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We bring to light a novel mechanism through which turbulent matter density fluctuations can induce
collective neutrino flavor conversions in core-collapse supernovae, i.e., the leakage of flavor instabilities
between different Fourier modes. The leakage mechanism leaves its notable fingerprint on the flavor
stability of a dense neutrino gas by coupling flavor conversion modes on different scales which in turn,
makes the flavor instabilities almost ubiquitous in the Fourier space. This intriguing phenomenon arises
from the fact that unlike the case of collective neutrino oscillations in a homogenous medium, the neutrino
flavor conversion modes depend linearly on each other at different supernova zones in a turbulent medium.
The most remarkable consequence of this effect is in that it allows for the presence of significant flavor
conversions in the deepest supernova regions even in the absence of the so-called fast modes. This is yet
another crucial impact of turbulence on the physics of core-collapse supernovae which can profoundly
change our understanding of neutrino flavor conversions in the supernova environment.
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I. INTRODUCTION

Core-collapse supernova (CCSN) explosions are among
the most energetic astrophysical phenomena in which
neutrino emission is a major effect [1,2]. Neutrino flavor
evolution in CCSNe is a very rich and nonlinear pheno-
menon in which neutrinos can experience collective oscil-
lations due to the high density of the ambient neutrino
gas in the SN environment [3–6]. In this paper, we study
collective neutrino oscillations in the presence of SN
turbulent matter density fluctuations which as discussed
later herein, can significantly impact the physics of neutrino
oscillations in CCSNe.
Collective neutrino oscillations could significantly impact

the physics of CCSNe. On the one hand, it could influence
the SN dynamics and the nucleosynthesis of heavy elements
[7] in the SN environment by modifying the neutrino and
antineutrinoenergyspectraandconsequently, their interaction
rates. On the other hand, understanding of collective neu-
trino oscillations is crucial for future observations of galactic
CCSNe neutrino signals [8,9] and the upcoming measure-
ments of diffuse supernova neutrino background [10].
The first studies on collective neutrino oscillations in

CCSNe were carried out in maximally symmetric models,

e.g., the stationary spherically symmetric neutrino bulb
model [4–6,11–15]. Within these simplistic models it was
observed that the onset of collective neutrino oscillations
can be at radii much smaller than that of the conversions
induced by ordinary matter via the Mikheyev-Smirnov-
Wolfenstein (MSW) mechanism (at least in CCSNe with
iron cores). Despite this, collective oscillations was still
found to be suppressed in very deep SN regions due to
the presence of high neutrino/matter densities [16–18].
However, it was then realized that in multidimensional
(multi-D) time-dependent SN models, these suppressions
can be dismissed thanks to the breaking of spatial/temporal
symmetries [19–29]. Yet, in any realistic SN model, the
physical conditions change so quickly that any unstable
mode becomes stable before neutrinos can experience sig-
nificant flavor conversions [25]. This means that in spite
of the existence of flavor instabilities, significant flavor
conversions should be unlikely to occur in the deepest
regions of the SN core.
Nevertheless, it was then perceived that neutrinos can

also experience the so-called fast flavor conversions on
scales much shorter than those of traditional (slow) modes
[30–51]. The fast scales are determined by the neutrino
number density, nν, and can be as short as a few cm in
the deepest SN zones, as opposed to the ones of slow
modes which are determined by the vacuum frequency,
ω ¼ Δm2=2E, and occur on scales of ∼ a few km (for
Δm2

atm and E ¼ 10 MeV neutrinos). Besides their phe-
nomenological importance, perhaps the most remarkable
physical consequence of fast modes is in that they can lead
to the occurrence of collective neutrino oscillations in the
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deepest regions of the SN core. This is because they occur
on short enough scales in such a way that the unstable
modes can experience significant flavor conversions before
the physical conditions vary significantly. In spite of their
importance, fast modes do not seem to be a generic feature
of CCSNe and even if they exist, they are thought to be
present only in a finite region of the SN core [52–57].
Additionally, fast modes may also be less likely to occur in
nonexploding SN models [58].
Turbulence plays a crucial role in CCSNe [59–63]. The

impact of turbulent density fluctuations on neutrino oscil-
lations has been extensively studied in 1D models [64–74],
where it can induce flavor conversions through parametric
resonances. Here, we demonstrate that the presence of
turbulence in CCSNe can also induce collective neutrino
flavor conversion modes via an entirely different mecha-
nism, i.e., the leakage of flavor instabilities between
different Fourier modes. This novel effect can significantly
influence neutrino flavor evolution in the SN environment
and in particular, it can lead to the presence of traditional
(slow) collective neutrino oscillations in the deepest SN
regions even in the absence of fast modes. What makes this
novel effect more promising is in that it survives even for
tiny turbulence amplitudes.

II. LINEAR STABILITY ANALYSIS

We start by deriving the equation of neutrino flavor
evolution in the linear regime, in the two-flavor scenario
where the flavor content of a neutrino can be described as

ϱ ¼ fνe þ fνx
2

þ fνe − fνx
2

�
s S

S� −s

�
; ð1Þ

where fν’s are the neutrino initial occupation numbers and,
S and s carry information on neutrino flavor coherence and
conversion, respectively. In the absence of collisions, the
flavor evolution of the neutrino gas can be described by the
Liouville-von Neumann equation (c ¼ ℏ ¼ 1) [75–79]

ið∂t þ v · ∇ÞϱE;v ¼
�
M2

2E
þ λ

2
σ3 þ Hνν;v; ϱE;v

�
; ð2Þ

where v is the neutrino velocity and λ ¼ ffiffiffi
2

p
GFne is the

matter contribution to the neutrino Hamiltonian [80,81].
Here, the energies and occupation numbers are taken to be
positive for neutrinos and negative for antineutrinos, σ3 is
the third Pauli matrix and

Hνν;v ¼
ffiffiffi
2

p
GF

Z
∞

−∞

E02dE0

ð2πÞ3
Z

dv0ϱE0;v0 ð1 − v · v0Þ ð3Þ

is the contribution from the neutrino-neutrino forward
scattering [82–84].

We are here interested in the flavor stability analysis of
neutrinos in the linear regime where the flavor conversion is
still insignificant and one has s ≃ 1 and jSj ≪ 1. By only
keeping terms of OðjSjÞ in Eq. (2), one reaches [85,86]

ið∂t þ v · ∇ÞSE;v ¼ ðωþ λþ Λνν;vÞSE;v − hνν;v; ð4Þ

where, with the definition gE;v ¼ 2ϱ00E;vðt ¼ 0Þ,

hνν;v ¼
ffiffiffi
2

p
GF

Z
∞

−∞

E02dE0

ð2πÞ3
Z

dv0gE0;v0SE0;v0 ð1 − v · v0Þ;

Λνν;v ¼
ffiffiffi
2

p
GF

Z
∞

−∞

E02dE0

ð2πÞ3
Z

dv0gE0;v0 ð1 − v · v0Þ: ð5Þ

Equation (4) provides a linear set of equations for which
one can try collective solutions of the form SE;v ¼
QΩ;k

E;v e
−iΩtþik·x where Ω and k satisfy the dispersion

relation (DR) equation corresponding to Eq. (4). In a
homogenous medium, this leads to

ð−Ωþ v · kþ ωþ λþ Λνν;vÞQΩ;k
E;v ¼ hΩ;kνν;v: ð6Þ

Note that different Fourier modes are decoupled which
means that k is just a parameter here and one only needs to
find the functional form of QΩ;k

E;v in the E − v space for a
solution of the DR equation.

III. TURBULENT MATTER FLUCTUATIONS

It simply follows from Eq. (6) that in a homogenous
medium where matter is constant, the matter potential λ can
be absorbed in the real part of Ω and therefore, does not
affect the stability condition of the dense neutrino gas.
However, if the matter is not constant and spatial density
fluctuations are present, Eq. (6) changes to

ð−Ωþ v · kþ ωþ Λνν;vÞQΩ;k
E;v

þ
Z

d3k0

ð2πÞ3 λk0Q
Ω;k−k0
E;v ¼ hΩ;kνν;v; ð7Þ

where λk is the Fourier component of the matter potential
[87]. Note that, most remarkably, different Fourier modes
are now coupled through the turbulence-induced con-
volution term and simple plane waves are not anymore
eigenvectors of Eq. (7). This implies that in order to solve
Eq. (7), one should also consider the distribution ofQΩ;k

E;v in
the Fourier space because k is not a parameter anymore and
eigenvectors of Eq. (7) can now have contributions from a
range of k’s.
In the following, we assume a Kolmogorov-like spec-

trum for turbulence where the matter density features
power-law fluctuations [88] on a range of scales between
the dissipation scale, λdiss (here λdiss ≪ 10−10 km [59]),
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below which the turbulent energy gets efficiently dissipated
by viscosity and the cutoff scale, λcut, which is determined
by the shock radius Rs so that λcut ∼ 2Rs.
To be specific, we take the turbulent matter fluctuations

to have the form

λðxÞ ¼ λ0

�
1þ C

X
k≠0

ξk cosðkxþ ηkÞ
�
; ð8Þ

where λ0 is the average matter potential (the zeroth mode),
ηk is a random phase and C ¼ C=CN with C andCN being a
constant coefficient and a normalization factor defined as
CN ¼ ðPk≠0 ξ

2
kÞ1=2, respectively. Here C is the most mean-

ingful parameter which specifies the relative turbulence
amplitude on scales ∼λcut. In addition, ξk is assumed to
have a Kolmogorov distribution

ξk ¼
�

k
kcut

�
−α=2

; ð9Þ

with kcut ¼ 2π=λcut which is fixed to be kcut ¼ 0.01 km−1

in our calculations. We also set α ¼ 5=3 though our results
do not depend qualitatively on the value of α for reasonable
choices. With these choices, one has λk ∼ Cλ0ðk=kcutÞ−α=2.

IV. TWO-BEAM MODEL

We study neutrino flavor instabilities in a stationary 2D
two-beam, monochromatic neutrino gas studied first in
Ref. [21] (this stationary model is chosen for illustrative
purposes, otherwise see Appendix B for the turbulence
effect on temporal instabilities). Such a model can be used
to describe the SN geometry at some distance from the SN
core [25] where a periodic boundary condition is imposed
in the transverse plane (along the x-axis in our model) and
we study the evolution of the neutrino gas along the z-axis
which can also be interpreted as being the radial direction in

spherical coordinate. The mono-energetic νe and ν̄e beams
(ω ¼ �1) are assumed to be emitted with v� ¼ ð�u; 0; vzÞ
where u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

p
with vz ¼ 1=2 (corresponding to

an opening angle of 2π=3 between the two beams)
and the ratio between the number densities is fixed to
be nν̄e=nνe ¼ 0.7.
We solve Eq. (7) for our stationary model (Ω ¼ 0) to

find unstable modes in the z-direction (where the imaginary
part of kz is positive) and the E − v distributions of the
corresponding eigenvectors as a function of the Fourier
mode in the x-direction, k (hereafter we drop the sub-
scripts x and superscripts Ω). In addition, for the small
turbulence amplitudes considered here one can safely
ignore the turbulence in the z (longitudinal) direction since
it is completely suppressed by the other terms in the
equation of motion. This implies that Fourier modes are
only coupled in the x (transverse) direction. Note that a
similar suppression does not exist for the turbulence in the
x-direction since there is no other term being able to
compete with the turbulence (coupling) effect.
To illustrate how turbulent matter density fluctuations

impact the stability of a dense neutrino medium, in Fig. 1
we indicate the overall shape of the eigenvectors of Eq. (7),
defined as

jQkj ¼
�X

E;v

jQk
E;vj2

�
1=2

; ð10Þ

corresponding to the unstable mode with the maximum
growth rate, where the eigenvectors are normalized to
have unit length. In the left panel, we first consider a
neutrino gas with a relatively low neutrino number density,
μ ¼ ffiffiffi

2
p

GFnνe ¼ 50 km−1. For such values of μ, only very
low Fourier modes are unstable in a homogenous neutrino
gas. However, the instability structure changes dramatically
in a turbulent medium. As expected, there is a dominant

FIG. 1. Left and middle panels: overall shape of the eigenvectors of Eq. (7), corresponding to the unstable mode with the maximum
growth rate for two representative values of μ and for C ¼ 10−4 and C ¼ 10−6. The shaded area indicates the unstable region in the
homogenous case (which is extremely narrow in the left panel). Here, we have used Eq. (12) to relate matter to neutrino number density.
Right panel: evolution of the flavor coherence term in the linear regime [Eq. (4)] for the representative k ¼ 103 km−1 Fourier mode in a
declining μ. Here, we solve Eq. (4) numerically for a discrete set of Fourier modes with Δk ¼ 103 km−1 and assuming λ0 ¼ 300μ.
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peak with jQkj ≃ 1 at k ≃ 0. But due to the presence of
turbulent matter fluctuations, one can clearly see that the
instability can now leak to much higher Fourier modes
(and make them unstable) which are otherwise completely
stable in the homogenous case. It is of utmost importance to
note that in spite of its small amplitude (for the tiny
turbulence amplitudes used here), the leakage of instabil-
ities can entirely change the stability condition of the
neutrino gas. This simply comes from the fact that as far as
the flavor stability is concerned, the amplitude (of the
unstable modes) is not relevant since any unstable mode
can growth exponentially with a growth rate of ∼10 km−1

(for slow modes). Thus, even unstable modes with ampli-
tude jQkj ∼ 10−9 can get activated within only ∼2 km.
This implies that, surprisingly, even a tiny amount of
turbulence in matter would be enough to have a notable
influence and make the whole range of (relevant) Fourier
modes unstable with reasonable initial amplitudes. This is
very different from the turbulence-induced parametric
resonances where turbulent matter fluctuations can only
generate a noticeable effect when the turbulence amplitude
is considerably large [65]. To the best of our knowledge, the
flavor instability leakage is the only physical effect in
CCSNe which is sensitive to such tiny turbulence ampli-
tudes. Indeed, the turbulence effect behaves here like a
switch-on effect. Thus, one might be tempted to interpret
the leakage phenomenon as an example of the effect of the
background symmetry breaking in a dense neutrino gas.
Note that in the absence of turbulence, jQkj should be a δ-
function in the Fourier space.
The turbulence-induced leakage amplitude is almost

independent of μ and depends only on the density fluc-
tuation amplitude (see Appendix A)

leakage of k0 → k0 � k∶
jQk0�kj
jQk0 j ∼

λk
k
: ð11Þ

By using this expression, one can easily make an estimate
of the leakage amplitude for a given matter density and
turbulence amplitude.
In the middle panel of Fig. 1, an example of the

instability leakage for a high neutrino number density with
μ ¼ 104 km−1 is presented. For such a value of μ which is
expected in the SN zones close to the surface of the PNS,
only very large k’s are unstable in the homogenous case.
However, the instability leaks to small k’s in the presence of
turbulence. In particular, the leakage amplitude for a given
turbulence amplitude is much larger in this case since the
matter density is quite big in the vicinity of the PNS.
Although the form of the eigenvectors of Eq. (7) changes

significantly in a turbulent medium, its eigenvalues do
not change noticeably, at least for such small turbulence
amplitudes tried here. This implies that this novel effect
observed for constant μ’s might be still superficial unless it
can also leave its influence on the solutions of Eq. (4) for a

realistic SN profile where μ is changing. But this is exactly
where the power of the leakage mechanism is best
manifested, as illustrated in the right panel of Fig. 1.
Here to provide a flavor of this effect, we show the
evolution of the k ¼ 103 km−1 Fourier mode in a model
in which the neutrino number density is varying with
μðzÞ ¼ 104 expð−0.3zÞ km−1 (note that μ changes very
rapidly and goes from 104 to 10 km−1 within only
∼20 km). As can be clearly seen, the final amplitude
of the Fourier modes (at the point they become dominant)
in the presence of turbulence can be larger than those of
the homogenous gas by many orders of magnitude. This is
due to the fact that all the relevant Fourier modes can
always grow exponentially in a turbulent medium in
contrast to the homogenous gas in which each Fourier
mode has a certain range of instability. This behavior is
completely compatible with/predictable from what already
observed in the left and middle panels of Fig. 1 and shows
that the assessment based on the shape of the eigenvectors
of Eq. (7) can be very useful in providing a sufficient
insight on how Fourier modes grow. Note that the exact
turbulence-induced enhancement in the amplitude of a
Fourier mode depends on the duration on which the
turbulence influences its evolution, which can be much
longer for realistic SN profiles [89].
The evolution of the neutrino gas here is adiabatic to a

very good degree in the sense that the scales on which
the eigenvectors of Eq. (7) grow (exponentially) are much
shorter than those of variations in μ (or in the shape of
the eigenvectors themselves), i.e., κ−1 ≪ μ=ðdμ=drÞ. One
can then better understand the behavior observed in the
right panel of Fig. 1 in an analytical way, assuming a
perfect adiabaticity. In the perfect adiabatic limit, the
solution of Eq. (4) at each step z ¼ z0 þ Δz can be obtained
analytically from the one at z ¼ z0 by Sðz0 þ ΔzÞ ¼P

i ciΨieiðkzÞiΔz where Ψi and ðkzÞi are the eigenvectors
(which form a complete basis) and eigenvalues of the
Hamiltonian of Eq. (7) at z ¼ z0 and ci’s are the expansion
coefficients of Sðz0Þ ¼

P
i ciΨi. Such an analytical adia-

batic solution (red curve) shows a very good agreement
with the numerical solution of Eq. (4). One should note
that the key point here is that the eigenvectors of Eq. (7)
at two different steps are not exactly linearly independent
of each other. In other words, each Ψnew

i has contribu-
tions from allΨold

j ’s, i.e.,Ψnew
i ¼ P

j cijΨold
j with cij being

roughly the turbulence amplitude. This means that any
unstable mode grows from an enhanced initial value
(occurred during the growth of the modes which were
previously unstable) which in turn ensures that all the
Fourier modes always grow exponentially during the
propagation of neutrinos. This is entirely in contrast to
the homogenous case where the new unstable modes at
each point are totally linearly independent of the old ones
at a previous point and therefore, any exponential growth
is present only within a certain period.
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V. DISCUSSION AND CONCLUSIONS

The turbulence-induced leakage of flavor instabilities
implies that the notion of μ − k instability band (see, e.g.,
Fig. 3 in Ref. [22]) developed in a homogenous neutrino
gas is not very useful in a turbulent medium where what
distinguishes different Fourier modes is actually only their
initial amplitudes, jQkj.
One can immediately observe that the leakage mecha-

nism can well address one of the biggest issues with
slow instabilities in the deepest SN zones. In particular, it
dismisses the necessity of the occurrence of fast modes in
order to observe significant flavor conversions near the
PNS. To demonstrate this idea, in Fig. 2 we show the
instability footprints of two representative Fourier modes
as a function of the distance from the SN core and the
turbulence amplitude, C, during the accretion phase of a
CCSN.1 Here we take a matter/neutrino density profile
approximately similar to that of Ref. [25] in which

μðrÞ ¼ μRðR=rÞ4 and λðrÞ ¼ λRðR=rÞ3; ð12Þ

where μR and λR are the neutrino and matter densities on
the surface of the neutrinosphere, R, respectively, for
which we have used R ¼ 15 km, μR ¼ 2 × 105 km−1

and λR ¼ 6 × 107 km−1 (corresponding to a matter density
of ρ ≃ 3 × 1011 g cm−3). For very small turbulence ampli-
tudes, the instability zones can be extremely narrow
specially at small radii which prevents any significant
flavor conversions therein. However, as C increases, the
Fourier modes become unstable at all radii which means
that they can grow many orders of magnitude (as in the
right panel of Fig. 1) and easily enter the nonlinear regime.
Hence, no matterwhether fast modes exist or not, collective
neutrino oscillations can occur within just a few km above
the PNS. In addition, unlike fast modes which can only
exist in small SN regions and are less likely to occur in
nonexploding models, turbulence-induced flavor conver-
sion modes are ubiquitous and generic. This could have an
important impact on the SN dynamics and the nucleosyn-
thesis of heavy elements in CCSNe.
Apart from the crucial impact of turbulence on the flavor

stability of a dense neutrino gas, its presence is also
important in providing initial seeds for the unstable modes.
Specifically, the turbulence term in Eq. (4) transfers the
initial seed from k0 to k0 � k on scales ∼λ−1k , or more
accurately, ∼maxfλ−1k0 k=k0g where the maximum is taken
over all turbulence modes.

Apart from its impact on slow modes which was
discussed here, turbulence can also affect fast neutrino
flavor conversion modes (see Appendix C). However,
although a similar leakage can occur therein, the leakage
mechanism does not seem to change DR of fast modes.
In the above discussions, we have only considered the

effects of spatial density fluctuations on the spatial insta-
bilities. However, a similar effect should also be expected
for temporal instabilities as shown in Appendix B. Indeed,
the leakage effect has nothing to do with the eigenvalues of
DR equation and the nature of instabilities and, it only
arises due to the presence of coupling among different
eigenvectors. Additionally as discussed in Appendix C,
such an effect even exists for stable solutions (real
eigenvalues of DR equation). Similarly, temporal fluctua-
tions of the matter density can also couple different
temporal frequencies. Although extremely rapid temporal
density variations are necessary to observe any noticeable
effect, it could be still plausible considering the small
required turbulence amplitudes. Moreover, while we have
only considered the effects of the turbulence on flavor
instability in CCSNe, similar effect can be expected in any
dense neutrino environment where matter density fluctua-
tions are present, such as neutron star merger remnant
accretion disks.
Our study is meant only to serve as an introduction to

this novel issue and further research is necessary to provide
a better understanding of its physical implications. This is
yet another time that the rich physics of neutrino flavor
evolution in dense neutrino media surprises us.
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APPENDIX A: THE LEAKAGE AMPLITUDE

We here develop a hand-waving understanding of the
turbulence-induced leakage amplitude. We take the struc-
ture of the equation of neutrino flavor evolution in the linear
regime and attempt to understand how the presence of a
coupling between different Fourier modes changes the
structure of the eigenvectors. For this purpose, we consider
the following set of equations which resembles the evolu-
tion of the flavor coherence terms of two Fourier modes
which are coupled

i∂tSk1 ¼ ðωþ μþ k1ÞSk1 þ λkSk2

i∂tSk2 ¼ ðωþ μþ k2ÞSk2 þ λkSk1 ðA1Þ

where k ¼ k2 − k1. It can be easily shown that the
eigenvectors of this set of linear equations have the form
jQj ∝ ð1; λk=kÞ and ðλk=k; 1Þ for λk=k ≪ 1 (which is
always the case for the Fourier modes of interest). This
confirms that in the presence of a coupling term, any
eigenvector will have a dominant component at a given
Fourier mode and subdominant contributions from other
modes with amplitude ∼λk=k.

APPENDIX B: TEMPORAL INSTABILITIES

We have studied the leakage mechanism in a stationary
dense neutrino gas. Here, we demonstrate that a very
similar effect arises in a time-dependent model where
turbulence can impact the temporal instabilities. This
should be of course expected since the leakage effect
has nothing to do with the eigenvalues of DR equation and
the nature of instabilities and, it only arises due to the
presence of coupling among different eigenvectors. Hence,
as will also be discussed in our upcoming work [89], the
leakage effect exists also for multiangle configurations.
We here consider a time-dependent two-beam, mono-

chromatic neutrino gas with one spatial dimension. Our
model is the same as the one proposed in Ref. [40] but we
only consider two (zenith) angle beams with emission
angles ϑ1 ¼ π=6 and ϑ2 ¼ π=3 with respect to the z-axis.
We here assume that the neutrino gas possesses a perfect
axial symmetry about the z-axis.
The results obtained in this model are presented in Fig. 3

where we have as an example shown the overall shape of
jQkj (here k is the Fourier mode in z-direction) for μ ¼ 50,
corresponding to the unstable temporal mode with the
maximum growth rate. As can be obviously seen, the

temporal instabilities are similarly affected by the leakage
mechanism.

APPENDIX C: FAST MODES

Turbulent matter fluctuations can also influence fast
modes in a similar way to slow modes. This is clearly
illustrated in Fig. 4 where two arbitrary stable and unstable
modes are shown for a neutrino gas in the presence of fast
modes. Here we have considered a 2D stationary neutrino
gas with only one neutrino and one antineutrino beams with
vν̄e ¼ ðþu; 0; vzÞ and vνe ¼ ð−u; 0; vzÞ (vz ¼ 1=2) in such
a way that fast modes can exist (see the model studied in
Ref. [33]). The blue and red bands indicate the regions
where the real branches and the gap (where complex
branches exist) are located, respectively, in a homogenous
neutrino gas. In the presence of turbulence, both the real

FIG. 3. Overall shape of the eigenvectors (of Eq. (7) in the main
text) for the time-dependent neutrino gas described here, corre-
sponding to the unstable temporal mode with the maximum
growth rate for μ ¼ 50 km−1. Here to relate matter to neutrino
number density we have used Eq. (12) in the main text.

FIG. 4. Overall shape of two arbitrary real and complex
solutions (of Eq. (7) in the main text), in the presence of fast
modes in a turbulent medium, with C ¼ 10−6 and assuming
λ ¼ 300μ. The blue and red areas show the regions where the real
branches and the gap (the complex branches) exist in a homog-
enous neutrino gas, respectively.
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and complex solutions can leak to the other zone. Note that
the leakage phenomenon is not unique to the unstable
modes (complex branches) and stable modes also leak to
the unstable region (with jQkj ∼ λk=k). Note, however, that

considering the locality of fast modes, as long as the
eigenvalues dispersion relation (DR) equation are not
modified by the turbulence one can always define a new
set of basis so that the DR remains unchanged.
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