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We study a nonlocal ghost-free Lorentz invariant modification of the Maxwell equations in four- and
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magnetized objects and use them to find the field created by such objects moving with the speed of light.

DOI: 10.1103/PhysRevD.103.045013

I. INTRODUCTION

An electric field of a point charge is spherically sym-
metric and its equipotential surfaces are spheres. If such a
charge moves with a constant velocity with respect to an
observer then its equipotential surfaces are squeezed and
take on an elliptic form, which is a direct result of
relativistic Lorentz contraction. In the limit when the
velocity of the charge tends to the speed of light, this
squeezing is so strong that the field of the charge is
practically confined to a null plane and becomes similar
to a plane wave (see Ref. [1] and references therein). A
similar effect is well known in gravity: the Aichelburg-Sexl
solution [2] of the Einstein equations for an ultrarelativistic
gravitating object is of the form of a so-called pp wave.
Bonnor [3] obtained a similar solution for a spinning
gravitating object. These results were later generalized to
higher dimensions [4–6]. These so-called gyraton metrics
are exact solutions of the higher-dimensional Einstein
equations and they belong to the class of Kundt metrics
[7]. Linearized versions of the gyraton metrics can be
obtained by boosting a stationary solution of the linearized
Einstein equations for a spinning massive object [8]. In
order to obtain a physically meaningful result one needs to
keep the energy fixed when taking the speed of light limit,
which has been dubbed the “Penrose limit” [9].
Recently, there has been substantial activity devoted to

the study of nonlocal generalizations of general relativity.

The main motivation of this study is an attempt to solve
long-standing problems of general relativity: cosmological
and black hole singularities. The proposed modification
preserves the local Lorentz invariance of the theory. At the
linear level the standard □ operator is changed to
D ¼ fð□Þ□, where a nonlocal form factor fðzÞ is chosen
such that it does not vanish in the complex plane of z, and
hence it has a unique inverse. As a result, no new
unphysical degrees of freedom are present (at least at tree
level). For this reason, such nonlocal theories are some-
times refereed to as “ghost-free” [10,11]. Linearized
solutions of the nonlocal ghost-free equations for stationary
objectswere derived and discussed inmany publications (see
Refs. [12,13] and references therein). One of themain results
is that the field produced by localized objects is regularized
and finite at the position of the source. The gravitational field
of four-dimensional and higher-dimensional ultrarelativistic
massive and spinning objects in linearized nonlocal gravity
was found and discussed in a recent work [14]; see also
Ref. [15]. In particular, in this paperwe proved a dimensional
reduction formula for static Green functions: a static Green
function Gd in a (dþ 1)-dimensional spacetime has the
following remarkable dimensional reduction property in the
Penrose limit: Gdþ1 → GdδðuÞ, where u is a retarded null
coordinate [14].
In the present paper we study the properties of a nonlocal

ghost-free modification of electrodynamics. To that end, we
adopt the formalism developed in [14] for the study of the
properties of the electromagnetic field in this theory created
by ultrarelativistic charged and magnetized objects. We
begin by collecting some known results for standard local
Maxwell theory in Sec. II in order to fix the notation and
determine the consistency conditions for the scaling of
parameters in the Penrose limit. We then consider a fairly
general gauge-invariant nonlocal modification of the
Maxwell equations in Sec. III. Their solutions for pointlike
and extended charged and magnetized ultrarelativistic
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objects are given in Secs. IV and V, respectively. These
results are obtained in any number of spacetime dimensions
D ≥ 4. Last, in Sec. VI we discuss the obtained results.

II. ULTRARELATIVISTIC CHARGED AND
MAGNETIZED OBJECTS IN LOCAL

ELECTRODYNAMICS

Our goal is to obtain the field of ultrarelativistic charged
and magnetized objects in a nonlocal ghost-free modifi-
cation of Maxwell theory. However, it is instructive to
discuss first a similar problem in the standard local
Maxwell theory. Namely, let us consider electrically
charged and magnetized pencil-like objects. In both cases
the transverse size of the pencil is infinitely small. We
denote the length of the pencil by L̄. We moreover consider
an inertial frame S̄ in which this pencil is at rest and denote
the coordinates in this frame by X̄μ. We specify these
coordinates such that one of the spatial axes is directed
along the linear extension of the pencil, and we denote this
coordinate by ξ̄, while the coordinates in the directions
orthogonal to the pencil are labeled x⃗⊥. Thus we have

X̄μ ¼ ðt̄; ξ̄; x⃗⊥Þ: ð1Þ

We choose the origin of the coordinate system such that the
end points of the pencil are located at ξ̄ ¼ �L̄=2. In what
follows, we shall boost the pencil in the ξ̄ direction.
In this section we discuss two types of pencils. One is a

uniformly charged pencil with a total electric charge q̄,
and the second type corresponds to a uniformly magnetized
pencil with a total magnetic moment m̄. To distinguish
these cases we refer to them as (i) q-pencil and (ii) m-
pencil, respectively.

A. Field of a q-pencil in its rest frame

The Maxwell equations are

∇νFνμ ≡ 1ffiffiffiffiffiffi−gp ∂νð
ffiffiffiffiffiffi
−g

p
FνμÞ ¼ jμ;

Fμν ¼ ∂μAν − ∂νAμ: ð2Þ
Here and in what follows we shall employ Heaviside units1

and set the speed of light to unity, c≡ 1. Let us emphasize
that the background metric of the spacetime is flat;
however, in what follows we shall also employ non-
Cartesian coordinates such that the covariant form of the
Maxwell equations is very useful.
We start with a case of a q-pencil and assume that its

charge density distribution is uniform inside a fixed
interval. If q̄ is an electric charge and L̄ the length of
the pencil, then its 4-current is

j̄μ ¼ δμt̄ j̄
t̄;

j̄t̄ ¼ q̄
L̄
δð2Þðx⃗⊥ÞΘðξ̄j − L̄=2; L̄=2Þ: ð3Þ

Here Θðxjx−; xþÞ ¼ θðx − x−Þθðxþ − xÞ is a step function
equal to 1 in the interval ðx−; xþÞ and zero outside it. In the
Coulomb gauge we may choose the vector potential to be of
the form2

A≡ ĀμdX̄μ ¼ ϕ̄dt̄: ð4Þ

Solving the field equation (2) for the potential ϕ̄,

△̄ ϕ̄ ¼ −λ̄; ð5Þ

one finds

ϕ̄ ¼ q̄
4πL̄

Z
L̄=2

−L̄=2

dξ̄0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ̄ − ξ̄0Þ2 þ ρ2

p ; ð6Þ

where ρ2 ¼ ðx⃗⊥Þ2. Taking the integral one obtains

ϕ̄ ¼ q̄
4πL̄

ln

�
ξ̄þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ̄2þ þ ρ2

p
ξ̄− þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ̄2− þ ρ2

p
�
; ð7Þ

where we defined ξ̄� ¼ ξ̄� L̄=2 for convenience.

B. Field of an m-pencil in its rest frame

Let fρ;φg be polar coordinates in the plane orthogonal
to the pencil such that we can rewrite the Minkowski
metric as3

ds2 ¼ −dt̄2 þ dξ̄2 þ dρ2 þ ρ2dφ2: ð8Þ

To obtain the field of the m-pencil let us consider first the
magnetic field of a solenoid with current density

J¼ J̄φdφ; J̄φ ¼
m̄

πL̄R
δðρ−RÞΘðξ̄j− L̄=2; L̄=2Þ: ð9Þ

Here R is the radius of the solenoid, L̄ is its length
measured in the frame S̄, and m̄ denotes the magnetic
moment of the solenoid which is proportional to the
magnetic flux inside of it. Since the magnetic field is static
and axially symmetric one can put Ā≡ ĀμdX̄μ ¼ Āφdφ,
and the potential Āφ in the limit R → 0 is

1For more information on unit systems in electrodynamics we
refer to Jackson [16] as well as Hehl and Obukhov [17].

2A as a differential form is invariant under Lorentz trans-
formations. For this reason we omit the bar on any bold-
faced objects here and in what follows.

3Recall that the φ component does not refer to an orthonormal
basis but rather the ∂φ vector with norm ρ. Care should be taken
when comparing our results to the literature, where sometimes we
find expressions evaluated in orthonormal frames with the unit
basis vector φ̂ ¼ ∂φ=ρ.
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Āφ ¼ m̄
4πL̄

�
ξ̄þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ̄2þ þ ρ2
p −

ξ̄−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ̄2− þ ρ2

p
�
; ð10Þ

where, as earlier, ξ̄� ¼ ξ̄� L̄=2. For details of this calcu-
lation we refer to Appendix. One can also check that the
expression (10) coincides with the magnetic field of a
monopole–anti-monopole pair located on the ξ̄ axis at the
points separated by distance L̄.

C. Penrose limit

Consider an inertial frame S moving with respect to the
rest frame S̄ along the ξ̄ axis with the speed β. We denote
the coordinates in the boosted frame S as Xμ ¼ ðt; ξ; x⃗⊥Þ.
We keep the same notation for the transverse coordinates
x⃗⊥ in the frame S as in the rest frame S̄ since they are not
affected by the boost. The Lorentz transformation relating
the coordinates in these two frames is

t̄ ¼ γðt − βξÞ; ξ̄ ¼ γðξ − βtÞ: ð11Þ

Here and in what follows we denote γ ¼ ð1 − β2Þ−1=2. The
second relation shows that the length L of the pencil
measured in the frame S is L ¼ L̄=γ, which is a manifes-
tation of the Lorentz contraction effect.
We also introduce the retarded and advanced null

coordinates in the S frame defined as follows:

u ¼ t − ξffiffiffi
2

p ; v ¼ tþ ξffiffiffi
2

p : ð12Þ

Then (11) implies

t̄ ¼ γffiffiffi
2

p ½ð1þ βÞuþ ð1 − βÞv�;

ξ̄ ¼ γffiffiffi
2

p ½−ð1þ βÞuþ ð1 − βÞv�: ð13Þ

In the ultrarelativistic limit, β → 1, one has

t̄ →
ffiffiffi
2

p
γu; ξ̄ → −

ffiffiffi
2

p
γu: ð14Þ

We are interested in the limit of the electromagnetic field of
the q-pencil and the m-pencil in the regime when β → 1
and γ → ∞.
Consider an observer that is at rest at the origin of the

moving frame S. The pencil moves to the left in this frame.
Its left end point reaches the observer at the moment
u ¼ −û, where û ¼ L=ð2 ffiffiffi

2
p Þ and the right end point of the

pencil passes near the observer at u ¼ û. To keep the
interval Δu ¼ 2û finite in the limit γ → ∞ one needs to
increase the initial rest-frame size of the pencil. In other
words, we put L̄ ¼ γL, where L is the Lorentz contracted
size of the moving pencil. The electric and magnetic
charges are invariant under the boost. Hence q̄ ¼ q, while

m̄ ¼ γm, where m is the magnetic moment after the
boost. To summarize, we need to find a limit γ → ∞ of
the electromagnetic field of moving pencils under the
conditions

L̄ ¼ γL; λ̄ ¼ λ=γ; μ̄ ¼ μ; ð15Þ

where L, λ ¼ q=L and μ ¼ m=L are kept fixed. We call this
procedure the Penrose limit.

1. q-pencil

The potential 1-form A, see Eq. (4), expressed in
fu; v; ρ; ξg coordinates takes the form A ¼ Audu. By
comparing these relations one finds

Au ¼
ffiffiffi
2

p
γϕ̄: ð16Þ

In order to find the Penrose limit of Au it is convenient first
to consider the transformation of ∂ρϕ̄. Using (6) one can
write

∂ϕ̄
∂ρ ¼ −

λ̄ρ

4π

Z
L̄=2

−L̄=2

dξ̄0

½ðξ̄ − ξ̄0Þ2 þ ρ2�3=2 : ð17Þ

Hence

∂Au

∂ρ ¼ −
γλ̄ρ

4
ffiffiffi
2

p
π

Z
û

−û

γdu0

½γ2ðu − u0Þ2 þ ρ2=2�3=2 : ð18Þ

To find the limit γ → ∞ of this integral one can use the
following relation [8]:

lim
γ→∞

γ

ðγ2y2 þ ρ2Þm=2 ¼
ffiffiffi
π

p
Γðm−1

2
Þ

Γðm
2
Þ

δðyÞ
ρm−1 : ð19Þ

In order to obtain the potential Au in the limit γ → ∞ it is
sufficient to use (14), to apply (19) for m ¼ 3 to (18), to
employ relation (15) and finally to perform the integration
over u0. One obtains the following expression:

∂Au

∂ρ ¼ −
λffiffiffi
2

p
πρ

Θðuj − û; ûÞ: ð20Þ

The potential Au can be found by the integration of (20)
over ρ. The result is

Au ¼ −
λffiffiffi
2

p
π
ln

�
ρ

ρ0

�
Θðuj − û; ûÞ: ð21Þ

It is easy to see that the rescaling of the integration constant
ρ0 → Cρ0 can be absorbed by the gauge transformation
Aμ → Aμ þ ∂μψðuÞ. This means that the constant ρ0 is
physically irrelevant and does not enter observables such as
the field strength F.
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2. m-pencil

Let us now consider the m-pencil and its Penrose limit.
To that end, using relation (14) in combination with the
scaling property (15) one can write the potential Aφ, see
Eq. (10), in the form

Aφ ¼
μ

4π

�
γðuþ ûÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2ðuþ ûÞ2þρ2=2
p −

γðu− ûÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðu− ûÞ2þρ2=2

p
�
:

ð22Þ

Taking the limit γ → ∞ one finds

Aφ ¼ μ

2π
Θðuj − û; ûÞ: ð23Þ

In the conclusion of this section we shall describe some
properties of the solutions (21) and (23) for the field of
charged and magnetized pencils moving with the speed of
light. Let us write the flat Minkowski metric in fu; v; ρ;φg
coordinates such that

ds2 ¼ −2dudvþ dρ2 þ ρ2dφ2: ð24Þ

Let us denote by ζðvÞ ¼ ∂v and ζðφÞ ¼ ∂φ two of its Killing
vectors. Then the solutions (21) and (23) obey the follow-
ing symmetries:

LζðvÞA ¼ LζðφÞA ¼ 0: ð25Þ

In both cases the electromagnetic field vanishes outside a
finite strip ð−û; ûÞ of the retarded time u. Moreover, one
may check that the invariants FμνFμν and F�

μνFμν vanish
both inside and outside this interval. In this sense the
corresponding fields are similar to electromagnetic
plane waves.

III. NONLOCAL MAXWELL EQUATIONS

A. Action and field equations

In what follows we present a far going generalization of
the rather simple results presented in the previous section.
Namely, we consider a spacetime with arbitrary number of
dimensions D ≥ 4 and we do not assume that the electric
charge and magnetic moment densities are constant. We
shall also obtain results valid for both higher-dimensional
Maxwell theory as well as for its nonlocal ghost-free
generalization.
Consider D-dimensional flat spacetime with Cartesian

coordinates Xμ ¼ ðt; xÞ, with x ¼ ðxiÞ, i ¼ 1;…; d, and
d ¼ D − 1. The Minkowski metric is

ds2 ¼ −dt2 þ
Xd
i¼1

ðdxiÞ2 ¼ −dt2 þ dx2: ð26Þ

In order to derive a fairly general nonlocal modification of
the local Maxwell equations let us consider an action for the
vector field Aμ of the form

S½Aμ� ¼
1

2

Z
dDXAμOμνAν; ð27Þ

where Oμν is an arbitrary symmetric tensor function of the
derivatives. It is easy to check that in a general case it has
the form

Oμν ¼ hð□Þgμν þ fð□Þ∇μ∇ν: ð28Þ

In Cartesian coordinates one has gμν ¼ ημν and
∇μ ¼ ∂=∂Xμ, but it is convenient to work with a covariant
form of the action. One only needs to remember that in this
case the operators ∇μ commute and their action on the
metric vanishes, ∇ρgμν ¼ 0. Let us also emphasize that we
shall use the action solely for deriving the field equations
for Aμ and for that reason one may integrate by parts
without considering the contribution of the boundary terms.
Let us demand now that the action is invariant under the

U(1) gauge transformation Aμ → Âμ ¼ Aμ þ∇μψ , where
ψ is an arbitrary function of Xμ. One finds

δψS≡ S½Âμ� − S½Aμ� ¼
Z

dDXJ; ð29Þ

J ¼ −ψ ½hð□Þ þ fð□Þ□�∇μAμ

þ ψ

2
□½hð□Þ þ fð□Þ□�ψ : ð30Þ

Let us consider first the second term in the expression for J,
which is quadratic in the gauge function ψ . Since this
function is arbitrary, the last term vanishes only if

hð□Þ ¼ −fð□Þ□: ð31Þ

However, under this condition the first term on the right-
hand side of (30) which is linear in ψ vanishes as well.
Hence the condition (31) guarantees that the action
(27)–(28) is gauge invariant taking the form

S½Aμ� ¼
1

2

Z
dDXAμfð□Þ½gμν□ −∇μ∇ν�Aν: ð32Þ

We add to this action a term describing an interaction with a
conserved external current jμ, and after integration by parts
write it in the form

S½Aμ� ¼
Z

dDX

�
1

4
Fμνfð□ÞFμν − jμAμ

�
;

Fμν ¼ ∂μAν − ∂νAμ: ð33Þ
The operator fð□Þ in this action is called a form factor, and
its precise form specifies a nonlocal model. We assume that
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the corresponding function fðzÞ viewed as a function of the
complex variable z has no zeroes in the complex plane. In
this case the operator fð□Þ has an inverse and no new
unphysical degrees of freedom (ghosts) emerge. We also
assume that fð0Þ ¼ 1, which guarantees that the residue of
the pole of 1=½zfðzÞ� at z ¼ 1 is 1, such that the theory
correctly reproduces the properties of the corresponding
local theory in the infrared regime. This class of theories is
often referred to as “ghost-free.” Quite often the form factor
f is chosen to be of the form

fð□Þ ¼ exp ½ð−l2□ÞN �; l > 0: ð34Þ

Here N is a positive integer number and l > 0 is a
characteristic length scale of nonlocality. We call nonlocal
models with these form factors GFN theories. In the
limiting case of l → 0 one recovers the local theory since
fð0Þ ¼ 1.
The nonlocal field equations take the form

fð□Þ∂μFμν ¼ jν; ∂ ½ρFμν� ¼ 0: ð35Þ

The second equation implies that locally Fμν ¼ ∂μAν−∂νAμ. Inserting this into the first equation one finds

fð□Þð□Aν − ∂ν∂μAμÞ ¼ jν: ð36Þ

We may now exploit the U(1) gauge invariance in Aμ

to fix the gauge to the convenient choice (“Lorenz gauge”)
∂μAμ ¼ 0 which implies

fð□Þ□Aμ ¼� jμ: ð37Þ

For the remainder of this paper we shall work exclusively in
the Lorenz gauge.

B. Green functions

Our first step consists of finding solutions that describe
the electromagnetic field of static sources. Since the field
does not depend on time one may substitute the□ operator
by the Laplace operator

△ ¼ ∇2 ¼
Xd
i¼1

∂2
i : ð38Þ

In both the local and nonlocal cases a solution can be found
via the corresponding Green function, which is a solution
of the following differential equation:

fð△Þ△Gdðx0 − xÞ ¼ −δðdÞðx0 − xÞ: ð39Þ

For a GFN theory one has

fð△Þ ¼ exp½ð−l2△ÞN �: ð40Þ

It is possible to show that the following integral represen-
tation for the Green function GdðrÞ is valid:

GdðrÞ ¼
1

ð2πÞd=2rd−2
Z

∞

0

dζζ
d−4
2 e−ðζl=rÞ2NJd

2
−1ðζÞ: ð41Þ

Here d ≥ 3, and we abbreviated r≡ jx0 − xj for conven-
ience. There is also a recursive formula relating these Green
functions in the spaces of different dimensions,

Gdþ2ðrÞ ¼ −
1

2πr
∂GdðrÞ
∂r : ð42Þ

These results and their derivation can be found in [18].
The first of these relations allows one to find the Green

functions in an explicit form for some special nonlocal
models. If such a Green function is found for d ¼ 3 and 4,
the higher-dimensional Green functions can be found by
simple differentiation via Eq. (42). For example, in the
simplest case of GF1 theory, N ¼ 1, one has

G3ðrÞ ¼
1

4πr
erf

�
r
2l

�
; ð43Þ

G4ðrÞ ¼
1

4π2r2
½1 − e−r

2=ð4l2Þ�; ð44Þ

where erfðzÞ denotes the error function [19]. In the limit
l → 0 one recovers the well-known local expressions.
Moreover, all nonlocal ghost-free Green functions are
manifestly regular at r ¼ 0.

IV. POINTLIKE SOURCES

Both local Maxwell theory and its nonlocal modification
are linear theories. This means that it is sufficient to find a
solution for a pointlike source. The field of an extended
object can be obtained by integrating such a solution over
the volume occupied by the object with a proper weight
representing the charge and magnetic moment density
distributions.

A. Stationary point particle

Let us consider the conserved external current

jμ ¼ δμt qδðdÞðxÞ þ δμi M
ik∂kδ

ðdÞðxÞ: ð45Þ

Here i; k ¼ 1;…; d, q is the charge of the point particle and
Mik ¼ −Mki is a constant, antisymmetric tensor that para-
metrizes the particle’s intrinsic magnetic moment. Writing
the electromagnetic potential as

AμðxÞ ¼ δtμφðxÞ þ δiμAiðxÞ ð46Þ

the equations of motion take the form
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fð△Þ△φ ¼ −qδðdÞðxÞ; ð47Þ

fð△Þ△Ai ¼ Mi
k∂kδ

ðdÞðxÞ: ð48Þ

These equations are solved by

φðxÞ ¼ qGdðxÞ; AiðxÞ ¼ −Mi
k∂kGdðxÞ: ð49Þ

The potential 1-form A ¼ AμdXμ then takes the form

AμdXμ ¼ φdtþ Aidxi

¼ qGdðrÞdt −Mi
k∂kGdðxÞdxi: ð50Þ

Using the relation

∂iGdðxÞ ¼
xi
r
∂rGdðxÞ ¼ −2πxiGdþ2ðxÞ ð51Þ

we may also write

AμdXμ ¼ qGdðrÞdtþ 2πMi
kxkGdðxÞdxi: ð52Þ

B. Boosting a pointlike source

As in Sec. II we single out a boost direction and denote
the coordinates as X̄μ ¼ ðt̄; ξ̄; x⊥Þ such that

ds2 ¼ −dt̄2 þ dξ̄2 þ dx2⊥: ð53Þ

As earlier, we denote quantities calculated in the source’s
rest frame S̄ with bars. The space orthogonal to ξ̄ is (d − 1)
dimensional and we denote d − 1 ¼ 2nþ ϵ.
In that transverse space, we choose n mutually orthogo-

nal two-planes Πa, a ¼ 1;…; n. If d is odd (ϵ ¼ 0) then the
n two-planes span the complete transverse space. For d
even one has ϵ ¼ 1 and in order to fully span the transverse
space, besides n two-planes, one needs an additional one-
dimensional space. We call the corresponding coordinate z;
see Fig. 1 for a visualization of this decomposition. In a
general case certainly there is an ambiguity in the choice of
the set of two-planes. We assume that the spatial anti-
symmetric matrix Mij which enters the current has non-
vanishing components only in the directions transverse to ξ̄.
In four spacetime dimensions, where n ¼ 1, this
assumption implies that the pseudovector of the magnetic
moment generated by the current is directed along the ξ̄
direction. The above condition imposed on Mij plays a
similar role in higher dimensions. Let us note that by rigid
rotations in the space transverse to ξ̄ one can find
coordinates fya; ŷag in which the (d − 1)-dimensional
metric is

dl2 ¼
Xn
a¼1

ðdy2a þ dŷ2aÞ þ ϵdz2; ð54Þ

and the matrix Mij takes a quasidiagonal form with
antisymmetric 2 × 2 blocks,

Mij ¼
�

0 m̄a

−m̄a 0

�
: ð55Þ

A plane Πa spanned by the coordinates fya; ŷag is called a
two-eigenplane or “Darboux plane” of Mij.
In what follows it is convenient to introduce polar

coordinates fρa;φag in each of the two-planes Πa, such
that the metric takes the form

ds2 ¼ −dt̄2 þ dξ̄2 þ
Xn
a¼1

ðdρ2a þ ρ2adφ2
aÞ þ ϵdz2: ð56Þ

In these coordinates the field of the pointlike source (50)
can be expressed as

ĀμdX̄μ ¼ q̄Gdðr̄Þdt̄ − 2πGdþ2ðr̄Þ
Xn
a¼1

m̄aρ
2
adφa;

r̄2 ¼ ξ̄2 þ x2⊥ ¼ ξ̄2 þ
Xn
a¼1

ρ2a þ ϵz2: ð57Þ

As earlier, we consider a new boosted frame S moving
along the ξ̄ axis with the speed β. The coordinate trans-
formation relating ft̄; ξ̄g to the ft; ξg coordinates in the
S-frame is given by the Lorentz transformation (11). Since
the transverse coordinates x⊥ are not affected by the
boost the relations (12)–(14) are also valid for higher-
dimensional cases.
We may now substitute these relations into (57) and

obtain the boosted vector potential for finite γ,

FIG. 1. Darboux decomposition of d-dimensional space into n
mutually orthogonal Darboux planes Πa and a transverse z
direction if ϵ ¼ 1 [20].
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AμdXμ ¼
ffiffiffi
2

p
q̄γGdðr̄Þdu − 2πGdþ2ðr̄Þ

Xn
a¼1

m̄aρ
2
adφa;

r̄2 ¼ 2γ2u2 þ x2⊥: ð58Þ
In order to obtain the Penrose limit of the solution (58) we
assume that q ¼ q̄ andma ¼

ffiffiffi
2

p
m̄a=γ. To perform the limit

we shall also use the following result [14]:

lim
γ→∞

γGdðr̄Þ ¼
1ffiffiffi
2

p Gd−1ðr⊥ÞδðuÞ; ð59Þ

One finally obtains

AμdXμ ¼ qGd−1ðr⊥ÞδðuÞdu

− πGdþ1ðr⊥ÞδðuÞ
Xn
a¼1

maρ
2
adφa: ð60Þ

The spacetime metric in fu; vg coordinates is

ds2 ¼ −2dudvþ
Xn
a¼1

ðdρ2a þ ρ2adφ2
aÞ þ ϵdz2: ð61Þ

For the nonlocal theory the potential of an ultrarelativistic
point particle (60) has two interesting features: first, it is
regular as r⊥ → 0, which is in stark contrast to the results
one obtains in standard local Maxwell theory. And second,
the appearance of the δðuÞ factors confirms our comments
in the Introduction of this paper: the electromagnetic field is
indeed confined to a null plane, just as it happens in the
local case. This behavior is somewhat singular and is not
cured by the presence of nonlocality. This is expected,
however, since it is caused by the infinite Lorentz con-
traction in the ξ̄ direction, and one would not expect a
Lorentz invariant nonlocal modification to affect this
mechanism. As we shall see now, for extended objects
endowed with an additional Lorentz-scaling property under
boosts, these δðuÞ artefacts can be avoided altogether.

V. ULTRARELATIVISTIC EXTENDED OBJECTS

A. Boosting charged and magnetized pencils

Let us next consider the field of charged and magnetized
extended objects and their Penrose limits. For simplicity we
limit our considerations to charged and/or magnetized
pencils whose transverse charge and magnetic moment
densities are δ shaped, but we allow density profiles in the
preboost ξ̄ direction to be arbitrary functions of ξ̄. By
linearity, results for objects with a finite transverse exten-
sion can be obtained by superimposing pencil-like solu-
tions. Let us denote these densities by λ̄ðξ̄Þ and μ̄aðξ̄Þ for the
charged and magnetized pencils, respectively. Then, the
conserved external current takes the following form:

jμ ¼ δμt̄ λ̄ðξ̄Þδðd−1Þðx⊥Þ þ δμi μ̄
ikðξ̄Þ∂kδ

ðd−1ÞðxÞ: ð62Þ

In what follows we shall make an additional assumption,
namely that the orientation of the μ̄ik-Darboux planes does
not depend on ξ̄ and that the magnetization has no ξ̄
component.4 Then we can define the objects μ̄aðξ̄Þ for every
value of ξ̄ such that the current can be rewritten in the form

jμ ¼
�
δμt̄ λ̄ðξ̄Þ þ

Xn
a¼1

μ̄aðξ̄ÞϵðaÞμj∂j

�
δðd−1Þðx⊥Þ; ð63Þ

where ϵðaÞij ¼ −ϵðaÞji is the volume element in the ath
Darboux plane. Then, the total charge q̄ and magnetic
moment m̄a of the pencil are given by the line integrals

q̄ ¼
Z

∞

−∞
dξ̄ λ̄ðξ̄Þ; m̄a ¼

Z
∞

−∞
dξ̄μ̄aðξ̄Þ: ð64Þ

If the pencil has a finite length the integrals should be taken
for a finite interval of ξ̄.
The expression for Āμ then takes the form

Āt̄ ¼
Z

∞

−∞
dξ̄0λ̄ðξ̄0ÞGdðr̄Þ; ð65Þ

Āa ¼ −2π
Z

∞

−∞
dξ̄0Gdþ2ðr̄Þ

Xn
a¼1

μ̄aðξ̄0Þρ2a; ð66Þ

r̄2 ¼ ðξ̄0 − ξ̄Þ2 þ x2⊥; x2⊥ ¼
Xn
a¼1

ρ2a þ ϵz2: ð67Þ

Both λ̄ðξ̄Þ and μ̄aðξ̄Þ are one-dimensional line densities. To
satisfy the scaling laws (15) we hence define

λðuÞ ¼ lim
γ→∞

ffiffiffi
2

p
γλ̄ð−

ffiffiffi
2

p
γuÞ; ð68Þ

μaðuÞ ¼ lim
γ→∞

ffiffiffi
2

p
μ̄að−

ffiffiffi
2

p
γuÞ: ð69Þ

For this reason, again making use of the relation (59), one
finds the following expressions for the potentials for the
ultrarelativistic charged and magnetized pencils:

AμdXμ ¼ λðuÞGd−1ðr⊥Þdu

− πGN
dþ1ðr⊥Þ

Xn
a¼1

μaðuÞρ2adφa: ð70Þ

Comparing these expressions with the boosted point
sources (60) one finds a correspondence by formally
replacing λðuÞ → qδðuÞ and μaðuÞ ¼ maδðuÞ. This is
expected since the linear extension of the pencil in

4For more details on antisymmetric objects in higher dimen-
sions and their Darboux decompositions we refer to Ch. 3.9 in
Ref. [20].
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combination with the Penrose limit were stipulated in order
to remove the unphysical δðuÞ factors in electromagnetic
potential of the boosted sources.

B. Properties of solutions

Let us now make some remarks concerning the proper-
ties of the obtained solutions within the nonlocal Maxwell
theory. To that end, the obtained solution (70) can be
written in the form

A ¼
Xn
a¼0

λaðuÞaaðr⊥Þζa; ð71Þ

where λ0ðuÞ ¼ λðuÞ and λa≥1ðuÞ ¼ μaðuÞ. We denoted by ζ
the following Killing vectors:

ζ0 ¼ ∂v; ζa ¼ ∂φa
: ð72Þ

It is easy to check that

LζaA ¼ 0; ð73Þ

whereLζ is the Lie derivative in ζ direction. These relations
show that the boosted solutions have the expected sym-
metries, that is, no dependence on advanced time v as well
as rotational isometries in the φa directions.
Another observation is the following. In the absence of

the magnetic moments, μa ¼ 0, both in the local and
nonlocal case, the electromagnetic field F is null,

FμαFα
ν ¼ Su;μu;ν; F2 ¼ 1

2
FμνFμν ¼ 0: ð74Þ

In general, the presence of the magnetic field violates this
property. However, the case of electrodynamics in four-
dimensional spacetime is an exception. To demonstrate
this, let us write the potential 1-form A in 4D as

A ¼ bðuÞcðρÞζ0 þ BðuÞCðρÞζφ; ð75Þ

where ζ0 and ζφ are the 1-forms that are dual to their
respective Killing vector. Then, calculations show that

F2 ¼ B2

�
ρ
dC
dρ

þ 2C

�
2

: ð76Þ

Thus F2 ¼ 0 only when C ¼ C0=ρ2. This is precisely the
case for the field of the magnetized and charged ultra-
relativistic pencil in four dimensions in the framework of
the standard local Maxwell theory. For this theory in higher
dimensions this property is violated. Let us emphasize that
in the nonlocal theory F2 ≠ 0 for ultrarelativistic magnet-
ized pencils not only in the higher dimensions, but in four
spacetime dimensions as well.

VI. CONCLUSIONS

In this paper we first derived the electromagnetic field of
charged and magnetized point particles and extended
objects in flat spacetime. Using Green functions of the
nonlocal version of the Laplace operator we obtained
solutions describing the electromagnetic field for electri-
cally charged and magnetized objects which are at rest in
some inertial frame. These results were obtained for local
Maxwell theory and its nonlocal ghost-free modification in
any number of spatial dimensions. We used these solutions
and boosted them to the speed of light by formulating
suitable scaling properties that are required to perform such
a “Penrose limit,” and obtained finite results. After this we
studied the properties of the electromagnetic field of the
resulting ultrarelativistic objects. The main insight is that
the electric field of the ultrarelativistic object in d spatial
dimensions is given in terms of the (d − 1)-dimensional
static scalar Green function, while the corresponding
expression for the magnetic field contains the (dþ 1)-
dimensional static scalar Green function. This property is
similar to the property of solutions for the gravitational
field of ultrarelativistic objects (gyratons) in the weak-field
regime of nonlocal gravity which was discussed in
Ref. [14].
For a static pointlike source the presence of nonlocality

modifies its field and renders it finite and regular at the
location of the source at r ¼ 0. The scale of nonlocality l
determines the size of the region where the nonlocal
modification of the solution is relevant. Our results for
fields of the corresponding ultrarelativistic pointlike objects
show that similar regularization properties hold in this case
as well. Namely, functions depending on the coordinates
transverse to the direction of motion are all rendered finite
and regular. However, these solutions contain δðuÞ func-
tions which imply that the field is nontrivial only on a
single null plane where the retarded time vanishes, u ¼ 0.
This means that at least for this class of solutions, non-
locality does not bring about causality violations in the
shape of faster-than-light signaling. A similar property is
valid for extended (pencil-type) objects of finite “length”
(duration in time u). An observer registers a nonzero field
of such an object only when it passes them; before or after
that event the field is identically zero.
Let us also mention another interesting property of the

considered nonlocal ghost-free modification of Maxwell
theory: in the standard local theory in four spacetime
dimensions, the invariant FμνFμν vanishes for an ultra-
relativistic charged and magnetized object. This property is
violated for magnetized objects in the nonlocal 4D theory,
which might give rise to observable consequences.
One can expect that the described effects should manifest

themselves in the scattering of two ultrarelativistic charged
particles. It is interesting to study whether the presence of
fundamental nonlocality can in principle be experimentally
tested under such conditions.

BOOS, FROLOV, and PINEDO SOTO PHYS. REV. D 103, 045013 (2021)

045013-8



ACKNOWLEDGMENTS

J. B. is grateful for a Vanier Canada Graduate Scholarship
administered by the Natural Sciences and Engineering
Research Council of Canada as well as for the Golden
Bell Jar Graduate Scholarship in Physics by theUniversity of
Alberta, and was supported in part by the National Science
Foundation under Grant No. PHY-1819575. V. F. thanks the
Natural Sciences and Engineering Research Council of
Canada and the Killam Trust for their financial support.

APPENDIX: DETAILS OF CALCULATIONS

In this Appendix we give an expression for the potential
of an m-pencil in three spatial dimensions, which is used in
the main body of this paper. The easiest way to obtain an
expression for the current density of an m-pencil is the
following. Let us consider a thin cylinder of radius R and
length L̄ along the ξ̄ axis. Suppose particles with the total
electric charge Q, which are uniformly distributed on the
cylinder, rotate around its symmetry axis with the same
angular velocity ω. To keep the system neutral one may add
particles with the opposite charge uniformly distributed on
the cylinder but which do not rotate. The magnetic moment
m of a system of charges qA located at ra and moving with
velocity va is given by the following expression [21]:

m ¼ 1

2

X
a

qa½ra × va�: ðA1Þ

In cylindrical coordinates fξ̄; ρ;φg the magnetic moment of
the rotating charged cylinder then takes the form

m ¼ ðm̄; 0; 0Þ; m̄ ¼ 1

2
QR2ω: ðA2Þ

The current density of a system of charged particles is

J̄ ¼
X
a

qavaδðdÞðr − raÞ: ðA3Þ

For the rotating cylinder one finds

J̄ ¼ ð0; 0; J̄φÞ;

J̄φ ¼ Qω

2πRL̄
δðρ − RÞΘðξ̄j − L̄=2; L̄=2Þ: ðA4Þ

The field equations (2) imply the following equation for the
potential Āφ:

ρ∂ρ

�
1

ρ
∂ρĀφ

�
þ ∂2

ξ̄
Āφ ¼ J̄φ: ðA5Þ

Denoting ∂ρĀφ ¼ ρZ, Eq. (A5) gives

1

ρ
∂ρðρ∂ρZÞ þ ∂2

ξ̄
Z ¼ j; ðA6Þ

where jðρÞ ¼ 1
ρ ∂ρJ̄φ. The left-hand side of this equation is

nothing but the flat three-dimensional Laplace operator in
cylindrical coordinates applied to the scalar function
Zðρ; ξ̄Þ. Using the Green function of this operator,
expressed in cylindrical coordinates, one then obtains

Zðρ; ξ̄Þ ¼
Z

L̄=2

−L̄=2
dξ̄0

Z
2π

0

ρ0dφ0P; P ¼ −
Z

∞

0

dρ0
jðρ0Þ
4πr

;

ðA7Þ

r ¼ ðρ2 þ ρ02 − 2ρρ0 cosφ0 þ z2Þ1=2: ðA8Þ

Here we abbreviated z ¼ ξ̄ − ξ̄0. The integral for P can be
evaluated with the following result:

P ¼ QωR
8π2L̄

∂
∂R

�
1

r

�
; ðA9Þ

where r is given by (A8) subject to the substitution ρ0 ¼ R
in this expression. Using definition (A2) of the magnetic
moment one can write

Zðρ; ξ̄Þ ¼ m̄
4π2RL̄

Z
L̄=2

−L̄=2
dξ̄0

∂I
∂R : ðA10Þ

Here we introduced the shorthand notation

I ¼
Z

2π

0

dφ
r

¼
4K

�
2
ffiffiffiffi
Rρ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρþRÞ2þz2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρþ RÞ2 þ z2

p ; ðA11Þ

where K is the complete elliptic integral of second type.
Expanding for small values of its argument one finds

S ¼ lim
R→0

1

R
∂RI ¼ π

ρ2 − 2z2

ðρ2 þ z2Þ5=2 : ðA12Þ

Using these results and restoring Āφ one obtains

Āφ ¼ m̄
4πL̄

Z
L̄=2

−L̄=2
dξ̄0

Z
ρ

0

dρ0ρ0S: ðA13Þ

Performing the integration over ρ0 and ξ̄0 finally yields

Āφ ¼ m̄
4πL̄

�
ξ̄þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ξ̄2þ
p −

ξ̄−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ξ̄2−

p
�
; ðA14Þ

where we abbreviated ξ̄� ¼ ξ̄� L̄=2. Let us mention that
this expression for the field of a magnetized infinitely thin
pencil can also be obtained by using the expression for the
potential of a magnetized solenoid of finite radius R, which
can be found in Jackson’s book [16].
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