
Hamiltonian density of the whole system equals zero. Then,
the effective “covarianization” method can be defined as
the multiplication of all the scalar constraint elements by

the inverse of ð1þ δ
ðAÞ
ðiÞ Þ. In this way, the GR corrections

will be moved to the Hamiltonian gravitational contribu-
tion. This contribution will effectively represent the gravi-
tational sector of the scalar constraint coupled with the
standard QFT representation of the electromagnetic field on
classical curved spacetime.
In the case of the scalar field, the situation is completely

different. It is worth emphasizing that the variable π is a
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weight 1 pseudoscalar density, but ∂aφ and φ are a one-
form and a scalar, respectively. This explains why the
semiclassical limit of the HCO has different GR corrections
for each element,

hĤðφÞi ¼
X3
i

½hĤðφÞ
ðiÞmom

i þ hĤðφÞ
ðiÞderi þ hĤðφÞ

ðiÞpoti�

¼
X3
i

½hĤðφÞ
ðiÞmom

iðφÞð1þ 2δ
ðAÞ
ðiÞ Þ

þ hĤðφÞ
ðiÞderiðφÞ

�
1 − δ

ðAÞ
ðiÞ þ 65

84

X
j≠i

δ
ðAÞ
ðjÞ

�

þ hĤðφÞ
ðiÞpotiðφÞð1 − δ

ðAÞ
ðiÞ Þ

�
ð1þ δ

ðAÞ
ðiÞ Þ þOððδðAÞðiÞ Þ2Þ;

ð104Þ

where hĤðφÞ
1mom

i ¼ hĤðφÞ
2mom

i ¼ hĤðφÞ
3mom

i ¼ 1
3
hĤðφÞ

momi and

hĤðφÞ
1pot

i ¼ hĤðφÞ
2pot

i ¼ hĤðφÞ
3pot

i ¼ 1
3
hĤðφÞ

pot i. Therefore, the rela-

tive diffeomorphism symmetry is not preserved at the level
of corrections. These GR corrections are the semiclassical
predictions, hence they are potentially measurable quan-
tities. This asymmetry indicates the background depend-
ence of the result and thus breaks general covariance.
Even by neglecting the self-interaction terms, the relative
local diffeomorphism symmetry of the momentum and
derivative sectors is not equivalent. Consequently, the
effective covarianization procedure is also not applicable
to expression (104).
The last result demonstrates that the node representation

leads to the background-dependent structure of GR cor-
rections. The simplest resolution of this problem is to apply

the isotropic vector field representation to describe the
quantity that classically is expressed by the scalar field.
By assuming this representation, the effective

Hamiltonian of the bosonic system on a cuboidal lattice
can be written as the following sum:

H̄ ¼
X3
i

ðH̄ðgrÞ
ðiÞ þ H̄ðAÞ

ðiÞ þ H̄ðφÞ
ðiÞ Þ≕

X3
i

H̄ðiÞ: ð105Þ

One can assume that the self-interacting scalar field is
represented by the isotropic Proca Hamiltonian. Then, by
fixing the total energy to zero by setting H ¼ 0, the
effective covarianization method will be the removal of
the GR corrections in the procedure defined by

H̄ðiÞ !covar: H̄ðiÞð1þ δ
ðAÞ
ðiÞ Þ−1: ð106Þ

As a result, the whole free matter sector becomes correc-
tions independent. However, the mass term and any other
potential contribution becomes shifted down by the factor

ð1 −P
3
i δ

ðAÞ
ðiÞ Þ. This is an interesting prediction, however, it

is not a fundamental theory result. Therefore, as in the case
of the effective models recalled in Sec. II D, one should not
consider this outcome as a prediction, for instance, of the
inflaton field’s real mass loss. It could be only used to
effectively describe this phenomenon if it would be
observed.
An even more interesting observation concerns the

inclusion of the fermionic sector. The scalar constraint
of the system that describes all fundamental interactions in
the cosmologically reduced framework can be effectively
expressed by

H ¼
Z
Σt

d3xN

�
1

κ
ffiffiffi
q

p ððFi
cd − ðγ2 þ 1ÞϵilmKl

cKm
d ÞϵijkEa

jE
b
kÞ þ

g2A
2

ffiffiffi
q

p qcdðEa
I E

b
I þ Ba

I B
b
I Þ

þ 2
ffiffiffi
q

p
3κ

Λqcdqab þHðφÞ
cdqab þHðψÞab

cd �δcaδdb≕Hab
cdδ

c
aδ

d
b: ð107Þ

Here, all the matter sector is assumed to be smeared along the links of the cuboidal lattice. The torsional contribution from
the fermionic sector is assumed to by given by the procedure in [63,64] and the regularization of the Dirac contribution
follows either the method in [2,13] or the one in [63,64], adjusted to the links smearing of the fermionic field. Then the
analog of (25) and (28) is the following Hamiltonian constraint:

HðψÞ ¼
Z
Σt

d3x
Nffiffiffi
q

p
�
ϵijkϵ

abetr

�
τi
1

ε
h−1c ðxÞfV1

2ðxÞ; hcðxÞg
�
tr

�
τj
1

ε
h−1d ðxÞfV1

2ðxÞ; hdðxÞg
�
ðfermionicÞke

�
δcaδ

d
b: ð108Þ

Here, “ðfermionicÞ” denotes the Dirac field’s degrees of
freedom. Consequently, the related quantum GR correc-
tions take analogous form to (103), but they are antisym-
metric. Conversely, the structure of the bosonic fields

Hamiltonian has the form Hab
cdδ

c
aδ

d
b, hence it is symmetric

in the pairs of spatial-internal indices (the external and
internal directions are indistinguishable after the reduc-
tion). This breaks the BI of the system, however, this
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violation occurred in the expected manner. One can
anticipate that in the antisymmetric sector of CQGR, the
corresponding diffeomorphism invariance will be correctly
preserved. To complete this conjecture, it is worth it to
mention that the related covarianization will be given by the
expression

Hab
cdðvÞ !covar: Hab

cdðvÞ
�
1þ 1

2
δ
ðAÞ
ðaÞ ðvÞ

�
−1
�
1þ 1

2
δ
ðAÞ
ðbÞ ðvÞ

�
−1
:

ð109Þ

V. CONCLUSIONS

This article revealed the problems with the accurate
implementation of general covariance in the matter sector
of CQGR, where the theory is assumed to be constructed by
using the LQG’s framework. By general covariance, the BI
condition originally postulated by Einstein was considered.
This quantity together with SE, called also the equivalence
principle, forms the general principle of relativity.
The BI violation was a consequence of using incon-

sistent regularization methods. This inconsistency was
regarding the local spatial diffeomorphism symmetry
breakdown in the continuous to discrete transition of the
multifield system. Then, the lack of general covariance
was revealed in the structure of the semiclassical correc-
tions of the cosmologically reduced CQGR.
In the LQG’s framework, the symmetry of the canonical

fields lattice smearing is the symmetry of the links of
this lattice. The links’ structure specifies the discrete
diffeomorphism transformations directions distribution.
Therefore, it is not surprising that by using the locally
diffeomorphisms breaking representation of a field located
at nodes, the general covariance of the system is violated. It
should be emphasized that the diffeomorphism symmetry
becomes locally broken in the following series of steps.
First, the propagating gravitational degrees of freedom are
smeared by using the holonomy-flux representation, where
the relation in (32) is assumed. Next, the phase space
reduction, which preserves all the reduced symmetries, is
implemented. Then, the theory is quantized and the semi-
classical limit is derived on the Gaussian states that are
picked at the momenta (or volume) eigenvalues. Finally,
by the correspondence principle, the original metric struc-
ture is restored and its asymmetry in the scalar field
Hamiltonian elements is revealed. What needs to be added
to this list is the fact that the scalar field degrees of freedom
were lattice regularized at nodes, conversely to all of the
other variables, which were smeared accordingly to the
links’ structure. Moreover, all but the first step were exact,

however, this step considered only the essential techniques
of LQG. Furthermore, the approximations in this step
(before quantization) were reproducing the original con-
tinuous formulation of the theory exactly, by taking the
limit ε → 0. Anything that could be questioned in the
analysis in this article concerns the methods of LQG.
The phase space reduction was implemented in the stan-
dard manner [65] in which the Dirac brackets take the form
of the Poisson ones, cf. [15].
Concluding, the following no-go theorem concerning the

lattice regularization in the framework of LQG can be
formulated:
Let a model of quantum general relativity be considered,

where the loop quantum gravitational techniques are
used to regularize and quantize gravitational degrees of
freedom. By assuming the systems-equivalent descrip-
tion and background-independent predictions of this
model, the lattice regularization of matter minimally
coupled to gravity is restricted. The matter variables
selected for the lattice smearing should be represented
by vector densities to ensure that all the coupled gravita-
tional degrees of freedom are written in an appropriate
form. Moreover, this representation allows to express the
matter degrees of freedom on the lattice in terms of the
holonomy-flux formalism, which is also the representation
of the gravitational variables. By choosing a nodes smear-
ing, the general covariance of the theory predictions will be
violated.
Furthermore, it is worth it to add that in the case of the

properly lattice-regularized electromagnetic field, the
smeared variables are the ones that have the explicit and
real physical meaning. They are the electric and magnetic
fields.
One more comment is worth it to be added at the end. In

this article it was not certainly demonstrated that the
fermionic matter must be lattice-regularized accordingly
to the aforementioned theorem. However, so suggesting
indications were found. Therefore, it is probable that the
fermionic variables proposed in the context of LQG
(represented by the Grassmann-valued scalar half-den-
sities) [2,13,24,63] should be replaced by appropriate
vector half-densities. The weight 1=2 would reflect the
fermionic otherness from the weight 1 of the vector
representations of bosons.
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