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In this work, a novel mechanism for spontaneous symmetry breaking is presented. This mechanism
incorporates gravity in the generation of masses for gauge fields, showing that the Higgs mechanism can
take place even without a quartic self-interaction at the fundamental level. Using the scale-dependent
effective action Γk minimally coupled to a gravitational sector, a variational parameter setting is applied.
This provides a mass and vacuum expectation value as a function of the constants arising in the low-scale
expansion of Newton and cosmological couplings. A comparison with experimental data, such as the Higgs
mass, allows putting restrictions on these constants. This generic approach can be compared with explicit
candidates for an effective field theory of gravity. As an example, we use the asymptotic safety scenario,
where we find restrictions on the matter content of the theory.
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I. INTRODUCTION

The Standard Model describes the elementary particles
and their interactions in a successful way. However, it does
not contain a description of gravitational interactions, and
there are some problems with the natural implementation of
spontaneous symmetry breaking (SSB) [1–6].

A. The idea of gravity-assisted emergent Higgs
mechanism in flat spacetime

There is no doubt that SSB plays an essential role in our
modern theoretical physics conception. A wide number of
phenomena, such as the spatial order of ferromagnets [7,8],
convecting fluids [9,10], and superconductivity [11,12], are
understood by means of SSB. It is also crucial in the
Standard Model (SM) of elementary particles. Here, the
mechanism is responsible for generating the masses of
elementary particles [13–15].
The most straightforward realization of a gauge field

theory incorporating SSB is coupling the gauge and
fermion fields with a scalar field Φ with negative squared
mass and quartic self-interaction. Thus, the potential
acquires a nontrivial vacuum expectation value (VEV),

breaking the underlying symmetry. The scalar field’s
components in the direction of the broken symmetry
become the longitudinal components of the gauge bosons.
At the same time, the remaining elements convert to what
we know as the Higgs particle. Without it, the theory would
violate unitarity.
In general, gravity is of negligible importance in the

elementary particle’s arena, in particular, in the way SSB
generates masses for gauge bosons. The general assumption
of ignoring gravitation in particle interaction is well justified
in the theoretical point of view, because gravitational
contributions are highly suppressed in the renormalization
group (RG) flowof the couplings that govern the low-energy
regime. Still, the fact that only the Higgs boson carries the
mass scale into an otherwise scale-free SM, and thus tells the
SM particles how they should gravitate, means that the two
branches are not entirely disconnected.
In this work, a novel way of spontaneously breaking the

Higgs field’s symmetry when the scalar sector does not
possess self-interaction is presented.A dynamically induced
Higgs-like SSB scalar potentialwas obtained by considering
a model of gravity interacting minimally with a scalar
quantum electrodynamics (QED) without a quartic term
in the scalar field. Aswe see below, a vacuum energy density
introduces an effective quartic interaction when all the
unphysical parameters of the theory have been removed.
Correspondingly, the new mechanism for SSB introduces
gravity in the production of masses to elementary particles
such that they do not depend on unphysical parameters,
retain diffeomorphism invariance, and are insensitive to UV
contributions from the gravitational sector of this theory.
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While themethod for inducingSSB in thiswork is (as far as
we know) new, there have been someprevious studies onSSB
inmodels that do not show SSB explicitly in thematter sector
of the theory [16–22]. These ideas are based on the use of a
gravity-assisted emergent Higgs mechanism. As a conse-
quence, the process of generating a Higgs-like potential
generally involves a scalar field coupled to the curvature
invariant of the Riemannian manifold [16,17,20] or a con-
nection field, without a Higgs boson [18]. Thus, in these
theories SSB can take place only in curved spacetime, where,
for example, the curvature scalar R is of the order of a
cosmological constant Λ0. For an implementation in mark of
the SM, this is not practical, since today’s value of the
cosmological constant Λ0 is known to be extremely small.
Even though the presented mechanism starts from a gravi-
tational sector with a cosmological term, the infrared value of
the cosmological constant Λ0 does not play a role in the SSB
mechanism. All the results obtained in this work are valid in
the limit where the Ricci curvature goes to zero. Thus, the
presented model SSB is well defined even in flat spacetime.

B. The idea of SSB without quartic interaction

The goal of this paper is to point out a novel way of
inducing spontaneous symmetry breaking. It allows gen-
erating masses for gauge bosons without self-interaction
terms of scalar fields in the bare action. This mechanism
avoids the presence of unphysical parameters at the
physical observables while it provides a novel way of
producing SSB, taking into account the gravitational sector.
The starting point will be a bare action without

interactions like the quartic Higgs coupling. Quantum
corrections to this classical bare action yield a scale
dependence at the level of the gauge couplings contained
in an effective action Γk. The arbitrary renormalization
scale cannot be part of physical observables. It will be set
following the variational parameter setting (VPS) [23]
prescription, which can be understood as the principle of
minimal sensitivity [24], applied to quantum field theory
background calculations. The VPS prescription allows
minimizing the scale-dependent effective action with
respect to variations of its field and parameter content.
Variations with respect to the field content give the well-
known gap equations [25], which are complemented by
one, variationally derived, scale-setting equation.
It is possible to choose a bare action SðΦÞwhere a massive

scalar interacts only minimally with the metric field, without
self-interactions. This means, for constant values of the
renormalization scale k, there will be no terms, which are
usually necessary to generate SSB. However, in every
quantum field theory calculation, the scale k has to be set
in order to arrive at a testable prediction. This necessity is a
consequence of the incomplete nature of any perturbative or
effective quantum field theory approach. It depends on the
observable one is interested in andwhether one chooses k as a
function of kinematic variables, renormalized parameters, or

something else. Thus, assuming the scale to be an independent
constant was actually inconsistent. For example, when one is
interested in background configurations, one way to proceed
is the scale setting of the “improving solutions” procedure,
leading to Uehling-type potentials [26–37]. However, the
scale setting in improving solutions procedures leads to an
anomalous violation of the underlying gauge symmetries.
Fortunately, such a breaking of gauge symmetries is not
necessary. As shown in Ref. [23], the aforementioned VPS
prescription allows one to derive an optimal scale setting
k → kopt, which preserves the underlying gauge symmetries
of the effective action Γk. After the replacement k → kopt, the
effective action Γk becomes an optimal effective action Γopt.
The main message of this paper is that, for SSB to occur,

it is sufficient that it occurs at the level of this optimal
effective action Γopt, as opposed to the nonoptimal effective
action Γk or the bare action S. First, the quadratic diver-
gences arising from quantum corrections of the bare action
S in the standard SSB are absent when SSB occurs only at
the level of Γopt, since the optimal effective action has all
quantum corrections already incorporated [38,39]. Thus, no
additional potentially dangerous quantum corrections are
necessary. Second, gravitationally induced SSB can be
implemented, even for flat background spacetime.
This idea is conceptually appealing. In Sec. II, it is

implemented for scalar QED. It turns out that the resulting
optimal effective action Γopt allows for SSB only if the gauge
fields form a condensate. Even though this might be an
interesting possibility, it deviates from our original intention.
One realizes that, for the program to work, one needs a scale-
dependent vacuum contribution to the effective action. This is
the reason why we proceed with an effective description of
quantum gravity, where this vacuum contribution is given in
terms of a cosmological constant. As an example, we study
the asymptotic safety (AS) approach. The AS [40] conjecture
provides a consistent description of gravity as a nonpertur-
batively renormalizable quantum field theory [41–43] and a
scenario for testing the results of this work. Moreover, the
scale dependence of the gravitational and cosmological
constant has been extensively studied in Refs. [44–50] as
well as properties and consequences of the scale-dependent
Einstein-Hilbert action [51–56] andGaussianmasslessmatter
fields minimally coupled to an external metric [57–64].
The paper is organized as follows: Below, a discussion of

similarities and differences with the Coleman-Weinberg
(CW) mechanism [65]. In Sec. II, an optimized effective
action is obtained for the electromagnetic sector in the low-
energy behavior of the U(1) coupling and the anomalous
dimension. In Sec. III, the gravitational sector is taken into
account, conducing to a symmetry-breaking potential.
Section IV provides expressions for the mass and vacuum
expectation value of the Higgs boson as well as a bench-
mark for gravitational parameters coming from an infrared
expansion. Section V connects our results with those
obtained in the context of the functional renormalization
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group. In Sec. VI, a discussion of how this new mechanism
could shed some light on the problem of quadratic
divergences that affects the spin-0 fields in gauge theories
is carried out. Finally, a summary, some comments, and
ideas for future work are given in Sec. VII.

C. Similarities and differences with the
Coleman-Weinberg mechanism

The model presented is strongly reminiscent of the CW
mechanism [65], because neither of the two shows SSB at
tree level. However, there are crucial differences, which are
explored by outlining both methods.

(i) In the CW mechanism, the radiative corrections drive
theSSBin theories that donot exhibit suchbreakingsat
tree level. The theory considers a massless scalar QED
where the radiative corrections generate a one-loop
effective potential. The mass of the scalar meson is
defined as the second derivative of the effective
potential evaluated at the arbitrary mass scale M,
introduced to stay away from the logarithmic singu-
larity in momentum space. The identification of this
scale is arbitrary, generically chosen, such that the
masses of scalar and vector fields give the observed
values.After SSB, the theory canbeexpressed in terms
ofonedimensionlesse andonedimensionful (theVEV
v). However, some problems with this scale-invariant
model still persist.Theoriginalpredictionfor theHiggs
mass (∼10 GeV) is far from the currently observed
value, thus forcing the Higgs self-coupling to be so
large that a nearby Landau pole might break the one-
loop approximation [66]. Thus, the CW mechanism
necessarily depends on the UV cutoff of the theory to
reproduce the current experimental values. Further-
more, if the cutoff scale is of TeVorder, themass of the
top quark is less than the observed value [67,68].

(ii) In the present model, we start with a scalar QED
theory without quartic interaction, minimally
coupled with the metric field. The main consequence
of the proposed approach lies in the fact that the one-
loop quantum corrections do not generate SSB at the
level of the effective action Γk. To see the previous
statement, consider the one-loop effective potential
generated in scalar QED [65]:

Veff ½ϕ� ¼ m2ϕ2 þ λ

4!
ϕ4

−
1

4ð4πÞ2
�
3ð2e2ϕ2Þ2

�
log

M2

2e2ϕ2
þ 3

2

�

þ
�
m2 þ λϕ2

4

�
2
�
log

M2

m2 þ λϕ
4

þ 3

2

�

þ
�
m2 þ λϕ2

12

�
2
�
log

M2

m2 þ λϕ
12

þ 3

2

��
;

ð1:1Þ

where M corresponds to an infrared cutoff intro-
duced to avoiding the logarithmic infrared singu-
larity. Since (2.1) does not have quartic interaction,
we put λ ¼ 0 in (1.1). The m value can be inferred
from the location of the minimum of Veff at the VEV
ϕ ¼ hϕi. After inserting the coupling m in the
effective potential, the coupling λ is defined by

λ ¼ d4VeffðhϕiÞ
dϕ4

¼ 27e8ðlog 3e2
32

− 1 − 2 log πÞ
1024π6

: ð1:2Þ

In the last step we have used M ¼ ffiffiffi
2

p
e−1=4ehϕi,

with e being the Euler constant. From (1.2) one can
deduce that λ is proportional to e2, i.e., corrections of
higher orders. However, by applying the variational
parameter setting (2.4), one gets SSB at the level of
the optimal effective action Γopt due to the existence
of a vacuum gravitational term, concluding that
radiative corrections, together an appropriate way
of fixing the renormalization scale, are the dominant
driving forces of SSB. Additionally, the unphysical
dependence of the renormalization scale is removed
from observables. As a consequence, the masses for
the scalar and vector fields are functions of the
parameters appearing in the original Lagrangian,
which include the unknown low-energy expansion
of gravitational couplings.

Thus, both approaches have in common the lack of SSB at
the level of the classical action and the dependence of
physical observables on an arbitrary parameter introduced to
avoid infrared logarithmic singularities. However, they
differ in the way of generating SSB. In the CWmechanism,
radiative corrections are enough to ensure amass term for the
scalar field. In the present model, scalar QED without
quartic interactionwill be coupled to the gravitational sector,
and the symmetry-breaking potential will be driven by the
scale-setting condition (2.4). This will allow us to address
the dependence on the problematical UV cutoff in physical
quantities in a way that is not possible in the CW formalism.

II. SCALAR QED WITHOUT QUARTIC
INTERACTION

As a first example, one can consider a theory that
contains charged spin-zero particles that interact with
photons. The bare action is given by

SðAμ;ΦÞ ¼
Z

d4x

�
ab
2
ðDμΦÞ�ðDμΦÞ þm2

b

2
Φ�Φ

−
1

4e2b
FμνFμν

�
; ð2:1Þ
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where Dμ ¼ ∂μ − iAμ, Fμν ¼ ∂μAν − ∂νAμ, and Φ is a
complex scalar field.

A. Optimized effective action

Following Wilson’s idea [69], one can define an average
effective action Γk as the functional obtained after integrat-
ing out the quantum fluctuations, which contain momenta
q2 > k2. By changing k, this scale-dependent effective
action can be seen as a smooth interpolation between the
microscopic ultraviolet action Γk→∞ and the full quantum
effective action in the infrared limit Γk→0. The effective
action for (2.1) reads

Γk ¼
Z

d4x

�
ak
2
ðDμϕÞ�ðDμϕÞ þmk

2
ϕ�ϕ −

1

4e2k
FμνFμν

�
:

ð2:2Þ

This effective action has no quartic interaction in the scalar
field and, therefore, does not show the standard SSB. The
couplings (ak, mk, ek) are now scale-dependent quantities.
To avoid the logarithmic divergences appearing in the QED
couplings due to deep infrared scale k → 0, the RG scale is
split into its reference fixed part k0 ¼ m0 and its variable
part k0 as k ¼ m0 þ k0. Identifying the reference scale asm0

and defining the gravitational couplings in the infrared limit
at this scale as shown in Fig. 1, the couplings can be
expanded in the vicinity of m0 using the dimensionless
quantity k0

k0
as the expansion parameter:

ak ¼ a0 þ ξa;1
k0

m0

þ ξa;2
k02

m2
0

þO
�
k0

m0

�
3

; ð2:3aÞ

m2
k ¼ m2

0 þ ξm;1
k0

m0

þ ξm;2
k02

m2
0

þO
�
k0

m0

�
3

; ð2:3bÞ

1

e2k
¼ 1

e20
þ ξe;1

k0

m0

þ ξe;2
k02

m2
0

þO
�
k0

m0

�
3

: ð2:3cÞ

The set of coefficients (ξij) with i ¼ ða;m; eÞ and j ¼
ð1; 2Þ is obtained from the beta functions of (2.1). Those
beta functions further depend on the renormalization
scheme.
It is desirable that physical observables are independent of

the particular renormalization scheme used to renormalize
the theory and the corresponding unphysical parameters
involved in this process. However, if the prediction, calcu-
lated by a series of approximations, depends on unphysical
parameters, then the parameters should be chosen such that
variations will minimize the sensitivity of the observable on
those parameters. Following this criterion, one looks for a
scale setting of the renormalization scale as a function of
physical variables k ¼ kðϕ; ξi; Fμν;…Þ. This identification
results from applying the variational principle to k by
promoting the scale k to a field [23] at the level of the
effective action. As shown in Refs. [23,34,70], this mini-
mization can be written as

δΓðAμ;ϕðxÞ; kðxÞ; ak;mkÞ
δk

¼ 0

⇒
dLðAμ;ϕðxÞ; kðxÞ; ak; mkÞ

dk

����
k¼kopt

¼ 0: ð2:4Þ

In contrast to most other scale settings, the above procedure
allows maintaining the original gauge symmetries (even

FIG. 1. Graphic representation of the reference scale used in this work.
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diffeomorphism invariance [23]). The philosophy under-
lying this procedure has been developed in Refs. [23,34,70],
and it has been successfully applied in different contexts
[71–76]. For consistency, with the expansion (2.3), also the
effective action has been expanded up to k2. The condition
(2.4) allows resolving the renormalization-point ambiguity
by selecting a single scale and fixing it as a function of
dynamical field variables:

kopt →
−ξe;1FμνFμν þ 2ξa;1jDμϕj2 − 2ξm;1ϕ

2

2ðξe;2FμνFμν − 2ξa;2jDμϕj2 þ 2ξm;2ϕ
2Þ : ð2:5Þ

Since there are no newundetermined integration constants in
(2.5), one can insert the solution k ¼ kopt back into (2.2).
This gives an optimal effective action independent of the
arbitrary scale k:

Γopt¼
Z

d4x

�
2ξe;1ξe;2ξm;1−4m2

0ξ
2
e;2−ξ2e;1ξm;2

8ξ2e;2
ϕ2

þðξe;2ξm;1−ξe;1ξm;2Þ2
4FμνFμνξ

3
e;2

ϕ4þLkinþLconstþOðϕ5Þ
�
;

ð2:6Þ

where the potential has been expanded to order ϕ4 in a weak
field approximation. Kinetic factors of ϕ and Aμ are
contained in Lkin, and quantities without any field factor
ϕ are assembled into Lconst. One notes that (2.6) has a
quadratic and a quartic term in ϕ, which is necessary for the
standard SSB mechanism to take place. It is important to
remember that the effective actions [(2.2) and (2.6)] contain
already quantum corrections. However, one also notes that
the quartic coupling is well behaved only for a finite
electromagnetic background field, hFμνFμνi ≠ 0. Even
though this is an interesting feature, it is not the type of
SSB we are interested in.

B. Values of parameter expansion from QED sector

It is instructive to calculate the explicit values of the
parameters ξe;j and ξm;j. Those ξ’s have some scheme
dependence and can be obtained by applying perturbative
methods. When the integral for obtaining an explicit
expression of the coupling as a function of the scale is
carried out, the lower limit (unlike the case of gravity)
cannot be zero, which explains the expansion around k0
instead of 0 in (2.3). Expressing k ∂α

∂k, with α≡ e2
4π, in terms

of the known scalar QED β function up to one loop in the
minimal subtraction scheme [77] gives the RG equation

k
dα
dk

¼ α2

6π
: ð2:7Þ

Integrating this equation between the initial and an inter-
mediate scale, the running coupling takes the form

αðk2Þ ¼ αðk0Þ
1 − 1

3π αðk0Þ lnð kk0Þ
: ð2:8Þ

The expansion for the running coupling ek around k ¼ k0
by imposing ek → ek0 ≡ e0 for the first term of the series
(see Fig. 1) and rearranging (2.8) gives

1

e2k
¼ 1

e20
−

1

24π2

�
k0

m0

�
þ 1

48π2

�
k02

m2
0

�
þO

�
k0

m0

�
3

: ð2:9Þ

The one-loop contribution to the anomalous mass dimen-
sion in Lorentz gauge [77], γm ¼ − 3e2

16π2
, follows the same

treatment. Integrating γm with the initial condition in k0, an
expansion [like (2.9)] for the running coupling mk is
obtained:

m2
k ¼ m2

0 −
3e20m

2
0

8π2

�
k0

m0

�
þm2

0e
2
0

�
24π2 þ e20ð9π − 1Þ

128π3

�

×

�
k0

m0

�
2

þO
�
k0

m0

�
3

: ð2:10Þ

Thus, the set of parameters (ξi;j) from the scalar sector can
be identified from a comparison between (2.3), (2.9), and
(2.10). One finds

ξe;1 ¼ −
1

24π2
; ð2:11aÞ

ξe;2 ¼
1

48π2
; ð2:11bÞ

ξm;1 ¼ −
3e20m

2
0

8π2
; ð2:11cÞ

ξm;2 ¼ m2
0e

2
0

�
24π2 þ e20ð9π − 1Þ

128π3

�
: ð2:11dÞ

The set of equations (2.11) is valid only for scalar QED
up to one loop in perturbation theory in Lorentz gauge and
in the minimal subtraction scheme. Possible contributions
on these U(1) coefficients coming from the gravitational
sector will be discussed in Sec. IV.

III. GRAVITATIONAL SECTOR MINIMALLY
COUPLED TO A CHARGED SCALAR

Since the field theoretical content in (2.1) was not
providing all ingredients needed for SSB, one needs to
take into account some generalization. As explained in the
introduction, a cosmological term (vacuum energy density)
is important for the implementation of our ideas. Thus, let
us consider a gravitational sector coupled to matter. In the
leading-order truncation (meaning that higher-order diffeo-
morphism-invariant operators like R2; RμνRμν;… are
neglected), the simplest effective action of gravity coupled
to a charged scalar reads
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Γk ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
κð2Λk − RÞ þm2

k

2
ϕ�ϕ

þ ak
2
ðDμϕÞ�ðDμϕÞ − 1

4e2k
FμνFμν þ cfLkin;ψ

�
: ð3:1Þ

One notes that all couplings ðκk;Λk; mk; ak; ekÞ, except the
one of the sterile fermions cf, are scale-dependent quan-
tities. In this action, Λk stands for the scale-dependent
cosmological constant, R is the Ricci scalar, and
κ ¼ ð16πGkÞ−1, where Gk is the running counterpart of
the gravitational coupling. In addition to (2.3), an expan-
sion around the infrared zone k → k0 in the gravitational
coupling is needed to get an optimal scale. In order to
maintain consistency with the expansion (2.3), the effective
action (3.1) and the gravitational couplings also are
expanded to the same order. We examine the solutions
of the gravitational couplings with an Einstein-Hilbert
truncation in the deep infrared. In this limit, one finds,
independent of the implementation of the Wilsonian
renormalization procedure, a RG running of Newton and
the cosmological constant of the form

GðkÞ ¼ G0ð1þ C1G0k2 þ C2G2
0k

4Þ þOðk6Þ; ð3:2Þ

ΛðkÞ ¼ Λ0 þ C3Λ0G0k2 þ C4ζðG0Λ0Þk4 þOðk6Þ; ð3:3Þ

with C1;2;3;4 being real numbers. Depending on the sign of
C1, Eq. (3.2) shows a screening or antiscreening property of
gravity. When an expansion is made around k0 instead of
zero, one can redefine the constants Ci, giving

Λ̃k ¼ Λ̃0 þ ξΛ̃;1m0

�
k0

m0

�
þ ξΛ̃;2m

2
0

�
k0

m0

�
2

þOðk0Þ3;

ð3:4Þ

where a change of the cosmological variable Λ̃k ¼ Λk
Gk

has
been applied. Please note that if one is interested in the
effective Higgs potential, (3.4) is enough to get an overview
of the gravitational contribution to this model. In particular,
Gk from (3.2) is not needed, because this part of the action
is proportional to R, which does not take part in the SSB
process. Based on a study on field-parametrization depend-
ence of the renormalization group flow in the vicinity of
non-Gaussian fixed points in quantum gravity, a beta
function derived from EH action can be used to fix the
parameters ξi in (3.4). One can further look at how the
massless-matter fields affect asymptotically safe quantum
gravity. In this case, the parameters ξi would have a
dependence on the number and the nature of matter fields.
For now, the gravitational parameter set ξΛ̃;j is kept
arbitrary. In the next section, a physical benchmark for
this set ξΛ̃;j will be worked out.

As in (2.5), the scale setting is performed by demanding
(3.1) to be insensitive under infinitesimal changes of k,
giving

kopt ¼
HR;1 þHF;1 þ C1 − 2G3

0ðξm;1ϕ
2 − jDϕj2ξa;1Þ

HR;2 þHF;2 þ C2 þ 4G3
0ðξm;2ϕ

2 − ξa;2jDϕj2Þ :

ð3:5Þ

Herein, the functions HR and HF have as arguments the
Ricci tensor R and electromagnetic tensor FμνFμν, respec-
tively, in addition to the infrared value of the running Gk.
The constants C1;2 contain only infrared couplings and
electromagnetic constants ξe;m;…. When the optimal scale is
inserted back into the effective action (3.1) (that includes
gravitational effects), one gets an optimal effective action
independent of k:

Γopt ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
þ μ2

2
jϕj2 − λ

4
jϕj4 − 1

4ẽ
FμνFμν

þLkin þ Lcoup þ Lconst þOðϕ6Þ
�
; ð3:6Þ

where Lkin contains kinetic terms for the real scalar and
gauge fields. Couplings with higher-order factors and Ricci
scalar quantities are collected into Lcoup, and the
Lagrangian part independent of the Ricci scalar, electro-
magnetic strength, and scalar field is named Lconst. The
effective potential has again been expanded up to the order
of ϕ4. The optimal effective action (3.6) is written follow-
ing the usual notation with μ and λ appearing in the Abelian
Higgs mechanism:

μ2

2
¼ m2

0

2
þ ξΛ̃;1ðξm;2ξΛ̃;1 − 2ξm;1ξΛ̃;2Þ

8ξ2Λ̃;2
; ð3:7aÞ

λ

4
¼ ðξm;2ξΛ̃;1 − ξm;1ξΛ̃;2Þ2

32ξ3Λ̃;2
: ð3:7bÞ

If those parameters have the correct values, then the field
ϕ acquires a VEV, and the U(1) global symmetry will be
spontaneously broken. Thus, (3.6) shows that, even if one
starts with a model like (3.1), which has no SSB, it is
possible to get this feature for the optimal effective action
Γopt. This is particularly true if μ2; λ > 0.

IV. GAUGE BOSON MASSES

In this section, restrictions on the RG parameters ξi will
be studied.
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A. Mass and vacuum expectation value
of scalar and gauge fields

The parameters ξm;1 and ξm;2 appearing in (3.7) can be
obtained studying the changes of the anomalous mass
dimension. Since the action (3.1) considers the Einstein-
Hilbert contribution, the gravitational sector may, in prin-
ciple, have an impact on the behavior of electromagnetic
couplings. Gravitational corrections to the beta function
in quantum field theories have been analyzed in
Refs. [78–87]. Non-Abelian gauge fields coupled to gravity
in (3þ 1) dimensions give rise to an additional term in the
one-loop beta function proportional to the inverse square of
the Planck scale, improving the asymptotic freedom of
N ¼ 4 super Yang-Mills theory [88,89]. In Ref. [90], it is
pointed out that quadratic divergences coming from the
gravitational sector are responsible for asymptotic freedom
of the QED beta function in a gauge-independent context
with an energy scale near the Planck scale. For the case
where a complex scalar field is minimally coupling to
perturbative quantized Einstein gravity with an explicit
gauge dependence in the photon and graviton propagator,
the total vacuum polarization tensor depends on the
gauge parameters, surface terms, a dimensionless constant,
and the ultraviolet momentum cutoff, as explained in
Refs. [91,92]. In the last case, there are several reasons
for neglecting the gravitational contribution to the usual
beta function of the U(1) gauge coupling:

(i) Choosing the gauge parameter, ξ appearing in the
graviton propagator in Ref. [92], equal to 5

13
, a

cancellation of a gravitational contribution to be
takes place.

(ii) Using dimensional regularization instead of a mo-
mentum cutoff, the arbitrary parameter contained in
the gravitational term is set to 0 [91].

(iii) Some studies [93–95] have shown the beta function
of scalar electrodynamics possesses no contribution
coming from gravitational interactions.

(iv) In the infrared k ≈ k0, all gravitational contributions
to the beta functions of matter will be strongly
suppressed by the Planck scale. This is the reason
why the standard model without gravity is a suc-
cessful quantum field theory in the first place.

Given the arguments expressed above, the gravitational
contribution to the electromagnetic beta functions will be
neglected. One condition on the effective potential in (3.6)
for producing positive Higgs parameters and then SSB
was that λ > 0. This determines the sign of ξΛ̃;2. This can be
seen by replacing (2.11c) and (2.11d) in (3.7b) and
demanding λ > 0. For a negative value of ξΛ̃;2, one has
to solve the inequality

½e40ð9π − 1ÞξΛ̃;1 þ 24e20π
2ðξΛ̃;1 þ 2m2

0ξΛ̃;2Þ�2 < 0; ð4:1Þ

which has no solution for e0, ξΛ̃;1 ∈ R. Thus, the require-
ment for the field ϕ to acquire a VEV is ξΛ̃;2 > 0. From
(3.6) and (3.7), the VEV of the scalar field is

ϕ2
VEV ¼

2ð4m2
0ξ

2
Λ̃;2 þ ξΛ̃;1ðξm;2ξΛ̃;1 − 2ξm;1ξΛ̃;2ÞÞξΛ̃;2

ðξm;2ξΛ̃;1 − ξm;1ξΛ̃;2Þ2
:

ð4:2Þ

Suppose that the scalar potential in (3.6) is near one of the
minima (say, the positive one); then it is convenient to
define a fluctuation of the scalar field ϕðxÞ ¼ ϕVEV þ ηðxÞ.
The squared mass of the complex scalar field ηðxÞ is then

m2
η ¼ 2

�
m2

0 þ
ξΛ̃;1ðξm;2ξΛ̃;1 − 2ξm;1ξΛ̃;2Þ

4ξ2Λ̃;2

�
: ð4:3Þ

One notes that, unlike in the usual approach (6.1a) and
(6.1b), the mass (4.3) does not depend on the gauge
couplings and their expansion parameters. Furthermore,
the optimal U(1) coupling ẽ in Eq. (3.6) is shifted from its
infrared value e0:

1

ẽ2
¼ 1

e20
þð4ξΛ̃;1þξm;1ϕ

2
VEVÞð4ξe;2ξΛ̃;1−8ξe;1ξΛ̃;2þhϕ2Þ
4ð4ξΛ̃;2þξm;2ϕ

2Þ2 ;

ð4:4Þ

where h ¼ ξe;2ξm;1 − 2ξe;1ξm;2. The mass term for the
gauge bosons is obtained through the product between
the inverse of (4.4) and the VEV of the scalar field (4.2):

m2
A ¼

64ξ3Λ̃;2ð
F 1

4ξ2
Λ̃
−m2

0Þ
ðξm;2ξΛ̃;1 − ξm;1ξΛ̃;2Þ2

�
4

e20
þ F 3ðξe;2F 3 þ 6ξe;1ξm;2ξΛ̃;2F 1 − 4ξe;1F 2Þ
ð3ξ2m;2ξ

2
Λ̃;1ξΛ̃;2 − 6ξm;1ξm;2ξΛ̃;1ξ

2
Λ̃;2 þ 2F 2Þ2

�−1
; ð4:5Þ

with

F 1 ¼ ξΛ̃;1ð2ξm;1ξΛ̃;2 − ξm;2ξΛ̃;1Þ; ð4:6aÞ
F 2 ¼ ξ3Λ̃;2ðξ2m;1 þ 2m2

0ξm;2Þ; ð4:6bÞ

F 3 ¼ 2ξ2m;2ξ
3
Λ̃;1 − 3ξm;1ξm;2ξ

2
Λ̃;1ξΛ̃;2 þ 4m2

0ξm;1ξ
3
Λ̃;3: ð4:6cÞ
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After insertion of the set of U(1) parameters (2.11) into (4.2) and (4.3), the mass and VEV of the Higgs field are
determined as a function of gravitational parameters appearing in the infrared expansion of Λk

Gk
and m0:

v2 ¼ 256π3ξΛ̃;2

�e40ð9π − 1Þξ2Λ̃;1 þ 512m2
0π

3ξ2Λ̃;2 þ 24e20π
2ξΛ̃;1ζ1

e40ðe20ð9π − 1ÞξΛ̃;1 þ 24π2ζ2Þ2
�
; ð4:7aÞ

m2
η ¼

1

256π3ξ2Λ̃;2
ðe40ð9π − 1Þξ2Λ̃;1 þ 512π3m2

0ξ
2
Λ̃;2 þ 24e20π

2ξΛ̃;1ζ1Þ; ð4:7bÞ

with ζ1 ¼ ðξΛ̃;1 þ 4m0ξΛ̃;2Þ and ζ2 ¼ ðξΛ̃;1 þ 2m0ξΛ̃;2Þ. At
this point, it is important to make a few comments about the
result obtained in (4.7). The initial action (3.6) has no
elements to produce mass for the U(1) gauge boson, since
the quartic interaction is missing. After applying the VPS
procedure, to get an optimal effective action, a symmetry-
breaking effective potential appears when the gravitational
sector is taken into account. However, the RG expansion
parameters, which drive this SSB, must meet certain
requirements. The Hermiticity of the optimal Lagrangian
implies that the parameters in (3.7) must be real, and, thus,
this Lagrangian respects charge, parity, and time-reversal
symmetries. Mimicking the usual Higgs mechanism for
SSB, the sign of the mass term is chosen negative. More-
over, the effective coupling λ must be positive as a
requirement for the scalar potential to be bounded from
below. As shown above, this implies that ξΛ̃;2 > 0.

B. Benchmark of gravitational parameters

Because of the dependence on infrared coefficients ξi
provided in the expansion of the couplings involved in the
theory, one can expect to get restrictions from physically

observed gauge boson masses. This exercise is done despite
the fact that the model presented in (3.6) is more a
conceptual case study rather than a competitive phenom-
enological model, since it has neither electroweak nor
Yukawa couplings implemented. Observed experimental
values of the Higgs mass and the VEV will be employed to
get a better idea about the distribution of the allowed
parameters ξΛ̃;1 and ξΛ̃;2 in agreement with the observa-
tions. The quantities mη and v in (4.7) have four free
parameters: e0, m0, ξΛ̃;1, and ξΛ̃;2. We impose that

(i) e0 ¼
ffiffiffiffiffiffiffiffi
4πα

p
≈ 0.3028 [96].—The U(1) coupling e0

in (3.1) takes the value of the vertex function in
spinor electrodynamics when all three particles (one
incoming fermion, incoming photon, and outgoing
fermion) are on shell, i.e., the elementary charge e.
In the deep infrared, the choice k0 → 0 is justified
due to the long-range character of QED. One
confirms numerically that the difference between
ẽ and e0 is negligible.

(ii) v ¼ ð ffiffiffi
2

p
GFÞ−1=2 ¼ 246.2197 GeV [97]—Because

the experimental uncertainty on the Higgs mass
mH is much larger than the uncertainty on the
VEVof the Higgs field measured in the muon decay
vH, only the best fit value v ¼ 246.2197 will be
considered to fixm0 as a function of the gravitational
parameters ξΛ̃;1 and ξΛ̃;2.

(ii) ξΛ̃;2 > 0.—When the two preceding points are
applied to (4.7b), the bound on ξΛ̃;2 arises from
imposing real values for mη.

The boundaries for the gravitational parameters ξΛ̃;1 and
ξΛ̃;2 can be obtained by associating the limits of the Higgs
boson mass with the limits of mη in (4.7b). The result is
shown in Fig. 2. Parameters enclosed in the shadow region
meet the experimental requirements previously discussed.

V. COMPARISON WITH THE FUNCTIONAL
RENORMALIZATION GROUP

Up to now, our calculations never made use of a specific
shape of gravitational beta functions. Let us make up
leeway. The evolution of the scale-dependent dimension-
less couplings is dictated by the functional renormalization
group equation (also known as the Wetterich equation)

FIG. 2. Allowed parameter range in the gravitational parameter
ξΛ̃;1 and ξΛ̃;2. The orange region represents gravitational param-
eters which give a mass for the U(1) gauge boson lower than
mη ¼ 125.33 GeV, while the blue region represents parameters
greater than mη ¼ 124.85 (lower and upper experimental limit of
the mass of the Higgs boson).
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dΓk

dt
¼ 1

2
STr

� ∂tRk

Γð2Þ
k ½ϕ� þRk

�
: ð5:1Þ

The Wetterich equation is formulated such that it
depends on renormalization group time t ¼ ln k

k0
, the

modified inverse propagator Γð2Þ
k ½ϕ� þRk involving a

second functional derivative of the scale-dependent effec-
tive action with respect to the fields, and the momentum
cutoff Rk. The cutoff is chosen such that it suppresses the
contributions of field modes smaller than the cutoff scale k2

[29,98–100]. The notation STr stands for “supertrace,”
which is performed over momenta as well as particle
species and spacetime or internal indices, including a factor
ð−1Þ for fermionic fields. Despite the fact that theWetterich
equation (5.1) is an exact one-loop equation, for practical
computations, one has to apply truncations in order to
obtain a manageable theory space. The ground for the
gravity-matter beta functions used in this section was laid in
Refs. [61–64].
To perform the comparison between (3.2), (3.7), and the

functional renormalization group, Eq. (5.1), a matter sector
is required in addition to the usual Einstein-Hilbert trun-
cation. The matter content consists of Ns scalar fields ϕi,
ND fermion fields ψ i, and NV Abelian gauge fields Ai

μ. In
addition to this, one has the ghost and antighost fields c and
c̄, respectively, all coupled to an external metric gμν. The
matter part of the action is given by

Γmatter ¼ SSðϕ; gÞ þ SDðψ ; ψ̄ ; gÞ þ SVðA; c; c̄; gÞ; ð5:2Þ

SSðϕ; gÞ ¼
1

2

Z
ddx

ffiffiffi
g

p
gμν

XNS

i

∂μϕ
i∂νϕ

i; ð5:3Þ

SDðA; c; c̄; gÞ ¼ i
Z

ddx
ffiffiffi
g

p XND

i

ψ̄ i=Dψ i; ð5:4Þ

SVðA; c; c̄; gÞ ¼
1

4

Z
ddx

ffiffiffi
g

p XNV

i¼1

gμνgκλFi
μκFi

νλ

þ 1

2ξ

Z
ddx

ffiffiffi
g

p XNV

i¼1

ðgμν∇μAi
νÞ2 ð5:5Þ

þ
Z

ddx
ffiffiffi
g

p XNV

i¼1

c̄ið−∇2Þci; ð5:6Þ

where =D ¼ γaeμa∇μ, with the orthonormal frame eμa and
where i is a summation index over matter species. Adding
to this action the contribution of the Einstein Hilbert
truncation (using a type-II cutoff), ghost and gauge fixing,
the beta functions in four dimensions for the gravitational
scale-dependent coupling are

βg ¼ 2gþ g2

6π
ðNS þ 2ND − 4NV − 46Þ; ð5:7aÞ

βλ ¼ −2λþ g
4π

ðNS − 4ND þ 2NV þ 2Þ

þ gλ
6π

ðNS þ 2ND − 4NV − 16Þ: ð5:7bÞ

Here, (5.7) was expanded up to second order in g and λ.
The numbers −46, þ2, and −16 describe the contribution
of the ghost and metric sector, and they depend on the type
of cutoff Rk which is used.
In the following analysis, the results from Sec. III will be

compared with the evolution of gravitational couplings
using the functional renormalization group equation
(FGRE). To find suitable conditions for the relevant
variables involved in the comparison, one shall vary the
numbers of fields ND, NS, and NV such that the conditions
encountered in the AS scenario are met. The flow equa-
tions (5.7a) and (5.7b) can be integrated analytically, and
the dimensionful running version of Newton coupling turns
out to be

GN ¼ Gk

1þ 1
2
C1k2Gk

; ð5:8Þ

where GN is the Newton constant measured in the deep
infrared k → 0. The dimensionful running version of the
cosmological constant gives

Λk ¼ −
C2

C3ðC1 þ C3Þ
�
2þ ðC1 þ C3Þk2Gk

Gk

�

þ Λ0GNð2þ C1k2GkÞ1þðC1=C3Þ

21þðC3=C1ÞGk

þ 2−C3=C1C2ð2þ C1k2GkÞ1þðC3=C1Þ

C3ðC1 þ C3ÞGk
: ð5:9Þ

In (5.8) and (5.9), we have defined

C1 ¼
1

6π
ðNS þ 2ND − 4NV − 46Þ; ð5:10aÞ

C2 ¼
1

4π
ðNS − 4ND þ 2NV þ 2Þ; ð5:10bÞ

C3 ¼
1

6π
ðNS þ 2ND − 4NV − 16Þ: ð5:10cÞ

Consider the expansion around the quantity k ¼ ðk0 þ
m0Þ=m0 (see Fig. 1). In the infrared, the modified running
Λ̃ up to order k02 reads

Λ̃k ¼ Λ̃0 þm4
0C2 ·

�
k0

m0

�
þ 3 · 2−C1m4

0C2 ·
�
k0

m0

�
2

þOðG0;Λ0Þ: ð5:11Þ
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Since the crucial requirement of the method described in
the two previous sections was ξΛ̃;2 > 0, the compatibility
will be dictated by the sign of C2. To compare our result
with those found in the AS program, the requirements that
the gravitational parameters (ξΛ̃;1; ξΛ̃;2) need to meet can be
summarized as follows.
(1) Positive Newton fixed point g� > 0.—The low value

(k≲Mpl,) of Newton gravitational coupling is re-
stricted by observations based on laboratory experi-
ments at the scale klab ⋍ 10−5 eV.

(2) Relevant directions.—Insofar as the corresponding
fixed points for the gravitational couplings of a pure
gravity theory have two relevant directions [61], one
expects that the addition of a small number of matter
degrees of freedom does not change this behavior
and the subsequent parametrization in theory space.

(3) Positive value of ξΛ̃;2 > 0.—As discussed before,
the requirement to ensure that our model guarantees
SSB at the level of the effective action needs λ > 0 in
(3.7) or, equivalently, C2 > 0 in (5.11).

The first two criteria were already pointed out in Ref. [61],
and they are shown in Appendix A for different matter field
configurations, while the third selection criterium is neces-
sary for the validity in (3.7). These conditions determine
how many fields NS; ND;… may be incorporated such that

the proposed mechanism for SSB is in agreement with the
requests of AS. Figure 3 shows how the conditions above
allow one to put restrictions on the field content in the
NS-ND plane for NV ¼ 1. Each black point indicates a
viable model with SSB and an UV fixed point.

VI. APPLICATION TO TECHNICAL
NATURALNESS AND HIERARCHY PROBLEM

The measurements of the Higgs boson at the Large
Hadron Collider [101,102] confirms that its existence and
properties are consistent with the SM. Unlike all other
particles of the SM, the Higgs boson is a fundamental
scalar, which gives rise to the question whether the SSB
mechanism, which is induced by the Higgs field, is natural
[103–118]. The central issue is the strong sensitivity of
masses of scalar particles under radiative corrections,
leading to the so-called hierarchy problem and the failure
of the notion of naturalness. It is, of course, possible that
naturalness is not always a good guiding principle for the
understanding of nature [119], but if one would have the
choice, a natural description is certainly preferable.
The hierarchy problem affects only scalar particles, since

Dirac and gauge fields are technically natural. In the SM,
the term m2H†H, with H being the SUð2ÞL Higgs field
doublet, is invariant under any gauge or global symmetry
acting on it. If the theory under consideration possesses
multiple mass scales, one finds that the Higgs mass m
accumulates quantum corrections from all (coupled) par-
ticles at all energy scales. Thus, m is affected by heavy
particles through the appearance of quadratic divergences
(unlike the technically natural spin-1

2
or spin-1 fields).

Specifically, in an effective field theory approach of the
SM, where the momenta of virtual particles are involved,
the radiative corrections are cut off at the scale Π. The
dependence of m on some experimental scale μ can be
obtained from Ref. [120]:

m2
HðμÞ ¼ m2

0ðΠÞ þ δm2; ð6:1aÞ

δm2 ¼ Π2

16π

�
3

4
g21 þ

9

4
g22 þ 3λ2h − 12λ2t

�
; ð6:1bÞ

where λh, λt, g1, and g2 are the Higgs quartic, Yukawa,
electroweak SUð2ÞL, and hypercharge couplings, respec-
tively. Following Eq. (6.1a), an explanation of why the
observed Higgs mass remains small requires a large fine-
tuning such that the tree-level parameter exactly cancels the
huge correction in Eq. (6.1b). If one starts with a bare
action, the quadratic divergences for scalar fields always
arise when the quantum corrections are incorporated.
Accordingly, a light Higgs scalar cannot survive in a
natural way if the theory is expected to hold up to large
energy scales, such as the Planck scale. This is referred to as
the fine-tuning, hierarchy, or naturalness problem and turns

FIG. 3. Dynamical matter degrees of freedom compatible with a
gravitational fixed point with two relevant directions for NV ¼ 1
(explicit values are listed in Appendix A), represented by black
bullets. The shaded blue region represents a zone where a
negative Newton fixed point takes place, while the shaded red
area contains points associated with ξΛ̃;2 < 0.
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out to be independent of the scheme one uses to renorm-
alize the theory.
The new method of SSB introduced in Sec. III allows

addressing the problem of quadratic divergences coming
from the scalar sector. The bare action SðϕÞ is chosen such
that no quadratic divergences appear when quantum cor-
rections are incorporated in the effective action ΓkðΦÞ
[Eq. (3.1)]. Breaking of U(1) symmetry, together with the
corresponding masses for scalar and gauge fields, takes
place only at Γopt (3.6) (after having fixed the renormal-
ization scale k). The advantage of this is those quadratic
divergences arising from quantum corrections of the bare
action S in the standard SSB are absent when SSB occurs
only at the level of Γopt, since the optimal effective action
has all quantum corrections already incorporated [38,39].
No additional quantum corrections have to be incorporated
into Γopt, and, thus, no quadratic divergences occur.
There exist different notions of naturalness in the context

of Higgs and gauge boson masses. It is thus important to
clarify in which sense the results for the gauge and scalar
masses (4.5), (4.7b) are natural and in which sense the
applicability of the method is limited.

(i) The first observation is that the masses do not
depend on the UV cuts of the theory, which is
necessary for naturality.

(ii) The second observation is that the masses depend,
apart from the RG parameters ξ, only on the IR
parameter m0 of the scalar sector, which suggests
that the method is insensible to UV contributions
from the scalar sector.

(iii) UV contributions from gravitational physics could
destroy naturalness, if a dimensionful UV parameter
of the model, such as the Planck mass (1=

ffiffiffiffiffiffi
G0

p
),

would appear in Eq. (4.5) or (4.7b). This is not the
case, which means that this condition for naturalness
also holds.

(iv) There could exist a very heavy fermion with a mass
mf ≫ m0 or additional dimensionful gravitational
couplings which are not part of this model. These
couplings would then appear in the beta functions of
the model and, thus, potentially also in the masses
(4.5) or (4.7b). This has to be checked model by
model and coupling by coupling. It is known that the
existence of new heavy particles (either boson or
fermion) does not necessarily violate our current
naturalness notion, as discussed in Ref. [2]. The
large cancellations occurring in the mass squared
parameter depend on the nature of the new heavy
states, and many theoretical models like the seesaw
theory of neutrino masses [121–123], electroweak-
coupled fermions as weakly interacting massive
particle candidates for dark matter [124], and Higgs
portal dark matter [125] meet the naturalness cri-
teria δμ2 ≲ 1002 GeV2.

(v) There is also the possibility that there are no new
states between the Higgs mass and the Planck scale.
Such scenarios are known as “desert” scenarios
[126,127]. In such a scenario, no additional states
would threaten the naturalness of a self-consistent
model, like the one presented here.

Thus, one can conclude that the presented model produces
natural gauge boson and scalar masses but that this state-
ment is limited to the field and couplings which are part of
the model.

VII. SUMMARY AND CONCLUSION

In the present work, a novel mechanism for spontaneous
symmetry breaking is suggested that circumvents the
appearance of quadratic divergences by avoiding the
breaking from taking place at the classical level. It is
shown that SSB still can occur at the quantum level,
namely, after setting the renormalization scale k of the
effective quantum action Γk. As a scale-setting procedure,
the VPS method is used. This allows arriving at an
optimized effective quantum action Γopt, which, under
certain conditions, produces SSB. It is intriguing that this
procedure even works in flat background spacetime. The
naturalness of the resulting Higgs mass is limited to the
particle content of the model and possible extensions and
modifications have to be studied case by case.
Despite the fact that the toy models of our study do not

contain Yukawa, weak, or strong couplings, the underlying
mechanism can be expected to work also for models
containing these features. It is shown that, within this type
of model, one can impose phenomenological conditions on
Γopt. These conditions (in particular, the requirement
ξΛ̃;2 > 0) do then allow one to put restrictions on the free
parameters and the number of scalar, vector, and Dirac
fields. For the example of asymptotically safe quantum
gravity coupled to matter, it is shown that, for a given
number of scalar fields, these conditions impose an upper
and a lower bound on the number of Dirac fields, as shown
in Fig. 3.
We further analyze to which extent the results depend on

the gauge choice, the truncation, and the shape of the cutoff
function in Appendix B. The inclusion of a graviton and
ghost anomalous dimension, as well as the anomalous
dimension of the matter fields, derived in Ref. [61], does
not affect the findings discussed above.
In a future study, we plan to perform an implementation

with all couplings necessary to arrive at the Glashow-
Weinberg-Salam model [128–130] coupled to gravity.
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APPENDIX A: FIXED POINTS AND
RELEVANT DIRECTIONS

APPENDIX B: CONSISTENCY OF FLOW
EQUATIONS

Formulations of the FRGE require the inclusion of an IR
regulator to ensure the integration of all degrees of freedom
of fields possessing fluctuations of momenta higher than k.
The choice of the arguments of the cutoff functionRk gives
rise to diversity in the shape of the couplings’ flow involved
in the theory. However, physical results must remain
independent of the selection of the shape and the corre-
sponding endomorphism used in the cutoff function. Thus,
one has to check whether the results obtained in this work
are independent of this choice. Since the criteria for
discriminating the result of the presented mechanism have
to do with the sign of C2, different truncations with various
types of cutoff and expansion of the cosmological constant
were investigated, setting NS ¼ 2, NV ¼ 1, and the number
of Dirac fields being a number between 2 and 9, where we
know the model works while fulfilling the conditions
required by the AS. The results presented in Table II
confirm that this analysis is robust under changes in the
truncation procedure.
Note that the characterization of C2 is robust under

changes of the gauge choice [133]. Because of the structure
of the C2 term in (5.10b), the sign of ξΛ̃;2 is also
independent of how many scalar fields are incorporated
while keeping ND at some fixed number.
Most of the findings presented in this Appendix might

seem evident, but some issues appear when one gets
solutions of the FRGE with one or the other of the kinetic
operator. In particular, Refs. [132,134,135] show that the
spectrum of ∇2 (type-I cutoff) and ∇2 − R

4
(type-II cutoff)

may turn out in ambiguities in the sign of the fermionic
contribution to the running of the Newton constant. In other
words, the background-field dependence of Rk can alter
results in the background approximation of physical
observables, since only a type-II cutoff gives the sign
according to the infrared observation of G. This result has
been corroborated by employing a completely independent
method to evaluate the rhs of Eq. (5.1) [135]. However, the
SSB discussed in this paper takes place independent of this
sign and independent of the gauge choices.

TABLE I. Selected gravitational fixed points and relevant
directions for NV ¼ 1 for type-II cutoff, Feynman–de Donder
gauge, and one-loop approximation. The first and second
columns indicate the matter content. The third and fourth
columns are the fixed points for the Newton and cosmological
constant. The fifth and sixth columns represents the negative
value of the critical exponents.

Ns ND g� λ� θ1 θ2

0 1 0.7891 −0.0355 3.4679 1.8295
4 1 0.7874 0.0474 3.3244 1.9828
8 1 0.7712 0.1323 3.3392 2.1429
12 1 0.7985 0.2119 4.7225 1.6221
16 1 1.984 0.236 16.0381 4.2369
20 1 5.8534 0.1827 59.1008 15.8484
25 1 27.9783 0.0831 468.104 56.6011
30 1 −7.4924 −3.0458 4.3406 3.0051
35 1 −4.3416 −2.2382 4.2789 2.7502
0 2 0.9061 −0.1388 3.6279 1.6733
4 2 0.9255 −0.0513 3.5503 1.7274
8 2 0.9161 0.0457 3.5004 1.8615
12 2 0.8959 0.1407 3.8755 1.9107
16 2 1.0522 0.2183 7.004 1.1397
20 2 2.9317 0.2021 23.4523 5.4593
25 2 13.2672 0.0905 139.134 16.5161
30 2 −6.5262 −2.1898 4.6413 2.9661
0 4 1.2332 −0.4412 3.8211 1.4862
4 4 1.3634 −0.3722 3.8152 1.4125
8 4 1.4801 −0.2736 3.8299 1.3405
12 4 1.5275 −0.1386 3.9264 1.3165
16 4 1.4747 0.0126 4.1321 1.6424
20 4 1.5462 0.1276 6.4885 1.4076
25 4 4.5202 0.0938 24.9725 2.0416
0 6 1.7796 −0.9772 3.919 1.3963
4 6 2.2679 −1.073 3.9343 1.2565
8 6 3.2689 −1.3068 3.9642 1.0238
12 6 10.5941 −3.5853 3.9829 0.3888
0 8 2.8677 −2.096 3.9688 1.3603
4 8 5.0095 −3.304 3.984 1.1922
8 8 63.0118 −112.51 2.1179 −1.0674
0 9 3.9567 −3.2412 3.9837 1.3547
2 9 5.6446 −4.423 3.99 1.2799
4 9 10.5569 −7.9074 3.9964 1.1821
6 9 3.72 × 107 −1087.061 1.25 × 109 6.22 × 108

0 10 6.1542 −5.5762 3.9945 1.3547
2 10 11.888 −10.3525 4 1.2801
4 10 712554.8395 490.2162 3.487 × 106 1.74 × 106

0 11 12.9664 −12.8612 4.0024 1.3589
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