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We discuss an enhancement of the Brown-Henneaux boundary conditions in three-dimensional AdS
general relativity to encompass Weyl transformations of the boundary metric. The resulting asymptotic
symmetry algebra, after a field-dependent redefinition of the generators, is a direct sum of two copies of the
Witt algebra and the Weyl Abelian sector. The charges associated with Weyl transformations are
nonvanishing, integrable but not conserved due to a flux driven by the Weyl anomaly coefficient. The
charge algebra admits an additional nontrivial central extension in the Weyl sector, related to the well-
known Weyl anomaly. We then construct the holographic Weyl current and show that it satisfies an
anomalous Ward-Takahashi identity of the boundary theory.
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I. INTRODUCTION

Three-dimensional general relativity is one of the sim-
plest gravitational systems [1,2] and, in particular, solutions
with negative cosmological constant (AdS3) have received
special attention, due to their holographic nature [3,4]. The
absence of bulk propagating degrees of freedom makes this
theory a privileged playground to better understand the role
of boundary conditions in gravity. Indeed, the dynamics
can be described by a pure boundary theory, as shown in the
Chern-Simons formulation [5–12], (for a recent review, see
also [13]).
Boundary conditions play a pivotal role in physics.

Together with the choice of a bulk gauge for the metric,
they fully determine the field content—the solution
space—of the theory. Residual diffeomorphisms are those
preserving the gauge choice. Among them, the ones
respecting boundary conditions and carrying nonvanishing
surface charges are the so-called asymptotic symmetry
generators [3,14–18].1 The surface charges are interesting
quantities, for they encode observables of the system, such
as its energy and momenta [22,23].2 The asymptotic

symmetry generators form the asymptotic symmetry alge-
bra, represented on the solution space by the projective
charge algebra, trustworthy up to a universal central
extension [3]. Probing various boundary conditions and
their related surface charges is a natural question, the
literature on the topic is extensive, see e.g., [27–38]. Along
this line of thought, in this work we introduce a new set of
boundary conditions, justified below, and study its
consequences.
In the seminal work by Brown and Henneaux (BH) [3]

it was shown that the asymptotic symmetry algebra of
AdS3, under certain boundary conditions encompassing
Bañados, Teitelboim, and Zanelli (BTZ) black holes [39–
41], consists in two commuting copies of the Virasoro
algebra with central extensions c� ¼ 3l

2G, l being the AdS3
radius andG the Newton constant. This result is considered
as a precursor of the AdS=CFT correspondence [4,42–45],
which, applied to three-dimensional general relativity,
conjectures the existence of a dual confomal field theory
(CFT) living on the two-dimensional boundary.
Remarkably, the value of c� has been used to microscopi-
cally derive the Bekenstein-Hawking entropy of the BTZ
black hole [46], using the Cardy formula [47]. Moreover,
by taking a suitable flat limit of asymptotically AdS3
gravity [48], it is possible to extend these considerations
to asymptotically flat spacetimes [49,50].
In the context of Penrose conformal compactification

[51,52], applied to the case of AdS3 spacetime, the bulk
metric induces a boundary conformal class ½gð0Þ� of metrics
rather than a metric [53–60]. The boundary conditions
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1For recent reviews, see [19–21].
2Recently there has been a renewed interest in the charges

structure of spacetime corners [24–26].
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considered here are motivated by this approach. In BH, a
particular representative of the equivalence class is picked
up, namely the flatMinkowskimetric η, and kept fixed under
the action of the asymptotic symmetry algebra. This defines
asymptotically (globally) AdS3 spacetimes (AAdS3).
In this manuscript we focus on asymptotically locally

AdS3 (AlAdS3) spacetimes [61–64], with no restriction on
their boundary conformal structure. In general, the two-
dimensional boundary metric gð0Þ is specified by three
arbitrary functions in terms of which the Einstein equations
can be exactly solved. We work in the Fefferman-Graham
(FG) gauge [53,58] and we assume the boundary metric to
be conformally flat, the conformal factor being an arbitrary
smooth function independent of the radial coordinate.3 The
resulting asymptotic symmetries contain the usual two
copies of diffeomorphisms of the circle together with
additional Weyl transformations of the boundary metric.
These are often referred to in the literature as Penrose-
Brown-Henneaux (PBH) [66] transformations. Here we
explicitly compute their associated surface charges,4 and
find that they are finite, integrable but nonconserved, which
is an interesting unusual combination (see [18,38,67] for
related discussions).
Diffeomorphisms generating boundary Weyl rescalings

are crucial in the context of holographic renormalization,
pioneered by Skenderis and collaborators [54,63,68–71]
(see also [28,72–75]). Regularizing the theory explicitly
breaks Weyl invariance causing the emergence of a Weyl
anomaly [54,60,66,76,77].5 The latter can be seen in the on-
shell variational principle of the renormalized bulk action.
When specified to a variation of the conformal factor of the
boundary metric, the corresponding variation of the on-
shell action gives the Weyl anomaly, which is then
interpreted as the trace anomaly of the boundary stress
tensor [86–88]. Typically, in order to achieve a well-defined
variational problem, Dirichlet boundary conditions are
imposed on the metric [14,28,63]. However, such a con-
dition is too restrictive when working with a conformal
class of boundary metrics [63]. Therefore we cannot insist
that the variational problem be well defined and we impose
only the cocycle condition on the second Weyl variation of
the on-shell action [89–93]. It turns out that the Weyl
surface charges are finite and integrable, whereas their
nonconservation is accounted for by a symplectic flux
through the boundary [22,23,94–97]. The presence of an
anomaly indicates that, in the dual theory, a current is not
conserved at the quantum level, see [98–100] for reviews.
We construct new Weyl boundary currents compatible with
the surface charges. Their nonconservation translates into

the anomalous Ward-Takahashi identity [101,102] associ-
ated with Weyl symmetry of the putative holographic
theory.
The paper is organized as follows. In Sec. II, we fix the

FG gauge and introduce conformally flat boundary con-
ditions. Correspondingly, we compute the asymptotic
Killing vectors preserving these choices and their algebra.
We show that the latter comprises, besides the usual left and
right Witt sectors, a new Abelian sector corresponding to
Weyl rescalings of the boundary metric. We then solve
Einstein equations and extract the action of the asymptotic
symmetry algebra on solution space. In Sec. III, we
compute the corresponding surface charges. Furthermore,
we show that the charge algebra is centrally extended in
both the Witt and the Weyl sector. In Sec. IV, we touch
upon some features of the boundary holographic theory. We
show in detail that, under our choice of boundary con-
ditions, the variational problem is not well defined due to
the presence of the Weyl anomaly. We construct the
boundary Weyl currents and show that their nonconserva-
tion can be interpreted in terms of an anomalous Ward-
Takahashi identity for the boundary Weyl transformations.
We close in Sec. V with a short summary and perspectives.
Appendix A contains a brief comparison of this work with
[30], while in Appendix B we translate our results to the
Chern-Simons formulation of the theory.

II. NEW BOUNDARY CONDITIONS

The new boundary conditions considered in this work are
motivated by the geometric approach originally introduced
by Penrose [51,52] in the context of conformal compacti-
fication. In this framework, the boundary data for the full
metric g are located at infinite distance, due to the second
order pole structure typical ofAdS.Multiplying g byΩ2, with
Ω a positive function with a simple zero on the boundary,
such a pole is eliminated and an induced metric on the
boundary may be defined. There is however an ambiguity in
the choice of Ω. The replacement Ω → Ω0 ¼ eωΩ, with ω a
smooth function independent of the radial coordinate,

induces a conformal transformation gð0Þ → gð0Þω ¼ e2ωgð0Þ
of the boundary metric. Such a freedom allows one to define
only an equivalence class of conformally related boundary
metrics, ½gð0Þ�, rather than a metric [53,56–60].

A. Fefferman-Graham and residual diffeomorphisms

The FG gauge [53,58]6 in three spacetime dimensions
consists in choosing coordinates xμ ¼ ðρ; xaÞ, where ρ ≥ 0
is a radial coordinate and xa ¼ ðt;ϕÞ. The three gauge-
fixing conditions for the metric are gρρ ¼ l2

ρ2
and gρa ¼ 0,

where l2 ¼ − 1
Λ is the AdS3 radius. The boundary is located

at ρ ¼ 0. The line element takes the form

3The case in which the conformal factor admits a chiral
splitting has been extensively analyzed in previous works
[30,65].

4For the surface charges we use the prescription given in [16].
5For intrinsic field-theoretical studies of Weyl anomalies see

[78–85]. 6For a recent discussion see also [21,103,104].
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ds2 ¼ gμνdxμdxν ¼
l2

ρ2
dρ2 þ γabðρ; xÞdxadxb: ð1Þ

We solve Einstein equations with initial boundary con-
dition γabðρ; xÞ ¼ Oðρ−2Þ, so that Ω2gμν is well defined at
the boundary. Einstein equations for (1) yield

γabðρ; xÞ ¼ ρ−2gð0Þab ðxÞ þ gð2Þab ðxÞ þ ρ2gð4Þab ðxÞ; ð2Þ

with

gð4Þab ¼ 1

4
gð2Þac gcdð0Þg

ð2Þ
db ; gabð0Þg

ð2Þ
ab ¼ −

l2

2
Rð0Þ;

Da
ð0Þg

ð2Þ
ab ¼ −

l2

2
∂bRð0Þ: ð3Þ

We denote by Rð0Þ and Dð0Þ
a the Ricci scalar and the

covariant derivative associated with gð0Þab , respectively. The

leading term gð0Þab of the expansion (2) as ρ → 0 is usually
referred to as the boundary metric. From now on the indices
will be raised and lowered using this metric.
Defining the holographic stress-energy tensor [54,87] as

Tab ¼
1

8πGl

�
gð2Þab þ l2

2
gð0Þab R

ð0Þ
�
; ð4Þ

the last two equations of (3) imply

Ta
a ¼ c

24π
Rð0Þ; Dð0Þ

a Tab ¼ 0; ð5Þ

where c ¼ 3l
2G is the BH central charge [3]. The first

equation in (5) states that, for a general gð0Þab whose Ricci
scalar is nonvanishing, the trace of the tensor Tab defined in
(4) is nonvanishing and proportional to the scalar curvature
Rð0Þ, with a proportionality constant that is determined by
the BH central charge. Hence the dual CFT living on the
boundary must have a Weyl anomaly. We will further
comment on this in Sec. IV. The full solution space χ is
therefore characterized by five functions, three contained in

gð0Þab and two in gð2Þab or, equivalently, in Tab. Furthermore,
these last two functions satisfy the dynamical constraints
(3) or, equivalently, the second equation in (5). In the

following, we will write χ ¼ fgð0Þab ; g
ð2Þ
ab g.

The residual gauge diffeomorphisms are those preserv-
ing the FG gauge conditions. They are thus generated by
the vector ξ satisfying

Lξgρρ ¼ 0; Lξgρa ¼ 0; Lξγab ¼ Oðρ−2Þ: ð6Þ

The solution of these equations is

ξ ≔ ξμ∂μ ¼ ξρ∂ρ þ ξa∂a; ð7Þ

with

ξρ¼ρσðxÞ; ξa¼YaðxÞ−l2∂bσðxÞ
Z

ρ

0

dρ0

ρ0
γabðρ0;xÞ: ð8Þ

In this expression, σðxÞ and YaðxÞ are field-independent
arbitrary functions and we note that ξa depends on the
metric field γab. This motivates the introduction of the
modified Lie bracket [49]

½ξ
1
; ξ

2
�M ≔ ½ξ

1
; ξ

2
� − δξ

1
ξ
2
þ δξ

2
ξ
1

ð9Þ

to study the asymptotic algebra. Here ½·; ·� denotes the
ordinary Lie bracket between vector fields and δξ

1
ξ
2
½g� the

variation of the vector field ξ
2
½g� due to the metric variation

δξg ¼ Lξg, i.e., δξ
1
ξ
2
½g� ¼ ξ

2
½δξ

1
g�. On defining

ξ̂ρ¼ρσ̂ðxÞ; σ̂ðxÞ¼Ya
1ðxÞ∂aσ2ðxÞ−Ya

2ðxÞ∂aσ1ðxÞ; ð10Þ

and

ξ̂a ¼ ŶaðxÞ − l2∂bσ̂ðxÞ
Z

ρ

0

dρ0

ρ0
γabðρ0; xÞ;

ŶaðxÞ ¼ Yb
1ðxÞ∂bYa

2ðxÞ − Yb
2ðxÞ∂bYa

1ðxÞ; ð11Þ

it is possible to show that our algebra is closed off shell
[49,97]

½ξ
1
; ξ

2
�M ¼ ξ̂: ð12Þ

To prove this we used that ½ξ1; ξ2�aM, i.e., the a component
of ½ξ

1
; ξ

2
�M ¼ ½ξ1; ξ2�ρM∂ρ þ ½ξ1; ξ2�aM∂a, satisfies the differ-

ential equation ∂ρ½ξ1; ξ2�aM ¼ − l2

ρ2
γab∂b½ξ1; ξ2�ρM with

boundary condition limρ→0½ξ1; ξ2�aM ¼ Ŷa. On shell, the
residual diffeomorphism generator (8) becomes

ξa¼Ya−
ρ2

2
l2gabð0Þ∂bσþ

ρ4

4
l2gacð0Þg

ð2Þ
cd g

db
ð0Þ∂bσþOðρ6Þ: ð13Þ

Acting with the Lie derivative along ξ on the on-shell
line element (1) we find the general variation of solution
space

ðLξgμνÞdxμdxν

¼ l2

ρ2
dρ2 þ ðρ−2δξgð0Þab þ δξg

ð2Þ
ab þ ρ2δξg

ð4Þ
ab Þdxadxb; ð14Þ

with

δξg
ð0Þ
ab ¼ LYg

ð0Þ
ab − 2σgð0Þab ;

δξg
ð2Þ
ab ¼ LYg

ð2Þ
ab − l2Dð0Þ

a Dð0Þ
b σ: ð15Þ
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The first equation in (15) is telling us that a general
variation of the boundary metric under the action of
residual gauge diffeomorphisms has two independent
contributions, one coming from σ and the other from Ya.

B. Boundary gauge fixing

As stressed above, once a boundary metric gð0Þab is
assigned, the full solution space, comprising also the

two functions in gð2Þab , is completely determined. That is,
for every arbitrary choice of the boundary metric, solving
(3) yields a complete solution of Einstein equations.
However, as already advertised in the introduction, we

do not leave gð0Þab arbitrary, but impose the boundary
condition

gð0Þab ðxÞ ¼ e2φðxÞηab; ð16Þ

where ηab is the two-dimensional Minkowski metric in
Lorentzian signature. Notice that every two-dimensional
metric is conformally flat. That is, we can use boundary
diffeomorphisms to fix two components of the boundary
metric in order to reach (16). This condition will constrain
the form of the vector fields Ya appearing in (8). Although
(16) is a restrictive boundary condition, it is a natural case
to investigate. Note that an arbitrary variation of the
boundary metric now reduces to an arbitrary variation of

its conformal factor, i.e., δgð0Þab ¼ 2ðδφÞgð0Þab .
Equation (15) becomes then

δξg
ð0Þ
ab ¼ LYg

ð0Þ
ab − 2σgð0Þab ¼ 2ðδξφÞgð0Þab : ð17Þ

This means that Y is a conformal Killing vector of gð0Þab

LYg
ð0Þ
ab ¼ Dð0Þ

a Yb þDð0Þ
b Ya ¼ 2ΩYg

ð0Þ
ab ;

ΩY ¼ 1

2
Dð0Þ

a Ya; ð18Þ

where ΩY ¼ δξφþ σ. Thence

δξg
ð0Þ
ab ¼ 2ðΩY − σÞgð0Þab : ð19Þ

Introducing light-cone coordinates x� ¼ t
l � ϕ we have

gð0Þab dx
adxb ¼ −e2φðxþ;x−Þdxþdx− and (18) is solved by the

usual chiral vectors

Yþ ¼ YþðxþÞ; Y− ¼ Y−ðx−Þ;

ΩY ¼ 1

2
ð∂−Y− þ ∂þYþÞ þ Yþ∂þφþ Y−∂−φ: ð20Þ

Consistently, the only effect of the residual gauge sym-
metries on the boundary metric is to induce a Weyl

transformation, i.e., a shift in its conformal factor, given
by δξφ ¼ ΩY − σ.

The standard Brown-Henneaux boundary conditions [3]
δξφ ¼ 0 are a subclass of our boundary conditions obtained
by imposing σ ¼ ΩY . With this choice the effect of the
conformal isometry generated by Y exactly compensates
the effect of the Weyl rescaling due to σ, as is clear from
(15). Furthermore, also the boundary conditions studied in
[30] are encompassed in our analysis, as we show in
Appendix A.

C. Solution space

In the conformally flat parametrization it is possible to

explicitly solve Einstein equations for gð2Þab given by the last
two equations of (3) [49]. The first is an algebraic equation

for gð2Þþ− and yields

gð2Þþ− ¼ l2∂þ∂−φ; ð21Þ

where we used Rð0Þ ¼ 8e−2φ∂þ∂−φ. The second implies

∂∓g
ð2Þ
�� ¼ −l2ð2∂�φ∂�∂∓φ − ∂2

�∂∓φÞ; ð22Þ

with solutions

gð2Þ�� ¼ l2½Ξ��ðx�Þ þ ∂2
�φ − ð∂�φÞ2�; ð23Þ

where Ξ��ðx�Þ are two arbitrary functions of x�. The
holographic energy-momentum tensor (4) is

Tþ− ¼ −
l

8πG
∂þ∂−φ;

T�� ¼ l
8πG

½Ξ��ðx�Þ þ ∂2
�φ − ð∂�φÞ2�: ð24Þ

While the general solution space is characterized by five
independent functions of xþ and x−, the solution space in
the conformally flat gauge is given by φðxþ; x−Þ and the
two chiral functions Ξ��ðx�Þ. Thus, the solution space is
χ ¼ fΞþþðxþÞ;Ξ−−ðx−Þ;φðxþ; x−Þg. Note that the pres-
ence of an arbitrary φðxþ; x−Þ prevents a complete chiral
splitting of the solution space and that, equivalently, the
holographic stress-energy tensor components T�� in (24)
are not chiral nor antichiral. This is one of the main
differences with respect to [30].
A generic variation of the solution space is generated by

σ and Y�, so we symbolically write δξχ ¼ δðσ;Y�Þχ. Using
(15) with (18) we compute

δðσ;0Þφ ¼ −σ; δðσ;0ÞΞ�� ¼ 0; ð25Þ

and
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δð0;Y�Þφ ¼ ∂−Y− þ ∂þYþ þ 2ðYþ∂þφþ Y−∂−φÞ;

δð0;Y�ÞΞ�� ¼ Y�∂�Ξ�� þ 2Ξ��∂�Y� −
1

2
∂3
�Y

�: ð26Þ

Before proceeding to calculate the asymptotic symmetry
algebra, it is convenient to trade σðxþ; x−Þ for the new field
dependent parameter ωðxþ; x−Þ as

ω ¼ ΩY − σ: ð27Þ

Note that ω depends on the derivatives of φ. Using ω,
Eqs. (25)–(26) can be more compactly written as

δðω;Y�Þφ ¼ ω;

δðω;Y�ÞΞ�� ¼ Y�∂�Ξ�� þ 2Ξ��∂�Y� −
1

2
∂3
�Y

�: ð28Þ

The conformal factor φ transforms only under ω while Ξ��
transform as the components of an anomalous two-dimen-
sional CFT energy-momentum tensor [105]. Thanks to the
redefinition of the residual diffeomorphisms generators
(27) we have isolated the total part of the asymptotic
symmetries that induces a Weyl rescaling of the boundary
metric. This is in agreement with what is found in
Appendix B, where it is shown, using Chern-Simons
formulation, that φ completely decouples from the remain-
ing dynamical content of the theory. Another more
straightforward way to introduce ω is to require that the
residual vector fields of (8) induce asymptotically a Weyl
rescaling of the boundary metric

Lξγab ¼ 2ωρ−2gð0Þab þOðρ0Þ: ð29Þ

This equation leads to

Dð0Þ
a Yb þDð0Þ

b Yb ¼ 2ðωþ σÞgð0Þab ; ð30Þ

which implies (27).
Note that from the definition (4) of the holographic

stress-energy tensor and from (15) it follows that, under a
residual Weyl transformation, Tab transforms as

δðω;0ÞTab ¼
c

12π
ðDð0Þ

a Dð0Þ
b ω − gð0Þab□

ð0ÞωÞ: ð31Þ

Hence, if we were to require that the vector field generating
Weyl transformations satisfied

δðω;0ÞTa
a ¼ −2ωTa

a −
c

12π
□

ð0Þω≡ −2ωTa
a; ð32Þ

then the trace of Tab, or equivalently Rð0Þ, would transform
as a Weyl scalar of weight −2. This condition automatically
implies that ω is a harmonic function

□ω ¼ 0; ð33Þ

whose general solution is

ωðxþ; x−Þ ¼ ωþðxþÞ þ ω−ðx−Þ: ð34Þ

In the following, we will refer to this situation as the ω-
chiral case. Note that requiring the gauge parameter ω to
satisfy (34) implies that φ can vary under the action of the
asymptotic symmetry group only as

δðω;Y�Þφ ¼ ωþðxþÞ þ ω−ðx−Þ: ð35Þ

We will return to the interpretation of (33) in Sec. IV. For
the moment let us just note that, under (33), even if the
solution space does not admit a chiral splitting, its variation
δξχ can be decomposed into two sectors with definite

chiralities, δξ�χ ¼ fδðω�;Y�ÞΞ��; δðω�;Y�Þφg.

D. Asymptotic symmetry algebra

The on-shell residual diffeomorphisms generator in
light-cone coordinates is

ξρ ¼ ρσðxÞ;
ξ� ¼ Y�ðx�Þ þ ρ2l2e−2φ∂∓σ

þ ρ4l2e−4φ½∂∓σg
ð2Þ
þ− þ ∂�σg

ð2Þ
��� þOðρ6Þ; ð36Þ

whereas the algebra is

½ξ1;ξ2�ρM¼ ξ̂ρ¼ρσ̂;

σ̂¼Yþ
1 ∂þσ2þY−

1 ∂−σ2−Yþ
2 ∂þσ1−Y−

2 ∂−σ1; ð37Þ

½ξ1; ξ2��M ¼ ξ̂� ¼ Ŷ� þ ρ2l2e−2φ∂∓σ̂ þOðρ4Þ;
Ŷ� ¼ Y�

1 ∂�Y�
2 − Y�

2 ∂�Y�
1 : ð38Þ

This algebra is a semidirect sum: by denoting an element of
the algebra as the pair ðσ; Y�Þ, the Lie bracket between two
elements is ½ðσ1; Y�

1 Þ; ðσ2; Y�
2 Þ� ¼ ðσ̂; Ŷ�Þ, where σ̂ and Ŷ�

are given in (37) and (38).
We now reformulate the algebra in terms of the param-

eter ω introduced in (27). The on-shell generator is

ξρ ¼ ρðΩY − ωÞ; ð39Þ

ξ� ¼ Y� þ ρ2l2e−2φ∂∓ðΩY − ωÞ
þ ρ4l2e−4φ½∂∓ðΩY − ωÞgð2Þþ− þ ∂�ðΩY − ωÞgð2Þ���
þOðρ6Þ: ð40Þ

Notice that this reformulation introduces a field depend-
ence in ξρ, which was previously absent. This implies that
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we need to use the modified Lie bracket also for this
component. We now obtain

½ξ1; ξ2�ρM ¼ ξ̂ρ ¼ ρðΩŶ − ω̂Þ;
Ŷ� ¼ Y�

1 ∂�Y�
2 − Y�

2 ∂�Y�
1 ; ω̂ ¼ 0; ð41Þ

and, as before,

∂ρð½ξ1; ξ2��MÞ ¼ −
l2

ρ2
gab∂bð½ξ1; ξ2�ρMÞ;

lim
ρ→0

ð½ξ1; ξ2��MÞ ¼ Ŷ�: ð42Þ

Integrating these equations leads to

½ξ1;ξ2��M¼ ξ̂�¼ Ŷ�þρ2l2e−2φ∂∓ðΩŶ − ω̂Þ
þρ4l2e−4φ½∂∓ðΩŶ− ω̂Þgð2Þþ−þ∂�ðΩŶ − ω̂Þgð2Þ���
þOðρ6Þ; ð43Þ

where Ŷ� and ω̂ are defined in (41).
With this set of independent generators of variations in

solution space ðω; Y�Þ, the asymptotic symmetry algebra is
thus a direct sum of two copies of the Witt algebra with the
Abelian ideal of Weyl rescalings. In order to describe
the asymptotic symmetry algebra in terms of a basis, we use
the notation established in (7) with the subscript ðω; Y�Þ
such that

ξðω;Y�Þ ¼ ξρðω;Y�Þ∂ρ þ ξþðω;Y�Þ∂þ þ ξ−ðω;Y�Þ∂−: ð44Þ

Consider the vector field ξY� ≔ ξð0;Y�Þ ¼ ξρ
Y�∂ρ þ ξþ

Y�∂þþ
ξ−Y�∂− and the mode expansions Y�

1 ∼ einx
�

and

Y�
2 ∼ eimx� . Computing the mode decomposition of Ŷ�

in (41)

Ŷþ¼ iðn−mÞeiðnþmÞxþ ; Ŷ−¼ iðn−mÞeiðnþmÞx− ; ð45Þ

we gather

½ξ�n ; ξ�m�M ¼ iðn −mÞξ�nþm; ½ξ�n ; ξ∓m �M ¼ 0; ð46Þ

where we replaced the Y� subscript by the mode number
ξY� ↦ ξ�n .

7 We thus have two copies of the Witt algebra,
which is expected since for ω ¼ 0 we reach BH boundary
conditions, where this algebra has already been derived [3].
Set now Y� ¼ 0 and consider ζ

ω
≔ ξðω;0Þ ¼ ζρω∂ρ þ

ζþω∂þ þ ζ−ω∂−. Expanding ω1 ∼ eipx
þ
eiqx

−
and ω2 ∼

eirx
þ
eisx

−
the algebra reads

½ζpq; ζrs�M ¼ 0; ½ξ�n ; ζrs�M ¼ 0: ð47Þ

where we replaced the ω subscript by the mode numbers
ζ
ω
↦ ζpq. Denoting an element of the algebra as the pair

ðω; Y�Þ, the Lie bracket between two elements
is ½ðω1; Y�

1 Þ; ðω2; Y�
2 Þ� ¼ ð0; Ŷ�Þ.

In the particular subclass of ω satisfying (34), i.e., the
ω-chiral case, we can consider the algebra of the left and
right Weyl sectors separately. Expanding ω� ∼ eipx

�
we

denote by ζþp the vector ζ
ω
with ωþ ∼ eipx

þ
and ω− ¼ 0

and by ζ−p the vector ζ
ω
with ω− ∼ eipx

−
and ωþ ¼ 0. The

algebra now becomes

½ζ�p ; ζ�q �M ¼ 0; ½ζ�p ; ζ∓q �M ¼ 0;

½ξ�n ; ζ�p �M ¼ 0; ½ξ�n ; ζ∓q �M ¼ 0: ð48Þ

III. CHARGES AND ALGEBRA

This section is devoted to the study of asymptotic
charges under the boundary conditions spelled above.
We will discuss the charge algebra: we retrieve the usual
Virasoro double copy, plus a Weyl sector with a nontrivial
central extension.

A. Surface charges

Surface charges are computed using the prescription
given in [16]

=δQξ½h; g� ¼
1

16πG

Z
S1∞

1

2
εμναdxαK

μν
ξ ½g; h�

¼ 1

16πG

Z
2π

0

dϕKρt
ξ ½g; h�: ð49Þ

Here hμν ¼ δgμν are the on-shell variations of the metric,
the integration is on the circle at infinity spanned by ϕ and
we use the convention ερtϕ ¼ 1. The antisymmetric tensor
Kμν

ξ ½g; h� in (49) is explicitly given by

Kμν
ξ ½g; h� ¼ ffiffiffiffiffiffi

−g
p ½ξνDμh − ξνDσhμσ þ ξσDνhμσ

þ 1

2
hDνξμ þ 1

2
hνσðDμξσ −Dσξ

μÞ − ðμ ↔ νÞ�:
ð50Þ

Charges are computed at fixed time t and radial coordinate ρ
approaching the boundary and directly in the ω parametriza-
tion. The charges associated with Y� with ω ¼ 0 are (as for
the vector fields we define =δQY�½g; h� ≔ =δQð0;Y�Þ½g; h�)

=δQY�½g; h� ¼ l
8πG

Z
2π

0

dϕðY−δΞ−− þ YþδΞþþÞ: ð51Þ
7Here the notation ξ�n means that ξ�n is the full vector ξYþ with

Yþ ∼ einx
þ
and Y− ¼ 0, while ξ−n is the vector ξY− with Yþ ¼ 0

and Y− ∼ einx
−
.
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To obtain these charges we used ∂ϕ ¼ ∂þ − ∂− and inte-
grated out total ϕ derivative terms. The Y� charges are thus
integrable:

QY�½g� ¼ l
8πG

Z
2π

0

dϕðYþΞþþ þ Y−Ξ−−Þ: ð52Þ

These are the usual conserved charges, found also with BH
boundary conditions. The QY�½g� in (52) are computed with
respect to the background metric ḡ defined by Ξ�� ¼ 0,
which is theBTZblack holewith vanishingmass and angular
momentum. The ones computed with respect to the global
AdS3 background can be obtained shifting Ξ�� → Ξ�� þ 1

4

in (52) [48].
The Weyl sector, found by setting Y� ¼ 0, is also

integrable and given by

Qω½g� ¼
l2

8πG

Z
2π

0

dϕðφ∂tω − ω∂tφÞ: ð53Þ

The same charges can be obtained using the Iyer-Wald
prescription [22,23]. While these are the most general Weyl
charges in our setup, we now restrict attention to the case
(34), i.e., ω ¼ ωþ þ ω−. Correspondingly, the Weyl
charges decompose as

Qω½g� ¼ −
l

4πG

Z
2π

0

dϕðωþ∂þφþ ω−∂−φÞ

≡Qωþ½g� þQω− ½g�; ð54Þ

where we have integrated by parts. Note that these charges
split into two pieces, generating the chiral and antichiral
transformations of φ. Contrarily to the Y� sector, Qω is not
conserved. This is due to the presence of a nonvanishing
symplectic flux through the boundary, as we will empha-
size in Sec. IV.
We would like to stress that the main result of our paper

is the computation of the surface charges including a new
nontrivial Weyl sector. These additional interesting charges
are finite, integrable but not conserved. These features
make them special. Other examples of nonconserved
integrable charges at finite boundaries are discussed in
[38]. We now proceed to compute their algebra.

B. Charge algebra

We now verify that the surface charges, under the
Poisson brackets, form a projective representation of the
asymptotic symmetry algebra with modified Lie brackets

fQξ
1
½g�; Qξ

2
½g�g ¼ δξ

2
Qξ

1
½g� ¼ Q½ξ

1
;ξ

2
�M ½g� þKξ

1
;ξ

2
; ð55Þ

where Kξ
1
;ξ

2
is the central extension.

We start by computing δξ
2
Qξ

1
½g�. Defining the integrand

Kρt
ξ ½g� ¼ Kρt

ξ ½g; g − ḡ�, we have

δðω2;Y�
2
ÞK

ρt
ðω1;Y�

1
Þ½g� ¼

l
8πG

ðYþ
1 δðω2;Y�

2
ÞΞþþ þ Y−

1 δðω2;Y�
2
ÞΞ−−

þ lδðω2;Y�
2
Þφ∂tω1 − lω1∂tδðω2;Y�

2
ÞφÞ:
ð56Þ

We work separately for the Y� and ω parts. This can be
done because Ξ�� and φ transform independently under
Y� and ω, respectively. For the Y� sector, after a straight-
forward computation, this yields the well-known BH
central extension [3]

Kξ
Y�
1

;ξ
Y�
2

¼ 1

8πG

Z
2π

0

dϕð∂ϕYt
1∂2

ϕY
ϕ
2 − ∂ϕYt

2∂2
ϕY

ϕ
1 Þ: ð57Þ

Consider now theWeyl sector, obtained by settingY� ¼ 0
with nonvanishing ω. We have

δðω2;0ÞK
ρt
ðω1;0Þ½g� ¼

l2

8πG
ðω2∂tω1 − ω1∂tω2Þ: ð58Þ

Here, since the asymptotic symmetry algebra is Abelian we
have Q½ξ

1
;ξ

2
�M ½g� ¼ 0. Thence

Kξ
1
;ξ

2
¼ l2

8πG

Z
2π

0

dϕðω2∂tω1 − ω1∂tω2Þ: ð59Þ

The complete charge algebra is fQξ
1
½g�;Qξ

2
½g�g¼δξ

2
Qξ

1
½g�¼

Qξ̂½g�þKξ
1
;ξ

2
, where ξ̂ ¼ ½ξ

1
; ξ

2
�M are gathered in (41) and

(43). The total central extension is Kξ
1
;ξ

2
¼ Kξ

Yþ
1

;ξ
Yþ
2

þ
Kξ

Y−
1

;ξ
Y−
2

þKζ
1
;ζ

2
. To this expression contributes theordinary

BH central charge plus an additional term coming from the
Weyl rescalings of the boundary metric. The Y� sector of the
central extension evaluated on the vector fields mode
decomposition ξ�n and ξ�m (modes of ξð0;Y�Þ) is

Kξ�
n
;ξ�

m
¼ −im3

c�

12
δnþm;0; Kξ�

n
;ξ∓

m
¼ 0: ð60Þ

On the other hand, the central extension for the modes
decomposition of the Weyl sector yields

Kζ
pq
;ζ

rs
¼−iðr−qÞcWωqþs;qþsδpþr;qþs; cW ¼ l

2G
: ð61Þ

The total charge algebra then reads

fQξ�
n
½g�;Qξ�

m
½g�g¼ iðn−mÞQξ�

nþm
½g�− im3

c�

12
δnþm;0; ð62Þ

fQξ�
n
½g�; Qξ∓

m
½g�g ¼ 0; ð63Þ

fQζ
pq
½g�;Qζ

rs
½g�g¼−iðr−qÞcWe2iðqþsÞt=lδpþr;qþs; ð64Þ
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fQξ�
n
½g�; Qζ

pq
½g�g ¼ 0; ð65Þ

where c� ¼ 3l
2G is the BH central extension. This algebra is

the direct sumof two centrally extendedVirasoro sectors and
the centrally extended Weyl sector. We note that the Weyl
central extension is explicitly time dependent. As such, we
are dealing here with a one-parameter family of algebras,
labeled by the time slice t at which the charges are computed.
The total expressionKξ

1
;ξ

2
is indeed a 2-cocycle because

it satisfies

K½ξ
1
;ξ

2
�M;ξ3 þK½ξ

3
;ξ

1
�M;ξ

2
þK½ξ

2
;ξ

3
�M;ξ

1
¼ 0: ð66Þ

This equation is automatically satisfied for the Weyl sector
and the mixed sector, while in the Witt sectors it is proved
as usual. Furthermore, since the Virasoro central extension
is nontrivial and any 2-cocycles of an Abelian algebra
cannot be a coboundary, (59) is nontrivial.
Again, in the ω-chiral case, the central extension for the

Weyl left- and right-movers simplifies to

Kζ�
p
;ζ�

q
¼ ipc�Wδpþq;0; Kζ�

p
;ζ∓

r
¼ 0: ð67Þ

The total charges algebra then reads

fQξ�
n
½g�; Qξ�

m
½g�g ¼ iðn −mÞQξ�

nþm
½g� − im3

c�

12
δnþm;0;

ð68Þ

fQξ�
n
½g�; Qξ∓

m
½g�g ¼ 0; ð69Þ

fQζ�
p
½g�; Qζ�

q
½g�g ¼ ipc�Wδpþq;0; ð70Þ

fQζ�
p
½g�; Qζ∓

q
½g�g ¼ 0; ð71Þ

fQξ�
n
½g�; Qζ�

p
½g�g ¼ 0; ð72Þ

fQξ�
n
½g�; Qζ∓

p
½g�g ¼ 0: ð73Þ

In this particular framework the Weyl central extension
does not depend on time and therefore the one-parameter
family of algebras reduces to a Kac-Moody current algebra.
The algebra (68)–(73), up to redefinition of generators, is
the same as the one found in [30], as reviewed in
Appendix A.

IV. HOLOGRAPHIC ASPECTS

Thanks to the AdS=CFT dictionary [4,42–45], we know
that the bulk gravity theory is dual to a boundary field
theory. As long as the former is in the classical limit, the
latter is strongly coupled. Therefore, little is known about
it: we cannot construct its perturbative action but we still

have access to nonperturbative features such as quantum
symmetries expressed in terms of Ward-Takahashi iden-
tities of the path integral partition function [101,102]. The
goal of this section is to show that there is a breaking in the
conservation law of the Weyl current, which has a holo-
graphic dual counterpart as a boundary anomalous Ward-
Takahashi identity [100]. Before proceeding let us briefly
review the emergence of theWeyl anomaly in the context of
holographic renormalization.
The regularised action for general relativity in asymp-

totically locally AdS3 spacetimes is defined [28,54,70] as
S½g� ¼ limϵ→0 Sϵ½g� with

Sϵ½g�¼
1

16πG

Z
Mϵ

d3x
ffiffiffiffiffiffi
−g

p �
Rþ 2

l2

�

þ 1

16πG

Z
∂Mϵ

d2x
ffiffiffiffiffiffi
−γ

p �
2K−

2

l
þl
4
Rð0Þ logϵ

�
; ð74Þ

where K is the trace of the extrinsic curvature of the
constant ρ hypersurface and the last term is the volume
counterterm. The action (74) is defined by first introducing
a cutoff at ρ ¼ ϵ and then taking the limit ϵ → 0. This
process breaks the invariance of the action under the
diffeomorphisms generating Weyl transformations, since
it implies a specific choice of radial foliation. In fact, taking
an on-shell variation of the action (74) yields8

δS½g�¼1

2

Z
∂M

d2x
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
Tabδgð0Þab ¼

c
24π

Z
∂M

ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
Rð0Þδφ;

ð75Þ

where in the last step we have used the conformally flat
parametrization. Hence, with our choice of boundary
conditions, the variational problem is not well defined
[28,63]. Specifying δ to be the variation (28) induced by a

Weyl diffeomorphism so that δωg
ð0Þ
ab ¼ 2ωgð0Þab , we get

δωS½g� ¼
c

24π

Z
∂M

d2x
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
Rð0Þω

≡
Z
∂M

d2x
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
AðxÞωðxÞ; AðxÞ ¼ c

24π
Rð0Þ;

ð76Þ

which is the standard expression for the Weyl anomaly in
AlAdS3 spacetimes. Note that we define AðxÞ to be the
integrand coefficient of ωðxÞ in δωS½g� [54,80]. Taking a
variation of (75) yields the symplectic structure [20,106,107]

8For the Chern–Simons reformulation of the variational
problem, see Appendix B.
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ωðδ1; δ2Þ ¼
1

2

Z
d2xδ1

� ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
Tab

�
∧ δ2g

ð0Þ
ab

¼ −
1

8πG

Z
2π

0

dϕ
Z

t2

t1

dtð□δ1φ ∧ δ2φÞ; ð77Þ

wherewe have used the conformally flat parametrization and
where the flat Laplacian is defined as □ ¼ −l2∂2

t þ ∂2
ϕ.

Integrating by parts in t we have, discarding total ϕ
derivatives, that

ωðδ1; δ2Þ ¼ −
l2

8πG

Z
2π

0

dϕ
Z

t2

t1

dt½∂tðδ1φ ∧ ∂tδ2φÞ�

¼ −
l2

8πG

Z
2π

0

dϕ½δ1φ ∧ δtδ2φ�t2t1 : ð78Þ

This shows that the difference in time of the Weyl
charges is equal to the symplectic flux contracted with a
Weyl generating vector field,9

ωðδω; δÞ ¼
l2

8πG
δ

Z
2π

0

dϕ½φ∂tω − ω∂tφ�t2t1
¼ δQωðt2Þ − δQωðt1Þ: ð79Þ

Therefore the Weyl charges are not conserved but inte-
grable, as mentioned above. We proceed now to reduce the
theory to the ω-chiral case.
We start by noticing that, taking a Weyl variation of

Eq. (76), we obtain

δω1
δω2

S½g� ¼ −
1

8G

Z
∂M

d2xω1□ω2: ð80Þ

We thus see that the effect of constraining the form of the
asymptotic symmetry generators according to (33) is to make
δω1

δω2
S½g� vanishing. In other words, (33) means that we are

not allowing the integrated Weyl anomaly to vary under the
action of the asymptotic symmetry algebra. This means that,
under the above-spelled condition onωðxÞ, the operator δω on
the functional S½g� is a cocycle δω1

δω2
S½g� ¼ 0 [82,89,91,93].

From now onwewill impose□ω ¼ 0 and comment on some
holographic aspects in this framework.
We now proceed to construct a Weyl current [109]. This

procedure is well known for the Virasoro sector, where the
currents combine in the stress tensor of the boundary dual
theory, and its conservation is interpreted in the bulk as
Einstein equations, while in the boundary as the Ward-
Takahashi identity for the transformations generated by
ξað0;Y�Þ. In a similar fashion, given that the condition □ω ¼
0 ensures we deal with chiral and antichiral Weyl charges
generators (54), we can define two Weyl currents. Starting
from (50) we introduce

Kρa
ðω;0Þ½g� ¼ Kρa

ðωþ;0Þ½g� þ Kρa
ðω−;0Þ½g�: ð81Þ

Before giving their explicit expression, we first use the
ambiguity in defining Kμν

ξ ½g; h�

K̃ρa
ðωþ;0Þ½g� ¼ Kρa

ðωþ;0Þ½g� þ ∂bF
½ba�
ωþ ; ð82Þ

K̃ρa
ðω−;0Þ½g� ¼ Kρa

ðω−;0Þ½g� þ ∂bF
½ba�
ω− : ð83Þ

Choosing

Fþ−
ωþ ¼ −

l
8πG

φωþ; Fþ−
ω− ¼ l

8πG
φω−; ð84Þ

we obtain

K̃ρþ
ðωþ;0Þ½g� ¼ 0; K̃ρ−

ðωþ;0Þ½g� ¼ −
l

4πG
ωþ∂þφ; ð85Þ

and

K̃ρþ
ðω−;0Þ½g� ¼ −

l
4πG

ω−∂−φ; K̃ρ−
ðω−;0Þ½g� ¼ 0: ð86Þ

These are the integrands of the chiral and antichiral Weyl
charges found in (54). We can now introduce the two Weyl
currents J̃ωþ ¼ J̃aωþ∂a ¼ J̃þωþ∂þ þ J̃−ωþ∂− and J̃ω− ¼
J̃aω−∂a ¼ J̃þω−∂þ þ J̃−ω−∂− for the two chirality sectors as

K̃ρa
ðωþ;0Þ½g� ¼

ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
ωþJ̃aωþ ; ð87Þ

K̃ρa
ðω−;0Þ½g� ¼

ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

q
ω−J̃aω− ; ð88Þ

such that the currents are tensors [Kμν
ξ ½g; h� in (50) is a

tensor density] and they do not depend on the gauge
parameters ωþ and ω−. Their explicit expressions, using
ds2bdy ¼ −e2φdxþdx−, are

J̃þωþ ¼ 0; J̃−ωþ ¼ −
le−2ϕ

2πG
∂þφ; ð89Þ

and

J̃þω− ¼ −
le−2ϕ

2πG
∂−φ; J̃−ω− ¼ 0: ð90Þ

We eventually compute the boundary covariant divergence
of these two currents and find

Dð0Þ
a J̃aωþ ¼ −AðxÞ; ð91Þ

Dð0Þ
a J̃aω− ¼ −AðxÞ; ð92Þ9This result can be derived in first order formalism, [108].
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where A is the anomaly integrand coefficient defined in
(76). We have thus shown that the Weyl currents are not
conserved due to the presence of the anomaly [100]. The
boundary Weyl symmetry is broken, for the bulk counter-
part Weyl charges are not conserved. This process is driven
by the anomaly coefficient: for flat boundary metrics the
current is conserved [30], as we thoroughly review in
Appendix A.

V. CONCLUSIONS

We summarize here our results and offer some possible
outlooks of the present work. In the first part of the
paper we have analyzed the asymptotic structure of
three-dimensional general relativity for AlAdS3 space-
times. In the spirit of keeping diffeomorphisms generat-
ing Weyl rescalings of the boundary metric disentangled
from those generated by Ya, we imposed a specific set of
boundary conditions, namely the boundary metric being
conformally flat, with only the conformal factor φ free to
vary within the solution space. Correspondingly, we have
computed the asymptotic symmetry algebra of this setup.
The boundary conditions adopted here do not lead to a
well-defined variational principle. Nonetheless, we have
found finite and integrable, although not conserved,
surface charges associated with the bulk diffeomorphisms
generating Weyl transformations. Integrability of the
charges allows us to construct the charge algebra, which
admits a new central extension in the Weyl sector.
Concerning the holographic interpretation, the AdS=

CFT dictionary predicts that bulk asymptotic symmetries
are dual to boundary global symmetries of a putative
field theory. Although the holographic interpretation of
the Weyl sector has been widely investigated, this has
not been done explicitly in terms of asymptotic sym-
metries. That is, boundary currents built out of bulk
asymptotic Weyl charges, such that their nonconserva-
tion results in the anomalous Ward-Takahashi identity,
have not been previously constructed. In Sec. IV we
filled this gap by explicitly deriving these currents in the
ω-chiral case.
In this manuscript we have not addressed the holo-

graphic interpretation corresponding to the most general
variation of the boundary metric [i.e., ω not satisfying
(33)], which is certainly worth exploring. In this regard, a
different choice of gauge in the bulk may be more suited,
e.g., [60]. In particular, this raises the question on how the
Weyl charges explicitly depend on the gauge condition
[96,97,103,104]. Another outlook is the extension of this
work to higher dimensions. Specifically, we expect to
unravel similar patterns in even-boundary dimensions,
whereas it would also be interesting to investigate Weyl
charges in odd-boundary dimensions. Furthermore, a suit-
able flat limit [48,110] of these results might be relevant for
the flat holography program [67,111–113] and the recent
developments in celestial CFT [114–116]. Eventually, on

the macroscopic side of holography, i.e., in the fluid/
gravity correspondence, it would be interesting to study
the role of these boundary conditions from the fluid
perspective [50].
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APPENDIX A: CHIRAL SPLITTING OF THE
CONFORMAL FACTOR

This Appendix is devoted to the comparison of this paper
with [30]. There, one requires an additional boundary
condition, namely

□ð0Þφ ¼ 0: ðA1Þ

This implies that the variational principle is well defined.
Indeed, the solution of (A1) is, in light-cone coordinates,

φðxþ; x−Þ ¼ φþðxþÞ þ φ−ðx−Þ: ðA2Þ

The boundary line element is thus

ds2bdy ¼ gð0Þab dx
adxb ¼ −e2φþðxþÞdxþe2φ−ðx−Þdx−: ðA3Þ

Notice in particular that, with these boundary conditions,
the boundary metric is flat

Rð0Þ ¼ 8e−2φ∂þ∂−φ ¼ 0: ðA4Þ

Clearly, in order to preserve (A1), the parameter ω
generating Weyl transformations must be of the form

ωðxþ; x−Þ ¼ ωþðxþÞ þ ω−ðx−Þ; ðA5Þ

i.e., it admits a splitting into a chiral and an antichiral part.
Thus, we can repeat the same arguments of Sec. III and the
asymptotic symmetry algebra sector involving Weyl gen-
erators is given again by (48),

½ζ�p ; ζ�q �M ¼ 0; ½ζ�p ; ζ∓q �M ¼ 0;

½ξ�n ; ζ�p �M ¼ 0; ½ξ�n ; ζ∓p �M ¼ 0: ðA6Þ

In this setup the Weyl charges become explicitly
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Qω½g� ¼ −
l

4πG

Z
2π

0

dϕðωþ∂þφþ þ ω−∂−φ
−Þ

≡Qωþ½g� þQω− ½g�: ðA7Þ

Furthermore, since the Weyl central extension (59) is
independent of φ, it is given again by

Kζ�
p
;ζ�

q
¼ ipc�Wδqþp;0; Kζ�

p
;ζ∓

q
¼ 0; ðA8Þ

just as in (67). Therefore the centrally extended charge
algebra with these boundary conditions is the same
as (68)–(73),

fQξ�
n
½g; h�; Qξ�

m
½g�g ¼ iðn −mÞQξ�

nþm
½g� − im3

c�

12
δnþm;0;

ðA9Þ

fQξ�
n
½g�; Qξ∓

m
½g�g ¼ 0; ðA10Þ

fQζ�
p
½g�; Qζ�

q
½g�g ¼ ipc�Wδpþq;0; ðA11Þ

fQζ�
p
½g�; Qζ∓

q
½g�g ¼ 0; ðA12Þ

fQξ�
n
½g�; Qζ�

p
½g�g ¼ 0; ðA13Þ

fQξ�
n
½g�; Qζ∓

p
½g�g ¼ 0: ðA14Þ

Several comments are in order here. First of all, we remark
that the charges obtained here are conserved, integrable and
finite. This is expected: the nonconservation of our charges
was due to the nonflatness of the boundarymetric. Secondly,
the charge algebra is not any longer explicitly time depen-
dent. Lastly, note that in our basis the algebra is a direct sum
of the Virasoro and theWeyl piece, while in [30] the algebra
was represented as a semidirect sum. This is ultimately a
consequence of our field-dependent redefinition (27).

APPENDIX B: CHERN-SIMONS FOUNDATION

We reformulate here our results in the Chern-Simons
formulation. This has a twofold purpose: it allows on the
one hand to compare our results with [65] while on the
other hand to perform the Gauss decomposition which
outlines the role played by the Weyl anomaly and the
absence of propagating bulk degrees of freedom. In
particular, wewill show that the conformal factor decouples
from the dynamical fields of the theory. This Appendix
extends to our boundary conditions results obtained origi-
nally in [8,9] and further discussed in [13,65].

1. Conventions and solution space

Three-dimensional general relativity with a negative cos-
mological constant can be described by a Chern-Simons

theory for an soð2; 2Þvalued connection [6,117]. In particular,
since soð2; 2Þ is isomorphic to slð2;RÞ ⊕ slð2;RÞ,10 the
Einstein-Hilbert action can be written, up to boundary terms,
as the sum of two Chern-Simons actions

SEH½A; Ā� ¼ SCS½A� − SCS½Ā�; ðB1Þ

where we have denoted by A and Ā the chiral and antichiral
connections, respectively, and where

SCS½A� ¼ −κ
Z
M
d3xTr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
;

κ ¼ l
16πG

: ðB2Þ

Following the conventions used in [65], we choose the
generators of slð2;RÞ as

jþ ¼ −
1ffiffiffi
2

p
�
0 0

1 0

�
; j− ¼ −

1ffiffiffi
2

p
�
0 1

0 0

�
;

jz ¼
1

2

�
1 0

0 −1

�
; ðB3Þ

so that the Killing form is

TrðjajaÞ ¼
1

2
ηab; ηab ¼

0
B@

0 1 0

1 0 0

0 0 1

1
CA; ðB4Þ

where the latin indices a and b take the values þ;−; z. The
dreibein eaμ satisfy

gμνðxÞ ¼ eaμðxÞebνðxÞηab; ðB5Þ

or, defining the one-forms ea ¼ eaμdxμ,

ds2 ¼ gμνdxμdxν ¼ ηabeaeb ¼ ðezÞ2 þ 2eþe−: ðB6Þ

The Hodge dual of the spin connection ωab ¼ ωab
μdxμ is

defined as

ωa ¼ −
1

2
ϵabcωbc; ϵzþ− ¼ −ϵzþ− ¼ 1; ðB7Þ

whereas the chiral and antichiral connections as

A ¼
�
ωa þ ea

l

�
ja; Ā ¼

�
ωa −

ea

l

�
ja: ðB8Þ

The one-forms ea are chosen to be

10We are going to refer to the two copies of slð2;RÞ as the left
or chiral slð2;RÞL and right or antichiral slð2;RÞR.
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e� ¼ −
1ffiffiffi
2

p
�
eφ

ρ
dx� − ρe−φðgð2Þ∓∓dx∓ þ gð2Þþ−dx

�Þ
�
; ez ¼ −

l
ρ
dρ; ðB9Þ

and the dual of the spin connection

ω� ¼ −
1ffiffiffi
2

p
l

�
eφ

ρ
dx� þ ρe−φðgð2Þ∓∓dx∓ þ gð2Þþ−dx

�Þ
�
; ωz ¼ ∂−φdx− − ∂þφdxþ: ðB10Þ

It follows that the left and right connections are given by A ¼ Aμdxμ and Ā ¼ Āμdxμ

Aþ ¼
 
− 1

2
∂þφ

e−φρ
l gð2Þþþ

eφ
lρ

1
2
∂þφ

!
; A− ¼

 
1
2
∂−φ

e−φρ
l gð2Þþ−

0 − 1
2
∂−φ

!
; Aρ ¼

 
− 1

2ρ 0

0 1
2ρ

!
; ðB11Þ

Āþ ¼
 
− 1

2
∂þφ 0

e−φρ
l gð2Þþ−

1
2
∂þφ

!
; Ā− ¼

 
1
2
∂−φ

eφ
lρ

e−φρ
l gð2Þ−− − 1

2
∂−φ

!
; Āρ ¼

 
1
2ρ 0

0 − 1
2ρ

!
: ðB12Þ

Note that with BH boundary conditions, φ ¼ 0, Aþ is chiral, A− ¼ 0 and Ā− is antichiral, Āþ ¼ 0.

2. Variational problem, Weyl anomaly and WZW reduction

Let us now discuss the action principle and the variatonal problem associated with (B1). We find it convenient to discuss
it in terms of coordinates ðρ; t;ϕÞ. The action contains a pure boundary term that does not change the dynamics and that we
ignore. Indeed, we define our starting action as (the dot indicates a t derivative while prime a ϕ derivative)

S̃CS½A� ¼ −κ
Z
M
d3xTrðAρ

_Aϕ − Aϕ
_Aρ þ 2AtFϕρÞ: ðB13Þ

Taking a variation of (B13) yields

δS̃CS½A� ¼ −κ
Z
M
d3xTrð2δArFtϕ − 2δAϕFtr þ 2δAtFϕrÞ þ 2κ

Z
∂M

d2xTrðAtδAϕÞ ¼ 2κ

Z
∂M

d2xTrðAtδAϕÞ;

where in the last step we have imposed the equations of motion, F ¼ dA ¼ 0. In total, considering also the contribution of
the antichiral sector

δS̃CS½A� − δS̃CS½Ā� ¼ 2κ

Z
∂M

d2xTrðAtδAϕ − ĀtδĀϕÞ: ðB14Þ

With BH boundary conditions, in order to have a well-defined variational problem, it is sufficient to add to the action the
Coussaert-Henneaux-Van Driel boundary term [8],

S̃½A; Ā� ¼ S̃CS½A� − S̃CS½Ā� −
κ

l

Z
∂M

d2xTrðA2
ϕ þ Ā2

ϕÞ; ðB15Þ

whose variation cancels exactly the right-hand side of (B14), since on shell At ¼ 1
lAϕ and Āt ¼ − 1

l Āϕ. However, with our
choice of boundary conditions the variation of the action is

δS̃½A; Ā� ¼ −κlδ
Z
∂M

d2xð∂tφÞ2 þ
2κ

l

Z
∂M

d2xðl2∂2
t − ∂2

ϕÞφδφ: ðB16Þ

The first term is already integrated while the last term is not integrable, due to the Weyl anomaly. With the decomposition

Aμ ¼ Aa
μja;⇒ Az

ϕ ¼ Āz
ϕ ¼ −l∂tφ; ðB17Þ

we can write the action as
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S½A; Ā� ¼ S̃CS½A� − S̃CS½Ā� −
κ

l

Z
∂M

d2xTrðA2
ϕ þ Ā2

ϕÞ þ
κ

l

Z
∂M

d2xAz
ϕĀ

z
ϕ: ðB18Þ

The variational problem for this action is ill defined, for the theory is Weyl anomalous. In other words, it is not possible to
add more boundary terms to the action to achieve δS ¼ 0.
Let us now perform the reduction to a WZW model [118–121]. Solving the constraints, the spatial components of the

connection are given by

Ai ¼ G−1∂iG; Āi ¼ Ḡ−1∂iḠ; ðB19Þ

for some elements G ∈ SLð2;RÞL and Ḡ ∈ SLð2;RÞR. The constraints Fρϕ ¼ 0 and F̄ρϕ ¼ 0 imply that G and Ḡ have the
form

G ¼ gðt;ϕÞhðρ; tÞ; Ḡ ¼ ḡðt;ϕÞh̄ðρ; tÞ; ðB20Þ

as can be easily verified. Furthermore we assume that ∂thðρ; tÞj∂M ¼ ∂th̄ðρ; tÞj∂M ¼ 0. Plugging this into S½A; Ā�, we have,
after some algebra,

S̃½A; Ā� ¼ κ

l

Z
∂M

d2xTr½g−1∂ϕgðl−1g−1∂tg − g−1∂ϕgÞ� þ
κ

3

Z
M
TrðG−1dG ∧ G−1dG ∧ G−1dGÞ

−
κ

l

Z
∂M

d2xTr½ḡ−1∂ϕḡðl−1ḡ−1∂tḡþ ḡ−1∂ϕḡÞ� −
κ

3

Z
M
TrðḠ−1dḠ ∧ Ḡ−1dḠ ∧ Ḡ−1dḠÞ

þ κ

l

Z
∂M

d2xAz
ϕĀ

z
ϕ: ðB21Þ

This is the WZW reduced action.

3. Gauss decomposition

Let us focus on the chiral part of the action (B21) and consider the following decomposition of g

g ¼
�
1 0

σ 1

��
e−χ=2 0

0 eχ=2

��
1 τ

0 1

�
¼
�

e−χ=2 τe−χ=2

σe−χ=2 στe−χ=2 þ eχ=2

�
; ðB22Þ

from which it follows that

g−1∂μg ¼
 

−e−χτ∂μσ − 1
2
∂μχ −e−χτ2∂μσ þ ∂μτ − τ∂μχ

e−χ∂μσ e−χτ∂μσ þ 1
2
∂μχ

!
: ðB23Þ

In terms of the Gauss fields ðσ; χ; τÞ, the boundary term is

κ

l

Z
∂M

d2xTr½g−1∂ϕgðl−1g−1∂tg − g−1∂ϕgÞ� ¼
κ

l

Z
∂M

d2x

�
1

2
χ0ðl_χ − χ0Þ þ le−χðτ0 _σ þ _τσ0Þ − 2e−χτ0σ0

�
: ðB24Þ

For the bulk term first note that, decomposing G as

G ¼
�
1 0

Σ 1

��
e−X=2 0

0 eX=2

��
1 T

0 1

�
; ðB25Þ

we gather

Tr½G−1dG ∧ G−1dG ∧ G−1dG� ¼ −3ϵμνλ∂μðe−X∂νΣ∂λTÞdρ ∧ dt ∧ dϕ: ðB26Þ

Hence, applying Stokes’s theorem,
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κ

3

Z
M
Tr½G−1dG ∧ G−1dG ∧ G−1dG� ¼ −κ

Z
∂M

d2xe−Xð _ΣT 0 − Σ0 _TÞj∂M: ðB27Þ

Furthermore, for the matrix hðρ; tÞ we have

Aρ ¼ h−1∂ρh ¼
�− 1

2ρ 0

0 1
2ρ

�
⇒ h ¼

0
B@

ffiffi
l
ρ

q
0

0
ffiffiρ
l

p
1
CA: ðB28Þ

Since G ¼ gðt;ϕÞhðρ; tÞ we have the equality

�
e−X=2 Te−X=2

Σe−X=2 ΣTe−X=2 þ eX=2

�
¼

0
B@ e−χ=2

ffiffi
l
ρ

q
; e−χ=2

ffiffiρ
l

p
τ

e−χ=2
ffiffi
l
ρ

q
σ e−χ=2

ffiffiρ
l

p ðeχ þ στÞ

1
CA; ðB29Þ

which gives

e−X ¼ l
ρ
e−χ ; T ¼ ρ

l
τ; Σ ¼ σ: ðB30Þ

Hence the term integral in (B27) is −κ
R
∂M d2xe−χð _στ0 − σ0 _τÞ in terms of Gauss fields. The full chiral part of the action thus

reads

κ

l

Z
∂M

d2x

�
1

2
χ0ðl_χ − χ0Þ þ 2e−χσ0ðl_τ − τ0Þ

�
: ðB31Þ

Assuming for ḡ and Ḡ the decompositions

ḡ ¼
�
1 σ̄

0 1

��
eχ̄=2 0

0 e−χ̄=2

��
1 0

τ̄ 1

�
¼
�
σ̄ τ̄ e−χ̄=2 þ eχ̄=2 σ̄e−χ̄=2

τ̄e−χ̄=2 e−χ̄=2

�
; ðB32Þ

Ḡ ¼
�
1 Σ̄
0 1

��
eX̄=2 0

0 e−X̄=2

��
1 0

T̄ 1

�
¼
�
Σ̄ T̄ e−X̄=2 þ eX̄=2 Σ̄e−X̄=2

T̄e−X̄=2 e−X̄=2

�
; ðB33Þ

and noting that h̄ðρ; tÞ is given by

h̄ ¼

0
B@

ffiffiρ
l

p
0

0
ffiffi
l
ρ

q
1
CA: ðB34Þ

The procedure used for the chiral part can be repeated for the antichiral part of the action so that

κ

l

Z
∂M

d2x

�
−
1

2
χ̄0ðl _̄χ þ χ̄0Þ − 2e−χ̄ σ̄0ðl _̄τ þ τ̄0Þ

�
: ðB35Þ

The total action in terms of the Gauss fields is then

S½A; Ā� ¼ κ

l

Z
∂M

d2x

�
1

2
χ0ðl_χ − χ0Þ þ 2e−χσ0ðl_τ − τ0Þ − 1

2
χ̄0ðl _̄χ þ χ̄0Þ − 2e−χ̄ σ̄0ðl _̄τ þ τ̄0Þ þ Az

ϕĀ
z
ϕ

�
: ðB36Þ

Note that it is possible to express Az
ϕ and Āz

ϕ in terms of the Gauss fields as

Az
ϕ ¼ −2e−χτσ0 − χ0 ¼ Āz

ϕ ¼ 2e−χ̄ τ̄σ̄0 þ χ̄0: ðB37Þ
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Defining

C ¼ Az
ϕ

2
¼ Āz

ϕ

2
¼ −

l
2
∂tφ; ðB38Þ

we can rewrite the mixing term as a quadratic term 4C2. We
perform now the Hamiltonian analysis of the action (B36).
The canonical momenta πϕi

¼ ∂L
∂ _ϕi are

πχ ¼
κ

2
χ0; πτ ¼ 2κe−χσ0; πσ ¼ 0; ðB39Þ

πχ̄ ¼ −
κ

2
χ̄0; πτ̄ ¼ −2κe−χ̄ σ̄0; πσ̄ ¼ 0; ðB40Þ

together with πC ¼ 0. The Hamiltonian density is

H ¼ _ϕiπϕi
− L

¼ κ

l

�
1

2
χ02 þ 1

2
χ̄02 þ 2e−χσ0τ0 þ 2e−χ̄ σ̄0τ̄0 − 4C2

�
:

ðB41Þ
Now we implement our boundary conditions, using the
equalities g−1∂ϕg ¼ hAϕh−1j∂M and ḡ−1∂ϕḡ ¼ h̄Āϕh̄−1j∂M.
We obtain the following relations:

C ¼ −e−χτσ0 −
1

2
χ0 ¼ e−χ̄ τ̄σ̄0 þ 1

2
χ̄0; ðB42Þ

e−χσ0 ¼ eφ

l2
¼ −e−χ̄ σ̄0; ðB43Þ

−e−χτ2σ0 þ τ0 − τχ0 ¼ e−φðgð2Þþþ − gð2Þþ−Þ ðB44Þ

−e−χ̄ τ̄2σ̄0 − τ̄0 þ τ̄χ̄0 ¼ −e−φðgð2Þ−− − gð2Þþ−Þ: ðB45Þ

Plugging them in the Hamiltonian of (B41) we have

H ¼ κ

l

�
1

2
χ02 þ 1

2
χ̄02 − χ00 − χ̄00 þ φ0ðχ0 þ χ̄0Þ − 4C2

�
;

ðB46Þ
where we note that C cannot be further expressed in terms
of the other independent fields. Note also that the
Hamiltonian can be simply expressed as

H ¼ 2κ

l3
ðgð2Þþþ þ gð2Þ−− − 2gð2Þþ−Þ ¼ lTtt; ðB47Þ

as it is reasonable, using (B42)–(B45). Let us turn to the
equations of motion. The Hamiltonian action is

SH ¼
Z
∂M

d2xðπχ _χ þ πχ̄ _̄χ þ πτ _τ þ πτ̄ _̄τ −HÞ; ðB48Þ

and, using equations (B39) and (B40), together with the
relations (B42)–(B45), we get

SH ¼ κ

l

Z
∂M

d2x

��
1

2
χ0 þ φ0

�
ðl_χ − χ0Þ −

�
1

2
χ̄0 þ φ0

�
ðl _̄χ þ χ̄0Þ þ 4lC _φþ 4C2

�
: ðB49Þ

It follows from (B49) that C is proportional to the canonical momentum conjugate to φ. The Poisson bracket

fφðt;ϕÞ; Cðt;ϕ0Þg ¼ 1

4κ
δðϕ − ϕ0Þ ⇒ fφðt;ϕÞ; ∂tφðt;ϕ0Þg ¼ −

8πG
l2

δðϕ − ϕ0Þ ðB50Þ

where we have used (B38) to express C in terms of ∂tφ. Using again (B38) in (B50), we get

SH ¼ κ

l

Z
∂M

d2x

��
1

2
χ0 þ φ0

�
ðl_χ − χ0Þ −

�
1

2
χ̄0 þ φ0

�
ðl _̄χ þ χ̄0Þ − l2 _φ2

�
: ðB51Þ

The action (B51) mixes χ and χ̄ with φ, but it is straightforward to show that, introducing new fields

ψ ¼ χ þ φ; ψ̄ ¼ χ̄ þ φ; ðB52Þ

it admits a simple rewriting

SH ¼ κ

l

Z
∂M

d2x

�
1

2
ψ 0ðl∂t − ∂ϕÞψ −

1

2
ψ̄ 0ðl∂t þ ∂ϕÞψ̄ − l2ð∂tφÞ2 þ ð∂ϕφÞ2

�
: ðB53Þ

From (B53) it is clear that the dynamics of ψ and ψ̄ is independent of φ, which is the desired result. The action (B53) can be
shown to be equivalent to a Liouville theory [13,122–124] coupled to an external two-dimensional metric in conformal
gauge. Eventually, we stress again that the Chern-Simons construction carried out so far shows that the φ reduced boundary
action [i.e., the last terms in (B53)] is completely disentangled from the rest.
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