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In loop quantum gravity approach to Planck scale physics, quantum geometry is represented by
superposition of the so-called spin network states. In the recent literature, a class of spin networks
promising from the perspective of quantum simulations of quantum gravitational systems has been studied.
In this case, the spin network states are represented by graphs with four-valent nodes, and two dimensional
intertwiner Hilbert spaces (qubits of space) attached to them. In this article, construction of quantum
circuits for a general intertwiner qubit is presented. The obtained circuits are simulated on 5-qubit
(Yorktown) and 15-qubit (Melbourne) IBM superconducting quantum computers, giving satisfactory
fidelities. The circuits provide building blocks for quantum simulations of complex spin networks in the
future. Furthermore, a class of maximally entangled states of spin networks is introduced. As an example of
application, attempts to determine transition amplitudes for a monopole and a dipole spin network with the
use of superconducting quantum processor are made.
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I. INTRODUCTION

In the recent articles [1–6] an idea of performing
quantum simulations of loop quantum gravity (LQG)
[7,8] has been developed. While at present such simulations
are possible to execute only for very simple systems, the
approach may provide a way to investigate collective
properties of Planck scale degrees of freedom in the future.
Taking into account exponential growth of the dimen-

sionality of the Hilbert space with the increase of the
involved degrees of freedom, simulation of complex
quantum gravitational systems is an extremely difficult
task for classical computers. On the other hand, the current
progress in quantum computing technologies may open a
way to simulate quantum gravitational systems unachiev-
able to the most powerful classical supercomputers yet in
this decade. Such claim is supported by the recent results of
quantum computations of the sampling problem from a
quasirandom quantum circuit performed on a 53 qubit
quantum processor [9]. Therefore, even if available quan-
tum computing resources are still very limited, it is justified
to already now prepare, test, and optimize quantum circuits
for the future quantum simulations of the Planck scale
physics. A side benefit of such investigations is exploration
of the quantum information structure of geometry, within
and beyond LQG. In particular, the studies may shed a new
light on such fundamental issues as emerging gravity/
entanglement duality [10,11] and the related ER ¼ EPR
conjecture [12]. The duality has its roots in the holographic
principle [13] and AdS=CFT correspondence [14].

Following the correspondence’s holographic nature, the
gravitational 3D bulk geometry is dually described by the
2D boundary. From this point of view, the LQG spin
networks can be interpreted as the representations of either
a state of gravity in bulk or, equivalently, the entanglement
structure (similarly to tensor networks) of the boundary
[15]. In consequence, simulating quantum gravity on a
quantum computer may concern either the 3D bulk or the
2D boundary. In the latter case, simulations of a quantum
system at the boundary (e.g., a specific spin system) should
allow reconstructing a state of quantum geometry in the
bulk. It is, therefore, worth emphasizing that quantum
simulations of 2D gravitational surfaces are of particular
interest. The first attempt at quantum simulations in the
holographic context has already been made in Ref. [16].
Concerning LQG, an example of a relevant quantum model
of a boundary has been introduced in Ref. [17]. The model
utilizes the intertwiner degrees of freedom investigated here.
Our studies may, therefore, be considered as a vestibule to
quantum simulations of this and other similar models of
quantum boundaries (but also the bulk geometry) in the
future.
In this article, we follow the discussion presented in [4]

where a class of spin networks characterized by 4-valent
nodes has been considered. It has been shown, thatwhile spin
labels at the links are givenby fundamental representations of
the SU(2) group, the intertwiner spaces at the nodes are two
dimensional Hilbert spaces. The Hilbert spaces are invariant
subspaces (singlets) of four spin-1=2 Hilbert spaces asso-
ciated with holonomies, which meet at the node (see Fig. 1).
The singlet states are a consequence of the local SU(2)

gauge invariance imposed by the Gauss constraint in LQG,*jakub.mielczarek@uj.edu.pl
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which has a form of a vector equation defining a tetrahe-
dron (see e.g., [18]):

X4
i¼1

J⃗i ¼ 0; ð1Þ

where J⃗i are the angular momentum vectors normal to the
faces of the tetrahedron. The components of the vector J⃗i ¼
ðJ1i ; J2i ; J3i Þ satisfy the suð2Þ algebra: fJak; Jbl g ¼ δklϵ

ab
cJck,

for a; b; c ∈ f1; 2; 3g. The J⃗i vectors are associated to the

areas Ai ≔ 8πl2Plγ
ffiffiffiffiffiffiffiffiffiffiffi
J⃗i · J⃗i

q
of the faces, where lPl ≔

ffiffiffiffi
G

p
≈

1.62 × 10−35 m is the Planck length, G is the Newton’s
constant and ℏ ¼ 1 ¼ c. Here, γ is the Barbero-Immirzi
parameter [19,20], which plays an important role in LQG.1

In such a case, a general intertwiner state—an intertwiner
qubit—can be written as [4]:

jIi ¼ cosðθ=2Þj0si þ eiϕ sinðθ=2Þj1si; ð2Þ

where θ ∈ ½0; π� and ϕ ∈ ½0; 2πÞ are angles on the Bloch
sphere. The j0si and j1si are basis states, corresponding to
two linearly independent singlets of four spin-1=2 DOFs
(qubits) in the s-channel [26]:

j0si ¼ jSijSi; ð3Þ

j1si ¼
1ffiffiffi
3

p ðjTþijT−i þ jT−ijTþi − jT0ijT0iÞ; ð4Þ

where

jSi ¼ 1ffiffiffi
2

p ðj01i − j10iÞ; ð5Þ

jTþi ¼ j00i; ð6Þ

jT0i ¼
1ffiffiffi
2

p ðj01i þ j10iÞ; ð7Þ

jT−i ¼ j11i; ð8Þ

are two spin-1=2 singlet and triplet states respectively. The
Hilbert space of the spin-1=2DOF isH1=2 ¼ spanfj0i; j1ig.
Physically, the intertwiner space is associated with the

quantum of volume [27,28]. This can be shown by consid-
ering volume operator V̂ in LQG, defined as follows [18]:

V̂ ≔
ffiffiffi
2

p

3
l3Plð8πγÞ

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ˆJ⃗1 · ð ˆJ⃗2 × ˆJ⃗3Þj

q
; ð9Þ

where ˆJ⃗i are the angular momentum vector operators. The
volume operator is defined as a positive-definite function of
the triple product J⃗1 · ðJ⃗2 × J⃗3Þ, the sign of which depends
on the orientation of space. The two possible signs discrimi-
nate between the two eigenvalues of the operator
ˆJ⃗1 · ð ˆJ⃗2 × ˆJ⃗3Þ. In order to keep this information at the level
of the volume positive-definite operator V̂, one can extend its
definition (9) to the oriented volume case. In consequence,
the two signs will distinguish the two (initially degenerated)
eigenvalues of the volume operator. One can find that the
following superpositions of the basis states j0si and j1si:

jVþi ¼
1ffiffiffi
2

p ðj0si − ij1siÞ; ð10Þ

jV−i ¼
1ffiffiffi
2

p ðj0si þ ij1siÞ; ð11Þ

are eigenstates of the volume operator, such that the oriented
eigenvalues satisfy: V̂jVþi ¼ þV0jVþi and V̂jV−i ¼
−V0jV−i [18]. The V0 ≔

l3Plð8πγÞ
3
2ffiffiffiffiffiffiffi

6
ffiffi
3

pp is a quantum of 3-volume

in LQG. This justifies why we call the two dimensional
intertwiner a qubit of space.
Worth mentioning is that the intertwiner states are

relevant in quantum information theory. Namely, encoding
one logical qubit (the intertwiner qubit) in four physical
qubits allows for quantum communication without a shared
reference frame [29]. Let ρA be a state (i.e., density matrix)
that Alice wants to send to Bob. Bob because of his lack of
knowledge about Alice’s reference frame receives state ρB:

ρB ¼
Z
G
dgU ðgÞρAU†ðgÞ; ð12Þ

where g ∈ G and G is a group of transformations between
the two reference frames, and dg is the Haar measure. The
operation UðgÞ ≔ U1ðgÞ ⊗ U2ðgÞ ⊗ U3ðgÞ ⊗ U4ðgÞ is a

FIG. 1. 4-valent node of the spin network and its geometrical
interpretation as a tetrahedon.

1The Barbero-Immirzi parameter enters considerations via the
Holst term in the gravitational action. The term is typically not-
contributing (on-shell) to the classical considerations. However,
an exception is a case with the fermionic matter, in which the
Holst term leads to (potentially observable) violation of parity
[21,22]. Based on black hole entropy considerations in LQG, the
value of γ of the order of unity is expected [23–25].
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tensor product of (the same) single-qubit unitary operators
UiðgÞ for i ¼ 1, 2, 3, 4, acting on the four composite qubits
of the intertwiner states. In the case when Alice and Bob
share no knowledge about the orientation of their frames,
we have G ¼ SUð2Þ. Consequently, one finds that in order
to have ρA ¼ ρB, the states invariant under the action of this
group must be considered. The is satisfied by the inter-
twiner qubits considered here. Further discussion of this
property in the quantum gravitational context can be found
in Ref. [30].
In Ref. [4] a quantum circuit for the j0si basis state has

been investigated and simulated on the IBM Q 5-qubit
quantum processor. In this article, the analysis is extended
to the general intertwiner qubit jIi given by Eq. (2). In
Sec. II a quantum circuit for a general intertwiner state is
introduced. Then, in Sec. III the circuit is transpilated such
that it fits to the topologies of the superconducting IBM
quantum processors. The Sec. IV presents reduced forms of
the quantum circuits for the special cases of the basis states:
j0si and j1si. In Sec. V six representative states of the
intertwiner qubit are simulated on IBM 5 and 15 qubit
quantum processors, which are available for cloud comput-
ing. Then, in Sec. VI a general discussion of the transition
amplitudes between the spin network states is given. A
class of maximally entangled states which introduce
quantum correlations between intertwiner qubits is intro-
duced in Sec. VII. The maximally entangled states are
applied to the special cases of the monopole (Sec. VIII) and
dipole (Sec. IX) spin networks, for which attempts to
determine transition amplitudes with the use of supercon-
ducting IBM quantum processors are made. Our results are
summarized in Sec. X. The article is accomplished with two
appendices. AppendixA contains numerical results obtained
from simulations of the interwiner qubits states, discussed in
Sec. V. In Appendix B, results of test performed on the 15-
qubit IBM quantum computer Melbourne are shown.

II. QUANTUM CIRCUIT

The purpose of this section is to find quantum circuit
representation of the unitary operator ÛI , such that:

jIi ¼ ÛI j0000i: ð13Þ

Here, the jIi is a general intertwiner qubit state
jIi ∈ HI ≔ spanfj0si; j1sig, given by Eq. (2) and
j0000i is the initial state of the quantum register.
The ÛI is a state preparation operator. The procedure of

preparing jIi is, however, not unique since there are
infinitely many operators ÛI that satisfy Eq. (13). This
is because only first column in the matrix representation of
ÛI is fixed and there are still n2 − 2n − 1 ¼ 223 unde-
termined free real parameters (here n ¼ dim ⊗ H4

1=2 ¼ 16

and the total irrelevant phase has also been subtracted).
Furthermore, in general, expressing an operator in terms of

quantum gates is a difficult task. Here, the goal is achieved
by utilizing some properties of the state jIi, which allows
for systematic expressing of the state in terms of the
elementary quantum gates acting on the initial state j0000i.
Worth mentioning at this point is that, in general, one

could expect that some ancilla qubits may also be involved.
However, as we will show here, additional logical qubits
are not required to produce the state jIi. However, while
noisy physical qubits are considered, quantum error cor-
rection codes need to be involved, which unavoidably
utilize additional physical qubits. In this article, we will
restrict our considerations to the level of logical qubits and
the quantum error correction codes will not be discussed.
In order to find the quantum circuit representing the

operator ÛI let us first apply Eqs. (3) and (4) to Eq. (2),
which leads to:

jIi ¼ c1ffiffiffi
2

p ðj0011i þ j1100iÞ

þ c2ffiffiffi
2

p ðj0101i þ j1010iÞ

þ c3ffiffiffi
2

p ðj0110i þ j1001iÞ; ð14Þ

where coefficients c1, c2, and c3 are complex-valued
coefficients expressed as follows:

c1 ¼
ffiffiffi
2

3

r
eiϕ sinðθ=2Þ; ð15Þ

c2 ¼
1ffiffiffi
2

p
�
cosðθ=2Þ − 1ffiffiffi

3
p eiϕ sinðθ=2Þ

�

¼ eiχþffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

3
sin2ðθ=2Þ − sin θ cosϕffiffiffi

3
p

s
; ð16Þ

c3 ¼
1ffiffiffi
2

p
�
− cosðθ=2Þ − 1ffiffiffi

3
p eiϕ sinðθ=2Þ

�

¼ eiχ−ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

3
sin2ðθ=2Þ þ sin θ cosϕffiffiffi

3
p

s
; ð17Þ

together with the phases

χ� ¼ arctan
�

sinðϕÞ tanðθ=2Þ
∓ ffiffiffi

3
p þ cosðϕÞ tanðθ=2Þ

�
þ π

2

�
1 − sgn

�
� cos

�
θ

2

�
−
cosϕ sinðθ

2
Þffiffiffi

3
p

��
: ð18Þ

The coefficients (15), (16), and (17) satisfy the two
conditions:
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X3
i¼1

jcij2 ¼ 1; and
X3
i¼1

ci ¼ 0: ð19Þ

Let us observe that the states in the pairs in Eq. (14) are
mutually negated. Furthermore, in each pair, the states have
the same first binary digit. This suggests to consider an
operator N̂, which acts as follows:

N̂j0b1b2b3i ¼
ðj0b1b2b3i þ j1b̄1b̄2b̄3iÞffiffiffi

2
p ; ð20Þ

generating from a given state j0b1b2b3i an equally
weighted superposition of the state and its negation. The
b1; b2; b3 ∈ f0; 1g. Quantum circuit corresponding to the
action of N̂ can be constructed using combination of a
single Hadamard gate and three CNOT gates. The quantum
circuit is shown in Fig. 2.
Employing the operator N̂, the state jIi can be expressed

as,

jIi ¼ N̂ðj0ijψiÞ ð21Þ

where jψi is a 3-qubit state:

jψi ¼ c1j011i þ c2j101i þ c3j110i: ð22Þ

The task is now to find an operator M̂, action o which is

jψi ¼ M̂j000i: ð23Þ

One can find that the operator M̂ is represented by the
circuit presented in Fig. 3.
In the circuit, the unitary operation Û, given by the

special unitary matrix:

U ¼
 

c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc2j2 þ jc3j2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc2j2 þ jc3j2

p
c�1

!
; ð24Þ

is performed first on the top qubit. Then, controlled-V 2-
qubit gate is performed, where the special unitary matrix V
is given by:

V ¼

0B@− c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc2j2þjc3j2

p c�
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jc2j2þjc3j2
p

− c3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc2j2þjc3j2

p − c�
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jc2j2þjc3j2
p

1CA: ð25Þ

Finally, a sequence of three anti-CNOT gates, which allow
to obtain deserved sequences of bits, are applied.
Combining action of the operators M̂ and N̂ the general

intertwiner state (2) can now be written as:

jIi ¼ ÛI j0000i ¼ N̂ðÎ ⊗ M̂Þj0000i: ð26Þ

The corresponding quantum circuit is shown in Fig. 4.

III. TRANSPILATION

Physical realizations of quantum computers impose
restrictions on the types of quantum circuits which can
be executed or implemented directly on a given quantum
processor. In particular, the limitation is due to topology of
couplings between the physical qubits. Because of this,
transpilation of the considered quantum circuit has to be
performed, such that the circuit can be simulated on a given
hardware.
Here, we will consider transpilation of the quantum

circuit shown in Fig. 4 to the form compatible with the 5-
qubit and 15-qubit quantum processors, made available by
IBM via a cloud computing platform [31].
The transpilation concerns not only connectivity of the

quantum processor but also the types of gates which
are possible to execute. The Hadamard and CNOT gates
are part of the standard IBM library. The anti-CNOT
gate can be built utilizing the CNOT gate and two bit-
flip X̂ gates (corresponding to the Pauli matrix X ¼ ð0

1
1
0
Þ):

ðX̂ ⊗ ÎÞ dCNOTðX̂ ⊗ ÎÞ. Furthermore, IBM utilizes the
following gates:

FIG. 2. Quantum circuit for the operator N̂.

FIG. 3. Quantum circuit for the operator M̂.

FIG. 4. A quantum circuit corresponding to the operator ÛI.
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U1ðρÞ ¼
�
1 0

0 eiρ

�
; ð27Þ

and

U3ðθ;ϕ; λÞ ¼
�

cos ðθ=2Þ −eiλ sin ðθ=2Þ
eiϕ sin ðθ=2Þ eiλþiϕ cos ðθ=2Þ;

�
; ð28Þ

which can be used to construct the operators Û and V̂.
Namely, the operator Û can be expressed as:

U ¼ U3ðθU;ϕU; λUÞX ð29Þ

where the angles are

θU ¼ 2 arcsin

� ffiffiffi
2

3

r
sin ðθ=2Þ

�
; ð30Þ

ϕU ¼ −ϕ; ð31Þ

λU ¼ π þ ϕ: ð32Þ

Similarly, the operator V̂ can be written as:

V ¼ U3ðθV;ϕV; λVÞXU1ðρVÞ; ð33Þ

where

θV ¼ 2 arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ sin θ cosϕ

2
ffiffiffi
3

p ð1 − 2=3sin2θÞ

s !
; ð34Þ

ϕV ¼ −π þ χþ − χ−; ð35Þ

λV ¼ χ−; ð36Þ

ρV ¼ π − χþ: ð37Þ

Let us now proceed to the topological considerations. In
Fig. 5, connectivity of the 5-qubit IBM quantum processor
is shown.
The transpilated version of the circuit (4) in agreement

with the topology of the 5-qubit quantum processor
(Yorktown) is presented in Fig. 6.
In Fig. 7 connectivity of the 15-qubit IBM quantum

processor is shown.
Two alternative versions of the transpilated circuit (4),

being in agreementwith the topology of the15-qubit quantum
processor (Melbourne), are presented in Figs. 8 and 9.
One final issue is the controlled-V gate, which not

necessary can be directly implemented. In that case, the
2-qubit gate can be expressed with the use of standard
decomposition presented in Fig. 10, for a unitary operator
Ŵ [32].

FIG. 5. Connectivity of the IBM Q 5-qubit quantum processor
(Yorktown). Obtained from IBM quantum cloud computing
service [31].

FIG. 6. A quantum circuit corresponding to the operator ÛI ,
compatible with the 5-qubit IBM quantum processor Yorktown.

FIG. 7. Connectivity of the IBM Q 15-qubit quantum processor
(Melbourne). Obtained from IBM quantum cloud computing
service [31].

FIG. 8. A quantum circuit corresponding to the operator ÛI ,
compatible with the 15-qubit IBM quantum processor Melbourne
—version 1.
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Here, Ŵ ¼ V̂ Ŝ, where V̂ is a special unitary operator and
Ŝ ¼ eiδÎ, with the phase δ ∈ R. The E gate is given by the
matrix E ¼ ð1

0
0
eiδÞ. Furthermore, the involved gates Â, B̂,

and Ĉ are 1-qubit gates, satisfying conditions Ĉ B̂ Â ¼ Î
and Ĉ X̂ B̂ X̂ Â ¼ V̂. In our case, because V given by
Eq. (25) is a special unitary matrix, we have δ ¼ 0 so Ŵ ¼
V̂ and matrix representations of the gates A, B and C are

A ¼

0B@ cos
�
ρ
4

�
sin
�
ρ
4

�
eiðχ−−χþÞ sin

�
ρ
4

�
−eiðχ−−χþÞ cos

�
ρ
4

�
1CA;

B ¼

0B@ cos
�
ρ
4

�
eiχþ sin

�
ρ
4

�
sin
�
ρ
4

�
−eiχþ cos

�
ρ
4

�
1CA;

C ¼
�
1 0

0 e−iχ−

�
; ð38Þ

where

ρ ¼ 2 arccos

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1 −

sin θ cosϕffiffiffi
3

p ð1 − 2
3
sin2ðθ

2
ÞÞ

�s !
: ð39Þ

Furthermore, the gates can be constructed with use of the
U3 and U1 gates as follows:

A ¼ U3

�
ρ

2
; χ− − χþ; π

�
; ð40Þ

B ¼ U3

�
ρ

2
; 0; χþ þ π

�
; ð41Þ

C ¼ U1ð−χ−Þ: ð42Þ

IV. EXEMPLARY STATES

In this section we will simplify the obtained general
quantum circuit shown in Fig. 4 for the special cases of the
intertwiner qubit basis states: j0si and j1si. This will allow
us to slightly reduce the general circuit, which is relevant
from the perspective of quantum simulation, where the
number of involved gates has to be minimized because of
the issue of errors.

A. The state j0si
The quantum circuit for the j0si state has already been a

subject of investigation in Ref. [4] and is shown in Fig. 11.
Here, we will present an alternative construction of the

state, starting from the general circuit shown in Fig. 4.
Taking θ ¼ 0, we find that the coefficients:

c1 ¼ 0; c2 ¼
1ffiffiffi
2

p ; c3 ¼ −
1ffiffiffi
2

p : ð43Þ

In consequence, the Û and V̂ operators [see Eqs. (24) and
(25)] are now represented by the following matrices:

U ¼
�

0 1

−1 0

�
ð44Þ

and

V ¼ 1ffiffiffi
2

p
�−1 −1

1 −1

�
: ð45Þ

This allows to reduce the circuit from Fig. 4 to the one
presented in Fig. 12.

B. The state j1si
For the state j1si, we take θ ¼ π, which reduces the

coefficients (15), (16) and (17) to:

c1 ¼
ffiffiffi
2

3

r
; c2 ¼ −

1ffiffiffi
6

p ; c3 ¼ −
1ffiffiffi
6

p ; ð46Þ

such that the U and V matrices are

FIG. 9. A quantum circuit corresponding to the operator ÛI ,
compatible with the 15-qubit IBM quantum processor Melbourne
—version 2.

FIG. 10. Control-W gate and its equivalent expressed with the
use of single qubit gates and CNOT gates.

FIG. 11. Quantum circuit for the j0si state discussed in Ref. [4].
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U ¼
ffiffiffi
2

3

r � 1 1ffiffi
2

p

− 1ffiffi
2

p 1

�
; ð47Þ

and

V ¼ 1ffiffiffi
2

p
�
1 −1
1 1

�
: ð48Þ

This allows us to reduce the circuit from Fig. 4 to the one
presented in Fig. 13.

V. QUANTUM SIMULATIONS

The quantum circuits for a single intertwiner qubit
introduced in the previous sections represent unitary
operators acting in 16 dimensional Hilbert space, being
a tensor product of fourH1=2 Hilbert spaces. Such a case is
easy to handle wit the use of a classical computer. However,
the difficulty came when more complex systems are
considered. In our case, four qubits are needed to define
a single intertwiner qubit. Therefore, a spin network with N
four-valent nodes requires 4N logical qubits. The corre-
sponding Hilbert space has dimension dim ⊗4N

i¼1 Hi ¼ 24N .
In case of a general quantum circuit, classical simulations
of the systems with N ∼ 20 (∼80 logical qubits) is already
beyond the reach of any currently existing classical
supercomputer [33]. On the other hand, (noisy) quantum
computers with the number of qubits ∼50 already exist and
the ones with ∼100 are under development (see e.g.,
[31,34–36]). This prognosis that simulations of spin net-
works with N ∼ 20 and more will become feasible in the
coming years (see also discussion in Ref. [4]). However, as
we will already see while considering a 15 qubit quantum
chip, the issue of errors reduction remains to be a challenge

even in processors with over a dozen of qubits.
Furthermore, we have to emphasize that the superconduct-
ing quantum computers are characterized by relatively
short coherence times, which limits depth of the quantum
circuits which can be simulated successfully.
Here, we will present results of simulations of exemplary

states of the intertwiner qubit performed on 5-qubit
(Yorktown) and 15-qubit (Melbourne) IBM superconduct-
ing quantum processors, topologies of which are shown in
Figs. 5 and 7 respectively. In the figures, errors of the
particular qubits at the time of simulations are also
presented.
The six representative states which are considered are:

j0si, j1si, jþi ≔ j0siþj1siffiffi
2

p , j−i ≔ j0si−j1siffiffi
2

p , j↺i ≔ j0si−ij1siffiffi
2

p and

j↻i ≔ j0siþij1siffiffi
2

p . The j0si and j1si states correspond to the

points on the north and south pole of the Bloch sphere
correspondingly. The remaining four states are the points
located at the equator of Bloch sphere, and are evenly
distributed with the polar angle difference Δϕ ¼ π

2
. The

considered states have direct physical interpretation if they
are referred to light. Namely, if j0si, j1si are horizontal
ðjHiÞ and vertical ðjViÞ linear polarization states of a
photon respectively, then the jþi and j−i are � π

4
linear

polarization states. The j↺i is a left-hand circular polari-
zation state and j↻i is a right-hand circular polarization
state, which justifies the applied notation. Furthermore, the
j↺i and j↻i are also eigenstates of the volume operator.
Namely, based on (10) and (11) one can see that:

j↺i ¼ jVþi and j↻i ¼ jV−i: ð49Þ

In the simulations, a sequence of 10 computational
rounds each containing 1024 shots was performed for
every of the investigated states. The simulations were
performed on both the 5-qubit Yorktown quantum proc-
essor and 15-qubit Melbourne quantum processor.
Topologies of the processors together with the errors
(single-qubit and CNOT 2-qubit gate) at the time of
simulations are depicted in Figs. 5 and 7. The obtained
averaged measured probabilities of the basis states for each
of the states are shown in Fig. 14. Detailed numerical
results of the simulations can be found in Appendix A.
In order to quantify difference between the measured

states and theoretical values we use the classical fidelity
function (Bhattacharyya distance):

Fðp; qÞ ¼
X
i

ffiffiffiffiffiffiffiffiffi
piqi

p
: ð50Þ

More detailed analysis would require quantum tomography
of the states. However, consideration of the classical
fidelity function is sufficient for our purpose. The obtained
fidelities are collected in Table I, and presented in Fig. 15.

FIG. 12. Quantum circuit for the j0si state.

FIG. 13. Quantum circuit for the j1si state.

QUANTUM SIMULATIONS OF A QUBIT OF SPACE PHYS. REV. D 103, 046001 (2021)

046001-7



In case of the 5-qubit chip, the fidelities of the obtained
states reach the level of F ≈ 90%. This is a significant
increase comparing to the fidelity F ≈ 71% of the state j0si
obtained in Ref. [4]. Furthermore, simulations of the same
states performed on the 15-qubit chip are at the level
F ≈ 85%. There is no significant difference in the fidelities
depending on which state is considered.
For comparison, the fidelities obtained in Ref. [1]

(employing molecular quantum computer) are better than
those obtained here. However, in our approach the super-
conducting chip was used, which despite of being more

FIG. 14. Measured and theoretical probabilities for the six representative states.

TABLE I. Values of fidelity for the six representative states
under consideration.

State Yorktown Melbourne

j0si 0.906� 0.005 0.814� 0.009
j1si 0.916� 0.007 0.856� 0.008
jþi 0.892� 0.007 0.843� 0.006
j−i 0.915� 0.007 0.857� 0.007
j↻i 0.918� 0.008 0.856� 0.008
j↺i 0.917� 0.008 0.851� 0.007
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noisy, gives better perspective for scaling to more compli-
cated cases. On the other hand, in Ref. [6] spin foam vertex
amplitude (composed of five intertwiner qubits) has been
simulated with fidelity 0.832� 0.005, which is lower than
almost all of the fidelities obtained here. This state had,
however, more complex circuit structure than the circuits
considered here. Furthermore, the results were possible to
obtain because the simulations were performed directly on
the intertwiner qubits.
The states’ imperfectness is mostly because of the errors

associated with three factors: preparation of the initial state,
implementation of the quantum gates, and readout. The
errors (mainly corresponding to the two-qubit gates) have
been significantly reduced over recent years. The errors of
gates are shown in Fig. 5 and in Fig. 7.
In particular, in case of the Yorktown processor, the error

of the single-qubit

U2ðλ;ϕÞ ¼
1ffiffiffi
2

p
�

1 −eiλ

eiϕ eiðϕþλÞ

�
gate is in range between 4.3 × 10−4 and 7.4 × 10−4. For the
CNOT gate the error rate is between 1.1 × 10−2 and
1.6 × 10−2. For the Melbourne processor these errors are
between 3.8 × 10−4 and 3.3 × 10−3 and between 1.7 ×
10−2 and 1.1 × 10−1 respectively. The single-qubitU2 error
rates and CNOT error rates have been measured using
randomized benchmarking procedure [37]. Despite of the
considerable hardware improvement, quantum error cor-
rections codes [38] can also be implemented to further
reduce the errors. However, this can be achieved only in a
quantum chip with a sufficiently high number of physical
qubits. This does not concern the currently available
solutions. However, a set of methods called error miti-
gation [39] can also be used to further improve the results.
We plan to apply these methods in our future research.

VI. TRANSITION AMPLITUDES

The results presented so far can be applied to evaluate
transition amplitudes between states of spin networks (of

fixed topology), representing different quantum geom-
etries. In case of quantum gravity, and other quantum
constrained systems, the subtlety is that the states under
consideration have to be appropriately projected onto the
physical Hilbert space Hphys. In consequence, while some
kinematical states jψ1i, jψ2i ∈ Hkin are considered, the
corresponding transition amplitude has the following form:

Aðψ1;ψ2Þ ≔ hψ2jP̂jψ1i; ð51Þ

where P̂ is a non-unitary, but Hermitian (P̂† ¼ P̂) and
idempotent (P̂2 ¼ P̂), projector operator. In consequence,
the P̂ cannot be associated with a unitary quantum circuit.
On the other hand, in the context of quantum computing,
action of the projection operators is associated with
quantum measurements.
In the case when more than one constraint is involved, as

in the case of gravity, the projection operator is a compo-
sition of projection operators for the individual constraints:

P̂ ¼ P̂1∘P̂2∘ � � � ∘P̂m; ð52Þ

where m is the number of constraints.
In LQG, the constraint are grouped into the three types:

Gauss constraint, diffeomeorphism constraint (vector con-
straint) and the Hamiltonian constraint (scalar constraint).
Here, we will focus our attention on the case of the Gauss
constraint, which is employed in the construction of the
spin network spates. The vector constraint is on the other
hand satisfied just by the graph structure of the spin
network, so it is satisfied by construction. The scalar
constraint is the most difficult to satisfy and we are not
going to discuss it here. However, quantum computing
methods provide some new possibilities to address the
problem [2].
In order to compute the amplitude (51) with the use of

quantum circuits, let us consider operators Ûψ1
and Ûψ2

,
defined such that jψ1i ¼ Ûψ1

j0i and jψ2i ¼ Ûψ2
j0i. The

j0i is an initial state of the quantum register, which in case
of the spin network with N four-valent nodes is
j0i ¼⊗4N

i¼1 j0i. In consequence, the transition amplitude
(51) takes the form:

hψ2jP̂jψ1i ¼ h0jÛ†
ψ2
P̂Ûψ1

j0i: ð53Þ

Because P̂ is a nonunitary operator, the operator
Û†

ψ2
P̂Ûψ1

cannot be represented by a standard quantum
circuit. There is, however, a special case when at least one
of the states jψ1i and jψ2i is invariant under the action of
the projection operator P̂. Then, for the Gauss constraint,
this means that at least one of the states is a superposition of
spin network states.
Let us examine such possibility first for the case of a

single node of a spin network. In that case, for the

FIG. 15. Fidelity for the six representative states of the
intertwiner qubit generated on 5-qubit (Yorktown) and 15-qubit
(Melbourne) IBM quantum computers.
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intertwiner qubit, the projection operator associated with
the Gauss constraint takes the form:

P̂G ¼ j0sih0sj þ j1sih1sj: ð54Þ

Then, if e.g., jψ1i is a state of intertwiner qubit, it can be
expressed as follows:

jψ1i¼Ûψ1
j0i¼cosðθ1=2Þj0siþeiϕ1 sinðθ1=2Þj1si; ð55Þ

where now j0i ¼ j0000i. It is straightforward to show that
P̂Gjψ1i ¼ jψ1i and, in consequence, in the considered
case, the transition amplitude (53) reduces to

hψ2jP̂Gjψ1i ¼ h0jÛ†
ψ2
Ûψ1

j0i: ð56Þ

Therefore, unitary operator Û ≔ Û†
ψ2
Ûψ1

can be intro-
duced, which can be associated with a quantum circuit.
For transition between two intertwiner qubit states, the
jψ1i ¼ jIi and jψ2i ¼ jI 0i, the quantum circuit corre-
sponding to the operator Û ¼ Û†

ψ2
Ûψ1

is shown in Fig. 16.
The U and V are matrices associated with the state jIi

and U0 and V 0 are associated with jI 0i, in accordance to the
circuit presented in Fig. 4.
Using the fact that X̂, Ĥ and dCNOT are unitary operators,

the circuit shown in Fig. 16 can be reduced to form
presented in Fig. 17.
Therefore, only two qubits contribute nontrivially to the

transition amplitudes hI 0jIi.
The above discussion can be extended to general super-

positions of 4-valent spin network constructed with N
intertwiner qubits. Such a state can be written as

jψi ¼
X

k1;s…kN;s∈f0;1g
ck1;s;…;kN;s

⊗N
i jki;si; ð57Þ

where jki;si is basis state of a i—the intertwiner qubit. The
generalized version of Eq. (54) to the case of N intertwiner
qubits is:

P̂G ¼⊗N
i¼1 ðj0i;sih0i;sj þ j1i;sih1i;sjÞ

¼
X

k1;s…kN;s∈f0;1g
jk1;s…kN;sihk1;s…kN;sj: ð58Þ

Direct action of the operator (58) onto (57) confirms that
P̂Gjψi ¼ jψi. Therefore, always if at least one of the states
in the transition amplitude hψ2jP̂Gjψ1i is of the form of
Eq. (57), the transition amplitude reduces to hψ2jψ1i and
quantum circuit corresponding to Û ¼ Û†

ψ2
Ûψ1

can be
introduced. As already discussed in Ref. [4], action of this
operator on the initial state of quantum register of N
intertwiner qubits can be written as Ûj0i ¼P24N−1

i¼0 aijii,
where jii is a basis state in the 24N dimensional Hilbert
space of the system. With the use of this, the transition
amplitude (51) can be written as:

hψ2jψ1i ¼ h0jÛ†
ψ2
Ûψ1

j0i ¼ a0; ð59Þ

where a0 ∈ C is the amplitude of j0i state in the final state
obtained by evaluation of the quantum circuit. In practice,
the probability P0 ¼ ja0j2 is determined, unless tomogra-
phy of the final quantum state if performed.

VII. MAXIMALLY ENTANGLED SPIN
NETWORKS

The spin networks are built from holonomies, which
from the quantum mechanical viewpoint, are unitary maps
between two Hilbert spaces, associated with the endpoints
of a given curve λ ∈ ½0; 1� → eðλÞ ∈ Σ, where λ is an affine
parameter which parametrizes the curve. Let us denote
endpoint as s ¼ eð0Þ (source) and t ¼ eð1Þ (target). Then,
we can introduce the source and target Hilbert spaces Hs
and Ht between which the holonomy is mapping.
The relation between quantum entanglement and the spin

networks was a subject of investigation for over a decade
[40–42]. This, especially, concerned understanding of the
Bekenstein-Hawking formula in terms of von Neumann
entanglement entropy. However, it became evident only
recently that a single SUð2Þ holonomy is associated with a
maximally entangled state [43–45]:

jΨi ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p h�IJjIisjJit ∈ Hs ⊗ Ht; ð60Þ

where hIJ are matrix elements of the SU(2) holonomy. The
indices I; J ¼ 0; 1;…; 2j, where j labels irreducible

FIG. 16. Quantum circuit for the transition amplitude operator
Û ¼ Û†

I 0ÛI between two arbitrary intertwiner states jIi and jI 0i.

FIG. 17. Simplified quantum circuit for the transition amplitude
operator Û ¼ Û†

I 0ÛI between two arbitrary intertwiner states jIi
and jI 0i.
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representation of the SU(2) group. In the case of funda-
mental (j ¼ 1=2) representation, the (60) reduces to

jEli ≔
1ffiffiffi
2

p h�IJjIis;ljJit;l; ð61Þ

for a given link l of a spin network, and I; J ¼ 0, 1. The
state is an example of maximally entangled state, in the
sense of maximization of the mutual quantum information.
Then, the total state for a graph can be written as:

jEi ¼ ⊗
l
jEli; ð62Þ

where the tensor products run over all links of the graph.
The state introduced in this way, in general, does not satisfy
the Gauss constraint. Therefore, in order express the state as
a superposition of spin networks states, an appropriate
projection has to be applied. We define such state as
maximally entangled spin network (MESN) state:

jMESNi ≔ P̂G⊗
l
jEli: ð63Þ

It has to be emphasized that while the state is built out of
maximally entangled pairs, the P̂G projection is affecting
the entanglement properties of the resulting state. However,
in a deserved way. Namely, the construction of the MESN
state is analogous to the way in which projected entangled
pair states (PEPS) [46,47] tensor networks [48,49] are
introduced. The projection onto a singlet state performed in
the case PEPS tensor networks is just imposing the Gauss
constraint in the case of spin networks. One of the
important properties of the PEPS tensor networks is that
they satisfy area-law scaling of the entanglement entropy
[48]. This is relevant from the viewpoint of utilizing MESN
states in description of gravitational systems. In particular,
this concerns black holes for which the Bekenstein-
Hawking area law SBH ¼ A

4l2Pl
, is satisfied. Furthermore,

because of the holographic nature of the gravity/entangle-
ment duality, studies of the MESN states may contribute to
our better understanding of the conjecture.
An example of the maximally entangled state (61) is the

2-qubit singlet state

jEli ¼
1ffiffiffi
2

p ðj01i − j10iÞ; ð64Þ

which, based on Eq. (61), corresponds to the following
holonomy:

h ¼
�

0 1

−1 0

�
¼ iσy ¼ ei

π
2
σy : ð65Þ

The state has been used to construct states of spin networks
in Refs. [1,4] and we will examine more properties of such
a choice in the next two sections.

Despite of certain similarities, the state introduced in this
section differs from the Bell-network states recently studied
in Refs. [50,51]. In that case, the Bell states (64) and other
maximally entangled states have been utilized, however, in
that case Schwinger representation of the SU(2) group is
used, such that at both source and target two copies of the
bosonic Hilbert space are defined. In such case, the Bell
state for a given link is introduced by action of a squeezing
operator on the four harmonic oscillators, which is different
from the approach presented here.
Below, we consider two examples of spin networks:

monopole and dipole spin networks. Despite their simplic-
ity, the elementary spin networks may have physical
relevance. Namely, they can be considered as a cosmo-
logical approximation of spatial geometry. In particular, the
dipole spin network represents minimal triangulation of a
3-sphere, i.e., two tetrahedra glued along each face. This
configuration describes a nonhomogeneous quantum uni-
verse. This observation has been broadly explored in the
context of spin foam cosmology [52–54]. Moreover, the
quantum tetrahedra considered here find application in
the framework of group field theory [55].

VIII. MONOPOLE SPIN NETWORK

The simplest nontrivial example of a spin network is the
case of a monopole with a single node. In order to construct
the maximally entangled spin network state for such a case,
let us rewrite Eq. (64) for a link connecting ith and jth
qubits as:

jEiji ¼
1ffiffiffi
2

p ðj0i1ji − j1i0jiÞ: ð66Þ

At the single node of the monopole graph, four links
meet and in consequence there are three different possibil-
ities to pair the qubits by two holonomies. The cases
correspond to the following states:

jE0123i ≔ jE01ijE23i ¼ j0si
¼ jIðθ ¼ 0;ϕÞi; ð67Þ

jE0213i ≔ jE02ijE13i ¼
1

2
j0si þ

ffiffiffi
3

p

2
j1si

¼ jIðθ ¼ 2π=3;ϕ ¼ 0Þi; ð68Þ

jE0312i ≔ jE03ijE12i ¼ −
1

2
j0si þ

ffiffiffi
3

p

2
j1si

¼ −jIðθ ¼ 2π=3;ϕ ¼ πÞi: ð69Þ

The three states are associated with connecting the faces
of the dual tetrahedra as represented in Fig. 18.
In the considered case the states are satisfying the Gauss

constraint, therefore:
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P̂GjEijkli ¼ jEijkli: ð70Þ

The U and V matrices used in the quantum circuits are

U0123 ¼
�

0 1

−1 0

�
; V0123 ¼

1ffiffiffi
2

p
�−1 −1

1 −1

�
; ð71Þ

U0213 ¼
1ffiffiffi
2

p
�

1 1

−1 1

�
; V0213 ¼

�
0 −1
1 0

�
; ð72Þ

U0312 ¼
1ffiffiffi
2

p
�

1 1

−1 1

�
; V0312 ¼

�−1 0

0 −1

�
: ð73Þ

In Fig. 19 a quantum circuit associated with the
amplitude hI jE0312i is presented.
The circuit can be further reduced to the form show

in Fig. 20.
Results of determination of probabilities jhE0312j0sij2

and jhE0312j1sij2 on Melbourne and Yorktown quantum

computers are collected in Table II. In both cases the
reduced circuit shown in Fig 20 was ued.
In the simulations, a sequence of 10 computational

rounds each containing 1024 shots was performed for each
of the investigated states. The modulus squares of the
amplitudes were determined using the method introduced
in Sec. VI. In the considered case, satisfactory agreement
between the outcomes of measurement and the theoretical
predictions are found, with slightly better results obtained
with the use of the Melbourne quantum processor.

IX. DIPOLE SPIN NETWORK

In the geometric picture, dipole spin network is obtained
by considering two tetrahedra glued together face by face,
as depicted in Fig. 21.
Because, there are numerous possible permutations of

the connections, there are various possible states of the
maximally entangled states associated with the dipole
diagram. The possible 24 configurations of connection
and the corresponding states are summarized in Table III.
As an example, we will consider the following state:

jE04152637i ¼ jE04ijE15ijE26ijE37i; ð74Þ

which corresponds to the connections ff0; 4g; f1; 5g;
f2; 6g; f3; 7gg. Projecting the state onto the spin network
basis (imposing the Gauss constraint) gives,

P̂GjE04152637i ¼
1

4
ðj0s0si þ j1s1siÞ ð75Þ

FIG. 18. Monopole spin network and the corresponding pairing
of the faces of the dual tetrahedron.

FIG. 19. A quantum circuit for the transition amplitude
hI jE0312i. Before reduction.

FIG. 20. A quantum circuit for the transition amplitude
hI jE0312i. After reduction.

TABLE II. Results of simulations for the monopole spin
network.

Amplitude Theory Melbourne Yorktown

jh0sjE0312ij2 0.25 0.23� 0.01 0.22� 0.01
jh1sjE0312ij2 0.75 0.72� 0.01 0.67� 0.01

FIG. 21. Dipole spin network and the corresponding pairing of
the faces of the dual tetrahedra.
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such that in consequence, we have the two nonvanishing
amplitudes:

h0s0sjE04152637i ¼ h1s1sjE04152637i ¼
1

4
; ð76Þ

h0s1sjE04152637i ¼ h1s0sjE04152637i ¼ 0: ð77Þ

From the viewpoint of quantum computing, the ampli-
tudes can be determined by evaluating the quantum circuit
presented in Fig. 22. For the special case of the states of the
interwiners jI1I2i ¼ j0s0si the quantum circuit can be
simplified to the form presented in Fig. 23, where repre-
sentation of the state j0si by the circuit (11) has been used.
The circuits can be directly embedded into the archi-

tecture of the Melbourne quantum processors, shown in
Fig. 7. Results of our simulations are collected in Table IV.
As previously, a sequence of 10 computational rounds

each containing 1024 shots was performed for every of the
investigated states. Eight out of fifteen qubits of the
Melbourne processor have been used in the computations.
The third column of Table IV contains results of simu-
lations based on the circuit shown in Fig. 22) whereas the
fourth column presents results obtained using the circuit
shown in Fig. 23. The obtained results differ cardinally
from the theoretical predictions. The reason for this is most

TABLE III. Amplitudes of the projected states for the 24
combinations of connections for the dipole diagram.

Connections j0s0si j0s1si j1s0si j1s1si
f0; 4g, f1; 5g, f2; 6g, f3; 7g 1

4
0 0 1

4f0; 5g, f1; 4g, f2; 7g, f3; 6g
f0; 6g, f1; 7g, f2; 4g, f3; 5g
f0; 7g, f1; 6g, f2; 5g, f3; 4g
f0; 4g, f1; 5g, f2; 7g, f3; 6g − 1

4
0 0 1

4f0; 5g, f1; 4g, f2; 6g, f3; 7g
f0; 6g, f1; 7g, f2; 5g, f3; 4g
f0; 7g, f1; 6g, f2; 4g, f3; 5g
f0; 4g, f1; 6g, f2; 5g, f3; 7g 1

8

ffiffi
3

p
8

ffiffi
3

p
8

− 1
8f0; 5g, f1; 7g, f2; 4g, f3; 6g

f0; 6g, f1; 4g, f2; 7g, f3; 5g
f0; 7g, f1; 5g, f2; 6g, f3; 4g
f0; 4g, f1; 6g, f2; 7g, f3; 5g − 1

8 −
ffiffi
3

p
8

ffiffi
3

p
8

− 1
8f0; 5g, f1; 7g, f2; 6g, f3; 4g

f0; 6g, f1; 4g, f2; 5g, f7; 3g
f0; 7g, f1; 5g, f2; 4g, f6; 3g
f0; 4g, f1; 7g, f2; 5g, f3; 6g − 1

8

ffiffi
3

p
8

−
ffiffi
3

p
8

− 1
8f0; 5g, f1; 6g, f2; 4g, f3; 7g

f0; 6g, f1; 5g, f2; 7g, f3; 4g
f0; 7g, f1; 4g, f2; 6g,f3; 5g
f0; 4g, f1; 7g, f2; 6g, f3; 5g 1

8 −
ffiffi
3

p
8

−
ffiffi
3

p
8

− 1
8f0; 5g, f1; 6g, f2; 7g, f3; 4g

f0; 6g, f1; 5g, f2; 4g, f3; 7g
f0; 7g, f1; 4g, f2; 5g, f3; 6g

FIG. 22. A quantum circuit for transition amplitude hI1I2jE04152637i.

FIG. 23. Simplified version of a quantum circuit for transition
amplitude h0s0sjE04152637i.
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probably significant depth of the considered quantum
circuits and accumulations of errors. In order to better
understand this issue in the employed quantum chip a set of
test have been performed. Results of the tests are collected
in Appendix B. One can find that significant accumulation
of errors is present even for simple low-depth circuits. This
indicates, that going beyond the case of a single node (with
the use of currently available quantum processors) cannot
be done successfully without adopting quantum error
correction codes.

X. SUMMARY

Loop quantum gravity and related approaches to gravity,
such as group field theories, provide picture of spacetime as
a many-body quantum system [56]. The degrees of freedom
are associated with the quanta of volume (“atoms of space”)
related to the nodes of a spin network. This viewpoint
opens an interesting possibility to employ many-body
quantum physics methods designed to explore complex
collective properties of composite systems. Especially
promising paths to include: tensor networks methods and
quantum simulations.
In this article, the second method has been discussed,

following the ideas developed in Refs. [1,2,4]. Primarily,
our focus was on construction of a quantum circuit for a
general intertwiner qubit state. Such circuit has been
introduced and shown to utilize four logical qubits, without
involving quantum error correction codes. The presented
circuit is a generalization of the circuit for the basis state
j0si explored in Ref. [4]. Based on the circuit, exemplary
intertwiner qubits states were simulated on both 5-qubit
(Yorktown) and 15-qubit (Melbourne) IBM superconduct-
ing quantum processors. It has been shown that for the case
of the 5-qubit machine, fidelities of the obtained states
reach the level of F ≈ 90%. On the other hand, while the
total number of qubits of the processor is increased to 15,
the fidelity of the states drops down to F ≈ 85%, even if the
number of utilized logical qubits remains to be four. This is
a first sign of the fact that it is much more difficult to keep
quantum coherence of bigger quantum systems. Further,
even more drastic, consequences of this fact have been
observed while transition amplitudes between simple spin
network states were studied.
For this purpose, a class of maximally entangled spin

network states, analogous to the PEPS tensor networks, has

been introduced. The states have been introduced by
considering maximally entangled states between source
and target Hilbert spaces of holonomies, corresponding to
links of the spin network. Such possibility is supported by
recent results presented in Ref. [45]. Furthermore, the state
of maximally entangled links has to be projected onto the
surface of Gauss constraint in order to get well-defined
superposition of spin network states. With the use of such
appropriately projected state, exemplary transition ampli-
tudes for a monopole and dipole spin networks have been
considered.
The monopole spin network amplitudes required only

four logical qubits, and runs of the associated quantum
circuit on a superconducting 5-qubit chip lead to good
agreement with theoretical predictions. On the other hand,
the dipole spin network involves 8 logical qubits, and the
associated quantum circuit was transpilated to the form
compatible with topology of the available 15 qubit IBM
quantum processor. However, because of significant errors,
running of the circuit on the quantum computer did not lead
to reasonable results. Therefore, for the moment, quantum
simulations of the dipole spin networks are still challeng-
ing. This concerns the considered publicly available IBM
superconducting quantum process, which has been used.
However, the current hight activity in the quantum com-
puting technologies prognosis that both the dipole and
more complex spin networks will be possible simulate
successfully in the coming years.
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APPENDIX A

The Appendix summarizes numerical data obtained from
evaluation of the quantum circuits for the intertwiner qubit
states on IBM superconducting quantum computers. For
each of the considered case, 10 computational rounds have
been performed each of 1024 shots (evaluation of quantum
circuit and performing measurement). Both averages and
standard deviations have been determined based on the 10
computational rounds.
In Table V the results of quantum simulations on the 5-

qubit (Yorktown) IBM quantum computer are collected.

TABLE IV. Results of simulations for the dipole network on the
15 qubit Melbourne quantum computer.

Amplitude Theory Melbourne Melbourne—S

jh0s0sjE04152637ij2 0.0625 0.008� 0.002 0.003� 0.001
jh0s1sjE04152637ij2 0 0.003� 0.002 −
jh1s0sjE04152637ij2 0 0.009� 0.002 −
jh1s1sjE04152637ij2 0.0625 0.008� 0.003 −
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TABLE V. Experimental results for the states generated on 5-qubit (Yorktown) IBM quantum computer.

State j0si j1si jþi j−i j↻i j↺i
j0000i 0.007� 0.001 0.021� 0.003 0.016� 0.005 0.008� 0.003 0.01� 0.003 0.009� 0.003
j0001i 0.020� 0.002 0.014� 0.006 0.015� 0.004 0.016� 0.004 0.015� 0.004 0.02� 0.005
j0010i 0.024� 0.006 0.024� 0.005 0.025� 0.006 0.028� 0.007 0.027� 0.005 0.022� 0.004
j0011i 0.008� 0.003 0.305� 0.015 0.172� 0.008 0.128� 0.015 0.151� 0.014 0.142� 0.010
j0100i 0.023� 0.007 0.016� 0.004 0.012� 0.003 0.025� 0.004 0.017� 0.005 0.022� 0.006
j0101i 0.183� 0.011 0.066� 0.007 0.03� 0.004 0.243� 0.013 0.123� 0.012 0.150� 0.006
j0110i 0.175� 0.012 0.048� 0.007 0.193� 0.010 0.026� 0.003 0.126� 0.01 0.099� 0.012
j0111i 0.017� 0.004 0.009� 0.003 0.021� 0.005 0.007� 0.003 0.013� 0.005 0.011� 0.005
j1000i 0.025� 0.005 0.021� 0.004 0.030� 0.006 0.018� 0.005 0.025� 0.005 0.026� 0.008
j1001i 0.206� 0.013 0.069� 0.010 0.200� 0.016 0.059� 0.005 0.119� 0.007 0.158� 0.008
j1010i 0.262� 0.012 0.077� 0.007 0.087� 0.005 0.277� 0.016 0.190� 0.009 0.160� 0.009
j1011i 0.022� 0.006 0.014� 0.002 0.012� 0.004 0.024� 0.004 0.017� 0.004 0.021� 0.004
j1100i 0.007� 0.003 0.278� 0.011 0.151� 0.01 0.119� 0.007 0.141� 0.011 0.138� 0.009
j1101i 0.007� 0.003 0.010� 0.004 0.011� 0.003 0.010� 0.003 0.009� 0.004 0.007� 0.003
j1110i 0.008� 0.002 0.008� 0.003 0.010� 0.003 0.005� 0.001 0.007� 0.003 0.006� 0.002
j1111i 0.006� 0.002 0.020� 0.003 0.015� 0.003 0.007� 0.002 0.011� 0.005 0.011� 0.002

TABLE VI. Experimental results for the states generated on 15-qubit (Melbourne) IBM quantum computer.

State j0si j1si jþi j−i j↻i j↺i
j0000i 0.04� 0.005 0.019� 0.003 0.043� 0.005 0.013� 0.003 0.026� 0.005 0.024� 0.006
j0001i 0.033� 0.005 0.053� 0.008 0.05� 0.007 0.035� 0.008 0.041� 0.006 0.05� 0.006
j0010i 0.033� 0.006 0.033� 0.006 0.026� 0.005 0.042� 0.006 0.036� 0.007 0.034� 0.004
j0011i 0.025� 0.005 0.239� 0.012 0.109� 0.008 0.119� 0.011 0.096� 0.009 0.16� 0.008
j0100i 0.034� 0.005 0.043� 0.007 0.032� 0.005 0.039� 0.006 0.034� 0.006 0.035� 0.007
j0101i 0.128� 0.011 0.105� 0.009 0.033� 0.005 0.225� 0.014 0.158� 0.014 0.085� 0.011
j0110i 0.246� 0.015 0.063� 0.006 0.244� 0.011 0.055� 0.007 0.156� 0.011 0.158� 0.008
j0111i 0.028� 0.005 0.014� 0.002 0.018� 0.006 0.026� 0.003 0.017� 0.004 0.02� 0.004
j1000i 0.029� 0.006 0.02� 0.005 0.025� 0.005 0.026� 0.003 0.026� 0.004 0.026� 0.006
j1001i 0.166� 0.019 0.065� 0.008 0.207� 0.015 0.037� 0.007 0.129� 0.009 0.126� 0.007
j1010i 0.135� 0.013 0.065� 0.009 0.035� 0.007 0.217� 0.015 0.148� 0.008 0.082� 0.007
j1011i 0.011� 0.004 0.024� 0.006 0.014� 0.004 0.022� 0.005 0.016� 0.004 0.017� 0.003
j1100i 0.024� 0.005 0.204� 0.016 0.094� 0.008 0.1� 0.007 0.064� 0.011 0.126� 0.009
j1101i 0.014� 0.004 0.018� 0.004 0.012� 0.006 0.021� 0.005 0.016� 0.005 0.015� 0.003
j1110i 0.023� 0.007 0.018� 0.003 0.027� 0.008 0.012� 0.003 0.019� 0.005 0.022� 0.002
j1111i 0.031� 0.006 0.016� 0.005 0.03� 0.004 0.012� 0.004 0.017� 0.003 0.02� 0.005

TABLE VII. Theoretical probabilities for the states under consideration.

State j0si j1si jþi j−i j↻i j↺i
j0000i 0.0 0.0 0.0 0.0 0.0 0.0
j0001i 0.0 0.0 0.0 0.0 0.0 0.0
j0010i 0.0 0.0 0.0 0.0 0.0 0.0
j0011i 0.0 0.333 0.167 0.167 0.167 0.167
j0100i 0.0 0.0 0.0 0.0 0.0 0.0
j0101i 0.25 0.083 0.022 0.311 0.167 0.167
j0110i 0.25 0.083 0.311 0.022 0.167 0.167
j0111i 0.0 0.0 0.0 0.0 0.0 0.0
j1000i 0.0 0.0 0.0 0.0 0.0 0.0
j1001i 0.25 0.083 0.311 0.022 0.167 0.167
j1010i 0.25 0.083 0.022 0.311 0.167 0.167
j1011i 0.0 0.0 0.0 0.0 0.0 0.0
j1100i 0.0 0.333 0.167 0.167 0.167 0.167
j1101i 0.0 0.0 0.0 0.0 0.0 0.0
j1110i 0.0 0.0 0.0 0.0 0.0 0.0
j1111i 0.0 0.0 0.0 0.0 0.0 0.0
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In Table VI the results of quantum simulations on the 15-
qubit (Melbourne) IBM quantum computer are collected.
For comparison, in Table VII theoretical values of the

probabilities of the basis states for the states under con-
sideration are shown.

APPENDIX B

The Appendix summarizes tests performed on the 15
qubits IBM quantum processor Melbourne. The following
four tests have been performed:

(1) Measurements on n qubits without any quantum
gates applied (the ⊗15

i¼1 j0i state).
(2) Applying NOT gates (X̂) and measurement on n

qubits.
(3) Applying NOT gates on all 15 qubits and performing

measurement on n first qubits.
(4) Applying NOT gates on n qubits and performing

measurement on all 15 qubits.
In Fig. 24 fidelities for the states obtained for the four test

are presented. The presented data are collected in
Table VIII.

FIG. 24. Fidelities for the four types of tests performed on the 15-qubit Melbourne quantum computer. From top left: measures on n
qubits for the empty quantum register, NOT gates and measures on n qubits, NOT gates on all 15 qubits and measurement on n qubits,
NOT gates on n qubits and measurements on all 15 qubits.

TABLE VIII. Fidelities of states for the four tests performed on the 15 qubit IBM quantum computer (Melbourne).

n 1st test 2nd test 3rd test 4th test

1 1.000� 0.000 0.976� 0.003 0.976� 0.003 0.786� 0.012
2 0.998� 0.001 0.928� 0.007 0.911� 0.006 0.734� 0.010
3 0.997� 0.002 0.897� 0.007 0.881� 0.008 0.717� 0.011
4 0.987� 0.003 0.859� 0.007 0.843� 0.006 0.667� 0.009
5 0.985� 0.002 0.825� 0.008 0.818� 0.010 0.649� 0.012
6 0.979� 0.003 0.776� 0.009 0.751� 0.018 0.611� 0.010
7 0.980� 0.004 0.755� 0.011 0.709� 0.011 0.599� 0.014
8 0.978� 0.004 0.710� 0.012 0.707� 0.013 0.576� 0.013
9 0.844� 0.006 0.600� 0.013 0.604� 0.012 0.569� 0.008
10 0.845� 0.009 0.576� 0.017 0.579� 0.015 0.554� 0.009
11 0.839� 0.010 0.560� 0.016 0.554� 0.018 0.528� 0.009
12 0.840� 0.005 0.542� 0.015 0.529� 0.018 0.522� 0.015
13 0.834� 0.007 0.512� 0.014 0.509� 0.011 0.495� 0.013
14 0.797� 0.011 0.478� 0.011 0.463� 0.017 0.464� 0.015
15 0.801� 0.010 0.438� 0.014 0.459� 0.023 0.463� 0.017
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