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We investigate exotic supergravity theories in 6D with maximal (4,0) and (3,1) supersymmetry, which
were conjectured by Hull to exist and to describe strong coupling limits of N ¼ 8 theories in 5D. These
theories involve exotic gauge fields with nonstandard Young tableaux representations, subject to (self-)
duality constraints. We give novel actions in a 5þ 1 split of coordinates whose field equations reproduce
those of the free bosonic (4,0) and (3,1) theory, respectively, including the (self-)duality relations. Evidence
is presented for a master exceptional field theory formulation with an extended section constraint that,
depending on the solution, produces the (4,0), (3,1) or the conventional (2,2) theory. We comment on the
possible construction of a fully nonlinear master exceptional field theory.
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I. INTRODUCTION

Among the surprising features of string/M-theory is
the possible existence of exotic superconformal field and
gravity theories in six dimensions, which display general-
izations of electric-magnetic duality. Specifically, the
supermultiplets of these theories are such that the corre-
sponding fields must be subject to (self-)duality constraints,
some of which involve exotic Young tableaux representa-
tions. In this paper our focus will be on a conjecture by Hull
[1,2] according to which there are strong coupling limits
of N ¼ 8 theories in five dimensions that are given by
six-dimensional theories with chiral N ¼ ð4; 0Þ and N ¼
ð3; 1Þ supersymmetry, respectively. Such theories must be
exotic or nongeometric since they feature mixed symmetry
tensors of Young tableaux type and , respectively,
instead of a conventional graviton, hence suggesting the
need for a generalized notion of spacetime and diffeo-
morphism invariance. They are set to play a distinguished
role among the maximally supersymmetric theories [3–5].
A possible window into these somewhat mysterious

structures is offered by a Kaluza-Klein perspective from
five dimensions. The supermultiplets of five-dimensional

(5D) theories with maximal supersymmetry (32 real super-
charges) were classified by Strathdee [6] and further
clarified by Hull in [7]. The 5D superalgebra reads

fQa
α; Qb

βg ¼ ΩabðΓμCÞαβPμ þ CαβðZab þ ΩabKÞ; ð1:1Þ

where α; β;… ¼ 1;…; 4 are the space-time spinor indices
and a; b;… ¼ 1;…; 8 are USpð8Þ R-symmetry indices.
This superalgebra features 27 central charges Zab, satisfy-
ing Zab ¼ −Zba, ΩabZab ¼ 0, and a singlet central charge
K. The short (or BPS after Bogomol’nyi-Prasad-
Sommerfield) multiplets of this superalgebra describe the
possible Kaluza-Klein towers that any six-dimensional
(6D) theory with maximal supersymmetry displays when
compactified on a circle. For the conventional maximal 6D
supergravity, which features N ¼ ð2; 2Þ supersymmetry,
the massive Kaluza-Klein states do not carry the singlet
central charge K. Instead, they carry a particular central
charge Zab transforming as a singlet under the six-dimen-
sional R-symmetry group USpð4Þ × USpð4Þ. In contrast,
the massive multiplets of the exotic theories carry non-
vanishing singlet charge K [together with nonvanishing
Zab, singlet under USpð4Þ × USpð4Þ in the case of theN ¼
ð3; 1Þ multiplets] [7]. This points to a unifying framework
in the spirit of exceptional field theories [8–11] which we
will elaborate on in this paper.
Exceptional field theory (ExFT) provides in particular a

formulation of 11-dimensional (11D) and type IIB super-
gravity in a form that is covariant under the global
symmetry group E6ð6Þ of 5D maximal supergravity, thanks
to extended coordinates in the 27 representation of this
group, which are added to the five coordinates of 5D
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supergravity. The resulting theory is thus based on a
(5þ 27)-dimensional spacetime split, in which the 27
coordinates are subject to an E6ð6Þ covariant “section
constraint” restricting them to a suitable physical subspace,
from which the complete (untruncated) 11D supergravity
can be reconstructed, albeit in a Kaluza-Klein type formu-
lation with a 5þ 6 split of coordinates. (Equivalently, one
may think of this as coupling the infinite towers of massive
Kaluza-Klein multiplets to 5D supergravity, which recon-
structs the complete 11D supergravity.) A different physical
section reproduces the IIB theory [10,12]. From a higher-
dimensional perspective, the extra coordinates can be
thought of as accounting for the possible brane windings,
which in turn are related to the 27 central charges of the
supersymmetry algebra (1.1). The structure of the exotic
supermultiplets then suggests an inclusion of their cou-
plings within a suitable extension of this framework.
In this paper we will present actions for (the bosonic

sectors of) the free exotic 6D theories that generalize the
(linearized) E6ð6Þ exceptional field theory [10,11] by adding
one more “exotic” coordinate to the 27, as suggested by the
singlet central charge in (1.1). As one of the most enticing
outcomes of our investigation we find evidence for a master
exceptional field theory formulation in which the conven-
tional N ¼ ð2; 2Þ theory as well as the N ¼ ð4; 0Þ and
N ¼ ð3; 1Þ theory are obtained through different solutions
of an extended section constraint of the form

dMNK∂N ⊗ ∂K −
1ffiffiffiffiffi
10

p ΔMNð∂N ⊗ ∂• þ ∂• ⊗ ∂NÞ ¼ 0;

ð1:2Þ

where M;N ¼ 1;…; 27, are fundamental E6ð6Þ indices,
dMNK denotes the E6ð6Þ invariant fully symmetric tensor,
and ∂• is the derivative dual to the exotic coordinate.
Moreover, ΔMN denotes the (constant) background part of
the generalized metricMMN encoding all scalar fields. The
first term in Eq. (1.2) defines the section constraint of E6ð6Þ
exceptional field theory, whose solutions restrict to the
standard D ¼ 11 and IIB sections. The second term
encodes the extension of the constraint allowing for
two more solutions corresponding to N ¼ ð4; 0Þ and
N ¼ ð3; 1Þ, respectively. More precisely, we recover the
N ¼ ð4; 0Þ exotic theory by dropping all dependence on
the 27 standard coordinates, and keeping only the depend-
ence on the exotic coordinate. The N ¼ ð3; 1Þ model in
turn is recovered by superposing this coordinate with the
F4ð4Þ singlet under 27 → 26þ 1 among the 27 coordinates
of ExFT. While we give several independent pieces of
evidence for the existence of this master formulation (some
of which entail highly nontrivial numerical agreement), we
also point out some gaps of the master formulation as
understood so far. This implies that the complete nonlinear
theory requires new ingredients, not the least of which is a

section constraint that makes sense for the nonlinear theory
and that reduces to (1.2) in the appropriate limit.
As a technical result, we present novel actions for the

bosonic sectors of the N ¼ ð3; 1Þ and the N ¼ ð4; 0Þ
model that are based on a 5þ 1 split of the six-dimensional
space-time, sacrificing manifest 6D Poincaré invariance. In
the spirit of ExFT, these are two-derivative actions which
upon dimensional reduction to five dimensions reduce to
the same action of linearized maximal 5D supergravity. All
dual fields, in particular the entire dual graviton sector, only
appear under derivative along the sixth dimension. The full
field equations obtained by variation combine the second-
order Fierz-Pauli equations with first-order duality equa-
tions defining the dual graviton sector. Actions for self-dual
fields based on a 5þ 1 split of spacetime date back to [13]
with the description of self-dual 6D tensor fields. More
recently, actions for theN ¼ ð3; 1Þ andN ¼ ð4; 0Þmodels
have been constructed in [14–16], based on the prepotential
formalism developed in [17] in the context of linearized
gravity. Introduction of prepotentials for the gauge fields
adapted to their self-duality properties allows for the
construction of an action of fourth order in spatial deriv-
atives. Our construction is closer in spirit to the original
construction of [13], albeit dual in a sense discussed in
more detail in the Appendix A. It provides a novel
mechanism for describing self-dual exotic tensor fields.
The rest of this paper is organized as follows. In Sec. II we

review the bosonic sector of theN ¼ ð2; 2Þ,N ¼ ð3; 1Þ and
N ¼ ð4; 0Þ theories at the level of the equations motion,
which are manifestly 6D Lorentz invariant. In order to find
actions for these theories we abandon manifest Lorentz
invariance by performing a 5þ 1 split of coordinates in
Sec. III for each of these models. In Sec. IV we then present,
as one of our main technical results, actions whose second-
order Euler-Lagrange equations can be integrated in order to
reproduce the correct dynamics of the three theories. In
Sec. V we present the master formulation as currently
understood, highlight its successes, which strike us as
significant, but also discuss the structural problems that
remain. We close with a brief outlook.

II. REVIEW OF 6D MODELS

We study six-dimensional field theories in Minkowski
space with flat metric

ημ̂ ν̂ ¼ diagf−1; 1; 1; 1; 1; 1g; μ̂; ν̂ ¼ 0;…; 5: ð2:1Þ

The Poincaré algebra in six dimensions admits chiral
ðN þ;N −Þ supersymmetric extensions where N � count
the cumber of right- and left-handed supercharges, res-
pectively [6]. In particular, maximal supersymmetry
(32 real supercharges) allows for the three possibilities
ðN þ;N −Þ ¼ ð2; 2Þ, ðN þ;N −Þ ¼ ð3;1Þ, and ðN þ;N −Þ ¼
ð4; 0Þ. The corresponding lowest-dimensional massless
supermultiplets have the field content [6]
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ð2; 2Þ∶ ð3; 3; 1; 1Þ þ ð2; 2; 4; 4Þ þ ð1; 3; 5; 1Þ þ ð3; 1; 1; 5Þ
þ ð1; 1; 5; 5Þ þ ð2; 3; 4; 1Þ þ ð3; 2; 1; 4Þ
þ ð2; 1; 4; 5Þ þ ð1; 2; 5; 4Þ; ð2:2aÞ

ð3;1Þ∶ ð4;2;1;1Þþ ð2;2;14;1Þþ ð3;1;6;2Þþ ð1;1;140;2Þ
þ ð4;1;1;2Þþ ð3;2;6;1Þþ ð2;1;14;2Þ
þ ð1;2;140;1Þ; ð2:2bÞ

ð4; 0Þ∶ ð5; 1; 1Þ þ ð3; 1; 27Þ þ ð1; 1; 42Þ þ ð4; 1; 8Þ
þ ð2; 1; 48Þ; ð2:2cÞ

organized into representations of the little group

G0 ¼ SUð2Þ × SUð2Þ × USpð2NþÞ × USpð2N −Þ: ð2:3Þ
In this section, we briefly review the six-dimensional free
theories associated to these multiplets.

A. The N = ð2;2Þ model

Let us start from theN ¼ ð2; 2Þmultiplet corresponding
to maximal supergravity in six dimensions. Its bosonic field
content comprises a metric, 25 scalar fields, 16 vectors, and
5 two-forms. The full nonlinear theory has been con-
structed in [18] with the scalar fields parametrizing an
SOð5; 5Þ=ðSOð5Þ × SOð5ÞÞ coset space. For the purpose of
this paper, we will only consider the linearized (free) theory
with no couplings among the different types of matter.
The linearized spin-2 sector carries the symmetric

Pauli-Fierz field hμ̂ ν̂. With the linearized Riemann tensor
given by

Rμ̂ ν̂;ρ̂ σ̂ ¼ −∂ μ̂∂ ½ρ̂hσ̂�ν̂ þ ∂ ν̂∂ ½ρ̂hσ̂�μ̂; ð2:4Þ
linearization of the Einstein-Hilbert Lagrangian gives rise
to the massless Fierz-Pauli Lagrangian

Lh ¼ −
1

2
∂ μ̂hμ̂ ν̂∂ ν̂hρ̂ρ̂ þ

1

2
∂ μ̂hρ̂ σ̂∂ ρ̂hσ̂ μ̂ −

1

4
∂ μ̂hρ̂ σ̂∂ μ̂hρ̂ σ̂

þ 1

4
∂ μ̂hν̂ ν̂∂ μ̂hρ̂ρ̂

¼ −
1

4
Ωμ̂ ν̂ ρ̂Ωμ̂ ν̂ ρ̂ þ

1

2
Ωμ̂ ν̂ ρ̂Ων̂ ρ̂ μ̂ þ Ωμ̂Ωμ̂; ð2:5Þ

with Ωμ̂ ν̂ ρ̂ ≡ ∂ ½μ̂hν̂�ρ̂. The vector fields Aμ̂
i couple with a

standard Maxwell term

LA ¼ −
1

4
Fμ̂ ν̂

iFμ̂ ν̂ i; i ¼ 1;…; 16; ð2:6Þ

for Fμ̂ ν̂
i ¼ 2∂ ½μ̂Aν̂�i, while scalar couplings take the form

Lϕ ¼ −
1

2
∂ μ̂ϕ

α∂ μ̂ϕα; α ¼ 1;…; 25: ð2:7Þ

The couplings (2.6) and (2.7) break the global SOð5; 5Þ
symmetry of the nonlinear theory down to its compact part

SOð5Þ × SOð5Þ, as expected for the free theory. Finally, the
two-forms Bμ̂ ν̂

p couple with a standard kinetic term

LB ¼ −
1

6
Hμ̂ ν̂ ρ̂

qHμ̂ ν̂ ρ̂ q; q ¼ 1;…; 5; ð2:8Þ

for Hμ̂ ν̂ ρ̂
q ¼ 3∂ ½μ̂Bν̂ ρ̂�q. For the following it will be con-

venient to combine these fields together with their magnetic
duals into a set of 10 two-forms Bμ̂ ν̂

a, satisfying first-order
(anti-)self-duality field equations

δabHμ̂ ν̂ ρ̂
b ¼ 1

6
εμ̂ ν̂ ρ̂ σ̂ κ̂ λ̂ηabH

σ̂ κ̂ λ̂ b; a ¼ 1;…; 10; ð2:9Þ

with the SOð5; 5Þ invariant constant tensor ηab.
Equations (2.9) amount to a description of these degrees
of freedom in terms of 5 self-dual and 5 anti-self-dual
two-forms.

B. The N = ð3;1Þ model

Let us now turn to the free field equations associated
with the N ¼ ð3; 1Þ multiplet (2.2b). This multiplet does
not carry a standard graviton field, but an exotic three-index
tensor field of mixed-symmetry type [19]

ð2:10Þ

Its field equation is given by a self-duality equation [1]

Sμ̂ ν̂ ρ̂;σ̂ τ̂ ¼
1

6
εμ̂ ν̂ ρ̂ η̂ κ̂ λ̂S

η̂ κ̂ λ̂
σ̂ τ̂; ð2:11Þ

in terms of its second-order curvature

Sμ̂ ν̂ ρ̂;σ̂ τ̂ ¼ 3∂ σ̂∂ ½μ̂Cν̂ ρ̂�;τ̂ − 3∂ τ̂∂ ½μ̂Cν̂ ρ̂�;σ̂: ð2:12Þ

Counting reveals that the field equation (2.11) captures the
8 degrees of freedom as counted in the multiplet (2.2b).
Moreover, curvature and field equation are invariant under
the gauge symmetries

δCμ̂ ν̂;ρ̂ ¼ 2∂ ½μ̂αν̂�ρ̂ þ ∂ ρ̂βμ̂ ν̂ − ∂ ½ρ̂βμ̂ ν̂�; ð2:13Þ

with parameters αμ̂ ν̂ ¼ αðμ̂ ν̂Þ and βμ̂ ν̂ ¼ β½μ̂ ν̂�. An action
principle for the field equations (2.11) has been constructed
in [16] based on the prepotential formalism introduced in
[17] in the context of linearized gravity.
In addition to the exotic tensor field, the bosonic field

content of the N ¼ ð3; 1Þ multiplet (2.2b) contains 14
vectors, 12 self-dual two-forms and 28 scalar fields. The
dynamics of vector and scalar fields can be captured by
standard Lagrangians (2.6) and (2.7) (with different range
of internal indices). The self-dual two-forms Bμ̂ ν̂

a obey a
self-duality equation similar to (2.9)
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Hμ̂ ν̂ ρ̂
a ¼ 1

6
εμ̂ ν̂ ρ̂ σ̂ κ̂ λ̂H

σ̂ κ̂ λ̂ a; a ¼ 1;…; 12; ð2:14Þ

contrary to (2.9), no indefinite tensor ηab appears in this
equation, and all forms are self-dual.1 As a consequence
there is no standard action principle for these field
equations; they can however be derived from an action
with nonmanifest Lorentz invariance [13] or upon coupling
to an auxiliary scalar field [20].2

The free N ¼ ð3; 1Þ theory is invariant under the
R-symmetry group USpð6Þ × USpð2Þ. The (yet elusive)
interacting theory is conjectured to exhibit a global F4ð4Þ
symmetry with in particular the 28 scalars parametrizing
the coset space F4ð4Þ=ðUSpð6Þ × USpð2ÞÞ [1].

C. The N = ð4;0Þ model

The N ¼ ð4; 0Þ multiplet carries an exotic four-index
tensor field with the symmetries of the Riemann tensor

ð2:15Þ

Its field equation is given by a self-duality equation [1]

Gμ̂ ν̂ λ̂;ρ̂ σ̂ τ̂ ¼
1

6
εμ̂ ν̂ λ̂ α̂ β̂ γ̂G

α̂ β̂ γ̂
ρ̂ σ̂ τ̂; ð2:16Þ

in terms of its second-order curvature

Gμ̂ ν̂ λ̂;ρ̂ σ̂ τ̂ ¼ 3∂ ρ̂∂ ½μ̂T ν̂ λ̂�;σ̂ τ̂ þ 3∂ σ̂∂ ½μ̂T ν̂ λ̂�;τ̂ ρ̂ þ 3∂ τ̂∂ ½μ̂T ν̂ λ̂�;ρ̂ σ̂:

ð2:17Þ

Counting confirms that this field equation describes the
5 degrees of freedom as counted in the multiplet (2.2c).
Moreover, curvature and field equation are invariant under
the gauge symmetries

δT μ̂ ν̂;ρ̂ σ̂ ¼ ∂ ½μ̂λν̂�;ρ̂ σ̂ þ ∂ ½ρ̂λσ̂�;μ̂ ν̂; ð2:18Þ

with the (2,1) gauge parameter λμ̂;ρ̂ σ̂ ¼ λμ̂;½ρ̂ σ̂�, λ½μ̂;ρ̂ σ̂� ¼ 0.
An action principle for (2.16) has been constructed in
[14,15] based on the prepotential formalism of [17].
The bosonic part of the N ¼ ð4; 0Þ multiplet (2.2c)
combines the exotic tensor field T μ̂ ν̂;ρ̂ σ̂ with 42 scalars
and 27 self-dual two-forms. Their dynamics is described by
a free Lagrangian (2.7) and self-duality equations (2.14),
respectively.

The free N ¼ ð4; 0Þ theory is invariant under the
R-symmetry group USpð8Þ. The (yet elusive) interacting
theory is conjectured to exhibit a global E6ð6Þ symmetry
with in particular the 42 scalars parametrizing the coset
space E6ð6Þ=USpð8Þ [1].

III. 5 + 1 SPLIT

Upon dimensional reduction to D ¼ 5 dimensions, the
three models discussed in the previous section all reduce to
the same theory: the free limit of maximal D ¼ 5 super-
gravity [1,2]. The bosonic sector of this theory carries a
spin-2 field and 27 vector fields together with 42 scalar
fields. In particular, the exotic tensor fields of the N ¼
ð3; 1Þ and the N ¼ ð4; 0Þ model after dimensional reduc-
tion carry the D ¼ 5 dual graviton and double dual
graviton, respectively. Within the free theory, these fields
can be dualized into the standard Pauli-Fierz field
[1,23,24], and do not represent independent degrees of
freedom. In order to make the equivalence explicit, the
fields of D ¼ 5 supergravity (together with their on-shell
duals) have to be properly identified among the various
components of the D ¼ 6 fields.
In this section, we discuss for every of the three models

the reorganization of the D ¼ 6 fields which allows their
identification after reduction to five dimensions. However,
throughout this section (and this paper) we keep the full
dependence of all fields on six space-time coordinates.
More precisely, we break six-dimensional Poincaré invari-
ance down to 5þ 1 and perform a standard Kaluza-Klein
decomposition on the six-dimensional fields without drop-
ping the dependence on the sixth coordinate. We then
rearrange the equations such that they take the form of
the five-dimensional (free) supergravity equations how-
ever sourced by derivatives of matter fields along the
sixth direction. The resulting reformulation of the six-
dimensional models casts their dynamics into a common
framework—which ultimately allows us to construct uni-
form actions for the three models.
For the purpose of this paper, we choose the 5þ 1

coordinate split

fxμ̂g → fxμ; yg; μ ¼ 0;…; 4; ð3:1Þ

by singling out one of the spatial coordinates. Of course, an
analogous construction can be performed with a split along
the timelike coordinate which may be of interest for
example in a Hamiltonian context.

A. The N = ð2;2Þ model

With the coordinate split (3.1), we parametrize the
graviton of the N ¼ ð2; 2Þ theory as

hμ̂ ν̂ ¼
�
hμν − 1

3
ημνϕ Aμ

Aν ϕ

�
; ð3:2Þ

1For uniformity, we use the same indices a, b, to label two-
forms in all three models, despite the fact that the range of these
indices differs among the different models according to the
number of two-form fields. This should not be a source of
confusion.

2For more recent constructions, see also [21,22].
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which is the linearized form of the standard Kaluza-Klein reduction ansatz. Recall that all fields still depend on six
coordinates. Working out the Lagrangian (2.5) in this parametrization gives rise to its expression

ð3:3Þ

up to total derivatives. As an illustration of the above discussion let us note the explicit form of the equations for the five-
dimensional spin-2 field

Gμν ¼ −
1

2
∂y∂yhμν þ

1

2
ημν∂y∂yhρρ −

2

3
ημν∂y∂yϕ; ð3:4Þ

in terms of the linearized Einstein tensor

Gμν ¼ −∂ρDðμhνÞρ þ
1

2
∂ρDρhμν þ

1

2
∂ðμDνÞhρρ þ

1

2
ημν∂ρDσhρσ −

1

2
ημν∂ρDρhσσ;

with covariant derivativesDμhνρ ≡ ∂μhνρ −
2

3
∂yAμηνρ: ð3:5Þ

The form of (3.4) shows that upon dimensional reduction
to D ¼ 5 dimensions, these equations reproduce the
(linearized) five-dimensional Einstein field equations. In
contrast, the coordinate dependence along the sixth coor-
dinate induces a nontrivial gauge structure via covariant
derivatives (3.5) and nonvanishing source terms in (3.4).
This is very much in the spirit of the reformulation of

higher-dimensional supergravities as exceptional field the-
ories. Indeed, Eq. (3.4) can be equivalently obtained upon
linearizing the corresponding E6ð6Þ ExFT [10,11] upon
proper identification of the coordinate y among the 27
internal coordinates on which this ExFT is based.
Let us also note that the Lagrangian (3.3) can be put to

the more compact form

ð3:6Þ

with the linearized (and covariantized) anholonomity
objects

Ωμνρ ≡ ∂ ½μhν�ρ −
2

3
∂yA½μην�ρ; Ωμ ≡ Ωμν

ν: ð3:7Þ

The remaining part of the six-dimensional degrees
of freedom described by (3.6) are captured by a (modified)
five-dimensional Maxwell and Klein-Gordon equation
for Aμ and ϕ, respectively, obtained by varying (3.6).
It is useful to note the symmetries of the Lagrangian
(3.6) descending from six-dimensional spin-2 gauge
transformations

δhμν ¼ 2∂ðμξνÞ þ
2

3
ημν∂yλ;

δAμ ¼ ∂μλþ ∂yξμ;

δϕ ¼ 2∂yλ; ð3:8Þ

upon decomposition of the six-dimensional gauge param-
eter as fξμ̂g ¼ fξμ; λg.
In a similar way, the six-dimensional Maxwell and

Klein-Gordon Lagrangians (2.6) and (2.7) take the form

LA ¼ −
1

4
FμνiFμν

i −
1

2
ð∂μϕi − ∂yAμiÞð∂μϕ

i − ∂yAμ
iÞ;

Lϕ ¼ −
1

2
∂μϕα∂μϕ

α −
1

2
∂yϕ

α∂yϕ
α; ð3:9Þ

TOWARD EXOTIC 6D SUPERGRAVITIES PHYS. REV. D 103, 046002 (2021)

046002-5



respectively, after splitting fAμ̂
ig ¼ fAμ

i;ϕig, and with
Abelian Fμν

i ¼ 2∂ ½μAν�i, giving rise to modified Maxwell
and Klein-Gordon equations for their components. The
rewriting of the tensor field sector is slightly less straightfor-
ward: rather than evaluating the Lagrangian (2.8), we choose
to evaluate the first-order field equations (2.9) after splitting
the 6D tensor fields into fBμ̂ ν̂

ag ¼ fBμν
a; Bμ5

a ≡ Aμ
ag

ηabHμνρ
b ¼ 1

2
εμνρκλδabðFκλb þ ∂yBκλbÞ; ð3:10Þ

where we use conventions εμνρκλ5 ¼ εμνρκλ, and Abelian
field strengths Hμνρ

a ¼ 3∂ ½μBνρ�a, and Fμν
a ¼ 2∂ ½μAν�a,

respectively. These equations can be integrated to a
Lagrangian

ð3:11Þ

Again, this Lagrangian can be deduced from the linearized
version of exceptional field theory. We discuss this mecha-
nism in more detail in Appendix A 2. As we will see in
the following, this form of the Lagrangian allows for the
most uniform treatment of the different six-dimensional
models. After dimensional reduction to D ¼ 5 dimensions,
it simply reduces to a collection of Maxwell terms, such
that all degrees of freedom of (2.8) are described as
massless vector fields in five dimensions. In the presence
of the sixth dimension, the Lagrangian (3.11) gives rise to
modified Maxwell equations while variation with respect
to the tensor fields Bμν

a induces Eqs. (3.10) (under ∂y

derivative) as duality equations relating vector and tensor
fields.
In summary, the D ¼ 6 N ¼ ð2; 2Þ, model can be

equivalently reformulated in terms of a Lagrangian given
by the sum of (3.6), (3.9), and (3.11). Upon dimensional
reduction to five dimensions, i.e., setting ∂y → 0, and
rescaling of the scalar fields, this Lagrangian reduces to

L5D ¼ −
1

4
Ω
∘ μνρ

Ω
∘
μνρ þ

1

2
Ω
∘ μνρ

Ω
∘
νρμ þΩ

∘ μ
Ω
∘
μ

−
1

2
∂μϕA∂μϕ

A −
1

4
FμνMFμν

M;

M ¼ 1;…; 27; A ¼ 1;…; 42; ð3:12Þ

with Ω
∘
μνρ ≡ ∂ ½μhν�ρ, and where we have combined the

various vector and scalar fields into joint objects

fAμ
Mg;M ¼ 1;…; 27; fϕAg; A ¼ 1;…; 42: ð3:13Þ

The Lagrangian (3.12) is the free limit of D ¼ 5 maximal
supergravity [25]. In the interacting theory, the fields (3.13)
transform in the fundamental and a nonlinear representation
of its global symmetry group E6ð6Þ.

B. The N = ð3;1Þ model

We now turn to the N ¼ ð3; 1Þ model. Its most char-
acteristic element is the mixed-symmetry tensor field Cμ̂ ν̂;ρ̂

whose field equation (2.11) cannot be derived from a

standard action principle. We thus perform the Kaluza-
Klein reorganization of the model on the level of the field
equations. To this end, we again split coordinates as (3.1)
and parametrize the mixed-symmetry tensor as

fCμ̂ ν̂;ρ̂g¼fCμν;ρ−2A½μην�ρ;Cμ5;ν¼hμνþBμν;Cμ5;5¼2Aμg;
ð3:14Þ

with symmetric hμν ¼ hνμ, antisymmetric Bμν ¼ −Bνμ, and
a (2,1) tensor Cμν;ρ. After dimensional reduction to five
dimensions, the fields hμν and Aμ satisfy the linearized
Einstein and Maxwell equations while the fields Cμν;ρ and
Bμν describe their on-shell duals, together accounting for
the 8 degrees of freedom of the six-dimensional tensor
field. Explicitly, in the parametrization (3.14), the six-
dimensional self-duality equations (2.11) split into two
equations

∂ρ

�
Fμνþ

1

6
εμνλστHλστ

�

¼ ∂y∂ ½μhν�ρþ
1

4
εμνκλτ∂y∂κCλτ

ρþ
1

2
∂y∂yCμν;ρ− ∂y∂yA½μην�ρ

−
1

4
ερμνστ∂yFστ þ ∂y∂ ½μBν�ρ − ∂y∂ρBμν; ð3:15Þ

and

Rμν;ρσ ¼
1

2
∂ρ

�
Hμνσ −

1

2
εμνσκλFκλ

�

−
1

2
∂σ

�
Hμνρ −

1

2
εμνρκλFκλ

�
þ 1

2
εμνκλτ∂κ∂ ½ρCλτ

σ�

þ 1

2
∂y∂ρCμν;σ −

1

2
∂y∂σCμν;ρ − ∂y∂ρA½μην�σ

þ ∂y∂σA½μην�ρ; ð3:16Þ

with Abelian field strengths Fμν¼2∂ ½μAν�,Hμνρ¼3∂ ½μBνρ�,
and the linearized Riemann tensor Rμν;ρσ defined as in (2.4)
however for the field hμν. Contraction of (3.16) gives rise to
an equation
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Gμν ¼ −
1

2
∂y∂ρCρðμ;νÞ −

1

2
∂y∂ðμCνÞρρ þ

1

2
ημν∂y∂ρCρσ

σ;

ð3:17Þ

where Gμν denotes the linearized Einstein tensor defined as
in (3.5), however with covariant derivatives now given by

Dμhνρ ≡ ∂μhνρ − ∂yAμηνρ; ð3:18Þ

i.e., with a different value of the coupling constant
(which could be absorbed into rescaling the vector field).
Equation (3.17) confirms that upon reduction to five
dimensions (∂y → 0), the field hμν satisfies the linearized
Einstein equations. As in the N ¼ ð2; 2Þ model, the
coordinate dependence along the sixth coordinate induces
a nontrivial gauge structure (3.18) together with non-
vanishing source terms in (3.17)—which differ from those
of (3.4) illustrating the inequivalence of theN ¼ ð2; 2Þ and
the N ¼ ð3; 1Þ model before dimensional reduction.
The full field equation (3.16) takes the form of a

vanishing curl (in ½ρσ�) and can locally be integrated into
the first-order equation3

∂ ½μhν�ρ þ
1

4
εμνκλτ∂κCλτ

ρ þ
1

2

�
Hμνρ −

1

2
εμνρκλFκλ

�

þ 1

2
∂yCμν;ρ − ∂yA½μην�ρ ¼ ∂ρuμν; ð3:19Þ

with an antisymmetric tensor uμν ¼ −uνμ. Combining this
equation with the field equation (3.15) implies that

∂ρ

�
Fμν þ

1

6
εμνκλτHκλτ þ 3

2
∂yBμν − ∂yuμν

�
¼ 0; ð3:20Þ

which can be further integrated into another first-order
duality equation

Fμν þ
1

6
εμνκλτHκλτ þ 3

2
∂yBμν − ∂yuμν ¼ 0; ð3:21Þ

up to a function fμνðyÞ that can be absorbed into uμν.
Eventually, we can use (3.21) to bring (3.19) into the form

∂ ½μhν�ρþ
1

4
εμνκλτ∂κCλτ

ρ−∂ρuμν

¼1

4
εμνρκλ∂y

�
uκλ−

3

2
Bκλ

�
−
1

2
∂yCμν;ρþ∂yA½μην�ρ: ð3:22Þ

To sum up, we have cast the original second-order field
equations (2.11) of the six-dimensional mixed-symmetry

tensor field into the form of two first-order duality
equations (3.21) and (3.22), upon parametrizing the six-
dimensional fields in terms of its components (3.14) and
introduction of an additional field uμν. Upon reduction to
five dimensions, these equations constitute the duality
equations relating the vector-tensor fields, and the grav-
iton-dual graviton fields, respectively.
It is instructive to work out the gauge symmetries of

these equations which originate from the D ¼ 6 gauge
transformations (2.13). Parametrizing the six-dimensional
gauge parameters as

αμ̂ ν̂ ¼
�

αμν − ημνλ
1
2
ðξμ þ 3ΛμÞ

1
2
ðξμ þ 3ΛμÞ 2λ

�
;

βμ̂ ν̂ ¼
�

βμν
3
2
ðξμ − ΛμÞ

3
2
ðΛμ − ξμÞ 0

�
; ð3:23Þ

their action on the various components of (3.14) is
derived as

δAμ ¼ ∂μλþ
1

2
∂yðξμ− 3ΛμÞ;

δBμν ¼ 2∂ ½μΛν� þ
1

3
∂yβμν;

δhμν ¼ 2∂ðμξνÞ þ ημν∂yλ− ∂yαμν;

δCμν;ρ ¼ 2∂ ½μαν�ρþ ∂ρβμν− ∂ ½ρβμν� þ ∂yðξ½μην�ρ − 3Λ½μην�ρÞ:
ð3:24Þ

With the field uμν defined by Eq. (3.19), its gauge variation
is found by integrating up the variation of (3.19) and takes
the form

δuμν ¼ ∂ ½μξν� þ
1

6
εμνρστ∂ρβστ þ 1

2
∂yβμν: ð3:25Þ

For later use, let us note that contraction of (3.22) with
the fully antisymmetric ε-tensor yields

1

6
∂ρCμν;ρþ

1

3
∂ ½μCν�ρρþ

1

6
εμνρστ∂ρuστ ¼ 1

2
∂y

�
uμν −

3

2
Bμν

�
;

ð3:26Þ

while contraction gives rise to

∂μhνμ − ∂νhμμ þ ∂yCμν
μ þ 4∂yAν ¼ 2∂μuμν: ð3:27Þ

This gives rise to an equivalent rewriting of (3.22) as

3Here, and in the following we work locally and ignore
potential subtleties that may arise from a nontrivial topology.
We refer to [26] for a discussion of such issues in the context of
chiral p-forms.
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∂ ½μhν�ρ þ ∂σh½μσην�ρ þ ηρ½μ∂ν�hσσ

¼ −
1

4
εμνκλτ∂κðCλτ

ρ þ ελταβσuαβηρσÞ − 3∂yA½μην�ρ

þ 1

4
εμνρκλ∂y

�
uκλ −

3

2
Bκλ

�
−
1

2
∂yCμν;ρ − ∂yCσ½μσην�ρ:

ð3:28Þ

Let us further note that taking the divergence of (3.21)
yields the Maxwell type equation

∂μFμν ¼
1

2
∂y∂μhνμ −

1

2
∂y∂νhμμ þ

1

2
∂y∂yCμν

μ

−
3

2
∂y∂μBμν þ 2∂y∂yAν; ð3:29Þ

where we have used (3.27) in order to eliminate the
divergence of uμν.
For the remaining fields of the N ¼ ð3; 1Þ model, the

5þ 1 Kaluza-Klein split is achieved just as for the N ¼
ð2; 2Þ model discussed above. The six-dimensional field
equations of the 14 vector fields and 28 scalar fields take
the form obtained from variation of Lagrangians of the
form (3.9), respectively. The field equations of the 12 self-
dual forms take the form

Hμνρ
a ¼ 1

2
εμνρκλðFκλa þ ∂yBκλaÞ; ð3:30Þ

after splitting the two-forms according to fBμ̂ ν̂
ag ¼

fBμν
a; Bμ5

a ≡ Aμ
ag. The equations may be integrated up

to an action in precise analogy with (3.11), cf. the dis-
cussion in Appendix A 2.

C. The N = ð4;0Þ model

In this model, the exotic graviton is given by the rank-
four tensor (2.15) whose dynamics is defined by the self-
duality equations (2.16) for its second-order curvature.
According to the split of coordinates (3.1), we parametrize
the various components of this field as

fT μ̂ ν̂;ρ̂ σ̂g ¼ fTμν;ρσ;Tμν;ρ5 ¼ Cμν;ρ;Tμ5;ν5 ¼ hμνg: ð3:31Þ

After dimensional reduction to five dimensions, these fields
describe the graviton, dual graviton and double dual
graviton, respectively. Explicitly, in this parametrization
the six-dimensional field equations (2.16) split into two
equations

Rμν;ρσ ¼
1

2
∂y∂μCρσ;ν −

1

2
∂y∂νCρσ;μ þ

1

2
∂y∂ρCμν;σ

−
1

2
∂y∂σCμν;ρ þ

1

2
εμνκλτ∂ ½ρ∂κCλτ

σ�

þ 1

4
εμνκλτ∂y∂κTλτ

ρσ þ
1

2
∂y∂yTμν;ρσ; ð3:32Þ

εμναβγ∂α∂ ½ρTστ�βγ

¼ −2∂μ∂ ½ρCστ�;ν þ 2∂ν∂ ½ρCστ�;μ − 2∂y∂ ½ρTστ�;μν; ð3:33Þ

with the linearized Riemann tensor Rμν;ρσ defined as in
(2.4) for the field hμν. The second equation (3.33) has the
form of a curl in ½ρστ� and can be integrated up into

1

2
εμναβγ∂αTστ

βγ þ ∂μCστ;ν− ∂νCστ;μþ ∂yTστ;μν ¼ 2∂ ½σvτ�;μν;

ð3:34Þ

up to a tensor vτ;μν ¼ −vτ;νμ, determined by this equation
up to the gauge freedom δvτ;μν ¼ ∂τζμν. Combining (3.34)
with the first field equation (3.32), we find

Rμν;ρσ ¼
1

2
∂y∂ρCμν;σ −

1

2
∂y∂σCμν;ρ þ

1

2
εμνκλτ∂ ½ρ∂κCλτ

σ�

þ ∂y∂ ½ρvσ�;μν; ð3:35Þ

which in turn is a curl in ½ρσ� and can be integrated up into

∂ ½μhν�ρ þ
1

4
εμνλστ∂λCστ

ρ þ
1

2
∂yCμν;ρ þ

1

2
∂yvρ;μν ¼ ∂ρuμν;

ð3:36Þ

up to an antisymmetric field uμν ¼ −uνμ. As for the N ¼
ð3; 1Þmodel, we have obtained an equivalent reformulation
of the dynamics in terms of two first-order equations (3.34)
and (3.36) from which the original second-order field
equations (3.32), (3.33), can be obtained by derivation.
After reduction to five dimensions, Eqs. (3.34) and (3.36)
describe the duality relations between graviton and dual
graviton and between dual graviton and double dual
graviton, respectively. In particular, Eq. (3.36) differs from
Eq. (3.22) in theN ¼ ð3; 1Þmodel only if fields depend on
the sixth coordinate.
It is instructive to work out the gauge symmetries of

these equations which originate from the D ¼ 6 gauge
transformations (2.18). Parametrizing the six-dimensional
gauge parameters as

fλρ̂;μ̂ ν̂g ¼
�
λρ;μν; λμ;ν5 ¼ 2αμν −

2

3
βμν; λ5;μ5 ¼ 2ξμ

�
;

ð3:37Þ

with symmetric αμν, and antisymmetric βμν, their action on
the various components of (3.31) is derived as

δhμν ¼ 2∂ðμξνÞ − 2∂yαμν;

δCμν;ρ ¼ 2∂ ½μαν�ρ þ ∂ρβμν − ∂ ½ρβμν� −
1

2
∂yλρ;μν;

δTμν;ρσ ¼ ∂ ½μλν�;ρσ þ ∂ ½ρλσ�;μν: ð3:38Þ
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Gauge variations of the two new fields vρ;μν and uμν are
obtained by integrating up the variation of (3.34) and
(3.36), respectively, giving rise to

δuμν ¼ ∂ ½μξν� þ
1

6
εμνλστ∂λβστ þ 1

3
∂yβμν þ

1

2
∂yζμν;

δvρ;μν ¼
1

4
εμνκλσ∂κλρ

λσ þ 2∂ ½μαν�ρ þ
2

3
∂ ½μβν�ρ

þ ∂ρζμν þ
1

2
∂yλρ;μν; ð3:39Þ

where the antisymmetric gauge parameter ζμν ¼ −ζνμ has
been introduced after (3.34).
Let us finally note that from (3.32) and (3.35), we may

obtain the modified Einstein equations

G
∘
μν ¼ −

1

2
∂y∂ρCρðμ;νÞ −

1

2
∂y∂ðμCνÞρρ þ

1

2
∂y∂ρvðμ;νÞρ

−
1

2
∂y∂ðμvρνÞρ þ

1

2
ημν∂y∂ρCρσ

σ −
1

2
ημν∂y∂ρvσσρ;

ð3:40Þ

with the linearized Einstein tensor G
∘
μν defined as

G
∘
μν ¼ −∂ρ∂ðμhνÞρ þ

1

2
∂ρ∂ρhμν þ

1

2
∂μ∂νhρρ

þ 1

2
ημν∂ρ∂σhρσ −

1

2
ημν∂ρ∂ρhσσ; ð3:41Þ

which differs from the previous models by the absence of
covariant derivatives, cf. (3.5).

For the remaining fields of the N ¼ ð4; 0Þ model, the
5þ 1 Kaluza-Klein split is achieved just as for the previous
models discussed above. The field equations of the 42
scalar fields are obtained from variation of a Lagrangian of
the form Lϕ in (3.9). The field equations of the 27 self-dual
forms take the form of (3.30) above, again after splitting the
two-forms according to fBμ̂ ν̂

ag ¼ fBμν
a; Bμ5

a ≡ Aμ
ag.

IV. ACTIONS FOR (FREE) EXOTIC
GRAVITON FIELDS

In the above, we have reformulated the dynamics of
the six-dimensional exotic tensor fields in terms of first-
order differential equations upon breaking six-dimensional
Poincaré invariance according to the split (3.1), and intro-
ducing some additional tensor fields. As a key property of
the resulting equations, we have put the dynamics of the
different models into a form which reduces to the same
equations after dimensional reduction ∂y → 0. For example,
all three models feature linearized Einstein equations for
the field hμν, given by (3.4), (3.17), and (3.40), respectively.
The three equations only differ by terms carrying explicit
derivatives along the sixth dimension. We will use this as a
guiding principle to construct uniform Lagrangians for the
N ¼ ð3; 1Þ and the N ¼ ð4; 0Þ model which after setting
∂y → 0 both reduce to the Lagrangian (3.12) of linearized
D ¼ 5 maximal supergravity.
This construction follows the toy model of D ¼ 6 self-

dual tensor fields whose dynamics can be described by a
Lagrangian (3.11)

ð4:1Þ

after a Kaluza-Klein (5þ 1) decomposition fBμ̂ ν̂g ¼
fBμν; Bμ5 ≡ Aμg of the six-dimensional tensor field. After
dimensional reduction to five dimensions, the 3 degrees of
freedom of the self-dual tensor field are described as a
massless vector with the standard Maxwell Lagrangian to
which (4.1) reduces at ∂y → 0. In the presence of the sixth
dimension, variation of the Lagrangian (4.1) with respect to
the vector field gives rise to modified Maxwell equations
while variation with respect to the tensor field yields the
duality equation relatingAμ andBμν, which is of first order in
the derivatives ∂μ and appears under a global ∂y derivative.
Combining these two equations one may infer the full

six-dimensional self-duality equation. Details are spelled
out in Appendix A 2. The Lagrangians for exotic gravitons
are constructed in analogy to (4.1)with the role ofAμ andBμν

now taken by the graviton hμν and its duals, respectively.

A. Action for the N = ð3;1Þ model

The main result of this subsection is the following: the
first-order field equations (3.21) and (3.22), which describe
the dynamics of the six-dimensional exotic graviton field
Cμ̂ ν̂;ρ̂ in the N ¼ ð3; 1Þ model, can be derived from the
Lagrangian

ð4:2Þ
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with

bΩμνρ ≡ ∂ ½μhν�ρ − ∂yA½μην�ρ þ
1

2
∂y

bCμν;ρ;

bCμν;ρ ≡ Cμν;ρ þ εμνρστuστ;

F μν ≡ 2∂ ½μAν� þ
3

2
∂yBμν: ð4:3Þ

The Lagrangian (4.2) is invariant under the gauge
transformations (3.24), (3.25). After reduction to five
dimensions, i.e., at ∂y → 0, this Lagrangian reduces to
the Fierz-Pauli Lagrangian for hμν together with a free

Maxwell Lagrangian for Aμ; the dual fields bCμν;ρ and Bμν

drop out in this limit. In the presence of the sixth
dimension, variation of the Lagrangian (4.2) with respect
to the dual fields yields the first-order duality equa-
tions (3.21) and (3.22), however under an overall deriva-
tive ∂y. Together, one recovers the full six-dimensional
dynamics. Details of the equivalence are presented in
Appendix B 1.
The bosonic Lagrangian for the fullN ¼ ð3; 1Þ model is

then given by combining (4.2) with the Lagrangians of the
type (3.9) and (4.1) for the remaining matter fields of the
theory. Putting everything together, we obtain

ð4:4Þ

with indices ranging along

i ¼ 1;…; 14; α ¼ 1;…; 28; a ¼ 1;…; 12: ð4:5Þ

After dimensional reduction to five dimensions (and
rescaling of the vector field Aμ), this Lagrangian coin-
cides with the Lagrangian (3.12) of linearized maximal
supergravity. The Lagrangian (4.4) describes the full
six-dimensional theory, with the field content of five-
dimensional maximal supergravity enhanced by the field

bCμν;ρ. D ¼ 6 Poincaré invariance is no longer manifest
although it can still be realized on the equations of motion.

B. Action for the N = ð4;0Þ model

The main result of this subsection is the following: the
first-order field equations (3.34) and (3.36), which describe
the dynamics of the six-dimensional exotic graviton field
T μ̂ ν̂;ρ̂ σ̂ in the N ¼ ð4; 0Þ model, can be derived from the
Lagrangian

ð4:6Þ

with

bΩμνρ ¼ ∂ ½μhν�ρ þ ∂y
bCμν;ρ −

1

2
∂yCμν;ρ;

bCμν;ρ ¼ Cμν;ρ þ εμνρστuστ;

Cμν;ρ ¼ Cμν;ρ − vρ;μν þ 3v½ρ;μν� þ 2εμνρστuστ: ð4:7Þ

After reduction to five dimensions, i.e., at ∂y → 0, this
Lagrangian reduces to the Fierz-Pauli Lagrangian for hμν;

the dual fields bCμν;ρ, Cμν;ρ, and Tμν;ρσ drop out in this limit.
In the presence of the sixth dimension, variation of the
Lagrangian (4.6) with respect to the dual fields yields the
first-order duality equations (3.34) and (3.36), however
under an overall derivative ∂y. Together, one recovers the
full six-dimensional dynamics. The computation works in
close analogy with the derivation for theN ¼ ð3; 1Þmodel,
and is presented in detail in Appendix B 2.
Let us spell out the gauge transformations (3.38), (3.39)

in terms of the fields (4.7)
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δbΩμνρ ¼ ∂ρ∂ ½μξν� −
2

3
∂y∂ ½μβν�ρ − ∂y∂ ½μζν�ρ þ

1

4
∂y∂κλ½μστεν�κστρ;

δbCμν;ρ ¼ 2∂ ½μαν�ρ − 2∂ ½μβν�ρ þ εμνρστ∂σξτ þ 1

3
εμνρστ∂y

�
βστ þ 3

2
ζστ

�
−
1

2
∂yλρ;μν;

δCμν;ρ ¼ 2εμνρστ∂σξτ −
8

3
∂ ½μβν�ρ þ 2∂ ½μζν�ρ þ

2

3
εμνρστ∂y

�
βστ þ 3

2
ζστ

�
þ 1

2
εκστρ½μ∂κλν�στ − ∂yλρ;μν; ð4:8Þ

which allows us to confirm gauge invariance of the Lagrangian (4.6).
The bosonic Lagrangian for the full N ¼ ð4; 0Þ model is finally given by combining (4.6) with the Lagrangians of the

type (3.9) and (4.1) for the remaining matter fields of the theory. Putting everything together, we obtain

ð4:9Þ

with indices ranging along

M ¼ 1;…; 27; A ¼ 1;…; 42: ð4:10Þ

After dimensional reduction to five dimensions, this La-
grangian coincides with the Lagrangian (3.12) of linearized
maximal supergravity. The Lagrangian (4.9) describes the
full six-dimensional theory, with the field content of five-
dimensional maximal supergravity enhanced by the fieldsbCμν;ρ, Cμν;ρ, and Tμν;ρσ. D ¼ 6 Poincaré invariance is no
longer manifest although it can still be realized on the
equations of motion.

V. PROGRESS TOWARD AN EXCEPTIONAL
MASTER ACTION

In the previous sections, we have constructed Lagrangians
(3.6), (4.4), and (4.9), for the three six-dimensional
models which share a number of universal features and
structures. In particular, after dimensional reduction to
five dimensions they all reduce to the same Lagrangian
(3.12) corresponding to linearized maximal supergravity
in five dimensions. The three distinct six-dimensional
theories are then described as different extensions of this
Lagrangian by terms carrying derivatives along the sixth
dimension. In the various matter sectors, these terms
ensure covariantization under nontrivial gauge structures
and provide sources to the field equations of five-dimen-
sional supergravity.
This reformulation within a common framework is very

much in the spirit of exceptional field theories. In that
framework, higher-dimensional supergravity theories are
reformulated in terms of the field content of a lower-
dimensional supergravity keeping the dependence on all
coordinates. More precisely, their formulation is based on a
split of coordinates into D external and n internal

coordinates of which the latter are formally embedded into
a fundamental representation Rv of the global symmetry
group E11−D;ð11−DÞ of D-dimensional maximal supergrav-
ity. Different embeddings of the internal coordinates into
Rv then correspond to different higher-dimensional ori-
gins. Here, we will discuss a similar uniform description of
the six-dimensional models based on D ¼ 5 external
dimensions which encompasses the three different models
upon proper identification of the sixth coordinate within the
internal coordinates. As discussed in the Introduction this
will require an enhancement of the internal coordinates of
exceptional field theory by an additional exotic coordinate
related to the singlet central charge in the D ¼ 5 super-
symmetry algebra.

A. Linearized ExFT and embedding
of the N = ð2;2Þ model

The theory relevant for our discussion is E6ð6Þ excep-
tional field theory [10,11]. Its bosonic field content is given
by a graviton gμν together with 27 vector fields Aμ

M and
their dual tensors BμνM, together with 42 scalars para-
metrizing the internal metric MMN ¼ ðVVTÞMN with V a
representative of the coset space E6ð6Þ=USpð8Þ. Fields
depend on 5 external and 27 internal coordinates with
the latter transforming in the fundamental 27 of E6ð6Þ and
with internal coordinate dependence of the fields restricted
by the section constraint [9]

dKMN∂M ⊗ ∂N ¼ 0; ð5:1Þ

with the two differential operators acting on any couple of
fields and gauge parameters of the theory. The tensor dKMN

denotes the cubic totally symmetric E6ð6Þ invariant tensor,
which we normalize as dMNPdMNQ ¼ δQ

P. The section
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condition (5.1) admits two inequivalent solutions [10]
which reduce the internal coordinate dependence of all
fields to the 6 internal coordinates from D ¼ 11 super-
gravity, or 5 internal coordinates from IIB supergravity,
respectively. For details of the ExFT Lagrangian we refer to
[10,11]. Here, we spell out its “free” limit, obtained by
linearizing the full theory according to

gμν ¼ ημν þ hμν; MMN ¼ ΔMN þ ϕMN; ð5:2Þ

around the constant background given by the Minkowski
metric ημν and the identity matrix ΔMN . The scalar
fluctuations ϕMN are further constrained by the coset

properties of MMN . To quadratic order in the fluctuations,
the ExFT Lagrangian then yields

LExFT;free ¼ −
1

4
ΩμνρΩμνρ þ

1

2
ΩμνρΩνρμ þ ΩμΩμ

−
1

4
F μνMF μν

NΔMN

−
5

4

ffiffiffiffiffi
10

p
εμνρστdMNK∂μBνρM∂NBστK

−
1

24
Dμϕ

MNDμϕMN þ Lpot; ð5:3Þ
with indices M, N raised and lowered by ΔMN and its
inverse, and with the various elements of (5.3) given by

Ωμνρ ¼ ∂ ½μhν�ρ −
2

3
∂MA½μMην�ρ; Ωμ ≡ Ωμν

ν;

F μν
M ¼ 2∂ ½μAν�M þ 10dMNK∂NBμνK;

Dμϕ
MN ¼ ∂μϕ

MN þ 2∂KAμ
ðMΔNÞK þ 2

3
∂KAμ

KΔMN − 20∂KAμ
LdPLRdRKðMΔNÞP;

Lpot ¼ −
1

24
ΔMN∂Mϕ

KL∂NϕKL þ 1

2
ΔMN∂Mϕ

KL∂LϕNK −
1

2
∂Mhνν∂Nϕ

MN

þ 1

4
ΔMN∂Mhμμ∂Nhνν −

1

4
ΔMN∂Mhμν∂Nhμν: ð5:4Þ

The Lagrangian we have presented above for the six-
dimensional N ¼ ð2; 2Þ model naturally fits into this
framework. This does not come as a surprise since the
six-dimensional model is nothing but linearized maximal
supergravity known to be described by E6ð6Þ ExFT upon
proper selection of the sixth coordinate among the internal
∂M. This choice is uniquely fixed by the requirement that
the resulting theory exhibits the global SOð5; 5Þ symmetry
group of maximal six-dimensional supergravity, thus
breaking

E6ð6Þ → SOð5; 5Þ; 27 → 1 ⊕ 16 ⊕ 10;

f∂Mg → f∂0; ∂i; ∂ag; ð5:5Þ

and keeping only coordinate-dependence along the
SOð5; 5Þ singlet. In this split, the E6ð6Þ invariant symmetric
tensor dMNK has the nonvanishing components

d0ab ¼ 1ffiffiffiffiffi
10

p ηab; daij ¼ 1

2
ffiffiffi
5

p ðΓaÞij; ð5:6Þ

in terms of SOð5; 5Þ Γmatrices and its invariant tensor ηab of
signature (5,5), showing that the section constraint (5.1) is
trivially satisfied as ∂i ¼ 0 ¼ ∂a. Putting this together with
the linearized ExFT Lagrangian (5.3), and splitting fields as

fAμ
Mg ¼ fAμ; Aμ

i; Aμ
ag; etc:; ð5:7Þ

we arrive at

Lð2;2Þ ¼ −
1

4
ΩμνρΩμνρ þ

1

2
ΩμνρΩνρμ þΩμΩμ −

1

4
FμνFμν −

1

4
FμνiFμν

i

−
1

4
ðFμν

a þ ∂yBμν
aÞðFμνa þ ∂yBμνaÞ − 1

24
εμνρστηab∂yBμν

aHρστ
b −

1

2
∂μϕα∂μϕ

α

−
1

2

�
∂μϕ −

ffiffiffi
8

3

r
∂yAμ

��
∂μϕ −

ffiffiffi
8

3

r
∂yAμ

�
−
1

2
ð∂μϕi − ∂yAμiÞð∂μϕ

i − ∂yAμ
iÞ;

−
1

2
∂yϕ

α∂yϕ
α þ 5

6
∂yϕ∂yϕ −

2

3
∂yhσσ∂yϕþ 1

4
∂yhσσ∂yhρρ −

1

4
∂yhμν∂yhμν; ð5:8Þ
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which precisely produces the sum of Lagrangians (3.6),
(3.9), (3.11), after proper rescaling of the singlet scalar field
ϕ. The nontrivial checks of this coincidence include all the
coefficients in the various connection terms, as well as in the
Stückelberg-type couplings betweenvector and tensor fields,
and the coefficients in front of the various ∂yϕ∂yϕ terms in
the last line. Again, this is not a surprise but a consequence of
the proven equivalence of ExFT with higher-dimensional
maximal supergravity. Note that although the free theory
only exhibits a compact USpð4Þ × USpð4Þ global symmetry,
the couplings exhibited in (5.8) are farmore constrained than
allowed by this symmetry and witness the underlying E6ð6Þ
structure broken to SOð5; 5Þ according to (5.5), (5.6).
The ExFT Lagrangian is to a large extent determined by

invariance under generalized internal diffeomorphisms
acting with a gauge parameter ΛM in the fundamental
27. After linearization (5.2) these diffeomorphisms act as

δϕMN ¼ 2ΔKðM∂NÞΛK þ 2

3
∂KΛKΔMN

− 20dPKRdRLðMΔNÞP∂KΛL;

δAμ
M ¼ ∂μΛM; δhμν ¼

2

3
∂MΛMημν; ð5:9Þ

and one can show invariance of the linearized Lagrangian
(5.8), provided the section constraint (5.1) is satisfied.

B. Beyond standard ExFT: Embedding
of the N = ð3;1Þ and (4,0) couplings

As we have discussed in the Introduction, the charges
carried by the massive BPS multiplets in the reduction of
the N ¼ ð3; 1Þ and the N ¼ ð4; 0Þ model, respectively,
suggest that an inclusion of these models into the frame-
work of ExFT necessitates an extension of the space of
27 internal coordinates by an additional exotic coordinate
corresponding to the singlet central charge [7]. Denoting
derivatives along this coordinate by ∂•, this would amount
to a relaxation of the standard section constraint (5.1) to a
constraint of the form

dKMN∂M ⊗ ∂N −
1ffiffiffiffiffi
10

p ΔKMð∂M ⊗ ∂• þ ∂• ⊗ ∂MÞ ¼ 0;

ð5:10Þ

which at the present stage only makes sense in the
linearized theory where ΔKM is a constant background
tensor. Apart from the standard ExFT solutions

dKMN∂M ⊗ ∂N ¼ 0; ∂• ¼ 0; ð5:11Þ

of this constraint, which allow the embedding of the N ¼
ð2; 2Þ model as described above, the extended section
constraint also allows for two exotic solutions

ð3; 1Þ∶ ∂ð3;1Þ
y ¼ 2ffiffiffi

3
p ∂0 ¼ −2∂•;

with the F4ð4Þ singlet ∂0 ⊂ ∂M;

ð4; 0Þ∶ ∂ð4;0Þ
y ¼ −∂•; ∂M ¼ 0; ð5:12Þ

corresponding to the two exotic six-dimensional models in
precise correspondence with the central charges carried by
the corresponding BPS multiplets [7]. While the (4,0)
solution trivially solves the constraint (5.10), the N ¼
ð3; 1Þ solution is based on the decomposition

E6ð6Þ → F4ð4Þ; 27 → 1 ⊕ 26;

f∂Mg → f∂0; ∂Ag; ð5:13Þ

under which the symmetric d-tensor decomposes into

d000 ¼ −
2ffiffiffiffiffi
30

p ; d0AB ¼ 1ffiffiffiffiffi
30

p ηAB; dABC; ð5:14Þ

with the F4ð4Þ invariant symmetric tensor ηAB of signature
(14,12), and the symmetric invariant tensor dABC satisfying

dABCηBC ¼ 0; dABCdABD ¼ 14

15
δC

D: ð5:15Þ

This shows explicitly how the (3,1) assignment of (5.12)
also provides a solution to the extended section con-
straint (5.10).
It is intriguing to study the fate of diffeomorphism

invariance of the ExFT Lagrangian (5.3) if the original
section constraint is relaxed to (5.10). Except for the last
term in (5.3), the Lagrangian remains manifestly invariant
without any use of the section constraint. Explicit variation
of the potential term Lpot under linearized diffeomorphisms
(5.9) on the other hand yields (up to total derivatives)

δΛLpot ¼ ð5ΔLSdLMNdKPQ − 10ΔMNΔKLdLSRdRPQÞ
× ΛS∂P∂Q∂MϕNK

− 10hμμΔMKdKLRdRPQ∂M∂P∂QΛL; ð5:16Þ

which consistently vanishes modulo the standard section
constraint (5.1). For the weaker constraint (5.10), this
variation no longer vanishes and may be recast in the
following form:

δΛLpot ¼ ΔKMΛN∂•∂•∂MϕNK − 4hνν∂•∂•∂NΛN; ð5:17Þ

after repeated use of (5.10) and further manipulation of the
expressions. In order to compensate for this variation let us
first note that there is no possible covariant extension of the
transformation rules (5.10) by terms carrying ∂•ΛM, such
that invariance can only be restored by extending the
potential. A possible such extension is given by
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Lpot;• ¼ Lpot −
1

24
∂•ϕMN∂•ϕ

MN −
3

4
∂•hσσ∂•hρρ

þ 3

4
∂•hμν∂•hμν; ð5:18Þ

and it is straightforward to verify that the variation of the
additional terms in (5.18) precisely cancels the contribu-
tions in (5.17), such that

δΛLpot;• ¼ 0: ð5:19Þ
For the exotic solutions of the section constraint, the
∂•ϕMN∂•ϕ

MN terms in (5.18) give rise to additional contri-
butions of the type ∂yϕ∂yϕ in the Lagrangian. Collecting all
such terms in (5.18) for the two exotic solutions (5.12) yields

ð3; 1Þ → −
1

2
∂yϕ

α∂yϕ
α; α ¼ 1;…; 28;

ð4; 0Þ → −
1

2
∂yϕ

A∂yϕ
A; A ¼ 1;…; 42: ð5:20Þ

These are precisely the terms found in our explicit construc-
tion of actions (4.4) and (4.9) above. In other words, the

relaxation (5.10) of the section constraint together with
generalized diffeomorphism invariance precisely implies
the correct scalar couplings in the Lagrangians of the exotic
models. In addition, the ∂•h∂•h terms in (5.18) cancel the
corresponding terms in Lpot (5.4) upon selecting the (3,1)
solution of the section constraint (5.12), just as required in
order to reproduce the correct Lagrangian of theN ¼ ð3; 1Þ
model (4.2).4

We may continue the symmetry analysis for the tensor
gauge transformations given by a gauge parameter ΛμM in
standard ExFT. For these transformations there is a natural
extension of the standard ExFT transformation rules in the
presence of the exotic coordinate and exotic fields as

δΛμ
Aμ

M ¼ −10dMNK∂NΛμK −
ffiffiffiffiffi
10

p
ΔMK∂•ΛμK;

δΛμ
BμνM ¼ 2∂ ½μΛν�M: ð5:21Þ

Computing the action of these transformations on the
connection featuring in the covariant scalar derivatives
Dμϕ

MN in (5.4), we obtain after some manipulation5

δΛμ
Dμϕ

MN ¼ 10

�
1

3
ΔMNδP

Q þ ΔQðMδPNÞ − 10ΔSðMdNÞQRdRSP

�
dPKL∂K∂LΛμQ

− 2
ffiffiffiffiffi
10

p �
1

3
ΔMNδP

Q þ δP
ðMΔNÞQ − 10ΔLðMdNÞQRdRPL

�
ΔPK∂K∂•ΛμQ: ð5:22Þ

The resulting expression precisely vanishes with the modified section constraint (5.10). This shows the necessity of the
∂•ΛμM terms in (5.21) in order to maintain gauge invariance of the kinetic term Dμϕ

MNDμϕMN in presence of the relaxed
section constraint. It is straightforward to verify that these additional terms in the transformation induce a modification of
the gauge invariant vector field strengths to

F μν
M ≡ 2∂ ½μAν�M þ 10dMNK∂NBμνK þ

ffiffiffiffiffi
10

p
ΔMK∂•BμνK; ð5:23Þ

as well an extension of the topological term, such that the combined vector-tensor couplings take the form

Lvt;• ¼ −
1

4
ΔMNF μνMF μν

N −
5

4
εμνρστ∂μBνρMð

ffiffiffiffiffi
10

p
dMNK∂NBστK þ ΔMK∂•BστKÞ; ð5:24Þ

and are invariant under these gauge transformations. Let us work out the effect of these modifications for the exotic
solutions of the section constraint. With the kinetic scalar term unchanged, the resulting couplings are directly inferred from
evaluating the covariant derivatives (5.4) for the d-symbol (5.14), giving rise to

ð3; 1Þ ⟶ −
1

2
ð∂μϕi − ∂yAμiÞð∂μϕ

i − ∂yAμ
iÞ − 1

2
∂μϕα∂μϕ

α; i ¼ 1;…; 14; α ¼ 1;…; 28;

ð4; 0Þ ⟶ −
1

2
∂μϕA∂μϕ

A; A ¼ 1;…; 42: ð5:25Þ

4In contrast, these terms appear in conflict with embedding the spin-2 sector of the N ¼ ð4; 0Þ model as they survive under the (4,0)
solution in (5.12) but should be absent in the final Lagrangian (4.6). We come back to this in Sec. V C.

5A useful identity for this computation is given by

dPLQdPSRdKMR∂K∂L ¼ 1

10
δKS d

LQM∂K∂L þ 1

20
δMS d

QKL∂K∂L þ 1

20
δQS d

MKL∂K∂L −
1

2
dQMRdRSPdPKL∂K∂L;

generalizing Eqs. (2.12), (2.13) of [11].
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This precisely reproduces the vector-scalar couplings found in the explicit Lagrangians (4.4), (4.9) above. As for the vector-
tensor couplings, evaluating the Lagrangian (5.24) with (5.14) for the solutions (5.12) gives rise to the explicit couplings

ð3; 1Þ ⟶ −
1

4

�
Fμν þ

3
ffiffiffi
3

p

2
∂yBμν

��
Fμν þ 3

ffiffiffi
3

p

2
∂yBμν

�
−
1

4
ðFμν

a þ ∂yBμν
aÞðFμνa þ ∂yBμνaÞ

−
1

4
FμνiFμν

i −
3

16
εμνρστ∂yBμνHρστ −

1

24
εμνρστ∂yBμν

aHρστ
a;

ð4; 0Þ ⟶ −
1

4
ðFμν

M þ ∂yBμν
MÞðFμνM þ ∂yBμνMÞ − 1

24
εμνρστ∂yBμν

MHρστ
M; ð5:26Þ

with indices in range i ¼ 1;…; 14, a ¼ 1;…; 12,
M ¼ 1;…; 27, as above. Again, this precisely reproduces
the couplings found above (after proper rescaling of the
vector field Aμ).
To summarize, in the scalar, vector, and tensor sector, we

have constructed an extension of the ExFT Lagrangian (at
the linearized level), given by

L ¼ −
1

2
Dμϕ

MNDμϕMN þ Lvt;• þ Lpot;•; ð5:27Þ

which is invariant under the gauge transformations (5.9),
(5.21) modulo the relaxed section constraint (5.10). The
weaker section constraint necessitates a number of addi-
tional contributions to the Lagrangian (and transformation
rules) which precisely reproduce the explicit couplings
found in the Lagrangians of the exotic models (4.4), (4.9)
constructed above. It is remarkable that this match confirms
the couplings that have been determined from an under-
lying noncompact E6ð6Þ and F4ð4Þ structure, respectively,

despite the fact that the free theory only exhibits invariance
under the compact R-symmetry subgroup USpð2N þÞ ×
USpð2N −Þ which might in principle allow for much more
general couplings. We take this as evidence for the
conjectured E6ð6Þ and F4ð4Þ invariance of the putative
interacting theories [1].

C. The spin-2 sector

The above findings have revealed a very intriguing
common structure of the couplings in the scalar, vector,
and tensor sectors of the different models which can be
consistently embedded into an extension of (linearized)
exceptional field theory. For the spin-2 sector carrying the
Pauli-Fierz field and its duals on the other hand the picture
appears not yet complete. Extrapolation of the Lagrangian
of the N ¼ ð4; 0Þ model (4.6) suggests an extension of the
standard ExFT Lagrangian by couplings carrying ∂•

derivatives and the dual graviton fields as

L ¼ −
1

4
bΩμνρbΩμνρ þ

1

2
bΩμνρbΩνρμ þ bΩμbΩμ þ

1

8
εμνσκλ∂μbCνσ

ρ∂•
bCκλ;ρ

−
1

32
εμνσκλ∂μCνσ

ρ∂•Cκλ;ρ þ 1

8
∂•Cστ;ν∂μTμν;στ −

1

4
∂•Cκλ;τ∂κTλσ;τ

σ

−
1

4
∂νCσμ

μ∂•Tστ;ν
τ þ

1

8
∂•Cσμ

μ∂σTτν
τν þ 1

64
εμναβγ∂αTστ

βγ∂•Tμν;στ

−
1

32
∂•Tστ;μν∂•Tμν;στ þ 1

8
∂•Tσμ;ν

μ∂•Tστ;ν
τ −

1

32
∂•Tμν

μν∂•Tστ
στ

þ 5

4
εμνρστdKMN∂KBμνM∂N

bCρσ;τ; ð5:28Þ

with

bΩμνρ ¼ ∂ ½μhν�ρ −
2

3
∂MA½μMην�ρ − ∂•

bCμν;ρ þ
1

2
∂•Cμν;ρ:

ð5:29Þ

By construction, this reproduces the N ¼ ð2; 2Þ and the
N ¼ ð4; 0Þ models upon choosing the corresponding
solutions of the section constraint. It remains unclear
however, how the spin-2 sector of the N ¼ ð3; 1Þ model

can find its place in this construction. In particular, the
appearance of the extra fields Cμν;ρ and Tμν;ρσ appearing in
(5.28), whose couplings remain present upon selecting the
(3,1) solution (5.12) of the section constraint, poses a
challenge for recovering the Lagrangian (4.4) of the N ¼
ð3; 1Þ model. The structure of the gauge transformations of
C as extrapolated from (4.8) appears to suggest a gauge
fixing of the ζμν and λρ;μν gauge symmetries—absent in the
N ¼ ð3; 1Þ model—in order to remove this field. Another
apparent problem in the spin-2 sector is the lacking
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reconciliation between the ∂•h∂•h terms from (5.18) and
the ∂•T∂•T terms of (5.28) which mutually violate the
correct limits to the exotic models. Resolution of this
problem may require to implement algebraic relations
between the Pauli-Fierz hμν field and the double dual
graviton [2] (see also [27]).

VI. CONCLUSIONS AND OUTLOOK

In this paper we have taken the first step in constructing
action principles for exotic supergravity theories in 6D by
giving such actions for the free bosonic part. These actions
show already intriguing new features such as the simulta-
neous appearance of (linearized) diffeomorphisms and
dual diffeomorphisms, which are realized on exotic Young
tableaux fields as well as more conventional gravity fields.
Our formulation abandons manifest 6D Lorentz invariance,
as expected to be necessary on general grounds, by being
based on a 5þ 1 split of coordinates. Remarkably, the field
equations implied by our actions can be integrated to
reconstruct the correct dynamics of these exotic super-
gravites. Moreover, we have seen the first glimpses of an
exceptional field theory master formulation, in which the
conventional N ¼ ð2; 2Þ, as well as the exotic N ¼ ð3; 1Þ
and N ¼ ð4; 0Þ models all emerge through different
solutions of an extended section constraint, but clearly
much more needs to be done. We close with a brief
discussion of possible future developments.
First, it remains to exhibit the (maximal) supersymme-

tries in these nonstandard formulations, even just at the free
level. We have no doubt that this can be achieved as in
exceptional field theory where different supersymmetries
(such as type IIB versus type IIA) are realized within a
single master formulation. Second, it would be interesting
to study possible embeddings into exceptional field theo-
ries of higher rank, such as for U-duality groups E7ð7Þ and
E8ð8Þ, which may illuminate some issues and which can
also be done already at linearized level. Finally, the most
important outstanding problem is clearly the question
whether our formulation can be extended to the nonlinear
interacting theory. We would like to emphasize that the
present formulations seem quite promising in this regard
since they feature not only the exotic fields but also the
more conventional gravity fields, which come with an
action that allows a natural embedding into the full non-
linear Einstein-Hilbert action. In turn this suggests that all
these fields might become part of a tensor hierarchy that
extends to the gravity sector. If so this could quite naturally
lend itself to a formulation of nonlinear dynamics in terms
of a hierarchy of duality relations as in [28].
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APPENDIX A: ACTIONS FOR SELF-DUAL
TENSOR FIELDS

It is well known that the first-order field equations for
D ¼ 6 self-dual tensor fields

Hμ̂ ν̂ ρ̂ ¼
1

6
εμ̂ ν̂ ρ̂ σ̂ κ̂ λ̂H

σ̂ κ̂ λ̂; Hμ̂ ν̂ ρ̂ ¼ 3∂ ½μ̂Bν̂ ρ̂� ðA1Þ

do not integrate to a standard action principle, yet various
mechanisms with different characteristics have been
devised such as to provide a Lagrangian description of
these equations [13,20–22]. In this Appendix, we briefly
review the construction of Henneaux and Teitelboim [13]
which is somewhat closest in spirit to the construction
employed in this paper, together with its dual formulation
that is naturally embedded within exceptional field theory.
Both formulations are based on a coordinate split (3.1)

fxμ̂g → fxμ; yg; ðA2Þ

and sacrifice manifest D ¼ 6 Poincaré invariance.6 With
the corresponding split fBμ̂ ν̂g ¼ fBμν; Bμ5 ≡ Aμg of the
six-dimensional tensor field, the self-duality equations (A1)
take the form

F μν þ
1

6
εμνρστHρστ ¼ 0; for F μν ≡ Fμν þ ∂yBμν: ðA3Þ

In particular, the divergence and curl of this equation give
rise to

∂μF μν ¼ 0;

εμνλστ∂yHλστ − 6∂λHλμν ¼ 0; ðA4Þ

respectively.

1. Henneaux-Teitelboim Lagrangian

The Lagrangian proposed by Henneaux and Teitelboim
[13] for the description of the self-dual tensors takes the
form

L ¼ 1

24
εμνρστF μνHρστ −

1

12
HμνρHμνρ ðA5Þ

6The original construction of [13] defines the 5þ 1 split by
singling out the time coordinate, but the method obviously
applies equally well for the split based on a spatial distinguished
dimension.
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when applied to Eq. (A3), i.e., evaluated for spacelike split
and flat background. As a first observation, this Lagrangian
depends on the vector field Aμ only via total derivatives,
such that it does not show up in the field equations

εμνρστ∂yHρστ ¼ 6∂ρHμνρ; ðA6Þ

reproducing the second equation of (A4). This equation
now serves as an integrability equation in order to locally
define the vector field Aμ via the equation

2∂ ½μAν� ¼ −∂yBμν −
1

6
εμνρστHρστ: ðA7Þ

Indeed, the curl of the right-hand side vanishes by virtue of
(A6). Defining the vector field Aμ by (A7), we precisely
recover the equations of motion (A3).

2. ExFT type Lagrangian

Exceptional field theory typically yields formulations of
higher-dimensional supergravity theories based on the field
content of lower-dimensional theories. In particular, it
offers actions for theories that do not admit actions in
terms of their original variables, such as IIB supergravity,
cf. [12]. In the context of (anti-)self-dual tensor fields
appearing in six dimensions, an exceptional field theory
formulation based on a split (A2) gives rise to an action

L ¼ −
1

4
F μνF μν −

1

24
εμνρστ∂yBμνHρστ; ðA8Þ

carrying the fields of Eq. (A3). The field equations are now
given by

0 ¼ ∂νF νμ ¼ ∂νFνμ þ ∂y∂νBνμ; ðA9Þ

0 ¼ ∂y

�
F μν þ

1

6
εμνρστHρστ

�
: ðA10Þ

In particular, Eq. (A10) implies the original field
equations (A3) up to some function that does not depend
on y:

F μν þ
1

6
εμνρστHρστ ¼ χμν; ∂yχμν ¼ 0: ðA11Þ

Comparing the divergence of this equation to (A9), we find
that locally the field χμν can be integrated to

∂μχμν ¼ 0 ⇒ χμν ¼ εμνρστ∂ρbστ; ðA12Þ

in terms of a function bμν, such that the field
equations (A11) can be rewritten as

ðFμν þ ∂yB̃μνÞ þ
1

6
εμνρστ3∂ρB̃στ ¼ 0; ðA13Þ

with the modified two-form

B̃μν ≡ Bμν − 2bμν: ðA14Þ
In terms of the fields Aμ, B̃μν, we thus recover the desired
original field equations (A3). Note finally, that the
Lagrangian (A8) precisely comes with a gauge freedom
of the type (A14) which allows one to absorb bμν into Bμν.
We thus arrive at two complementary Lagrangians (A5),

(A8), which both describe the six-dimensional self-dual
tensor field upon sacrificing manifest D ¼ 6 Poincaré
invariance. They are dual to each other in the sense that
upon dimensional reduction toD ¼ 5 dimensions, i.e., upon
setting ∂y → 0, the Lagrangian (A8) describes the 3 degrees
of freedom in terms of a free Maxwell field whereas (A5)
describes them in terms of the dual massless tensor fieldBμν.
Similarly, the twoLagrangians (A5) and (A8) canbedualized
into each other in presence of the sixth dimension.

APPENDIX B: 6D FIELD EQUATIONS FROM
THE NEW LAGRANGIANS

In this Appendix, we present in detail how the second-
order field equations obtained by variation of the
Lagrangians (4.2) and (4.6) can be integrated to the
first-order field equations which in turn imply the original
6D second-order self-duality equations of the N ¼ ð3; 1Þ
model and the N ¼ ð4; 0Þ model, respectively.

1. The N = ð3;1Þ model

Here, we show how the second-order field equations
obtained by variation of the Lagrangian (4.2) for the N ¼
ð3; 1Þ model can be integrated to the first-order field
equations (3.21) and (3.22) which in turn imply the original
6D second-order self-duality equations (2.11).

a. Field equations

Let us first spell out the field equations obtained from
variation of the Lagrangian (4.2).
Variation with respect to Aμ:

∂μFμν þ
3

2
∂y∂μBμν

−
1

2
∂yð∂μhμν − ∂νhμμ − ∂y

bCνμ
μ þ 4∂yAνÞ ¼ 0; ðB1Þ

which is exactly (3.29).
Variation with respect to Bμν:

∂y

�
Fμνþ

3

2
∂yBμνþ

1

2
εμνρστ∂ρBστ þ 1

12
∂yεμνρστbCρστ

�
¼ 0;

ðB2Þ
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which is the ∂y derivative of Eq. (3.21).
Variation with respect to hμν:

Gμν þ
1

2
∂yð∂ρbCρðμ;νÞ þ ∂ðμbCνÞρ

ρ − ημν∂ρbCρσ
σÞ ¼ 0; ðB3Þ

with the linearized Einstein tensor as it appears in
(3.17); this variation thus exactly reproduces the Einstein
equation (3.17).
Variation with respect to bCμν;ρ:

∂y

�
∂ ½μhν�ρ þ ∂σhσ½μην�ρ − ηρ½ν∂μ�hσσ þ

1

4
εμνλστ∂λbCστ

ρ þ
1

4
∂yðbCμν;ρ − bCνρ;μ − bCρμ;νÞ

− ηρ½ν∂y
bCμ�σ

σ þ 3∂yA½μην�ρ þ
3

8
εμνρστBστ

�
¼ 0; ðB4Þ

which we can further project onto its (2,1) part and totally antisymmetric part

∂y

�
∂ ½μhν�ρ þ ∂σhσ½μην�ρ − ηρ½ν∂μ�hσσ þ

1

4
εμνλστ∂λbCστ

ρ −
1

4
ελστ½μν∂λbCστ

ρ�

þ 1

4
∂yðbCμν;ρ − bCνρ;μ − bCρμ;ν þ bC½μν;ρ�Þ − ηρ½ν∂y

bCμ�σ
σ þ 3∂yA½μην�ρ

�
¼ 0; ðB5Þ

∂y

�
1

4
ελστ½μν∂λbCστ

ρ� −
1

4
∂y

bC½μν;ρ� þ
3

8
∂yεμνρστBστ

�
¼ 0: ðB6Þ

We now show how to recover the full 6D system (3.19)
and (3.21) from the equations derived above. Let us first
rewrite these equations in terms of the original fields of the
(3,1) model and integrate all the equations under ∂y by
introducing three functions χμνðxμÞ, ψμνρðxμÞ and φμν;ρðxμÞ
which are respectively antisymmetric, antisymmetric and of
(2,1) type, and do not depend on the sixth coordinate:

∂μFμν þ
3

2
∂y∂μBμν

−
1

2
∂yð∂μhμν − ∂νhμμ − ∂yCνμ

μ þ 4∂yAνÞ ¼ 0; ðB7Þ

Fμν þ
3

2
∂yBμν − ∂yuμν þ

1

2
εμνρστ∂ρBστ ¼ χμν; ðB8Þ

ελστ½μν∂λCστ
ρ� − 4∂ ½ρuμν� − ∂yεμνρστ

�
uστ −

3

2
Bστ

�
¼ ψμνρ;

ðB9Þ

Gμνþ
1

2
∂yð∂ρCρðμ;νÞ þ ∂ðμCνÞρρ − ημν∂ρCρσ

σÞ ¼ 0; ðB10Þ

∂ ½μhν�ρ þ ∂σhσ½μην�ρ − ηρ½ν∂μ�hσσ þ
1

4
εμνλστ∂λCστ

ρ

−
1

4
ελστ½μν∂λCστ

ρ� þ
1

2
∂yCμν;ρ − ηρ½ν∂yCμ�σσ þ 3∂yA½μην�ρ

− ∂ρuμν þ ∂ ½ρuμν� − 2∂σuσ½μην�ρ ¼ φμν;ρ: ðB11Þ

b. A-B duality

Combining (B7) and (B8) gives

∂y∂μuμν ¼
1

2
∂yð∂μhμν− ∂νhμμ− ∂yCνμ

μþ 4∂yAνÞ− ∂μχμν;

ðB12Þ
while the trace of (B11) in ðμρÞ gives

∂μuμν ¼
1

2
ð∂μhμν − ∂νhμμ − ∂yCνμ

μ þ 4∂yAνÞ þ
1

3
φμν

μ:

ðB13Þ

Together, these two equations imply that locally, we can
define a two-form b such that

χμν ¼
1

2
εμνρστ∂ρbστðxμÞ: ðB14Þ

This two-form can be absorbed in B (following exactly the
same process as in Sec. A 2) such that Eq. (B8) repro-
duces (3.21).

c. h-C duality

Contracting (B11) with ∂μ, we can extract both sym-
metric and antisymmetric parts:

ðνρÞ∶Gνρ þ
1

2
∂yð∂μCμðν;ρÞ − ηνρ∂μCμσ

σ þ ∂ðρCνÞσσÞ
¼ ∂μφμðν;ρÞ; ðB15Þ

BERTRAND, HOHENEGGER, HOHM, and SAMTLEBEN PHYS. REV. D 103, 046002 (2021)

046002-18



½νρ�∶ − 1

6
ελστνρ∂μ∂λCστ

μ þ ∂yð∂μCμ½ν;ρ� þ ∂ ½ρCν�σσ − 3∂ ½ρAν�Þ þ 2∂μ∂ ½μuνρ� ¼ 2∂μφμ½ν;ρ�: ðB16Þ

Using (B10) we can conclude that

∂μφμðν;ρÞ ¼ 0: ðB17Þ
The divergence of (B9) reads

−
1

6
εμναβγ∂ρ∂αCαβ

ρ þ 2∂ρ∂ ½ρuμν� þ
1

2
∂yεμνραβ∂ρ

�
uαβ −

3

2
Bαβ

�
¼ −

1

2
∂ρψμνρ; ðB18Þ

and combining it with (B16) and (B8), we eventually get

2∂μφμ½ν;ρ� ¼ −
1

2
∂ρψμνρ: ðB19Þ

Together with (B17), one has

∂μ

�
2φμν;ρ þ

1

2
∂ρψμνρ

�
¼ 0; ðB20Þ

such that locally there exist 5D tensors cμν;ρ and aμνρ, where c is of (2,1) type and a is completely antisymmetric, such that

2φμν;ρ þ
1

2
∂ρψμνρ ¼

1

2
εμναβγ∂αðcβγρ þ aβγρÞ: ðB21Þ

Consequently

φμν
μ ¼ 1

4
εμναβγ∂αaβγμ; ðB22Þ

φμν;ρ ¼
1

4
εμναβγ∂αðcβγρ þ aβγρÞ −

1

4
εαβγ½μν∂αðcβγρ� þ aβγρ�Þ; ðB23Þ

ψμνρ ¼ εαβγ½μν∂αðcβγρ� þ aβγρ�Þ: ðB24Þ

Plugging the expression for φ and its trace back into (B11), one has

2∂ ½μhν�ρ þ
1

2
εμνλστ∂λCστ

ρ −
1

2
ελστ½μν∂λCστ

ρ� þ ∂yCμν;ρ − 2∂yA½μην�ρ − 2∂ρuμν þ 2∂ ½ρuμν�

¼ 1

2
εμναβγ∂αðcβγρ þ aβγρÞ −

1

2
εαβγ½μν∂αðcβγρ� þ aβγρ�Þ þ

1

3
εαβγσ½μ∂αaβγσην�ρ: ðB25Þ

Then, using the following two Schouten identities

ε½μναβγ∂αaβγρ� ¼ 0 ¼ −εαβγ ½μν∂ρ�aαβγ þ 3∂αε
αβγ ½μνaρ�βγ; ðB26Þ

ε½σμαβγ∂αaβγσην�ρ ¼ 0 ¼ 2εαβγσ½μ∂αaβγσην�ρ − ∂ρεβγσμνaβγσ þ 3εαβγμν∂αaβγρ; ðB27Þ
one obtains

2∂ ½μhν�ρ þ
1

2
εμνλστ∂λðCστ

ρ − cστρÞ þ
�
Hμνρ −

1

2
εμνραβFαβ

�
þ ∂yðCμν;ρ − 2A½μην�ρÞ

− 2∂ρ

�
uμν þ

1

12
εμναβγaαβγ

�
¼ 0: ðB28Þ

We recover the 6D equation (3.19) after the following redefinitions
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uμν → uμν þ
1

12
εμναβγaαβγ;

Bμν → Bμν − bμν; Cμν;ρ → Cμν;ρ − cμν;ρ: ðB29Þ

One can check that these redefinitions are consistent with
the expression of ψ in (B9). Finally, the derivatives of
(3.19) and (3.21) give rise to the original 6D equations of
motion (2.11) as discussed in Sec. III B above.

2. The N = ð4;0Þ model

Here, we show how the second-order field equations
obtained by variation of the Lagrangian (4.6) for the

N ¼ ð4; 0Þ model can be integrated to the first-order field
equations (3.34) and (3.36) which in turn imply the original
6D second-order self-duality equations (2.16).

a. Field equations

Let us first spell out the field equations obtained from
variation of the Lagrangian (4.6). Apart from the Einstein
equations (3.40) obtained by variation with respect to hμν,
all other field equations appear under total derivative ∂y and
can be integrated into first-order equations up to functions
that only depend on the five coordinates xμ. Explicitly, we
may put them to the form

1

4
εαβγ½μν∂αCβγ

ρ� − ∂ ½ρuμν� þ
1

2
∂yv½ρ;μν� ¼ χμνρ; ðB30Þ

1

8
εαβγ½μν∂αCβγ

ρ� þ
1

4
εαβγ½μν∂αvρ�βγ − ∂ ½ρuμν� þ

1

2
∂yv½ρ;μν� ¼ ψμνρ; ðB31Þ

∂ ½μhν�ρ þ ∂αhα½μην�ρ − ηρ½ν∂μ�hαα þ
1

4
εμναβγ∂αCβγ

ρ −
1

4
εαβγ½μν∂αCβγ

ρ� − ∂ρuμν þ ∂ ½ρuμν�

− 2∂αuα½μην�ρ þ
1

2
∂yðCμν;ρ þ vρ;μν − v½ρ;μν�Þ − ∂yηρ½νðCμ�αα þ vαμ�αÞ ¼ φμν;ρ ðB32Þ

∂ ½μhν�ρ þ ∂αhα½μην�ρ − ηρ½ν∂μ�hαα þ
1

8
εμναβγ∂αCβγ

ρ −
1

8
εαβγ½μν∂αCβγ

ρ� − ∂ρuμν þ ∂ ½ρuμν�

− 2∂αuα½μην�ρ þ
1

2
∂yðCμν;ρ þ vρ;μν − v½ρ;μν�Þ − ∂yηρ½νðCμ�αα þ vαμ�αÞ þ

1

4
εμναβγ∂αvρβγ

−
1

4
εαβγ½μν∂αvρ�βγ −

1

4
∂αTαρ;μν þ

1

2
∂ ½μTν�α;ρα þ

1

2
ηρ½ν∂αTμ�β;αβ −

1

4
ηρ½ν∂μ�Tαβ

αβ ¼ θμν;ρ; ðB33Þ

1

2
εαβγμν∂αTβγ

ρσ þ
1

2
εαβγρσ∂αTβγ

μν − εαβγ½μν∂αTβγ
ρσ� þ 2∂ðμðCjρσj;νÞ − vνÞ;ρσÞ

þ 2∂ðρðCjμνj;σÞ − vσÞ;μνÞ − 2∂αðCαρ;ðμ − vðμ;jαρjÞηνÞσ − 2∂αðCασ;ðμ − vðμ;jασjÞηνÞρ
− 2∂αðCαμ;ðρ − vðρ;jαμjÞησÞν − 2∂αðCαν;ðρ − vðρ;jανjÞησÞμ − 2ησðμ∂νÞðCρα

α − vαραÞ
− 2ηρðμ∂νÞðCσα

α − vασαÞ − 2ημðρ∂σÞðCνα
α − vαναÞ − 2ηνðρ∂σÞðCμα

α − vαμαÞ
þ ∂yð2Tμν;ρσ − 4ησðνTμÞα;ρα − 4ηρðνTμÞα;σα þ 2ημðρησÞνTαβ

αβÞ
þ 4ημðρησÞν∂αðCαβ

β − vβαβÞ ¼ ϕμν;ρσ: ðB34Þ

Here, the functions χμνρ and ψμνρ are totally antisymmetric,
while φμν;ρ and θμν;ρ are of (2,1) type, and ϕμν;ρσ is (2,2). All
of these functions do not depend on the sixth coordinate.

b. h-C duality

Using (3.40), one can show that the derivatives of (B30)
and (B32) imply

∂μðφμνρ þ χμνρÞ ¼
1

2
∂yðενραβγðχαβγ − ψαβγÞÞ ¼ 0: ðB35Þ

This implies that locally, we can define a totally antisym-
metric aμνρ and a cμν;ρ of (2,1) type, such that

φμνρ þ χμνρ ¼
1

4
εμναβγ∂αðaβγρ þ cβγρÞ: ðB36Þ

Moreover

φμν
μ ¼ 1

4
εμναβγaβγμ; ðB37Þ
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thus

∂ ½μhν�ρ þ
1

4
εμναβγ∂αCβγ

ρ − ∂ρuμν þ
1

2
∂yðCμν;ρ þ vμν;ρÞ

¼ φμνρ þ χμνρ þ
2

3
φα½μαην�ρ

¼ 1

4
εμναβγ∂αcβγρ þ

1

12
∂ρεμναβγaαβγ: ðB38Þ

We thus recover the 6D equation (3.36) after redefining

Cμν;ρ → Cμν;ρ − cμν;ρ ðB39Þ

uμν → uμν þ
1

12
εμναβγaαβγ: ðB40Þ

c. C-T duality

Having established equation (3.36), we can hit it with
another derivative to obtain the (modified) Curtright
equation

3∂τ∂ ½τCμν�
ρ − 3∂ρ∂ ½τCμν�

τ

¼ 1

2
εμντκλ∂yð∂τCκλ;ρ þ ∂τvρ;κλ − ∂ρvτ;κλÞ: ðB41Þ

It remains to recover the duality equation (3.34). From
(B30)–(B34), we obtain

Eμν;ρσ ¼ Ωμν;ρσðxÞ; ðB42Þ

where

Eμν;ρσ≡1

2
εαβγμν∂αTβγ

ρσþ2∂ ½μCjρσj;ν�−2∂ ½ρvσ�;μνþ∂yTμν;ρσ;

ðB43Þ

andΩμν;ρσ is a combination of θμν;ρ and ϕμν;ρσ. For later use,
we parametrize this field as

Ωμν
ρσ ¼ Ω̂μν

ρσ þ
4

3
δ½μ½ρΩν�

σ�; ðB44Þ

with traceless Ω̂μν
ρσ and the trace part given by

Ωμν
ρν ¼ Ωμ

ρ þ
1

3
δμρΩν

ν: ðB45Þ

Equation (3.34) amounts to showing that

Eμν;ρσ ¼ 0 ðB46Þ

(after potential re-definition of Tμν;ρσ and vρ;μν). To begin
with, using the field equations that are already established,
we can show that the particular combination of derivatives

3∂ ½μΩμν
ρσ� ¼ 3∂μ∂ ½μCρσ�ν − 3∂ν∂ ½μCρσ�μ − 3∂y∂ ½μTρσ�νμ

¼ðB:42Þ3∂μ∂ ½μCρσ�ν − 3∂ν∂ ½μCρσ�μ

−
1

2
εμκλρσ∂yð∂μCκλ

ν þ ∂λvνμκ − ∂νvλ;μκÞ

¼ðB:41Þ0; ðB47Þ
vanishes. In particular, contraction of this equation shows
that

2∂μΩμν
ρν − ∂ρΩμν

μν ¼ 0 ⇒ ∂μðΩμ
ρ − δμρΩν

νÞ ¼ 0:

ðB48Þ
This can be integrated to

Ωμ
ρ− δμρΩν

ν ¼ ∂λω
λμ

ρ ⇔ Ωμ
ρ ¼ ∂λω

λμ
ρ−

1

4
δμρ∂λω

λκ
κ:

ðB49Þ
Next, we observe that (B47) gives rise to the second-

order differential equation

0 ¼ ∂μ∂ ½τΩμν
ρσ�: ðB50Þ

Using the parametrization (B44) and the relation (B48), this
equation reduces to

0 ¼ ∂μ∂ ½τΩ̂μν
ρσ�; ðB51Þ

for the traceless part ofΩ. Dualizing the first two indices on
Ω̂, defines the object

Ω̂αβγ;ρσ ≡ 1

2
εαβγμνΩ̂μν

ρσ; ðB52Þ

corresponding to an irreducible Young tableau . Using

the generalized Poincaré Lemma [30] for this object then
allows to integrate up equation (B51) into

Ω̂μν
ρσ ¼

1

2
εμναβγ∂αtβγ;ρσ þ 2∂ ½ρsμνσ� þ

4

3
δ½ρj½μ∂κsν�κ jσ�;

ðB53Þ
in terms of two gauge parameters tμν;ρσ and sμν;ρ. The first

one corresponds to an irreducible Young tableau , while
the parameter sμν;ρ is antisymmetric in its first two indices
and traceless sμνν ¼ 0,—such that its dual ŝαβγ;ρ ¼
1
2
εαβγμνsμνρ corresponds to an irreducible Young tableau

. The last term in (B53) implements the projection onto

the traceless part.
Putting together (B53) and (B49), we arrive at

Ωμν
ρσ ¼

1

2
εμναβγ∂αtβγ;ρσ þ 2∂ ½ρsμνσ� þ

4

3
δ½ρj½μ∂κsν�κ jσ�

−
4

3
δ½ρj½μ∂κω

ν�κ jσ� −
1

3
δμνρσ∂λω

λκ
κ: ðB54Þ
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We can plug this back into (B47) to arrive at

0 ¼ 3∂ ½μΩμν
ρσ� ¼

4

3
∂μ∂ ½ρsμνσ� −

4

3
∂μ∂ ½ρωμν

σ�

þ 1

3
δ½σν∂ρ�∂λω

λκ
κ; ðB55Þ

which in turn is a curl in ½ρσ� and can be integrated into

∂μsμνσ − ∂μω
μν

σ þ
1

4
δσ

ν∂λω
λκ
κ ¼ ∂σξ

ν: ðB56Þ

This further reduces the result (B54) and allows to put it
into the form

Ωμν
ρσ ¼

1

2
εμναβγ∂αtβγ;ρσ þ 2∂ ½ρ

�
sμνσ� þ

2

3
δσ�½μξν�

�
: ðB57Þ

Using this result in (B42), we finally arrive at

Eμν;ρσ ¼ 0; ðB58Þ
upon shifting

Tμν;ρσ → Tμν;ρσ þ tμν;ρσ; vρ;μν → vρ;μν þ sμν;ρ þ
2

3
ηρ½μξν�:

ðB59Þ
We have thus shown that also the Eq. (3.34) follows from
the Lagrangian (4.6). Finally, derivatives of (3.34) and
(3.36) give rise to the original 6D equations of motion
(2.16) as discussed in Sec. III C above.
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